Notes:

- THIS STUDY GUIDE COVERS SECTIONS 2.1-2.8; 3.1, 3.2
- You should also study all of your old homework assignments and in-class notes. Possible exam questions may come from those as well.
- REMINDERS: No cheat sheet. You may use a scientific, but not graphing calculator.

Section 2.1

1. Suppose you are given the following joint distribution for X_{1} and X_{2} :

$$
p_{1,2}\left(x_{1}, x_{2}\right)= \begin{cases}\frac{x_{1}+x_{2}}{30}, & x_{1}=0,1,2,3 ; \quad x_{2}=0,1,2, \\ 0, & \text { otherwise }\end{cases}
$$

(a) Find $\mathrm{P}\left[X_{1} \leq 1, X_{2}>0\right]$
(b) Find $\mathrm{P}\left[X_{1}>X_{2}\right]$.
(c) Find $F_{1}\left(x_{1}\right)$, the CDF of X_{1}.
(d) Make a table listing the marginal distribution of X_{1}.
(e) Find $\mathbf{E}\left(X_{1} X_{2}\right)$.
(f) Find $\mathbf{E}\left(X_{1}\right)$.
2. Let X_{1} and X_{2} be random variables. Their joint distribution, $f\left(x_{1}, x_{2}\right)$, is given by

$$
f\left(x_{1}, x_{2}\right)= \begin{cases}10 x_{1} x_{2}^{2}, & 0<x_{1}<x_{2}<1 \\ 0, & \text { otherwise }\end{cases}
$$

(a) Find $\mathrm{P}\left[X_{1}<0.25,0.5<X_{2}<1\right]$.
(b) Find $F_{2}\left(x_{2}\right)$, the CDF of X_{2}.
(c) Find the marginal distribution of X_{2}.
(d) Find $\mathbf{E}\left(X_{1} X_{2}\right)$.
(e) Find the marginal distribution for X_{1}.
(f) Find $\mathbf{E}\left(X_{1}\right)$.
(g) Find $\mathbf{E}\left(-5 X_{1}\right)$.

Section 2.2 \& 2.7

Note: You should be able to extend any of these types of problems to multiple random variables.
3. Let X_{1} and X_{2} be two random variables with joint probability distribution

$$
p\left(x_{1}, x_{2}\right)= \begin{cases}\left(1-p_{1}\right)^{x_{1}-1} p_{1}\left(1-p_{2}\right)^{x_{2}-1} p_{2}, & x_{1}=1,2, \ldots ; x_{2}=1,2, \ldots ; 0<p_{1}, p_{2}<1 \\ 0, & \text { otherwise }\end{cases}
$$

Find the distribution of $Y_{1}=X_{1}+X_{2}$.
4. Suppose that X is a continuous random variable such that it has the pdf

$$
f(x)= \begin{cases}\frac{1}{6}, & -2 \leq x \leq 4 \\ 0, & \text { otherwise }\end{cases}
$$

Define $Y=X^{2}$.
(a) Find the CDF of X.
(b) Find the CDF of Y.
(c) Find the PDF of Y.
5. Let X_{1} and X_{2} be two continuous random variables with joint probability distribution

$$
f\left(x_{1}, x_{2}\right)= \begin{cases}\frac{1}{\pi}, & 0<x_{1}^{2}+x_{2}^{2}<1 \\ 0, & \text { otherwise }\end{cases}
$$

Define $Y_{1}=X_{1}^{2}+X_{2}^{2}$ and $Y_{2}=\frac{X_{1}^{2}}{X_{1}^{2}+X_{2}^{2}}$. Find the joint pdf of Y_{1} and Y_{2}.

Section 2.3

6. Let X_{1} and X_{2} be continuous random variables with joint probability distribution

$$
f\left(x_{1}, x_{2}\right)= \begin{cases}\frac{5}{16} x_{1} x_{2}^{2}, & 0<x_{1}<x_{2}<2 \\ 0, & \text { otherwise }\end{cases}
$$

(a) Find $\mathbf{E}\left[X_{1} X_{2}\right]$.
(b) Find the marginal distribution of X_{2}.
(c) Find the conditional distribution of X_{1}, given $X_{2}=x_{2}$.
(d) Find $\mathrm{P}\left[0<X_{1}<1 \left\lvert\, X_{2}=\frac{3}{2}\right.\right]$.
(e) Find $\mathrm{P}\left[0<X_{1}<1\right]$.
(f) Find $\mathbf{E}\left[X_{1}\right]$.
(g) Find $\mathbf{V}\left[X_{1}\right]$.
(h) Find the distribution of $Y=\mathbf{E}\left[X_{1} \mid X_{2}\right]$.
(i) Find $\mathbf{E}[Y]$.
(j) Find $\mathbf{V}[Y]$. How does this value compare to $\mathbf{V}\left[X_{1}\right]$?

Section 2.4

7. Let X and Y have the joint pmf described as follows:

$$
\begin{array}{l|cccccccc}
(x, y) & (0,1) & (0,3) & (0,5) & (1,1) & (1,3) & (1,5) & (2,1) & (2,5) \\
\hline p(x, y) & 1 / 20 & 2 / 20 & 1 / 20 & 4 / 20 & 2 / 20 & 3 / 20 & 1 / 20 & 6 / 20
\end{array}
$$

(a) Find the correlation coefficient of X and Y.
(b) Compute $\mathbf{E}[Y \mid X=k], k=0,1,2$, and the line $\mu_{2}+\rho\left(\sigma_{2} / \sigma_{1}\right)\left(x-\mu_{1}\right)$. Do the points $[k, \mathbf{E}[Y \mid X=k], k=0,1,2$, lie on this line?
8. What do the following covariances tell you about the relationships between X and Y ?
(a) $\operatorname{COV}(X, Y)=+0.9$.
(b) $\operatorname{COV}(X, Y)=0$.
(c) $\operatorname{COV}(X, Y)=-0.6$.

Section 2.5

9. Show that the random variables X_{1} and X_{2} with joint pmf

$$
p\left(x_{1}, x_{2}\right)= \begin{cases}1 / 32, & \left\{\left(x_{1}, x_{2}\right):(0,0) ;(0,2) ;(3,0) ;(3,2)\right\} \\ 2 / 32, & \left\{\left(x_{1}, x_{2}\right):(0,1) ;(3,1)\right\} \\ 3 / 32, & \left\{\left(x_{1}, x_{2}\right):(1,0) ;(1,2) ;(2,0) ;(2,2)\right\} \\ 6 / 32, & \left\{\left(x_{1}, x_{2}\right):(1,1) ;(2,1)\right\}\end{cases}
$$

are independent.
10. Let X_{1} and X_{2} be random variables with joint pdf

$$
f\left(x_{1}, x_{2}\right)= \begin{cases}\frac{1}{8} x_{1} e^{-x_{2}}, & 0<x_{1}<4, \quad 0<x_{2}<\infty \\ 0, & \text { otherwise }\end{cases}
$$

Are X_{1} and X_{2} dependent or independent?
11. Let X_{1} and X_{2} be random variables with joint pdf

$$
f\left(x_{1}, x_{2}\right)= \begin{cases}x_{1} e^{-x_{2}}, & 0<x_{1}<x_{2}<\infty \\ 0, & \text { otherwise }\end{cases}
$$

Are X_{1} and X_{2} dependent or independent?
12. Explain the difference between mutually independent and pairwise independent. Which implies the other?
13. Let $X_{1}, X_{2}, X_{3}, X_{4}$ be continuous random variables with joint pdf

$$
f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)= \begin{cases}\frac{4}{3} x_{1} x_{2}^{2} e^{-2 x_{3}-x_{4}}, & 0<x_{1}<3,0<x_{2}<1,0<x_{3}, 0<x_{4} \\ 0, & \text { otherwise }\end{cases}
$$

(a) Compute $\mathrm{P}\left[X_{4}<X_{1}<X_{2}\right]$.
(b) Find $\mathrm{P}\left[X_{1}<X_{2} \mid X_{1}<2 X_{2}\right]$.
(c) Find the marginal distribution of X_{2}, X_{4}.
(d) Find the marginal distribution of X_{1}, X_{2}, X_{4}.

Note: On an exam, you would see a maximum of 3 random variables. If you can work with 4 random variables on a study guide, working with 3 random variables should be easier.

Section 2.8

14. Let X_{1}, \ldots, X_{n} be iid random variables with common mean μ and variance σ^{2}. Define $\bar{X}=n^{-1} \sum_{i=1}^{n} X_{i}$. Find $\mathbf{E}[\bar{X}]$ and $\mathbf{V}[\bar{X}]$.
15. Let X and Y be random variables with $\mu_{1}=1, \mu_{2}=4, \sigma_{1}^{2}=4, \sigma_{2}^{2}=6, \rho=\frac{1}{2}$. Find the mean and variance of the random variable $Z=3 X-2 Y$.
16. Let X_{1} and X_{2} be independent random variables with nonzero variances. Find the correlation coefficient of $Y=X_{1} X_{2}$ and X_{1} in terms of the means and variances of X_{1} and X_{2}.

Section 3.1

17. Consider a standard deck of 52 cards. Let X equal the number of aces in a sample of size 2.
(a) If the sampling is with replacement, obtain the pmf of X.
(b) If the sampling is without replacement, obtain the pmf of X.
18. A traffic control engineer reports that 75% of the vehicles passing through a checkpoint are from within the state. What is the probability that fewer than 4 of the next 9 vehicles are from out of state? On average, how many cars will pass through the checkpoint? What is the variance?
19. Biologists doing studies in a particular environment often tag and release subjects in order to estimate the size of a population or the prevalence of certain features in the population. Ten animals of a certain population thought to be extinct (or near extinction) are caught, tagged, and released in a certain region. After a period of time, a random sample of 15 of this type of animal is selected in the region. What is the probability that 5 of those selected are tagged if there are 25 animals of this type in the region? On average, how many animals caught are tagged? What is the variance?
20. What is the probability that a waitress will refuse to serve alcoholic beverages to only 2 minors if she randomly checks the IDs of 5 among 9 students, 4 of whom are minors? On average, how many minors will the waitress refuse to serve? What is the variance?
21. It is known that 60% of mice inoculated with a serum are protected form a certain disease. If 5 mice are inoculated, find the probability that
(a) none contracts the disease
(b) fewer than 2 contract the disease
(c) more than 3 contract the disease
22. The probability that a person living in a certain city owns a cat is estimated to be 0.4. Find the probability that the tenth person randomly interviewed in that city is the third one to own a cat.
23. It is known that 3% of people whose luggage is screened at an airport have questionable objects in their luggage. What is the probability that a string of 15 people pass through screening successfully before an individual is caught with a questionable object?

Section 3.2

24. On average, 3 traffic accidents per month occur at a certain intersection. What is the probability that at any given month at this intersection
(a) exactly 5 accidents will occur?
(b) fewer than 3 accidents will occur?
(c) at least 2 accidents will occur?
25. A certain area of the eastern United States is, on average, hit by 6 hurricanes a year. Find the probability that in a given year that area will be hit by
(a) fewer than 4 hurricanes.
(b) anywhere from 6 to 8 hurricanes, inclusive.
26. On the average, a grocer sells three of a certain article per week. How many of these should he have in stock so that the chance of his running out within a week is less than 0.01? Assume a Poisson Distribution.

Moment Generating Functions

27. Find moment generating functions for the following probability distributions.
(a) Let X be a random variable and n a positive integer. Let $0<p<1$. The pmf of X is given by

$$
p(x)= \begin{cases}\binom{n}{x} p^{x}(1-p)^{n-x}, & x=0,1,2, \ldots, n \\ 0, & \text { otherwise }\end{cases}
$$

(b) Let X be a random variable and $\lambda>0$ be a constant. The pmf of X is given by

$$
p(x)= \begin{cases}\frac{e^{-\lambda} \lambda^{x}}{x!}, & x=0,1,2, \ldots \\ 0, & \text { otherwise }\end{cases}
$$

(c) Let X be a random variable and $0<p<1$. The pmf of X is given by

$$
p(x)= \begin{cases}(1-p)^{x-1} p, & x=1,2,3, \ldots \\ 0, & \text { otherwise }\end{cases}
$$

(d) Let X be a random variable and $a<b$ be constants. The pdf of X is given by

$$
f(x)= \begin{cases}\frac{1}{b-a}, & a \leq x \leq b \\ 0, & \text { otherwise }\end{cases}
$$

(e) Let X be a random variable, $-\infty<\mu<\infty$ a constant, and $\sigma^{2}>0$ a constant. The pdf of X is given by

$$
f(x)= \begin{cases}\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}, & -\infty<x<\infty \\ 0, & \text { otherwise }\end{cases}
$$

(f) Let X be a random variable, $\alpha>0$ a constant, and $\theta>0$ a constant. Let $\Gamma(\alpha)$ be a Gamma Function evaluated at α. The pdf of X is given by

$$
f(x)= \begin{cases}\frac{1}{\Gamma(\alpha) \theta^{\alpha}} x^{\alpha-1} e^{-x / \theta}, & 0 \leq x<\infty \\ 0, & \text { otherwise }\end{cases}
$$

(g) Let X be a random variable. The pdf of X is given by

$$
f(x)= \begin{cases}\frac{4}{255} x^{3}, & -1<x<4 \\ 0, & \text { otherwise }\end{cases}
$$

28. Let X_{1} and X_{2} be independent random variables. The pdf of X_{1} is

$$
f_{1}\left(x_{1}\right)= \begin{cases}\frac{1}{\Gamma(2)\left(\frac{1}{2}\right)^{2}} x e^{-2 x}, & 0 \leq x_{1}<\infty \\ 0, & \text { otherwise }\end{cases}
$$

The pdf of X_{2} is

$$
f_{2}\left(x_{2}\right)= \begin{cases}\frac{1}{\Gamma(4)\left(\frac{1}{2}\right)^{4}} x^{3} e^{-2 x}, & 0 \leq x_{2}<\infty \\ 0, & \text { otherwise }\end{cases}
$$

Find the distribution of $Y=X_{1}+X_{2}$ using MGFs.
29. Let X_{1} and X_{2} be independent random variables, such that

$$
p_{1}\left(x_{1}\right)= \begin{cases}\left(\frac{9}{10}\right)^{x-1}\left(\frac{1}{10}\right), & x_{1}=1,2,3, \ldots \\ 0, & \text { otherwise }\end{cases}
$$

and

$$
p_{2}\left(x_{2}\right)= \begin{cases}\left(\frac{3}{10}\right)^{x-1}\left(\frac{7}{10}\right), & x_{2}=1,2,3, \ldots \\ 0, & \text { otherwise }\end{cases}
$$

Use MGFs to find the pdf of $Y=X_{1}+X_{2}$.
30. Suppose X_{1} and X_{2} are random variables such that their joint pdf is

$$
f\left(x_{1}, x_{2}\right)= \begin{cases}x_{1} e^{-x_{2}}, & 0<x_{1}<x_{2}<\infty \\ 0, & \text { otherwise }\end{cases}
$$

(a) Find the moment generating function of X_{1} and $X_{2}, M\left(t_{1}, t_{2}\right)$.
(b) Find the marginal distributions of X_{1} and X_{2}.
(c) Find the moment generating function of X_{1}.
(d) Find the moment generating function of X_{2}.

Solutions

Section 2.1

1. Suppose you are given the following joint distribution for X_{1} and X_{2} :

$$
p_{1,2}\left(x_{1}, x_{2}\right)= \begin{cases}\frac{x_{1}+x_{2}}{30}, & x_{1}=0,1,2,3 ; \quad x_{2}=0,1,2 \\ 0, & \text { otherwise }\end{cases}
$$

(a) Find $\mathrm{P}\left[X_{1} \leq 1, X_{2}>0\right]$

Solution:

$$
\begin{aligned}
\mathrm{P}\left[X_{1} \leq 1, X_{2}>0\right] & =\mathrm{P}\left[X_{1}=0, X_{2}=1\right]+\mathrm{P}\left[X_{1}=0, X_{2}=2\right]+\mathrm{P}\left[X_{1}=1, X_{2}=1\right]+\mathrm{P}\left[X_{1}=1, X_{2}=2\right] \\
& =p(0,1)+p(0,2)+p(1,1)+p(1,2) \\
& =\frac{1}{30}+\frac{2}{30}+\frac{2}{30}+\frac{3}{30} \\
& =\frac{8}{30}=\frac{4}{15} .
\end{aligned}
$$

(b) Find $\mathrm{P}\left[X_{1}>X_{2}\right]$.

Solution:

$$
\begin{aligned}
& \mathrm{P}\left[X_{1}>X_{2}\right]=\mathrm{P}\left[X_{1}=3, X_{2}=0\right]+\mathrm{P}\left[X_{1}=3, X_{2}=1\right]+\mathrm{P}\left[X_{1}=3, X_{2}=2\right] \\
& +\mathrm{P}\left[X_{1}=2, X_{2}=0\right]+\mathrm{P}\left[X_{1}=2, X_{2}=1\right] \\
& +\mathrm{P}\left[X_{1}=1, X_{2}=0\right] \\
& =p(3,0)+p(3,1)+p(3,2)+p(2,0)+p(2,1)+p(1,0) \\
& =3 / 30+4 / 30+5 / 30+2 / 30+3 / 30+1 / 30 \\
& =18 / 30=3 / 5 \text {. }
\end{aligned}
$$

(c) Find $F_{1}\left(x_{1}\right)$, the CDF of X_{1}.

Solution:

$$
\begin{gathered}
\mathrm{P}\left[X_{1} \leq x_{1},-\infty<X_{2}<\infty\right]= \\
=\sum_{k=0}^{x_{1}} \sum_{x_{2}=0}^{2} \frac{k+x_{2}}{30}=\sum_{k=0}^{x_{1}}\left(\frac{k}{30}+\frac{k+1}{30}+\frac{k+2}{30}\right) \\
F_{1}\left(x_{1}\right)= \begin{cases}0, & x_{1}=\ldots,-2,-1 \\
\frac{\left(x_{1}+1\right)\left(x_{1}+2\right)}{20}, & x_{1}=0,1,2,3 \\
1, & x_{1}=4,5,6, \ldots\end{cases}
\end{gathered}
$$

(d) Make a table listing the marginal distribution of X. (Hint: It may help to make a table displaying the joint probability distribution of X and Y.)

Solution:
The marginal distribution of X are the column totals. Let $p(x)$ be the marginal distribution of X.

(e) Find $\mathbf{E}\left(X_{1} X_{2}\right)$.

Solution:

$$
\begin{aligned}
\mathbf{E}\left(X_{1} X_{2}\right)= & \sum_{x_{1}} \sum_{x_{2}} x_{1} x_{2} p\left(x_{1}, x_{2}\right) \\
= & (0)(0)(0)+(0)(1)(1 / 30)+(0)(2)(2 / 30) \\
& +(1)(0)(1 / 30)+(1)(1)(2 / 30)+(1)(2)(3 / 30) \\
& +(2)(0)(2 / 30)+(2)(1)(3 / 30)+(2)(2)(4 / 30) \\
& \quad+(3)(0)(3 / 30)+(3)(1)(4 / 30)+(3)(2)(5 / 30) \\
= & 0+0+0+0+2 / 30+6 / 30+0+6 / 30+16 / 30+0+12 / 30+30 / 30 \\
= & \frac{36}{15}=2.4 .
\end{aligned}
$$

(f) Find $\mathbf{E}\left(X_{1}\right)$.

Solution:

Find $\mathbf{E}\left(X_{1}\right)$ using the marginal distribution of X_{1}.

$$
\mathbf{E}\left(X_{1}\right)=\sum_{x_{1}} x_{1} p\left(x_{1}\right)=(0)(1 / 10)+1(1 / 5)+2(3 / 10)+3(2 / 5)=2 .
$$

2. Let X_{1} and X_{2} be random variables. Their joint distribution, $f\left(x_{1}, x_{2}\right)$ is given by

$$
f(x, y)= \begin{cases}10 x_{1} x_{2}^{2}, & 0<x_{1}<x_{2}<1 \\ 0, & \text { otherwise }\end{cases}
$$

(a) Find $\mathrm{P}\left[X_{1}<0.25,0.5<X_{2}<1\right]$.

Solution:

$$
\begin{aligned}
\mathrm{P}\left[X_{1}<0.25,0.5<X_{2}<1\right] & =\int_{0.5}^{1} \int_{0}^{0.25} 10 x_{1} x_{2}^{2} d x_{1} d x_{2}=\left.\int_{0.5}^{1} 5 x_{1}^{2} x_{2}^{2}\right|_{0} ^{0.25} d x_{2}=\int_{0.5}^{1} 5(0.25)^{2} x_{2}^{2} d x_{2} \\
& =\int_{0.5}^{1} \frac{5}{16} x_{2}^{2} d x_{2}=\left.\frac{5}{48} x_{2}^{3}\right|_{0.5} ^{1}=\frac{5}{48}\left[1^{3}-\left(\frac{1}{2}\right)^{3}\right] \\
& =\frac{5}{48}\left[1-\frac{1}{8}\right]=\frac{5}{48}\left[\frac{7}{8}\right]=\frac{35}{384}
\end{aligned}
$$

(b) Find $F_{2}\left(x_{2}\right)$, the CDF of X_{2}.

Solution:

$$
\begin{aligned}
\mathrm{P}\left[-\infty<X_{1}<\infty,-\infty<X_{2}<x_{2}\right] & =\int_{0}^{x_{2}} \int_{0}^{k} 10 x_{1} k^{2} d x_{1} d k ; \text { note that } 0<x_{1}<k<1 \\
& =\int_{0}^{x_{2}}\left(\left.5 x_{1}^{2} k^{2}\right|_{0} ^{k}\right) d k=\int_{0}^{x_{2}} 5 k^{4} d k=\left.k^{5}\right|_{0} ^{x_{2}}=x_{2}^{5} \\
F_{2}\left(x_{2}\right) & = \begin{cases}0, & x_{2} \leq 0 \\
x_{2}^{5} & 0<x_{2}<1 \\
1, & 1 \leq x_{2} .\end{cases}
\end{aligned}
$$

(c) Find the marginal distribution of X_{2}.

Solution:

By differentiating the CDF:

$$
f\left(x_{2}\right)= \begin{cases}5 x_{2}^{4}, & 0<x_{2}<1 \\ 0, & \text { otherwise }\end{cases}
$$

Using the joint pdf:

$$
f\left(x_{2}\right)=\int_{0}^{x_{2}} 10 x_{1} x_{2}^{2} d x_{1}=\left.5 x_{1}^{2} x_{2}^{2}\right|_{0} ^{x_{2}}= \begin{cases}5 x_{2}^{4}, & 0<x_{2}<1 \\ 0, & \text { otherwise }\end{cases}
$$

(d) Find $\mathbf{E}\left(X_{1} X_{2}\right)$.

Solution:

$$
\begin{aligned}
\mathbf{E}\left(X_{1} X_{2}\right) & =\int_{x_{2}} \int_{x_{1}} x_{1} x_{2} f\left(x_{1}, x_{2}\right) d x_{1} d x_{2}=\int_{0}^{1} \int_{0}^{x_{2}} x_{1} x_{2}\left(10 x_{1} x_{2}^{2}\right) d x_{1} d x_{2} \\
& =\int_{0}^{1} \int_{0}^{x_{2}} 10 x_{1}^{2} x_{2}^{3} d x_{1} d x_{2}=\left.\int_{0}^{1} \frac{10 x_{1}^{3} x_{2}^{3}}{3}\right|_{0} ^{x_{2}} d x_{2} \\
& =\int_{0}^{1} \frac{10 x_{2}^{6}}{3} d x_{2}=\left.\frac{10 x_{2}^{7}}{21}\right|_{0} ^{1}=\frac{10}{21} .
\end{aligned}
$$

(e) Find the marginal distribution for X_{1}.

Solution:

The marginal distribution for X_{1} is given by $f\left(x_{1}\right)$.

$$
\begin{aligned}
f\left(x_{1}\right) & =\int_{x_{1}}^{1} 10 x_{1} x_{2}^{2} d x_{2}=10 x \int_{x_{1}}^{1} x_{2}^{2} d x_{2}=\left.\frac{10 x_{1} x_{2}^{3}}{3}\right|_{x_{1}} ^{1}=\frac{10 x_{1}(1)^{3}}{3}-\frac{10 x_{1}\left(x_{1}^{3}\right)}{3} \\
& =\frac{10}{3} x_{1}\left(1-x_{1}^{3}\right), \quad 0<x_{1}<1 .
\end{aligned}
$$

(f) Find $\mathbf{E}\left(X_{1}\right)$.

Solution:

$$
\begin{aligned}
\mathbf{E}\left(X_{1}\right) & =\iint g\left(X_{1}, X_{2}\right) f\left(x_{1}, x_{2}\right) d x_{1} d x_{2}=\int_{0}^{1} x_{1} f\left(x_{1}\right) d x_{1}=\int_{0}^{1} x_{1}\left[\frac{10}{3} x_{1}\left(1-x_{1}^{3}\right)\right] d x_{1} \\
& =\int_{0}^{1}\left(\frac{10}{3} x_{1}^{2}-\frac{10}{3} x_{1}^{5}\right) d x_{1}=\frac{10 x_{1}^{3}}{9}-\left.\frac{10 x^{6}}{18}\right|_{0} ^{1}=\frac{10}{9}-\frac{10}{18}=\frac{10}{18}=\frac{5}{9} .
\end{aligned}
$$

(g) Find $\mathbf{E}\left(-5 X_{1}\right)$.

Solution:
$\mathbf{E}\left(-5 X_{1}\right)=\int_{0}^{1}-5 x_{1}\left[\frac{10}{3} x_{1}\left(1-x_{1}^{3}\right)\right] d x_{1}=-5 \int_{0}^{1} x_{1}\left[\frac{10}{3} x_{1}\left(1-x_{1}^{3}\right)\right] d x_{1}=-5 \mathbf{E}\left(X_{1}\right)=\frac{-25}{9}$.

Section 2.2 \& 2.7

3. Let X_{1} and X_{2} be two random variables with joint probability distribution

$$
p\left(x_{1}, x_{2}\right)= \begin{cases}\left(1-p_{1}\right)^{x_{1}-1} p_{1}\left(1-p_{2}\right)^{x_{2}-1} p_{2}, & x_{1}=1,2, \ldots ; x_{2}=1,2, \ldots ; 0<p_{1} \neq p_{2}<1 \\ 0, & \text { otherwise }\end{cases}
$$

Find the distribution of $Y_{1}=X_{1}+X_{2}$.

Solution:

Recognize that the joint distribution of X_{1} and X_{2} is discrete. Also, we need to define a second random variable, $Y_{2}=X_{2}$. We solve for the x 's.

$$
x_{2}=y_{2} ; \quad x_{1}=y_{1}-y_{2} .
$$

Make sure to identify $\mathscr{D}_{\vec{Y}}$. At first glance, it appears that $\mathscr{D}_{X_{2}}=\mathscr{D}_{Y_{2}}$ but we need to be careful. We must also satisfy the conditions for X_{1}. For $Y_{1}=X_{1}+X_{2}$, we see that the smallest value Y_{1} can take is 2 because $\min Y_{1}=\min X_{1}+X_{2}=\min X_{1}+\min X_{2}=1+1=2$. We also see that the smallest value Y_{2} can take is 1 because $\min Y_{2}=\min X_{2}=1$. We also have the restriction that Y_{1} and Y_{2} must be integers, and in particular, Y_{2} must be a positive integer greater than or equal to 1. However, we still have not identified the maximum value that Y_{2} can take.

From $x_{1}=y_{1}-y_{2}$, we have the restriction that

$$
1 \leq x_{1}=y_{1}-y_{2} \Rightarrow 1 \leq y_{1}-y_{2} \Rightarrow y_{2} \leq y_{1}-1
$$

This means in order for X_{1} to be a positive number, we have to bound Y_{2} above by $Y_{1}-1$. $I F$ we started with the space $\mathscr{D}_{X_{1}}=\{0,1,2, \ldots\}$ and $\mathscr{D}_{X_{2}}=\{0,1,2, \ldots\}$, then we could just say that the largest value Y_{2} can take is the same as Y_{1}, because we allow X_{1} to be equal to 0 . The problem in this case is that the smallest value X_{1} can take is 1 , which means that we can never allow Y_{1} and Y_{2} to take on the same value simultaneously (or else X_{1} would be equal to 0 , which cannot happen). However, we have no such (upper bound) restriction of what Y_{1} can be. Therefore,

$$
\mathscr{D}_{Y_{1}}=\{2,3, \ldots\} \quad \text { AND } \quad \mathscr{D}_{Y_{2}}=\left\{1,2, \ldots, y_{1}-1\right\} .
$$

By our General Technique for Discrete Transformations, we have the joint distribution of Y_{1} and Y_{2} as

$$
\begin{aligned}
p_{Y_{1}, Y_{2}}\left(y_{1}, y_{2}\right) & =p_{X_{1}, X_{2}}\left(y_{1}-y_{2}, y_{2}\right) \\
& = \begin{cases}\left(1-p_{1}\right)^{y_{1}-y_{2}-1} p_{1}\left(1-p_{2}\right)^{y_{2}-1} p_{2}, & y_{2}=1,2, \ldots, y_{1}-1 ; y_{1}=2,3, \ldots ; 0<p_{1} \neq p_{2}<1 \\
0, & \text { otherwise } .\end{cases}
\end{aligned}
$$

We want to find the marginal distribution of Y_{1} to answer our original question. We need the finite geometric series:

$$
\sum_{k=0}^{n-1} a r^{k}=a \cdot \frac{1-r^{n}}{1-r}, \quad r \neq 1
$$

$$
\begin{aligned}
& \sum_{y_{2}=1}^{y_{1}-1}\left(1-p_{1}\right)^{y_{1}-y_{2}-1} p_{1}\left(1-p_{2}\right)^{y_{2}-1} p_{2}, \quad \begin{array}{c}
y_{1}=2,3, \ldots \\
0<p_{1} \neq p_{2}<1
\end{array} \leftarrow \text { good enough to set this up } \\
& =p_{1} p_{2}\left(1-p_{1}\right)^{y_{1}} \sum_{y_{2}=1}^{y_{1}-1}\left(1-p_{1}\right)^{-y_{2}-1}\left(1-p_{2}\right)^{y_{2}-1}=p_{1} p_{2}\left(1-p_{1}\right)^{y_{1}} \sum_{y_{2}=1}^{y_{1}-1}\left(1-p_{1}\right)^{-1\left(y_{2}+1\right)}\left(1-p_{2}\right)^{y_{2}-1} \\
& =p_{1} p_{2}\left(1-p_{1}\right)^{y_{1}} \sum_{y_{2}=1}^{y_{1}-1} \frac{\left(1-p_{2}\right)^{y_{2}-1}}{\left(1-p_{1}\right)^{y_{2}+1}} \\
& =p_{1} p_{2}\left(1-p_{1}\right)^{y_{1}} \sum_{y_{2}=0}^{y_{1}-1} \frac{\left(1-p_{2}\right)^{y_{2}-1}}{\left(1-p_{1}\right)^{y_{2}+1}}-\frac{\left(1-p_{2}\right)^{-1}}{\left(1-p_{1}\right)^{1}} ; \text { add and subtract the } y_{2}=0 \text { term } \\
& =p_{1} p_{2}\left(1-p_{1}\right)^{y_{1}} \cdot \frac{\left(1-p_{2}\right)^{-1}}{\left(1-p_{1}\right)^{1}} \sum_{y_{2}=0}^{y_{1}-1}\left(\frac{1-p_{2}}{1-p_{1}}\right)^{y_{2}}-\frac{1}{\left(1-p_{1}\right)\left(1-p_{2}\right)} \\
& =\frac{p_{1} p_{2}\left(1-p_{1}\right)^{y_{1}-1}}{1-p_{2}} \cdot \frac{1-\left(\frac{1-p_{2}}{1-p_{1}}\right)^{y_{1}}}{1-\left(\frac{1-p_{2}}{1-p_{1}}\right)}-\frac{1}{\left(1-p_{1}\right)\left(1-p_{2}\right)} ; \text { Geometric Series } \\
& =\frac{p_{1} p_{2}\left(1-p_{1}\right)^{y_{1}-1}}{1-p_{2}} \cdot \frac{1-\frac{\left(1-p_{2}\right)^{y_{1}}}{\left(1-p_{1}\right)^{y_{1}}}}{\frac{1-p_{1}-\left(1-p_{2}\right)}{1-p_{1}}}-\frac{1}{\left(1-p_{1}\right)\left(1-p_{2}\right)} \\
& =\frac{p_{1} p_{2}\left(1-p_{1}\right)^{y_{1}-1}}{1-p_{2}} \cdot \frac{\frac{\left(1-p_{1}\right)^{y_{1}}-\left(1-p_{2}\right)^{y_{1}}}{\left(1-p_{1}\right)^{y_{1}}}}{\frac{p_{2}-p_{1}}{1-p_{1}}}-\frac{1}{\left(1-p_{1}\right)\left(1-p_{2}\right)} \\
& =\frac{p_{1} p_{2}\left(1-p_{1}\right)^{y_{1}-1}}{1-p_{2}} \cdot \frac{\left(1-p_{1}\right)^{y_{1}}-\left(1-p_{2}\right)^{y_{1}}}{p_{2}-p_{1}} \cdot \frac{1-p_{1}}{\left(1-p_{1}\right)^{y_{1}}}-\frac{1}{\left(1-p_{1}\right)\left(1-p_{2}\right)} \\
& =\frac{p_{1} p_{2}}{1-p_{2}} \cdot \frac{\left(1-p_{1}\right)^{y_{1}}-\left(1-p_{2}\right)^{y_{1}}}{p_{2}-p_{1}}-\frac{1}{\left(1-p_{1}\right)\left(1-p_{2}\right)} \\
& =\frac{p_{1} p_{2}\left[\left(1-p_{1}\right)^{y_{1}}-\left(1-p_{2}\right)^{y_{1}}\right]\left(1-p_{1}\right)}{\left(1-p_{1}\right)\left(1-p_{2}\right)\left(p_{2}-p_{1}\right)}-\frac{p_{2}-p_{1}}{\left(1-p_{1}\right)\left(1-p_{2}\right)\left(p_{2}-p_{1}\right)} \text {; common denominator } \\
& =\frac{p_{1} p_{2}\left(1-p_{1}\right)\left[\left(1-p_{1}\right)^{y_{1}}-\left(1-p_{2}\right)^{y_{1}}\right]+p_{1}-p_{2}}{\left(1-p_{1}\right)\left(1-p_{2}\right)\left(p_{2}-p_{1}\right)}, \begin{array}{c}
y_{1}=2,3, \ldots \\
0<p_{1} \neq p_{2}<1
\end{array}
\end{aligned}
$$

\uparrow good enough if you chose to simplify (assuming I had no errors above)
4. Suppose that X is a continuous random variable such that it has the pdf

$$
f(x)= \begin{cases}\frac{1}{6}, & -2 \leq x \leq 4 \\ 0, & \text { otherwise }\end{cases}
$$

Define $Y=X^{2}$.
(a) Find the CDF of X.

Solution:

$$
\mathrm{P}(X \leq x)=\int_{-2}^{x} \frac{1}{6} d u=\left.\frac{1}{6} u\right|_{-2} ^{x}=\frac{1}{6}(x-(-2))=\frac{1}{6}(x+2)
$$

The CDF of X is:

$$
F_{X}(x)= \begin{cases}0, & x<-2 \\ \frac{1}{6}(x+2), & -2 \leq x<4 \\ 1, & 4 \leq x\end{cases}
$$

(b) Find the CDF of Y.

Solution:

We know that since $x \in[-2,4]$, then $y \in[0,16]$. We can split these intervals into 2 portions:
i. $x \in[-2,2]$ so $y \in[0,4]$;
ii. $x \in[2,4]$ so $y \in[4,16]$.

For $y<0$, we have $F_{Y}(y)=0$.
For $y \in[0,4]$, we have

$$
\begin{aligned}
F_{Y}(y) & =\mathrm{P}(Y \leq y)=\mathrm{P}\left(X^{2} \leq y\right)=\mathrm{P}(-\sqrt{y}<X<\sqrt{y}) \\
& =\int_{-\sqrt{y}}^{\sqrt{y}} \frac{1}{6} d x=F_{X}(\sqrt{y})-F_{X}(-\sqrt{y}) \\
& =\frac{1}{6}(\sqrt{y}+2)-\frac{1}{6}(-\sqrt{y}+2) \\
& =\frac{1}{6}[\sqrt{y}+2+\sqrt{y}-2]=\frac{1}{6} \cdot 2 \sqrt{y}=\frac{1}{3} \sqrt{y} .
\end{aligned}
$$

For $y \in[4,16)$, we have

$$
\begin{aligned}
F_{Y}(y) & =\mathrm{P}(Y \leq y)=\mathrm{P}\left(X^{2} \leq y\right) \\
& =\mathrm{P}(X \leq \sqrt{y}) ; \text { since } X \text { is always positive on this interval for } y \\
& =\int_{-2}^{\sqrt{y}} \frac{1}{6} d x=F_{X}(\sqrt{y})=\frac{1}{6}(\sqrt{y}+2) \\
& \left.\stackrel{O R}{=} \frac{x}{6}\right|_{-2} ^{\sqrt{y}}=\frac{\sqrt{y}}{6}-\frac{-2}{6}=\frac{1}{6}(\sqrt{y}+2)
\end{aligned}
$$

Note that the lower bound on the integrand is -2 . That is because we are looking at cumulative information from the point where X starts $(-2 \leq x \leq 4)$, up until \sqrt{y}.

For $y \geq 16$, we have $F_{Y}(y)=1$.
The CDF of Y is:

$$
F_{Y}(y)=\left\{\begin{array}{ll|}
0, & y<0 \\
\frac{1}{3} \sqrt{y}, & 0 \leq y<4 \\
\frac{1}{6}(\sqrt{y}+2), & 4 \leq y<16 \\
1, & y \geq 16
\end{array}\right.
$$

(c) Find the PDF of Y.

Solution:

Find the first derivative of the CDF of Y with respect to y. The PDF of Y is:

$$
f_{Y}(y)= \begin{cases}\frac{1}{6 \sqrt{y}}, & 0 \leq y<4 \\ \frac{1}{12 \sqrt{y}}, & 4 \leq y<16 \\ 0, & \text { otherwise }\end{cases}
$$

5. Let X_{1} and X_{2} be two continuous random variables with joint probability distribution

$$
f\left(x_{1}, x_{2}\right)= \begin{cases}\frac{1}{\pi}, & 0<x_{1}^{2}+x_{2}^{2}<1 \\ 0, & \text { otherwise }\end{cases}
$$

Define $Y_{1}=X_{1}^{2}+X_{2}^{2}$ and $Y_{2}=\frac{X_{1}^{2}}{X_{1}^{2}+X_{2}^{2}}$. Find the joint pdf of Y_{1} and Y_{2}.

Solution:

- Solve for x_{1} and x_{2}.

$$
\begin{aligned}
& x_{1}^{2}=y_{1} y_{2} \\
& x_{2}^{2}=y_{1}-x_{1}^{2}=y_{1}-y_{1} y_{2}=y_{1}\left(1-y_{2}\right) .
\end{aligned}
$$

- Find the space for Y, \mathscr{D}_{Y} to know the values of x_{1} and x_{2} exactly.

Note that $0<x_{1}^{2}+x_{2}^{2}<1$ corresponds to values inside of the unit circle. I label the different quadrants in the usual way.

- In Quadrant I: $x_{1}=\sqrt{y_{1} y_{2}}$ and $x_{2}=\sqrt{y_{1}\left(1-y_{2}\right)}$.
- In Quadrant II: $x_{1}=-\sqrt{y_{1} y_{2}}$ and $x_{2}=\sqrt{y_{1}\left(1-y_{2}\right)}$.
- In Quadrant III: $x_{1}=-\sqrt{y_{1} y_{2}}$ and $x_{2}=-\sqrt{y_{1}\left(1-y_{2}\right)}$.
- In Quadrant IV: $x_{1}=\sqrt{y_{1} y_{2}}$ and $x_{2}=-\sqrt{y_{1}\left(1-y_{2}\right)}$.

We then have

$$
0<x_{1}^{2}+x_{2}^{2}<1 \Rightarrow 0<y_{1} y_{2}+y_{1}-y_{1} y_{2}<1 \Rightarrow 0<y_{1}<1
$$

We also have, from the unit circle, that

$$
\begin{aligned}
-1<x_{2}<1 & \Rightarrow 0<x_{2}^{2}<1 \\
& \Rightarrow 0<y_{1}\left(1-y_{2}\right)<1 \\
& \Rightarrow 0<1-y_{2}<1 ; \text { since we already know } 0<y_{1}<1 \\
& \Rightarrow 0<y_{2}<1
\end{aligned}
$$

Therefore,

$$
0<y_{1}<1 ; \quad 0<y_{2}<1 \text {. }
$$

- Find J and $|J|$.
- In Quadrant I:

$$
\begin{aligned}
J & =\left|\begin{array}{cc}
\frac{1}{2} \sqrt{\frac{y_{2}}{y_{1}}} & \frac{1}{2} \sqrt{\frac{y_{1}}{y_{2}}} \\
\frac{1}{2} \sqrt{\frac{1-y_{2}}{y_{1}}} & -\frac{1}{2} \sqrt{\frac{y_{1}}{1-y_{2}}}
\end{array}\right|=-\frac{1}{4} \sqrt{\frac{y_{2}}{1-y_{2}}}-\frac{1}{4} \sqrt{\frac{1-y_{2}}{y_{2}}} \\
& =\frac{-y_{2}-\left(1-y_{2}\right)}{4 \sqrt{y_{2}\left(1-y_{2}\right)}}=\frac{-1}{4 \sqrt{y_{2}\left(1-y_{2}\right)}} \\
|J| & =\frac{1}{4 \sqrt{y_{2}\left(1-y_{2}\right)}} .
\end{aligned}
$$

- In Quadrant IV:

$$
J=\left|\begin{array}{cc}
\frac{1}{2} \sqrt{\frac{y_{2}}{y_{1}}} & \frac{1}{2} \sqrt{\frac{y_{1}}{y_{2}}} \\
-\frac{1}{2} \sqrt{\frac{1-y_{2}}{y_{1}}} & \frac{1}{2} \sqrt{\frac{y_{1}}{1-y_{2}}}
\end{array}\right|=\frac{1}{4} \sqrt{\frac{y_{2}}{1-y_{2}}}+\frac{1}{4} \sqrt{\frac{1-y_{2}}{y_{2}}}=\frac{1}{4 \sqrt{y_{2}\left(1-y_{2}\right)}}=|J| .
$$

- In Quadrant II:

$$
|J|=\frac{1}{4 \sqrt{y_{2}\left(1-y_{2}\right)}}
$$

- In Quadrant III:

$$
|J|=\frac{1}{4 \sqrt{y_{2}\left(1-y_{2}\right)}}
$$

- Find $f\left(y_{1}, y_{2}\right)$. Note that $f\left(y_{1}, y_{2}\right)$ is the sum of the four quadrants, which all have the same pdf for $\left(X_{1}, X_{2}\right)$ and the same Jacobian.

$$
f_{Y_{1}, Y_{2}}\left(y_{1}, y_{2}\right)= \begin{cases}4 \cdot \frac{1}{\pi} \cdot|J|=\frac{1}{\pi \sqrt{y_{2}\left(1-y_{2}\right)}}, & 0<y_{1}<1 \\ 0, & 0<y_{2}<1 \\ \text { otherwise }\end{cases}
$$

Section 2.3

6. Let X_{1} and X_{2} be continuous random variables with joint probability distribution

$$
f\left(x_{1}, x_{2}\right)= \begin{cases}\frac{5}{16} x_{1} x_{2}^{2}, & 0<x_{1}<x_{2}<2 \\ 0, & \text { otherwise }\end{cases}
$$

(a) Find $\mathbf{E}\left[X_{1} X_{2}\right]$.

Solution:

$$
\begin{aligned}
\mathbf{E}\left[X_{1} X_{2}\right] & =\int_{0}^{2} \int_{0}^{x_{2}} x_{1} x_{2} \cdot \frac{5}{16} x_{1} x_{2}^{2} d x_{1} d x_{2}=\int_{0}^{2} \int_{0}^{x_{2}} \frac{5}{16} x_{1}^{2} x_{2}^{3} d x_{1} d x_{2} \\
& =\left.\int_{0}^{2} \frac{5}{16} \cdot \frac{x_{1}^{3}}{3} \cdot x_{2}^{3}\right|_{0} ^{x_{2}} d x_{2}=\int_{0}^{2} \frac{5}{48} x_{2}^{6} d x_{2}=\frac{5}{48}\left[\left.\frac{x_{2}^{7}}{7}\right|_{0} ^{2}\right]^{21} \\
& =\frac{5}{48} \cdot \frac{128}{7}=\frac{40}{21} .
\end{aligned}
$$

(b) Find the marginal distribution of X_{2}.

Solution:

$$
\int_{0}^{x_{2}} \frac{5}{16} x_{1} x_{2}^{2} d x_{1}=\frac{5}{16} x_{2}^{2} \int_{0}^{x_{2}} x_{1} d x_{1}=\left.\frac{5}{16} x_{2}^{2} \cdot \frac{x_{1}^{2}}{2}\right|_{0} ^{x_{2}}=\frac{5}{16} x_{2}^{2}\left(\frac{x_{2}^{2}}{2}-0\right)=\frac{5}{32} x_{2}^{4}
$$

The marginal distribution of X_{2} is:

$$
f_{2}\left(x_{2}\right)= \begin{cases}\frac{5}{32} x_{2}^{4}, & 0<x_{2}<2 \\ 0, & \text { otherwise } .\end{cases}
$$

(c) Find the conditional distribution of X_{1}, given $X_{2}=x_{2}$.

Solution:

$$
f_{1 \mid 2}\left(X_{1} \mid X_{2}=x_{2}\right)=\frac{f\left(x_{1}, x_{2}\right)}{f\left(x_{2}\right)}=\frac{\frac{5}{16} x_{1} x_{2}^{2}}{\frac{5}{32} x_{2}^{4}}=\frac{2 x_{1}}{x_{2}^{2}}
$$

The conditional distribution of X_{1}, given $X_{2}=x_{2}$ is

$$
f_{1 \mid 2}\left(x_{1} \mid X_{2}=x_{2}\right)= \begin{cases}\frac{2 x_{1}}{x_{2}^{2}}, & 0<x_{1}<2 \\ 0, & \text { otherwise }\end{cases}
$$

(d) Find $\mathrm{P}\left[0<X_{1}<1 \left\lvert\, X_{2}=\frac{3}{2}\right.\right]$.

Solution:

$$
\mathrm{P}\left[0<X_{1}<1 \left\lvert\, X_{2}=\frac{3}{2}\right.\right]=\int_{0}^{1} \frac{2 x_{1}}{\left(\frac{3}{2}\right)^{2}} d x_{1}=\left.\frac{8}{9} \cdot \frac{x_{1}^{2}}{2}\right|_{0} ^{1}=\frac{8}{9} \cdot \frac{1}{2}=\frac{4}{9} .
$$

(e) Find $\mathrm{P}\left[0<X_{1}<1\right]$.

Solution:

Option 1: Solve using the joint pdf.

$$
\begin{aligned}
\mathrm{P}\left[0<X_{1}<1\right] & =\int_{0}^{1} \int_{x_{1}}^{2} \frac{5}{16} x_{1} x_{2}^{2} d x_{2} d x_{1}=\left.\int_{0}^{1} \frac{5}{16} x_{1} \cdot \frac{x_{2}^{3}}{3}\right|_{x_{1}} ^{2} d x_{1} \\
& =\int_{0}^{1} \frac{5}{16} x_{1}\left(\frac{8}{3}-\frac{x_{1}^{3}}{3}\right) d x_{1}=\int_{0}^{1}\left(\frac{5}{6} x_{1}-\frac{5}{48} x_{1}^{4}\right) d x_{1} \\
& =\frac{5}{6} \cdot \frac{x_{1}^{2}}{2}-\left.\frac{5}{48} \cdot \frac{x_{1}^{5}}{5}\right|_{0} ^{1}=\frac{5}{6} \cdot \frac{1}{2}-\frac{5}{48} \cdot \frac{1}{5}=\frac{19}{48}
\end{aligned}
$$

Option 2: First find the marginal distribution of X_{1}, then find the probability.

$$
\begin{aligned}
\int_{x_{1}}^{2} \frac{5}{16} x_{1} x_{2}^{2} d x_{2} & =\frac{5}{16} x_{1} \int_{x_{1}}^{2} x_{2}^{2} d x_{2}=\left.\frac{5}{16} x_{1} \cdot \frac{x_{2}^{3}}{3}\right|_{x_{1}} ^{2}=\frac{5}{16} x_{1}\left(\frac{8}{3}-\frac{x_{1}^{3}}{3}\right) \\
& =\frac{5}{48} x_{1}\left(8-x_{1}^{3}\right)=\frac{5}{6} x_{1}-\frac{5}{48} x_{1}^{4}
\end{aligned}
$$

The marginal distribution of X_{1} is:

$$
f_{1}\left(x_{1}\right)= \begin{cases}\frac{5}{48} x_{1}\left(8-x_{1}^{3}\right), & 0<x_{1}<2 \\ 0, & \text { otherwise } .\end{cases}
$$

Then,

$$
\mathrm{P}\left[0<X_{1}<1\right]=\int_{0}^{1}\left(\frac{5}{6} x_{1}-\frac{5}{48} x_{1}^{4}\right) d x_{1}=\frac{5}{6} \cdot \frac{x_{1}^{2}}{2}-\left.\frac{5}{48} \cdot \frac{x_{1}^{5}}{5}\right|_{0} ^{1}=\frac{5}{6} \cdot \frac{1}{2}-\frac{5}{48} \cdot \frac{1}{5}=\frac{19}{48} .
$$

(f) Find $\mathbf{E}\left[X_{1}\right]$.

Solution:

Option 1: Solve using the joint pdf.

$$
\begin{aligned}
\mathbf{E}\left[X_{1}\right] & =\int_{0}^{2} \int_{0}^{x_{2}} x_{1} \cdot \frac{5}{16} x_{1} x_{2}^{2} d x_{1} d x_{2}=\int_{0}^{2} \int_{0}^{x_{2}} \frac{5}{16} x_{1}^{2} x_{2}^{2} d x_{1} d x_{2} \\
& =\left.\int_{0}^{2} \frac{5}{16} \cdot \frac{x_{1}^{3}}{3} \cdot x_{2}^{2}\right|_{0} ^{x_{2}} d x_{2}=\int_{0}^{2} \frac{5}{48} x_{2}^{5} d x_{2}=\left.\frac{5}{48} \cdot \frac{x_{2}^{6}}{6}\right|_{0} ^{2}=\frac{5}{48} \cdot \frac{32}{3}=\frac{10}{9} .
\end{aligned}
$$

Option 2: If you found the marginal distribution of X_{1} in part (d), then you can just find the expected value directly from it.

$$
\begin{aligned}
\mathbf{E}\left[X_{1}\right] & =\int_{0}^{2} x_{1}\left(\frac{5}{6} x_{1}-\frac{5}{48} x_{1}^{4}\right) d x_{1}=\int_{0}^{2}\left(\frac{5}{6} x_{1}^{2}-\frac{5}{48} x_{1}^{5}\right) d x_{2} \\
& =\frac{5}{6} \cdot \frac{x_{1}^{3}}{3}-\left.\frac{5}{48} \cdot \frac{x_{1}^{6}}{6}\right|_{0} ^{2}=\frac{5}{6} \cdot \frac{8}{3}-\frac{5}{48} \cdot \frac{32}{3}=\frac{10}{9} .
\end{aligned}
$$

(g) Find $\mathbf{V}\left[X_{1}\right]$.

Solution:

Option 1: Solve using the joint pdf.

$$
\begin{aligned}
\mathbf{E}\left[X_{1}^{2}\right] & =\int_{0}^{2} \int_{0}^{x_{2}} x_{1}^{2} \cdot \frac{5}{16} x_{1} x_{2}^{2} d x_{1} d x_{2}=\int_{0}^{2} \int_{0}^{x_{2}} \frac{5}{16} x_{1}^{3} x_{2}^{2} d x_{2} d x_{2} \\
& =\left.\int_{0}^{2} \frac{5}{16} \cdot \frac{x_{1}^{4}}{4} x_{2}^{2}\right|_{0} ^{x_{2}} d x_{2}=\int_{0}^{2} \frac{5}{64} x_{2}^{6} d x_{2} \\
& =\left.\frac{5}{64} \cdot \frac{x_{2}^{7}}{7}\right|_{0} ^{2}=\frac{5}{64} \cdot \frac{128}{7}=\frac{10}{7}, \\
\mathbf{V}\left[X_{1}\right] & =\mathbf{E}\left[X_{1}^{2}\right]-\left(\mathbf{E}\left[X_{1}\right]\right)^{2}=\frac{10}{7}-\left(\frac{10}{9}\right)^{2}=\frac{110}{567} .
\end{aligned}
$$

Option 2: If you found the marginal distribution of X_{1} in part (d), then you can just find the variance directly from it.

$$
\begin{aligned}
\mathbf{E}\left[X_{1}^{2}\right] & =\int_{0}^{2} x_{1}^{2}\left(\frac{5}{6} x_{1}-\frac{5}{48} x_{1}^{4}\right) d x_{1}=\int_{0}^{2}\left(\frac{5}{6} x_{1}^{3}-\frac{5}{48} x_{1}^{6}\right) d x_{1} \\
& =\frac{5}{6} \cdot \frac{x_{1}^{4}}{4}-\left.\frac{5}{48} \cdot \frac{x_{1}^{7}}{7}\right|_{0} ^{2}=\frac{5}{6} \cdot 4-\frac{5}{48} \cdot \frac{128}{7}=\frac{10}{7} \\
\mathbf{V}\left[X_{1}\right] & =\mathbf{E}\left[X_{1}^{2}\right]-\left(\mathbf{E}\left[X_{1}\right]\right)^{2}=\frac{10}{7}-\left(\frac{10}{9}\right)^{2}=\frac{110}{567}
\end{aligned}
$$

(h) Find the distribution of $Y=\mathbf{E}\left[X_{1} \mid X_{2}\right]$.

Solution:

First, find the value of $\mathbf{E}\left[X_{1} \mid X_{2}\right]$.

$$
\begin{aligned}
\mathbf{E}\left[X_{1} \mid X_{2}\right] & =\int_{-\infty}^{\infty} x_{1} f_{1 \mid 2}\left(x_{1} \mid x_{2}\right) d x_{1}=\int_{0}^{x_{2}} x_{1} \cdot \frac{2 x_{1}}{x_{2}^{2}} d x_{1} \\
& =\int_{0}^{x_{2}} \frac{2 x_{1}^{2}}{x_{2}^{2}} d x_{1}=\left.\frac{2}{x_{2}^{2}} \cdot \frac{x_{1}^{3}}{3}\right|_{0} ^{x_{2}}=\frac{2}{x_{2}^{2}} \cdot \frac{x_{2}^{3}}{3} \\
& =\frac{2 x_{2}}{3}, \quad 0<x_{2}<2 .
\end{aligned}
$$

Next, find the CDF of Y.

$$
\begin{aligned}
\mathrm{P}[Y \leq y] & =\mathrm{P}\left[\mathbf{E}\left(X_{1} \mid X_{2}\right) \leq y\right]=\mathrm{P}\left[\frac{2 X_{2}}{3} \leq y\right]=\mathrm{P}\left[X_{2} \leq \frac{3}{2} y\right] \\
& =\int_{0}^{3 y / 2} \frac{5}{32} x_{2}^{4} d x_{2}=\left.\frac{5}{32} \cdot \frac{x_{2}^{5}}{5}\right|_{0} ^{3 y / 2}=\frac{5}{32} \cdot \frac{\left(\frac{3 y}{2}\right)^{5}}{5}=\frac{1}{32} \cdot \frac{243}{32} y^{5}=\frac{243}{1024} y^{5} .
\end{aligned}
$$

Note the values Y can take.

$$
0<x_{2}<2 \Rightarrow 0<\frac{3 y}{2}<2 \Rightarrow 0<y<\frac{4}{3}
$$

The CDF of Y is:

$$
F_{Y}(y)= \begin{cases}0, & y<0 \\ \frac{243}{1024} y^{5}, & 0 \leq y<\frac{4}{3} \\ 1, & \frac{4}{3} \leq y\end{cases}
$$

The PDF of Y is:

$$
f_{Y}(y)= \begin{cases}\frac{1215}{1024} y^{4}, & 0<y<\frac{4}{3} \\ 0, & \text { otherwise }\end{cases}
$$

(i) Find $\mathbf{E}[Y]$.

Solution:

By a theorem in the text,

$$
\mathbf{E}[Y]=\mathbf{E}\left[\mathbf{E}\left(X_{1} \mid X_{2}\right)\right]=\mathbf{E}\left[X_{1}\right]=\frac{10}{9} .
$$

(j) Find $\mathbf{V}[Y]$. How does this value compare to $\mathbf{V}\left[X_{1}\right]$?

Solution:

$$
\begin{aligned}
\mathbf{E}\left[Y^{2}\right] & =\int_{0}^{4 / 3} y^{2} \cdot \frac{1215}{1024} y^{4} d y=\int_{0}^{4 / 3} \frac{1215}{1024} y^{6} d y=\left.\frac{1215}{1024} \cdot \frac{y^{7}}{7}\right|_{0} ^{4 / 3}=\frac{1215}{1024} \cdot \frac{\left(\frac{4}{3}\right)^{7}}{7} \\
& =\frac{1215}{1024} \cdot \frac{16384}{7(2187)}=\frac{1215(16)}{7(2187)}=\frac{19440}{15309}=\frac{80}{63} \\
\mathbf{V}[Y] & =\mathbf{E}\left[Y^{2}\right]-(\mathbf{E}[Y])^{2}=\frac{80}{63}-\left(\frac{10}{9}\right)^{2}=\frac{20}{567} .
\end{aligned}
$$

Note that $\mathbf{V}[Y]=\frac{20}{567} \leq \frac{110}{567}=\mathbf{V}\left[X_{1}\right]$, and this is also true by a theorem in the text.

Section 2.4

7. Let X and Y have the joint pmf described as follows:

$$
\begin{array}{l|cccccccc}
(x, y) & (0,1) & (0,3) & (0,5) & (1,1) & (1,3) & (1,5) & (2,1) & (2,5) \\
\hline p(x, y) & 1 / 20 & 2 / 20 & 1 / 20 & 4 / 20 & 2 / 20 & 3 / 20 & 1 / 20 & 6 / 20
\end{array}
$$

(a) Find the correlation coefficient of X and Y.

Solution:

First, I make a table.

$$
\begin{aligned}
& \mu_{1}=\mathbf{E}[X]=\sum_{x} x p(x)=0\left(\frac{4}{20}\right)+1\left(\frac{9}{20}\right)+2\left(\frac{7}{20}\right)=\frac{23}{20} \\
& \mathbf{E}\left[X^{2}\right]=\sum_{x} x^{2} p(x)=0^{2}\left(\frac{4}{20}\right)+1^{2}\left(\frac{9}{20}\right)+2^{2}\left(\frac{7}{20}\right)=\frac{37}{20} \\
& \sigma_{1}^{2}=\mathbf{V}[X]=\mathbf{E}\left[X^{2}\right]-(\mathbf{E}[X])^{2}=\frac{37}{20}-\left(\frac{23}{20}\right)^{2}=\frac{211}{400} \\
& \mu_{2}=\mathbf{E}[Y]=\sum_{y} y p(y)=1\left(\frac{6}{20}\right)+3\left(\frac{4}{20}\right)+5\left(\frac{10}{20}\right)=\frac{17}{5} \\
& \mathbf{E}\left[Y^{2}\right]=\sum_{y} y^{2} p(y)=1^{2}\left(\frac{6}{20}\right)+3^{2}\left(\frac{4}{20}\right)+5^{2}\left(\frac{10}{20}\right)=\frac{73}{5} \\
& \sigma_{2}^{2}=\mathbf{V}[Y]=\mathbf{E}\left[Y^{2}\right]-(\mathbf{E}[Y])^{2}=\frac{73}{5}-\left(\frac{17}{5}\right)^{2}=\frac{76}{25} \\
& \mathbf{E}[X Y]=\sum_{x} \sum_{y} x y p(x, y)=\frac{87}{20} \\
& =(0)(1)\left(\frac{1}{20}\right)+(0)(3)\left(\frac{2}{20}\right)+(0)(5)\left(\frac{1}{20}\right) \\
& +(1)(1)\left(\frac{4}{20}\right)+(1)(3)\left(\frac{2}{20}\right)+(1)(5)\left(\frac{3}{20}\right) \\
& +(2)(1)\left(\frac{1}{20}\right)+(2)(3)(0)+(2)(5)\left(\frac{6}{20}\right)
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{COV}(X, Y) & =\mathbf{E}[X Y]-\mu_{1} \mu_{2}=\frac{87}{20}-\left(\frac{23}{20}\right)\left(\frac{17}{5}\right)=\frac{11}{25}=0.44 \\
\rho & =\frac{\operatorname{COV}(X, Y)}{\sigma_{1} \sigma_{2}}=\frac{11 / 25}{\sqrt{211 / 400} \sqrt{76 / 25}}=0.3475
\end{aligned}
$$

There is a moderate positive linear relationship between X and Y.
(b) Compute $\mathbf{E}[Y \mid X=k], k=0,1,2$, and the line $\mu_{2}+\rho\left(\sigma_{2} / \sigma_{1}\right)\left(x-\mu_{1}\right)$. Do the points $[k, \mathbf{E}[Y \mid X=k], k=0,1,2$, lie on this line?

Solution:

$$
\begin{aligned}
& \mathbf{E}[Y \mid X=0]=\frac{\sum_{y} y p(0, y)}{p(X=0)}=\frac{1(1 / 20)+3(2 / 20)+5(1 / 20)}{4 / 20}=\frac{3 / 5}{4 / 20}=3, \\
& \mathbf{E}[Y \mid X=1]=\frac{\sum_{y} y p(1, y)}{p(X=1)}=\frac{1(4 / 20)+3(2 / 20)+5(3 / 20)}{9 / 20}=\frac{5 / 4}{9 / 20}=\frac{25}{9}, \\
& \mathbf{E}[Y \mid X=2]=\frac{\sum_{y} y p(2, y)}{p(X=2)}=\frac{1(1 / 20)+3(0)+5(6 / 20)}{7 / 20}=\frac{31 / 20}{7 / 20}=\frac{31}{7} .
\end{aligned}
$$

Find the line $\mu+2+\rho\left(\sigma_{2} / \sigma_{1}\right)\left(x-\mu_{1}\right)$.

$$
\begin{aligned}
\mu_{2}+\rho\left(\sigma_{2} / \sigma_{1}\right)\left(x-\mu_{1}\right) & =\frac{17}{5}+\frac{11 / 25}{\sqrt{211 / 400} \sqrt{76 / 25}}\left(\frac{\sqrt{76 / 25}}{\sqrt{211 / 400}}\right)\left(x-\frac{23}{20}\right) \\
& =\frac{17}{5}+\frac{22}{\sqrt{4009}}\left(4 \sqrt{\frac{76}{211}}\right)\left(x-\frac{23}{20}\right) \\
& =\frac{17}{5}+\frac{176}{211}\left(x-\frac{23}{20}\right)
\end{aligned}
$$

If $x=0$, then the value of the line is

$$
\frac{17}{5}+\frac{176}{211}\left(0-\frac{23}{20}\right)=\frac{515}{211}
$$

If $x=1$, then the value of the line is

$$
\frac{17}{5}+\frac{176}{211}\left(1-\frac{23}{20}\right)=\frac{691}{211} .
$$

If $x=2$, then the value of the line is

$$
\frac{17}{5}+\frac{176}{211}\left(2-\frac{23}{20}\right)=\frac{867}{211}
$$

These points do not lie on the line. By Theorem 2.4.1, if $\mathbf{E}[Y \mid X]$ is linear in X, then

$$
\mathbf{E}[Y \mid X]=\mu_{2}+\rho \frac{\sigma_{2}}{\sigma_{1}}\left(X-\mu_{1}\right) .
$$

Because this is not the case, then $\mathbf{E}[Y \mid X]$ must not be linear in X.
8. What do the following covariances tell you about the relationships between X and Y ?
(a) $\operatorname{COV}(X, Y)=+0.9$.

Solution:

There is a positive linear relationship between X and Y. It cannot tell us the strength of the linear relationship; we need ρ to tell us that.
(b) $\operatorname{COV}(X, Y)=0$.

Solution:

There is no linear relationship between X and Y. Note that $\mathbf{C O V}(X, Y)=0 \nRightarrow$ Independent, but Independent $\Rightarrow \operatorname{COV}(X, Y)=0$.
(c) $\operatorname{COV}(X, Y)=-0.6$.

Solution:

There is a negative linear relationship between X and Y. It cannot tell us the strength of the linear relationship; we need ρ to tell us that.

Section 2.5

9. Show that the random variables X_{1} and X_{2} with joint pmf

$$
p\left(x_{1}, x_{2}\right)= \begin{cases}1 / 32, & \left\{\left(x_{1}, x_{2}\right):(0,0) ;(0,2) ;(3,0) ;(3,2)\right\} \\ 2 / 32, & \left\{\left(x_{1}, x_{2}\right):(0,1) ;(3,1)\right\} \\ 3 / 32, & \left\{\left(x_{1}, x_{2}\right):(1,0) ;(1,2) ;(2,0) ;(2,2)\right\} \\ 6 / 32, & \left\{\left(x_{1}, x_{2}\right):(1,1) ;(2,1)\right\}\end{cases}
$$

are independent.

Solution:

First, I put the values for the pmf of X_{1}, X_{2} into You could then find the marginal distributions of a table: X_{1} and X_{2} and show that $p\left(x_{1}, x_{2}\right)=p\left(x_{1}\right) p\left(x_{2}\right)$.

$p\left(x_{1}, x_{2}\right)$	x_{2}			$p\left(x_{1}\right)$
	0	1	2	
0	1/32	2/32	1/32	4/32
1	3/32	6/32	3/32	12/32
$x_{1} 2$	3/32	6/32	3/32	12/32
3	1/32	2/32	1/32	4/32
$p\left(x_{2}\right)$	8/32	16/32	8/32	1

x_{1}	0	1	2	3
$p\left(x_{1}\right)$	$1 / 8$	$3 / 8$	$3 / 8$	$1 / 8$
x_{2}	0	1	2	
$p\left(x_{2}\right)$	$1 / 4$	$2 / 4$	$1 / 4$	

It is clear that $p\left(x_{1}, x_{2}\right)=p\left(x_{1}\right) p\left(x_{2}\right)$.
Examples:

- $p_{1,2}(0,0)=1 / 32=(1 / 8)(1 / 4)=p_{1}(0) p_{2}(0)$.
- $p_{1,2}(3,1)=2 / 32=(1 / 8)(2 / 4)=p_{1}(3) p_{2}(1)$.

10. Let X_{1} and X_{2} be random variables with joint pdf

$$
f\left(x_{1}, x_{2}\right)= \begin{cases}\frac{1}{8} x_{1} e^{-x_{2}}, & 0<x_{1}<4, \quad 0<x_{2}<\infty \\ 0, & \text { otherwise }\end{cases}
$$

Are X_{1} and X_{2} dependent or independent?

Solution:

Option 1:
Since $f\left(x_{1}, x_{2}\right)$ can be decomposed into a product of non-negative functions, and there the domains for X_{1} and X_{2} do not depend on each other, then X_{1} and X_{2} are independent.
Option 2:
Find the marginal distributions of X_{1} and X_{2} and show if $f\left(x_{1}, x_{2}\right)=f\left(x_{1}\right) f\left(x_{2}\right)$.

$$
\begin{aligned}
& f\left(x_{1}\right)=\int_{0}^{\infty} \frac{1}{8} x_{1} e^{-x_{2}} d x_{2}=-\left.\frac{1}{8} x_{1} e^{-x_{2}}\right|_{0} ^{\infty}=\frac{1}{8} x_{1}, 0<x_{1}<4, \\
& f\left(x_{2}\right)=\int_{0}^{4} \frac{1}{8} x_{1} e^{-x_{2}} d x_{1}=\left.\frac{1}{8} \cdot \frac{x_{1}^{2}}{2} e^{-x_{2}}\right|_{0} ^{4}=e^{-x_{2}}, 0<x_{2}<\infty .
\end{aligned}
$$

Because

$$
f\left(x_{1}\right) f\left(x_{2}\right)=\frac{1}{8} x_{1} \cdot e^{-x_{2}}=f\left(x_{1}, x_{2}\right),
$$

X_{1} and X_{2} are independent.
11. Let X_{1} and X_{2} be random variables with joint pdf

$$
f\left(x_{1}, x_{2}\right)= \begin{cases}x_{1} e^{-x_{2}}, & 0<x_{1}<x_{2}<\infty \\ 0, & \text { otherwise }\end{cases}
$$

Are X_{1} and X_{2} dependent or independent?

Solution:

Find the marginal distributions of X_{1} and X_{2} and show if $f\left(x_{1}, x_{2}\right)=f\left(x_{1}\right) f\left(x_{2}\right)$.

$$
\begin{aligned}
& f\left(x_{1}\right)=\int_{x_{1}}^{\infty} x_{1} e^{-x_{2}} d x_{2}=-\left.x_{1} e^{-x_{2}}\right|_{x_{1}} ^{\infty}=x_{1} e^{-x_{1}}, 0<x_{1}<\infty \\
& f\left(x_{2}\right)=\int_{0}^{x_{2}} x_{1} e^{-x_{2}} d x_{1}=\left.\frac{x_{1}^{2}}{2} e^{-x_{2}}\right|_{0} ^{x_{2}}=\frac{x_{2}^{2} e^{-x_{2}}}{2}, 0<x_{2}<\infty
\end{aligned}
$$

Because

$$
f\left(x_{1}\right) f\left(x_{2}\right)=x_{1} e^{-x_{1}} \cdot \frac{x_{2}^{2} e^{-x_{2}}}{2} \neq x_{1} e^{-x_{2}}=f\left(x_{1}, x_{2}\right)
$$

X_{1} and X_{2} are dependent.
12. Explain the difference between mutually independent and pairwise independent. Which implies the other?

Solution:

Mutually independent means that you can take any combination of random variables under consideration, and they will all be independent of each other. Pairwise independent means when you take any 2 random variables under consideration, they will be independent.
Mutually independent implies pairwise independent. Pairwise independent does not always imply mutual independence (see counterexample from in-class notes).
If X_{1}, X_{2}, X_{3} are mutually independent, then so are $X_{1}, X_{2} ; X_{1}, X_{3}$; and X_{2}, X_{3} (all of the different possible pairs).

Section 2.6

13. Let $X_{1}, X_{2}, X_{3}, X_{4}$ be continuous random variables with joint pdf

$$
f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)= \begin{cases}\frac{4}{3} x_{1} x_{2}^{2} e^{-2 x_{3}-x_{4}}, & 0<x_{1}<3,0<x_{2}<1,0<x_{3}, 0<x_{4} \\ 0, & \text { otherwise }\end{cases}
$$

(a) Compute $\mathrm{P}\left[X_{4}<X_{1}<X_{2}\right]$.

Solution:

$$
\begin{aligned}
\mathrm{P}\left[X_{4}<X_{1}<X_{2}\right] & =\int_{0}^{\infty} \int_{0}^{1} \int_{0}^{x_{2}} \int_{0}^{x_{1}} \frac{4}{3} x_{1} x_{2}^{2} e^{-2 x_{3}-x_{4}} d x_{4} d x_{1} d x_{2} d x_{3} \\
& =\frac{4}{3}\left(\int_{0}^{\infty} e^{-2 x_{3}} d x_{3}\right)\left(\int_{0}^{1} \int_{0}^{x_{2}} \int_{0}^{x_{1}} x_{1} x_{2}^{2} e^{-x_{4}} d x_{4} d x_{1} d x_{2}\right) \\
& =\frac{4}{3}\left(\left.\frac{-1}{2} e^{-2 x_{3}}\right|_{0} ^{\infty}\right)\left(\int_{0}^{1} \int_{0}^{x_{2}} x_{1} x_{2}^{2}\left[-\left.e^{-x_{4}}\right|_{0} ^{x_{1}}\right] d x_{1} d x_{2}\right) \\
& =\frac{2}{3} \int_{0}^{1} \int_{0}^{x_{2}} x_{1} x_{2}^{2}\left[1-e^{-x_{1}}\right] d x_{1} d x_{2} \\
& =\frac{2}{3} \int_{0}^{1} \int_{0}^{x_{2}}\left(x_{1} x_{2}^{2}-x_{1} x_{2}^{2} e^{-x_{1}}\right) d x_{1} d x_{2} \\
& =\frac{2}{3} \int_{0}^{1}\left(\frac{x_{1}^{2}}{2} \cdot x_{2}^{2}-\left.x_{2}^{2}\left[-x_{1} e^{-x_{1}}-e^{-x_{1}}\right]\right|_{0} ^{x_{2}}\right) d x_{2} \\
& =\frac{2}{3} \int_{0}^{1}\left(\frac{1}{2} x_{2}^{4}-x_{2}^{2}\left[-x_{2} e^{-x_{2}}-e^{-x_{2}}+e^{0}\right]\right) d x_{2} \\
& =\frac{2}{3} \int_{0}^{1}\left(\frac{1}{2} x_{2}^{4}+x_{2}^{3} e^{-x_{2}}+x_{2}^{2} e^{-x_{2}}-x_{2}^{2}\right) d x_{2}
\end{aligned}
$$

$$
\begin{aligned}
= & \frac{2}{3}\left(\frac{1}{2} \cdot \frac{x_{2}^{5}}{5}+\left[-x_{2}^{3} e^{-x_{2}}-3 x_{2}^{2} e^{-x_{2}}-6 x_{2} e^{-x_{2}}-6 e^{-x_{2}}\right]\right. \\
& \left.+\left[-x_{2}^{2} e^{-x_{2}}-2 x_{2} e^{-x_{2}}-2 e^{-x_{2}}\right]-\left.\frac{x_{2}^{3}}{3}\right|_{0} ^{1}\right) \\
= & \frac{2}{3}\left(\frac{1}{10}+\left[-1 e^{-1}-3(1)^{2} e^{-1}-6(1) e^{-1}-6 e^{-1}-\left\{0-0-0-6 e^{0}\right\}\right]\right. \\
& \left.+\left[-(1)^{2} e^{-1}-2(1) e^{-1}-2 e^{-1}-\left\{0-0-2 e^{0}\right\}\right]-\frac{1}{3}\right) \\
= & \frac{2}{3}\left(\frac{1}{10}-16 e^{-1}+6-5 e^{-1}+2-\frac{1}{3}\right) \\
= & \frac{2}{3}\left(\frac{233}{30}-21 e^{-1}\right) \\
= & \frac{233}{45}-14 e^{-1} \approx 0.0275 .
\end{aligned}
$$

(b) Find $\mathrm{P}\left[X_{1}<X_{2} \mid X_{1}<2 X_{2}\right]$.

Solution:

$$
\mathrm{P}\left[X_{1}<X_{2} \mid X_{1}<2 X_{2}\right]=\frac{\mathrm{P}\left[X_{1}<X_{2} \cap X_{1}<2 X_{2}\right]}{\mathrm{P}\left[X_{1}<2 X_{2}\right]}=\frac{\mathrm{P}\left[X_{1}<X_{2}\right]}{\mathrm{P}\left[X_{1}<2 X_{2}\right]}
$$

Now, we just need to find the individual probabilities.

$$
\begin{aligned}
\mathrm{P}\left[X_{1}<X_{2}\right] & =\int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{1} \int_{0}^{x_{2}} \frac{4}{3} x_{1} x_{2}^{2} e^{-2 x_{3}-x_{4}} d x_{1} d x_{2} d x_{3} d x_{4} \\
& =\left(\int_{0}^{\infty} e^{-x_{4}} d x_{4}\right)\left(\int_{0}^{\infty} e^{-2 x_{3}} d x_{3}\right)\left(\int_{0}^{1} \int_{0}^{x_{2}} \frac{4}{3} x_{1} x_{2}^{2} d x_{1} d x_{2}\right) \\
& =\left(-\left.e^{-x_{4}}\right|_{0} ^{\infty}\right)\left(-\left.\frac{1}{2} e^{-2 x_{3}}\right|_{0} ^{\infty}\right)\left(\left.\int_{0}^{1} \frac{4}{3} \cdot \frac{x_{1}^{2}}{2} \cdot x_{2}^{2}\right|_{0} ^{x_{2}} d x_{2}\right) \\
& =(1)\left(\frac{1}{2}\right)\left(\frac{4}{3} \int_{0}^{1} \frac{1}{2} x_{2}^{4} d x_{2}\right)=\frac{1}{2}\left(\left.\frac{2}{3} \cdot \frac{x_{2}^{5}}{5}\right|_{0} ^{1}\right)=\frac{1}{2}\left(\frac{2}{3} \cdot \frac{1}{5}\right)=\frac{1}{15}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{P}\left[X_{1}<2 X_{2}\right] & =\int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{1} \int_{0}^{2 x_{2}} \frac{4}{3} x_{1} x_{2}^{2} e^{-2 x_{3}-x_{4}} d x_{1} d x_{2} d x_{3} d x_{4} \\
& =\left(\int_{0}^{\infty} e^{-x_{4}} d x_{4}\right)\left(\int_{0}^{\infty} e^{-2 x_{3}} d x_{3}\right)\left(\int_{0}^{1} \int_{0}^{2 x_{2}} \frac{4}{3} x_{1} x_{2}^{2} d x_{1} d x_{2}\right) \\
& =\left(-\left.e^{-x_{4}}\right|_{0} ^{\infty}\right)\left(-\left.\frac{1}{2} e^{-2 x_{3}}\right|_{0} ^{\infty}\right)\left(\left.\int_{0}^{1} \frac{4}{3} \cdot \frac{x_{1}^{2}}{2} \cdot x_{2}^{2}\right|_{0} ^{2 x_{2}} d x_{2}\right) \\
& =(1)\left(\frac{1}{2}\right)\left(\frac{2}{3} \int_{0}^{1} 4 x_{2}^{4} d x_{2}\right)=\frac{1}{2}\left(\left.\frac{8}{3} \cdot \frac{x_{2}^{5}}{5}\right|_{0} ^{1}\right)=\frac{1}{2}\left(\frac{8}{3} \cdot \frac{1}{5}\right)=\frac{4}{15} .
\end{aligned}
$$

Therefore,

$$
\mathrm{P}\left[X_{1}<X_{2} \mid X_{1}<2 X_{2}\right]=\frac{\mathrm{P}\left[X_{1}<X_{2}\right]}{\mathrm{P}\left[X_{1}<2 X_{2}\right]}=\frac{1 / 15}{4 / 15}=\frac{1}{4} .
$$

(c) Find the marginal distribution of X_{2}, X_{4}.

Solution:

$$
\begin{aligned}
\int_{0}^{3} \int_{0}^{\infty} \frac{4}{3} x_{1} x_{2}^{2} e^{-2 x_{3}-x_{4}} d x_{3} d x_{1} & =\frac{4}{3} x_{2}^{2} e^{-x_{4}}\left(\int_{0}^{3} x_{1} d x_{1}\right)\left(\int_{0}^{\infty} e^{-2 x_{3}} d x_{3}\right) \\
& =\frac{4}{3} x_{2}^{2} e^{-x_{4}}\left(\left.\frac{x_{1}^{2}}{2}\right|_{0} ^{3}\right)\left(-\left.\frac{1}{2} e^{-2 x_{3}}\right|_{0} ^{\infty}\right) \\
& =\frac{4}{3} x_{2}^{2} e^{-x_{4}}\left(\frac{9}{2}\right)\left(\frac{1}{2}\right) \\
& =3 x_{2}^{2} e^{-x_{4}}
\end{aligned}
$$

The marginal distribution of X_{2}, X_{4} is:

$$
f\left(x_{2}, x_{4}\right)= \begin{cases}3 x_{2}^{2} e^{-x_{4}}, & 0<x_{2}<1,0<x_{4} \\ 0, & \text { otherwise }\end{cases}
$$

(d) Find the marginal distribution of X_{1}, X_{2}, X_{4}.

Solution:

$$
\begin{aligned}
\int_{0}^{\infty} \frac{4}{3} x_{1} x_{2}^{2} e^{-2 x_{3}-x_{4}} d x_{3} & =\frac{4}{3} x_{1} x_{2}^{2} e^{-x_{4}} \int_{0}^{\infty} e^{-2 x_{3}} d x_{3}=\frac{4}{3} x_{1} x_{2}^{2} e^{-x_{4}}\left(-\left.\frac{1}{2} e^{-2 x_{3}}\right|_{0} ^{\infty}\right) \\
& =\frac{4}{3} x_{1} x_{2}^{2} e^{-x_{4}}\left(\frac{1}{2}\right)
\end{aligned}
$$

The marginal distribution of X_{1}, X_{2}, X_{4} is

$$
f\left(x_{1}, x_{2}, x_{4}\right)= \begin{cases}\frac{2}{3} x_{1} x_{2}^{2} e^{-x_{4}}, & 0<x_{1}<3,0<x_{2}<1,0<x_{4} \\ 0, & \text { otherwise } .\end{cases}
$$

Section 2.8

14. Let X_{1}, \ldots, X_{n} be iid random variables with common mean μ and variance σ^{2}. Define $\bar{X}=$ $n^{-1} \sum_{i=1}^{n} X_{i}$. Find $\mathbf{E}[\bar{X}]$ and $\mathbf{V}[\bar{X}]$.

Solution:

$$
\begin{aligned}
\mathbf{E}[\bar{X}] & =\mathbf{E}\left[n^{-1} \sum_{i=1}^{n} X_{i}\right]=n^{-1} \mathbf{E}\left[\sum_{i=1}^{n} X_{i}\right]=n^{-1}\left(\mathbf{E}\left[X_{1}\right]+\cdots+\mathbf{E}\left[X_{n}\right]\right) \\
& =n^{-1}(\underbrace{\mu+\cdots+\mu}_{n \text { of them }})=n^{-1} \cdot n \mu=\mu \\
\mathbf{V}[\bar{X}] & =\mathbf{V}\left[n^{-1} \sum_{i=1}^{n} X_{i}\right]=\mathbf{V}\left[\sum_{i=1}^{n} n^{-1} X_{i}\right]=\sum_{i=1}^{n}\left(n^{-1}\right)^{2} \mathbf{V}\left[X_{i}\right] ; \text { Corollary 2.8.2 } \\
& =\sum_{i=1}^{n} n^{-2} \mathbf{V}\left[X_{i}\right]=n^{-2} \sum_{i=1}^{n} \mathbf{V}\left[X_{i}\right]=n^{-2}\left(\mathbf{V}\left[X_{1}\right]+\cdots+\mathbf{V}\left[X_{n}\right]\right) \\
& =n^{-2}(\underbrace{\sigma^{2}+\cdots+\sigma^{2}}_{n \text { of them }})=n^{-2} \cdot n \sigma^{2}=n^{-1} \sigma^{2}=\frac{\sigma^{2}}{n}
\end{aligned}
$$

15. Let X and Y be random variables with $\mu_{1}=1, \mu_{2}=4, \sigma_{1}^{2}=4, \sigma_{2}^{2}=6, \rho=\frac{1}{2}$. Find the mean and variance of the random variable $Z=3 X-2 Y$.

Solution:

We should first find the covariance, $\mathbf{C O V}(X, Y)$.

$$
\begin{aligned}
& \rho=\frac{\mathbf{C O V}(X, Y)}{\sigma_{X} \sigma_{Y}} \Rightarrow \frac{1}{2}=\frac{\mathbf{C O V}(X, Y)}{\sqrt{4} \sqrt{6}} \Rightarrow \mathbf{C O V}(X, Y)=\frac{\sqrt{4} \sqrt{6}}{2}=\sqrt{6} \\
& \begin{aligned}
\mathbf{E}[Z]=\mathbf{E}[3 X-2 Y]=3 \mathbf{E}[X]-2 \mathbf{E}[Y]=3 \mu_{1}-2 \mu_{2}=3(1)-2(4)=-5 \\
\begin{aligned}
& \mathbf{V}[Z]=\mathbf{V}[3 X-2 Y]=3^{2} \mathbf{V}[X]+(-2)^{2} \mathbf{V}[Y]+2(3)(-2) \mathbf{C O V}(X, Y) \\
& \quad=9 \sigma_{1}^{2}+4 \sigma_{2}^{2}-12 \mathbf{C O V}(X, Y)=9(4)+4(6)-12 \sqrt{6} \\
& \quad=60-12 \sqrt{6} \approx 30.61
\end{aligned}
\end{aligned} .
\end{aligned}
$$

16. Let X_{1} and X_{2} be independent random variables with nonzero variances. Find the covariance of $Y=X_{1} X_{2}$ and X_{1} in terms of the means and variances of X_{1} and X_{2}.

Solution:

Recall that $\operatorname{COV}(A, B)=\mathbf{E}\left[\left(A-\mu_{A}\right)\left(B-\mu_{B}\right)\right]$. In our case, we want to find $\operatorname{COV}\left(Y, X_{1}\right)=$ $\operatorname{COV}\left(X_{1} X_{2}, X_{1}\right)$.

$$
\begin{aligned}
\operatorname{COV}\left(X_{1} X_{2}, X_{1}\right) & =\mathbf{E}\left[\left(X_{1} X_{2}-\mathbf{E}\left[X_{1} X_{2}\right]\right)\left(X_{1}-\mathbf{E}\left[X_{1}\right]\right)\right] \\
& =\mathbf{E}\left[\left(X_{1} X_{2}-\mathbf{E}\left[X_{1}\right] \mathbf{E}\left[X_{2}\right]\right)\left(X_{1}-\mathbf{E}\left[X_{1}\right]\right)\right] ; \text { since } X_{1} \text { and } X_{2} \text { are independent } \\
& =\mathbf{E}\left[\left(X_{1} X_{2}-\mu_{1} \mu_{2}\right)\left(X_{1}-\mu_{1}\right)\right] \\
& =\mathbf{E}\left[X_{1}^{2} X_{2}-X_{1} X_{2} \mu_{1}-\mu_{1} \mu_{2} X_{1}+\mu_{1}^{2} \mu_{2}\right] ; \text { distribute } \\
& =\mathbf{E}\left[X_{1}^{2} X_{2}\right]-\mu_{1} \mathbf{E}\left[X_{1} X_{2}\right]-\mu_{1} \mu_{2} \mathbf{E}\left[X_{1}\right]+\mu_{1}^{2} \mu_{2} \\
& =\mathbf{E}\left[X_{1}^{2}\right] \mathbf{E}\left[X_{2}\right]-\mu_{1} \mathbf{E}\left[X_{1}\right] \mathbf{E}\left[X_{2}\right]-\mu_{1}^{2} \mu_{2}+\mu_{1}^{2} \mu_{2} ; \text { by independence } \\
& =\left(\mathbf{V}\left[X_{1}\right]+\mathbf{E}\left[X_{1}\right]^{2}\right) \mu_{2}-\mu_{1}^{2} \mu_{2} \\
& =\left(\sigma_{1}^{2}+\mu_{1}^{2}\right) \mu_{2}-\mu_{1}^{2} \mu_{2} \\
& =\sigma_{1}^{2} \mu_{2}+\mu_{1}^{2} \mu_{2}-\mu_{1}^{2} \mu_{2} \\
& =\sigma_{1}^{2} \mu_{2} .
\end{aligned}
$$

Section 3.1

17. Consider a standard deck of 52 cards. Let X equal the number of aces in a sample of size 2.
(a) If the sampling is with replacement, obtain the pmf of X.

Solution:

If sampling is with replacement (independent draws), then we have the binomial distribution. The probability of getting an ace is $4 / 52=1 / 13$. Let X represent the number of aces. The pmf of X is:

$$
p(x)= \begin{cases}\binom{2}{x}\left(\frac{1}{13}\right)^{x}\left(\frac{12}{13}\right)^{2-x}, & x=0,1,2 \\ 0, & \text { otherwise }\end{cases}
$$

(b) If the sampling is without replacement, obtain the pmf of X.

Solution:

If sampling is without replacement (draws depend on each other), we have the hypergeometric distribution. There is a possibility for 0,1 , or 2 aces in a sample of size 2 . The pmf of X is:

$$
p(x)= \begin{cases}\frac{\binom{4}{x}\binom{48}{52}}{\binom{52}{2}}, & x=0,1,2 \\ 0, & \text { otherwise }\end{cases}
$$

18. A traffic control engineer reports that 75% of the vehicles passing through a checkpoint are from within the state. What is the probability that fewer than 4 of the next 9 vehicles are from out of state? On average, how many cars will pass through the checkpoint? What is the variance?

Solution:

Let X be the number of out of state vehicles. This is a binomial distribution. $p=0.25 ; n=9$.

$$
\mathrm{P}[X<4]=\mathrm{P}[X \leq 3]=\sum_{k=0}^{3}\binom{9}{k}(0.25)^{k}(0.75)^{9-k}=0.0751+0.2253+0.3003+0.2336=0.8343 .
$$

Expected Value and Variance:

$$
\begin{aligned}
\mathbf{E}(X) & =n p=9(0.25)=2.25 \\
\mathbf{V}(X) & =n p(1-p)=9(0.25)(0.75)=1.6875
\end{aligned}
$$

19. Biologists doing studies in a particular environment often tag and release subjects in order to estimate the size of a population or the prevalence of certain features in the population. Ten animals of a certain population thought to be extinct (or near extinction) are caught, tagged, and released in a certain region. After a period of time, a random sample of 15 of this type of animal is selected in the region. What is the probability that 5 of those selected are tagged if there are 25 animals of this type in the region? On average, how many animals caught are tagged? What is the variance?

Solution:

Let X be the number of tagged animals selected. Use the hypergeometric distribution. $N=25$; $n=15 ; D=10 ; x=5$.

$$
\mathrm{P}[X=5]=\frac{\binom{10}{5}\binom{25-10}{15-5}}{\binom{25}{15}}=\frac{\binom{10}{5}\binom{15}{10}}{\binom{25}{15}}=\frac{(252)(3003)}{3268760}=0.2315 .
$$

Expected Value and Variance:

$$
\begin{aligned}
\mathbf{E}(X) & =\frac{n D}{N}=\frac{(15)(10)}{25}=6 \\
\mathbf{V}(X) & =\frac{N-n}{N-1} \cdot n \cdot \frac{D}{N}\left(1-\frac{D}{N}\right) \\
& =\left(\frac{25-15}{25-1}\right)(15)\left(\frac{10}{15}\right)\left(1-\frac{10}{15}\right) \\
& =\left(\frac{5}{12}\right)(15)\left(\frac{2}{3}\right)\left(\frac{1}{3}\right)=\frac{25}{18} \approx 1.389
\end{aligned}
$$

20. What is the probability that a waitress will refuse to serve alcoholic beverages to only 2 minors if she randomly checks the IDs of 5 among 9 students, 4 of whom are minors? On average, how many minors will the waitress refuse to serve? What is the variance?

Solution:

Let X be the number of minors the waitress refuses to serve. Use the hypergeometric distribution. $x=2 ; N=9 ; n=5 ; D=4$.

$$
\mathrm{P}[X=2]=\frac{\binom{4}{2}\binom{9-4}{5-2}}{\binom{9}{5}}=\frac{\binom{4}{2}\binom{5}{3}}{\binom{9}{5}}=\frac{(6)(10)}{126}=0.4762 .
$$

Expected Value and Variance:

$$
\begin{aligned}
\mathbf{E}(X) & =\frac{n D}{N}=\frac{(5)(4)}{9}=2.22 \\
\mathbf{V}(X) & =\frac{N-n}{N-1} \cdot n \cdot \frac{D}{N}\left(1-\frac{D}{N}\right)=\left(\frac{9-5}{9-1}\right)(5)\left(\frac{4}{9}\right)\left(1-\frac{4}{9}\right) \\
& =\left(\frac{1}{2}\right)(5)\left(\frac{4}{9}\right)\left(\frac{5}{9}\right)=\frac{50}{81} \approx 0.617 .
\end{aligned}
$$

21. It is known that 60% of mice inoculated with a serum are protected form a certain disease. If 5 mice are inoculated, find the probability that
(a) none contracts the disease
(b) fewer than 2 contract the disease
(c) more than 3 contract the disease

Solution:

Let X be the number of mice who contract the disease. This is a binomial distribution. $n=5$. $p=0.4$.
(a) We want $\mathrm{P}[X=0]$.

$$
\mathrm{P}[X=0]=\binom{5}{0}(0.4)^{0}(0.6)^{5-0}=0.0778 .
$$

(b) We want $\mathrm{P}[X<2]$.

$$
\mathrm{P}[X<2]=\mathrm{P}[X \leq 1]=\sum_{k=0}^{1}\binom{5}{k}(0.4)^{k}(0.6)^{5-k}=0.3370 .
$$

(c) We want $\mathrm{P}[X>3]$.

$$
\begin{aligned}
\mathrm{P}[X>3] & =1-\mathrm{P}[X \leq 3]=1-\sum_{k=0}^{3}\binom{5}{k}(0.4)^{k}(0.6)^{5-k} \\
& =1-(0.07776+0.2592+0.3456+0.2304)=1-0.91296=0.08704 \\
& \stackrel{O R}{=} \mathrm{P}[X \geq 4]=\sum_{k=4}^{5}\binom{5}{k}(0.4)^{k}(0.6)^{5-k}=0.0768+0.01024=0.08704 .
\end{aligned}
$$

22. The probability that a person living in a certain city owns a cat is estimated to be 0.4 . Find the probability that the tenth person randomly interviewed in that city is the third one to own a cat.

Solution:

Define Y to be the number of failures before the $r^{t h}$ success. We want 3 successes, so $r=3$. The chance for success is $p=0.4$. If we have 3 successes, then there must be $y=7$ failures if we talk to 10 people.

$$
\mathrm{P}[Y=7]=\binom{7+3-1}{3-1} 0.4^{3}(0.6)^{7}=\binom{9}{2}(0.4)^{3}(0.6)^{7}=0.0645
$$

Using the Alternative Definition of Negative Binomial:
Let X be the number of interviews required for 3 people to own cats. Use the negative binomial distribution. $x=10 ; k=3 ; p=0.4$.

$$
\mathrm{P}[X=10]=\binom{10-1}{3-1}(0.4)^{3}(0.6)^{10-3}=\binom{9}{2}(0.4)^{3}(0.6)^{7}=0.0645 .
$$

23. It is known that 3% of people whose luggage is screened at an airport have questionable objects in their luggage. What is the probability that a string of 15 people pass through screening successfully before an individual is caught with a questionable object?

Solution:

Define Y to be the number of failures before the 1st success. If there the first one stopped is the 15th individual, then there were 14 failures. Find $\mathrm{P}[Y=14]$.

$$
\mathrm{P}[Y=14]=(0.03)(0.97)^{14}=0.0196
$$

Using the Alternative Definition of Geometric:
Let X be the number of people screened until 1 person is caught. Use the geometric distribution. $p=0.03 ; x=15 ; k=1$.

$$
\mathrm{P}(X=15)=(0.03)(0.97)^{15-1}=(0.03)(0.97)^{14}=0.0196 .
$$

Section 3.2

24. On average, 3 traffic accidents per month occur at a certain intersection. What is the probability that at any given month at this intersection
(a) exactly 5 accidents will occur?
(b) fewer than 3 accidents will occur?
(c) at least 2 accidents will occur?

Solution:

Let X be the number of accidents per month. Use the Poisson distribution. $\lambda=3 ; w=1$ month; $\lambda w=3$. Use Table I from Appendix C of the textbook where needed.
(a) We want to find $\mathrm{P}[X=5]$.

$$
\mathrm{P}[X=5]=\frac{e^{-3} 3^{5}}{5!}=0.1008
$$

(b) We want to find $\mathrm{P}[X<3]$.

$$
\mathrm{P}[X<3]=\mathrm{P}[X \leq 2]=\sum_{x=0}^{2} \frac{e^{-3} 3^{x}}{x!}=0.4232 .
$$

(c) We want to find $\mathrm{P}[X \geq 2]$.

$$
\mathrm{P}[X \geq 2]=1-\mathrm{P}[X<2]=1-\mathrm{P}[X \leq 1]=1-\sum_{x=0}^{1} \frac{e^{-3} 3^{x}}{x!}=1-0.199=0.801 .
$$

25. A certain area of the eastern United States is, on average, hit by 6 hurricanes a year. Find the probability that in 1.5 years that area will be hit by
(a) fewer than 4 hurricanes.
(b) anywhere from 6 to 8 hurricanes, inclusive.

Solution:

Let X be the number of hurricanes that hit the area. Use the Poisson distribution. $\lambda=6$; $w=1.5$ years; $\lambda w=9$. Use Table I from Appendix C of the textbook where needed.
(a) We want to find $\mathrm{P}[X<4]$

$$
\mathrm{P}[X<4]=\mathrm{P}[X \leq 3]=\sum_{x=0}^{3} \frac{e^{-9} 9^{x}}{x!}=0.021 .
$$

(b) We want to find $\mathrm{P}[6 \leq X \leq 8]$.

$$
\begin{aligned}
\mathrm{P}(6 \leq X \leq 8) & =\sum_{x=6}^{8} \frac{e^{-9} 9^{x}}{x!}=\sum_{i=x}^{8} \frac{e^{-9} 9^{x}}{x!}-\sum_{x=0}^{5} \frac{e^{-9} 9^{x}}{x!}=\mathrm{P}(X \leq 8)-\mathrm{P}(X \leq 5) \\
& =0.456-0.116=0.34 .
\end{aligned}
$$

26. On the average, a grocer sells three of a certain article per week. How many of these should he have in stock so that the chance of his running out within a week is less than 0.01 ? Assume a Poisson Distribution.

Solution:

Define X to be the number of items sold during the week. Using the Poisson Distribution, we have $\lambda=3, w=1$, so $\lambda w=3$.

To help us figure out how to solve the problem, let us think about what it is asking. If 0 items are sold, then we didn't run out. If 1 item is sold, there is a possibility that we run out. If 2 items are sold, there is a larger possibility that we run out. It all depends on how many the grocer has in stock.
Let k be the number that the grocer has in stock. If there are requests for $k+1, k+2$, etc of these articles, then the grocer won't have enough (run out). If the grocer has a request for $\leq k$ of these items, then the grocer has enough (not run out). We want the probability that we run out to be less than 0.01 , or $\mathrm{P}[X>k]<0.01$.

$$
\begin{aligned}
\mathrm{P}[X>k]<0.01 & \Rightarrow-\mathrm{P}[X>k]>-0.01 \\
& \Rightarrow 1-\mathrm{P}[X>k]>1-0.01 \\
& \Rightarrow \mathrm{P}[X \leq k]>0.99 \\
& \Rightarrow \sum_{i=0}^{k} \frac{e^{-3} 3^{i}}{i!}>0.99
\end{aligned}
$$

Using the Poisson Table, if $k=7$, then $\mathrm{P}[X \leq 7]=0.988 \ngtr 0.99$. If $k=8$, then $\mathrm{P}[X \leq 8]=$ $0.996>0.99$.

The grocer should have 8 in stock.

Moment Generating Functions

27. Find moment generating functions for the following probability distributions.
(a) Let X be a random variable and n a positive integer. Let $0<p<1$. The pmf of X is given by

$$
p(x)= \begin{cases}\binom{n}{x} p^{x}(1-p)^{n-x}, & x=0,1,2, \ldots, n \\ 0, & \text { otherwise }\end{cases}
$$

Solution:

$$
\begin{aligned}
M_{X}(t) & =\mathbf{E}\left(e^{t X}\right)=\sum_{x=0}^{n} e^{t x}\binom{n}{x} p^{x}(1-p)^{n-x}=\sum_{x=0}^{n}\binom{n}{x}\left(e^{t}\right)^{x} p^{x}(1-p)^{n-x} \\
& =\sum_{x=0}^{n}\binom{n}{x}\left(p e^{t}\right)^{x}(1-p)^{n-x} \\
& =\left(p e^{t}+1-p\right)^{n},-\infty<t<\infty ; \text { by Binomial Theorem: } \sum_{k=0}^{n}\binom{n}{k} a^{k} b^{n-k}=(a+b)^{n} .
\end{aligned}
$$

(b) Let X be a random variable and $\lambda>0$ be a constant. The pmf of X is given by

$$
p(x)= \begin{cases}\frac{e^{-\lambda} \lambda^{x}}{x!}, & x=0,1,2, \ldots \\ 0, & \text { otherwise }\end{cases}
$$

Solution:

$$
\begin{aligned}
M_{X}(t) & =\mathbf{E}\left(e^{t X}\right)=\sum_{x=0}^{\infty} e^{t x} \cdot \frac{e^{-\lambda} \lambda^{x}}{x!}=e^{-\lambda} \sum_{x=0}^{\infty} \frac{\left(\lambda e^{t}\right)^{x}}{x!} \\
& =e^{-\lambda} e^{\lambda e^{t}} ; \text { by Power Series } e^{a}=\sum_{k=0}^{\infty} \frac{a^{k}}{k!} \\
& =e^{-\lambda+\lambda e^{t}} \\
& =e^{\lambda\left(e^{t}-1\right)},-\infty<t<\infty
\end{aligned}
$$

(c) Let X be a random variable and $0<p<1$. The pmf of X is given by

$$
p(x)= \begin{cases}(1-p)^{x-1} p, & x=1,2,3, \ldots \\ 0, & \text { otherwise }\end{cases}
$$

Solution:

$$
\begin{aligned}
M_{X}(t) & =\mathbf{E}\left(e^{t X}\right)=\sum_{x=1}^{\infty} e^{t x}(1-p)^{x-1} p \\
& =p \sum_{x=1}^{\infty} e^{t x}(1-p)^{x}(1-p)^{-1} \\
& =\frac{p}{1-p} \sum_{x=1}^{\infty}\left(e^{t}\right)^{x}(1-p)^{x} \\
& =\frac{p}{1-p} \sum_{x=1}^{\infty}\left[(1-p) e^{t}\right]^{x} \\
& =\frac{p}{1-p}\left\{\sum_{x=0}^{\infty}\left[(1-p) e^{t}\right]^{x}-\left[(1-p) e^{t}\right]^{0}\right\} \\
& =\frac{p}{1-p}\left\{\frac{1}{1-(1-p) e^{t}}-1\right\} ; \text { Geometric Series and }\left|(1-p) e^{t}\right|<1 \\
& =\frac{p}{1-p}\left\{\frac{1}{1-(1-p) e^{t}}-\frac{1-(1-p) e^{t}}{1-(1-p) e^{t}}\right\} ;(1-p) e^{t}<1 \\
& =\frac{p}{1-p}\left\{\frac{1-1+(1-p) e^{t}}{1-(1-p) e^{t}}\right\} ; e^{t}<(1-p)^{-1} \\
& =\frac{p}{1-p}\left\{\frac{(1-p) e^{t}}{1-(1-p) e^{t}}\right\} ; t<\ln \left[(1-p)^{-1}\right] \\
& =\frac{p e^{t}}{1-(1-p) e^{t} ; t<-\ln (1-p)} .
\end{aligned}
$$

(d) Let X be a random variable and $a<b$ be constants. The pdf of X is given by

$$
f(x)= \begin{cases}\frac{1}{b-a}, & a \leq x \leq b \\ 0, & \text { otherwise }\end{cases}
$$

Solution:

$$
\begin{aligned}
M_{X}(t) & =\mathbf{E}\left(e^{t X}\right)=\int_{a}^{b} e^{t x} \cdot \frac{1}{b-a} d x=\left.\frac{1}{b-a} \cdot \frac{1}{t} e^{t x}\right|_{a} ^{b}=\frac{1}{t(b-a)}\left(e^{t b}-e^{t a}\right) \\
& =\frac{e^{t b}-e^{t a}}{t(b-a)}, \quad t \neq 0
\end{aligned}
$$

(e) Let X be a random variable, $-\infty<\mu<\infty$ a constant, and $\sigma^{2}>0$ a constant. The pdf of X is given by

$$
\begin{aligned}
& f(x)= \begin{cases}\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}, & -\infty<x<\infty \\
0, & \text { otherwise. }\end{cases} \\
M_{X}(t) & =\mathbf{E}\left(e^{t X}\right)=\int_{-\infty}^{\infty} e^{t x} \cdot \frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}} d x \\
& =\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{1}{2 \sigma^{2}}\left(x^{2}-2 \mu x+\mu^{2}-2 \sigma^{2} t x\right)} d x \\
& =\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{1}{2 \sigma^{2}}\left[x^{2}-2 x\left(\mu+\sigma^{2} t\right)+\mu^{2}\right]} d x \\
& =\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{1}{2 \sigma^{2}}\left[x^{2}-2 x\left(\mu+\sigma^{2} t\right)+\mu^{2}+\left(2 \mu \sigma^{2} t+\left(\sigma^{2}\right)^{2} t^{2}\right)-\left(2 \mu \sigma^{2} t+\left(\sigma^{2}\right)^{2} t\right)\right]} d x \\
& =\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{1}{2 \sigma^{2}}\left[x-\left(\mu+\sigma^{2} t\right)\right]^{2}+\frac{2 \mu \sigma^{2} t+\left(\sigma^{2}\right)^{2} t}{2 \sigma^{2}}} d x \\
& =e^{\mu t+\frac{\sigma^{2} t}{2}} \underbrace{\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{1}{2 \sigma^{2}}\left[x-\left(\mu+\sigma^{2} t\right)\right]^{2}} d x}_{-\infty} d x \\
= & e^{\mu t+\frac{\sigma^{2} t}{2}},-\infty<t<\infty
\end{aligned}
$$

(f) Let X be a random variable, $\alpha>0$ a constant, and $\theta>0$ a constant. Let $\Gamma(\alpha)$ be a Gamma Function evaluated at α. The pdf of X is given by

$$
f(x)= \begin{cases}\frac{1}{\Gamma(\alpha) \theta^{\alpha}} x^{\alpha-1} e^{-x / \theta}, & 0 \leq x<\infty \\ 0, & \text { otherwise }\end{cases}
$$

Solution:

$$
\begin{aligned}
M_{X}(t) & =\mathbf{E}\left(e^{t X}\right)=\int_{0}^{\infty} e^{t x} \frac{1}{\Gamma(\alpha) \theta^{\alpha}} x^{\alpha-1} e^{-x / \theta} d x \\
& =\int_{0}^{\infty} \frac{1}{\Gamma(\alpha) \theta^{\alpha}} x^{\alpha-1} e^{-x\left(\theta^{-1}-t\right)} d x ; \text { Let } u=x\left(\theta^{-1}-t\right) \\
& =\int_{0}^{\infty} \frac{1}{\Gamma(\alpha) \theta^{\alpha}}\left(\frac{u}{\theta^{-1}-t}\right)^{\alpha-1} e^{-u} \frac{d u}{\theta^{-1}-t} \\
& =\left(\frac{1}{\theta^{-1}-t}\right)^{\alpha-1} \cdot \frac{1}{\theta^{-1}-t} \cdot \frac{1}{\theta^{\alpha}} \cdot \underbrace{\int_{0}^{\infty} \frac{1}{\Gamma(\alpha) 1^{\alpha}} u^{\alpha-1} e^{-u} d u}_{\text {Special Case of Original with } \theta=1} \\
& =\frac{1}{\left(\frac{1}{\theta}-t\right)^{\alpha}} \cdot \frac{1}{\theta^{\alpha}}(1)=\frac{1}{\left[\theta\left(\frac{1}{\theta}-t\right)\right]^{\alpha}} \\
& =\frac{1}{(1-\theta t)^{\alpha}}, t<\frac{1}{\theta} .
\end{aligned}
$$

(g) Let X be a random variable. The pdf of X is given by

$$
f(x)= \begin{cases}\frac{4}{255} x^{3}, & -1<x<4 \\ 0, & \text { otherwise }\end{cases}
$$

Solution:

$$
\begin{aligned}
M_{X}(t)= & \mathbf{E}\left(e^{t X}\right)=\int_{-1}^{4} e^{t x} \cdot \frac{4}{255} x^{3} d x=\frac{4}{255} \int_{-1}^{4} x^{3} e^{t x} d x \\
= & \left.\frac{4}{255}\left[x^{3} \frac{1}{t} e^{t x}-3 x^{2} \frac{1}{t^{2}} e^{t x}+6 x \frac{1}{t^{3}} e^{t x}-6 \frac{1}{t^{4}} e^{t x}\right]\right|_{-1} ^{4} \\
= & \left.\frac{4}{255} \cdot \frac{1}{t} e^{t x}\left(x^{3}-3 x^{2} \frac{1}{t}+6 x \frac{1}{t^{2}}-6 \frac{1}{t^{3}}\right)\right|_{-1} ^{4} \\
= & \frac{4}{255} \cdot \frac{1}{t} e^{4 t}\left(4^{3}-3(4)^{2} \frac{1}{t}+6(4) \frac{1}{t^{2}}-6 \frac{1}{t^{3}}\right) \\
& -\frac{4}{255} \cdot \frac{1}{t} e^{-t}\left((-1)^{3}-3(-1)^{2} \frac{1}{t}+6(-1) \frac{1}{t^{2}}-6 \frac{1}{t^{3}}\right) \\
= & \frac{4}{255} \cdot \frac{1}{t} e^{4 t}\left(64-\frac{48}{t}+\frac{24}{t^{2}}-\frac{6}{t^{3}}\right)-\frac{4}{255} \cdot \frac{1}{t} e^{-t}\left(-1-\frac{3}{t}-\frac{6}{t^{2}}-\frac{6}{t^{3}}\right) \\
= & \frac{4}{255} \cdot \frac{1}{t} e^{4 t}\left(64-\frac{48}{t}+\frac{24}{t^{2}}-\frac{6}{t^{3}}\right)+\frac{4}{255} \cdot \frac{1}{t} e^{-t}\left(1+\frac{3}{t}+\frac{6}{t^{2}}+\frac{6}{t^{3}}\right), \quad t \neq 0 .
\end{aligned}
$$

28. Let X_{1} and X_{2} be independent random variables. The pdf of X_{1} is

$$
f_{1}\left(x_{1}\right)= \begin{cases}\frac{1}{\Gamma(2)\left(\frac{1}{2}\right)^{2}} x e^{-2 x}, & 0 \leq x_{1}<\infty \\ 0, & \text { otherwise }\end{cases}
$$

The pdf of X_{2} is

$$
f_{2}\left(x_{2}\right)= \begin{cases}\frac{1}{\Gamma(4)\left(\frac{1}{2}\right)^{4}} x^{3} e^{-2 x}, & 0 \leq x_{2}<\infty \\ 0, & \text { otherwise }\end{cases}
$$

Find the distribution of $Y=X_{1}+X_{2}$ using MGFs.

Solution:

The pdfs given for X_{1} and X_{2} are examples of the pdfs in Question 27f. From this part, we know that the MGF for X_{1} and the MGF for X_{2} are:

$$
M_{X_{1}}(t)=\frac{1}{\left(1-\frac{1}{2} t\right)^{2}}, t<2
$$

and

$$
M_{X_{2}}(t)=\frac{1}{\left(1-\frac{1}{2} t\right)^{4}}, t<2
$$

First, find $M_{Y}(t)$.

$$
\begin{aligned}
M_{Y}(t) & =\mathbf{E}\left[e^{t Y}\right]=\mathbf{E}\left[e^{t\left(X_{1}+X_{2}\right)}\right]=\mathbf{E}\left[e^{t X_{1}} e^{t X_{2}}\right]=\mathbf{E}\left[e^{t X_{1}}\right] \mathbf{E}\left[e^{t X_{2}}\right] ; \text { by Independence } \\
& =M_{X_{1}}(t) M_{X_{2}}(t)=\frac{1}{\left(1-\frac{1}{2} t\right)^{2}} \cdot \frac{1}{\left(1-\frac{1}{2} t\right)^{4}}=\frac{1}{\left(1-\frac{1}{2} t\right)^{6}}, t<2 .
\end{aligned}
$$

This matches the pdf in Question 27f, with $\theta=\frac{1}{2}$ and $\alpha=6$. Therefore, Y has the pdf

$$
f_{Y}(y)= \begin{cases}\frac{1}{\Gamma(6)\left(\frac{1}{2}\right)^{6}} y^{5} e^{-2 y}, & 0 \leq y \leq \infty \\ 0, & \text { otherwise }\end{cases}
$$

29. Let X_{1} and X_{2} be independent random variables, such that

$$
p_{1}\left(x_{1}\right)= \begin{cases}\left(\frac{9}{10}\right)^{x-1}\left(\frac{1}{10}\right), & x_{1}=1,2,3, \ldots \\ 0, & \text { otherwise }\end{cases}
$$

and

$$
p_{2}\left(x_{2}\right)=\left\{\begin{array}{ll}
\left(\frac{3}{10}\right)^{x-1}\left(\frac{7}{10}\right), & x_{2}=1,2,3, \ldots \\
0, & \text { otherwise }
\end{array} .\right.
$$

Use MGFs to find the pdf of $Y=X_{1}+X_{2}$.

Solution:

The pmf's given for X_{1} and X_{2} are examples of the pmfs in Question 27c. From this part, we know that the MGF for X_{1} and the MGF for X_{2} are:

$$
M_{X_{1}}(t)=\frac{\left(\frac{1}{10}\right) e^{t}}{1-\frac{9}{10} e^{t}}, t<-\ln \left(\frac{9}{10}\right)
$$

and

$$
M_{X_{2}}(t)=\frac{\frac{7}{10} e^{t}}{1-\frac{3}{10} e^{t}}, \quad t<-\ln \left(\frac{3}{10}\right)
$$

We want to find $M_{Y}(t)$.

$$
\begin{aligned}
M_{Y}(t) & =\mathbf{E}\left[e^{t Y}\right]=\mathbf{E}\left[e^{t\left(X_{1}+X_{2}\right)}\right]=\mathbf{E}\left[e^{t X_{1}} e^{t X_{2}}\right]=\mathbf{E}\left[e^{t X_{1}}\right] \mathbf{E}\left[e^{t X_{2}}\right] ; \text { by Independence } \\
& =M_{X_{1}}(t) M_{X_{2}}(t)=\frac{\left(\frac{1}{10}\right) e^{t}}{1-\frac{9}{10} e^{t}} \cdot \frac{\frac{7}{10} e^{t}}{1-\frac{3}{10} e^{t}} \\
& =\frac{\frac{7}{100} e^{2 t}}{\left(1-\frac{9}{10} e^{t}\right)\left(1-\frac{3}{10} e^{t}\right)}, t<-\ln \left(\frac{9}{10}\right) .
\end{aligned}
$$

30. Suppose X_{1} and X_{2} are random variables such that their joint pdf is

$$
f\left(x_{1}, x_{2}\right)= \begin{cases}x_{1} e^{-x_{2}}, & 0<x_{1}<x_{2}<\infty \\ 0, & \text { otherwise }\end{cases}
$$

(a) Find the moment generating function of X_{1} and $X_{2}, M\left(t_{1}, t_{2}\right)$.

Solution:

Keep in mind that we do not know if X_{1} and X_{2} are independent. Because of this, we cannot
use any of the independence rules.

$$
\begin{aligned}
& M\left(t_{1}, t_{2}\right)=\mathbf{E}\left[e^{t_{1} X_{1}+t_{2} X_{2}}\right]=\mathbf{E}\left[e^{t_{1} X_{1}} e^{t_{2} X_{2}}\right]=\int_{0}^{\infty} \int_{0}^{x_{2}} e^{t_{1} x_{1}} e^{t_{2} x_{2}} x_{1} e^{-x_{2}} d x_{1} d x_{2} \\
& =\int_{0}^{\infty} e^{-x_{2}+t_{2} x_{2}}\left[-\frac{x_{1}}{t_{1}} e^{-t_{1} x_{1}}-\left.\frac{1}{t_{1}^{2}} e^{-t_{1} x_{1}}\right|_{0} ^{x_{2}}\right] d x_{2} \\
& =\int_{0}^{\infty} e^{-x_{2}+t_{2} x_{2}}\left[-\frac{x_{2}}{t_{1}} e^{-t_{1} x_{2}}-\frac{1}{t_{1}^{2}} e^{-t_{1} x_{2}}+\frac{1}{t_{1}^{2}}\right] d x_{2} \\
& =\int_{0}^{\infty}\left(-\frac{1}{t_{1}} x_{2} e^{-x_{2}+t_{2} x_{2}-t_{1} x_{2}}-\frac{1}{t_{1}^{2}} e^{-x_{2}+t_{2} x_{2}-t_{1} x_{2}}+\frac{1}{t_{1}^{2}} e^{-x_{2}+t_{2} x_{2}}\right) d x_{2} \\
& =\int_{0}^{\infty}\left(-t_{1}^{-1} x_{2} e^{-x_{2}\left(1+t_{1}-t_{2}\right)}-t_{1}^{-2} e^{-x_{2}\left(1+t_{1}-t_{2}\right)}+t_{1}^{-2} e^{-x_{2}\left(1-t_{2}\right)}\right) d x_{2} \\
& =-t_{1}^{-1}\left[-\frac{x_{2}}{1+t_{1}-t_{2}} e^{-\left(1+t_{1}-t_{2}\right) x_{2}}-\left.\frac{1}{\left(1+t_{1}-t_{2}\right)^{2}} e^{-\left(1+t_{1}-t_{2}\right) x_{2}}\right|_{0} ^{\infty}\right] \\
& -t_{1}^{-2}\left[\left.\frac{-1}{1+t_{1}-t_{2}} e^{-x_{2}\left(1+t_{1}-t_{2}\right)}\right|_{0} ^{\infty}\right]+t_{1}^{-2}\left[\left.\frac{-1}{1-t_{2}} e^{-x_{2}\left(1-t_{2}\right)}\right|_{0} ^{\infty}\right] \\
& =-t_{1}^{-1}\left[-0--0-\left(-0-\frac{1}{1+t_{1}-t_{2}}\right)\right]-t_{1}^{-2}\left[0-\frac{-1}{1+t_{1}-t_{2}}\right]+t_{1}^{-2}\left[0-\frac{-1}{1-t_{2}}\right] \\
& =-t_{1}^{-1}\left[\frac{1}{1+t_{1}-t_{2}}\right]-t_{1}^{-2}\left[\frac{1}{1+t_{1}-t_{2}}\right]+t_{1}^{-2}\left[\frac{1}{1-t_{2}}\right] \\
& =\frac{-1}{1+t_{1}-t_{2}}\left(\frac{1}{t_{1}}+\frac{1}{t_{1}^{2}}\right)+\frac{1}{t_{1}^{2}\left(1-t_{2}\right)}=\frac{-1}{1+t_{1}-t_{2}} \cdot \frac{1}{t_{1}^{2}}\left(t_{1}+1\right)+\frac{1}{t_{1}^{2}\left(1-t_{2}\right)} \\
& =\frac{1}{t_{1}^{2}}\left[\frac{-\left(t_{1}+1\right)}{1+t_{1}-t_{2}}+\frac{1}{1-t_{2}}\right]=\frac{1}{t_{1}^{2}}\left[\frac{1}{1-t_{2}}-\frac{1+t_{1}}{1+t_{1}-t_{2}}\right] \\
& =\frac{1}{t_{1}^{2}}\left[\frac{1+t_{1}-t_{2}-\left(1+t_{1}\right)\left(1-t_{2}\right)}{\left(1-t_{2}\right)\left(1+t_{1}-t_{2}\right)}\right]=\frac{1}{t_{1}^{2}}\left[\frac{1+t_{1}-t_{2}-\left(1-t_{2}+t_{1}-t_{1} t_{2}\right)}{\left(1-t_{2}\right)\left(1+t_{1}-t_{2}\right)}\right] \\
& =\frac{1}{t_{1}^{2}}\left[\frac{t_{1} t_{2}}{\left(1-t_{2}\right)\left(1+t_{1}-t_{2}\right)}\right] \\
& =\frac{t_{2}}{t_{1}\left(1-t_{2}\right)\left(1+t_{1}-t_{2}\right)}, \quad t_{1} \neq 0 ; t_{2} \neq 1 ; 1+t_{1}-t_{2} \neq 0 \text {. }
\end{aligned}
$$

(b) Find the marginal distributions of X_{1} and X_{2}.

Solution:

Marginal Distribution of X_{1} :

$$
\begin{gathered}
\int_{x_{1}}^{\infty} x_{1} e^{-x_{2}} d x_{2}=-\left.x_{1} e^{-x_{2}}\right|_{x_{1}} ^{\infty} \\
=x_{1} e^{-x_{1}} . \\
f\left(x_{1}\right)= \begin{cases}x_{1} e^{-x_{1}}, & 0<x_{1}<\infty \\
0, & \text { otherwise }\end{cases}
\end{gathered}
$$

Marginal Distribution of X_{2} :

$$
\begin{aligned}
\int_{0}^{x_{2}} x_{1} e^{-x_{2}} d x_{1} & =\left.\frac{x_{1}^{2}}{2} \cdot e^{-x_{2}}\right|_{0} ^{x_{2}} \\
& =\frac{x_{2}^{2}}{2} \cdot e^{-x_{2}}
\end{aligned}
$$

$$
f\left(x_{2}\right)= \begin{cases}\frac{1}{2} x_{2}^{2} e^{-x_{2}}, & 0<x_{2}<\infty \\ 0, & \text { otherwise }\end{cases}
$$

(c) Find the moment generating function of X_{1}.

Solution:

$$
\begin{aligned}
M_{X_{1}}(t) & =\mathbf{E}\left[e^{t X_{1}}\right]=\int_{0}^{\infty} e^{t x_{1}} x_{1} e^{-x_{1}} d x_{1}=\int_{0}^{\infty} x_{1} e^{-x_{1}+t x_{1}} d x_{1}=\int_{0}^{\infty} x_{1} e^{-x_{1}(1-t)} d x_{1} \\
& =-\frac{x_{1}}{1-t} e^{-(1-t) x_{1}}-\left.\frac{1}{(1-t)^{2}} e^{-(1-t) x_{1}}\right|_{0} ^{\infty}=0-0-\left(-0-\frac{1}{(1-t)^{2}} e^{0}\right) \\
& =\frac{1}{(1-t)^{2}}, \quad t \neq 1 .
\end{aligned}
$$

(d) Find the moment generating function of X_{2}. Solution:

$$
\begin{aligned}
M_{X_{2}}(t) & =\mathbf{E}\left[e^{t X_{2}}\right]=\int_{0}^{\infty} e^{t x_{2}} \cdot \frac{1}{2} x_{2}^{2} e^{-x_{2}} d x_{2}=\frac{1}{2} \int_{0}^{\infty} x_{2}^{2} e^{-x_{2}+t x_{2}} d x_{2} \\
& =\frac{1}{2} \int_{0}^{\infty} x_{2}^{2} e^{-x_{2}(1-t)} d x_{2} \\
& =\frac{1}{2}\left[-\frac{x_{2}^{2}}{1-t} e^{-(1-t) x_{2}}-\frac{2 x_{2}}{(1-t)^{2}} e^{-(1-t) x_{2}}-\left.\frac{2}{(1-t)^{3}} e^{-(1-t) x_{2}}\right|_{0} ^{\infty}\right] \\
& =\frac{1}{2}\left[-0-0-0-\left(-0-0-\frac{2}{(1-t)^{3}} e^{0}\right)\right] \\
& =\frac{1}{2}\left[\frac{2}{(1-t)^{3}}\right]=\frac{1}{(1-t)^{3}}, \quad t \neq 1 .
\end{aligned}
$$

