
STAT 401 Final Exam
Study Guide

Notes:

• THIS STUDY GUIDE COVERS SECTIONS 3.3–3.7; 5.1–5.3

• You should also study all of your old homework assignments and in-class notes. Possible
exam questions may come from those as well. This study guide is NOT exhaustive.

• You should also review material from the entire semester (not just the material pre-
sented here). A better summary of old material will come closer to the final exam
date.

• REMINDERS: No cheat sheet. You may use a scientific, but not graphing calculator.

Section 3.3: Gamma, Chi-Square, and Beta Distributions

1. If X is χ2(5), determine the constants c and d so that P[c < X < d] = 0.95 and P[X <
c] = 0.025.

2. Find P[3.28 < X < 25.2] if X has a gamma distribution with α = 3 and β = 4. Hint:
Consider the probability of the equivalent event 1.64 < Y < 12.6, where Y = 2X/4 =
X/2.

3. Let X1, X2, and X3 be iid random variables, each with pdf f(x) = e−x, 0 < x <∞, zero
elsewhere.

(a) Find the distribution of Y = min(X1, X2, X3).

(b) Find the distribution of Y = max(X1, X2, X3).

4. Determine the constant c so that f(x) is a β pdf:

f(x) =

{
cx4(1− x)5, 0 < x < 1

0, otherwise.



Section 3.4: Normal Distribution

5. State the MGF of a random variable X ∼ N(µ, σ2).

6. Find the value of zp where p = 0.95.

7. Find the value of zp where p = 0.9207.

8. If X has the MGF
MX(t) = e4t+64t2 ,

what distribution does X have and what are its parameter values?

9. Suppose X ∼ N(100, 16). Find the value of z for:

(a) x = 90

(b) x = 110

(c) x = 80

(d) x = 105

10. Suppose X ∼ N(100, 16). Find the following probabilities.

(a) P[X < 90].

(b) P[105 < X < 110]

(c) P[X ≥ 90].

(d) P[90 < X ≤ 105]

11. Suppose X ∼ N(100, 16).

(a) Is a value of 90 or smaller likely to occur? Why or why not?

(b) Is a value of 80 or smaller likely to occur? Why or why not?

12. If the random variable X ∼ N(µ, σ2), where σ2 > 0, then show that the random variable
(X − µ)2/σ2 ∼ χ2(1).

13. Remember the following corollary:

Corollary 1. Let X1, . . . , Xn be iid random variables with common N(µ, σ2) distribution.
Let X̄ = n−1

∑n
i=1Xi. Then X̄ ∼ N(µ, σ2/n).
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Section 3.5: Multivariate Normal Distribution

14. Let X and Y have bivariate normal distribution with parameters µ1 = 3, µ2 = 1, σ2
1 = 16,

σ2
2 = 25, and ρ = 3/5. Determine the following probabilities.

(a) P[3 < Y < 8]

(b) P[3 < Y < 8 | X = 7]

(c) P[−3 < X < 3]

(d) P[−3 < X < 3 | Y = −4]

15. Let X and Y have bivariate normal distribution with parameters µ1 = 5, µ2 = 10, σ2
1 = 1,

σ2
2 = 25, and ρ > 0. if P[4 < Y < 16 | X = 5] = 0.954, determine ρ.

Section 3.6: t- and F- distributions

16. Let T have a t-distribution with 14 degrees of freedom. Determine b so that
P[−b < T < b] = 0.90.

17. Find the corresponding t-values or areas.

(a) Find the t-value such that P (T > t0.01(16)) = 0.01.

(b) Find the value of t0.975(14).

(c) Find P (−t0.025(v) < T < t0.05(v)). v is unknown.

(d) Find k such that P(T > k) = 0.025 for 23 degrees of freedom.

Section 3.7: Mixture Distributions

18. Suppose you have the mixture 0.75N(0, 1) + 0.25N(1.5, 4).

(a) Find its expected value.

(b) Find its variance.

19. Suppose you have the mixture 0.5N(−1, 1) + 0.5N(1, 1).

(a) Find its expected value.

(b) Find its variance.

20. Suppose you have the mixture 0.25Pois(5) + 0.75χ2(8).

(a) Find its expected value.

(b) Find its variance.
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Section 5.1: Convergence in Probability

21. Suppose X1, . . . , Xn is a random sample from a Uniform(0, θ) distribution. Suppose
θ is unknown. An intuitive estimate of θ is the maximum of the sample. Let Yn =
max{X1, . . . , Xn}. Note: A uniform random variable X ∼ Unif(a, b) has the pdf

f(x) =
1

b− a
, −∞ < a < x < b <∞.

(a) Show that the CDF of Yn is

FYn(t) =


1, t > θ(
t
θ

)n
, 0 < t ≤ θ

0, t ≤ 0.

(b) Find the PDF of Yn.

(c) Show that Yn is a biased estimator of θ.

(d) Show that n+1
n
Yn is an unbiased estimator of θ.

(e) Show that Yn
P−→ θ, i.e. show that Yn is a consistent estimator of θ.

(f) Show that n+1
n
Yn is a consistent estimator of θ.

22. Suppose X1, . . . , Xn is a random sample from a Uniform(0, θ) distribution. Suppose θ is
unknown. Show that X̄n is a consistent estimator of θ/2.

Section 5.2: Convergence in Distribution

23. Suppose X1, . . . , Xn is a random sample from a Uniform(0, θ) distribution. Suppose
θ is unknown. An intuitive estimate of θ is the maximum of the sample. Let Yn =
max{X1, . . . , Xn}. Consider the random variable Zn = n (θ − Yn). Let t ∈ (0, nθ). Show

that Zn
D−→ Z, where Z ∼ Exp(θ).

24. Let Zn ∼ χ2(n). Find the limiting distribution of the random variable Yn = (Zn−n)/
√

2n
by using Moment Generating Functions and Taylor’s Expansion.

Section 5.3: Central Limit Theorem

25. Let X̄ denote the mean of a random sample of size 128 from a Gamma Distribution with
α = 2 and β = 4. Approximate P[7 < X̄ < 9].

26. Let Y ∼ Bin
(
72, 1

3

)
. Approximate P[22 ≤ Y ≤ 28].

27. Let Y ∼ Bin
(
400, 1

5

)
. Compute an approximate value of P

[
0.25 < Y

400

]
.

28. If Y ∼ Bin
(
100, 1

2

)
, approximate the value of P[Y = 50].
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Solutions
Section 3.3

1. If X is χ2(5), determine the constants c and d so that P[c < X < d] = 0.95 and P[X < c] = 0.025.

Solution:

We can use Table II from the back of the textbook to help identify the values of c and d. In this
scenario, there are 5 degrees of freedom.

P[X < c] = 0.025⇒ c = 0.831 .

We can now identify d:

0.95 = P[c < X < d] = P[0.831 < X < d] = P[X < d]− P[X < 0.831] = P[X < d]− 0.025

⇒ 0.975 = P[X < d]

⇒ d = 12.833 .

2. Find P[3.28 < X < 25.2] if X has a gamma distribution with α = 3 and β = 4. Hint: Consider
the probability of the equivalent event 1.64 < Y < 12.6, where Y = 2X/4 = X/2.

Solution:

If we use the hint, we need to identify the distribution of Y = X/2.

MX(t) =
1

(1− 4t)3
, t <

1

4

MY (t) = E[etY ] = E[etX/2] = E[e(t/2)X ] = MX(t/2) =
1(

1− 4
(
t
2

))3 =
1

(1− 2t)3 , t <
1

2
.

This is the MGF of a χ2 random variable with degrees of freedom of r/2 = 3⇒ r = 6.

P[3.28 < X < 25.2] = P[1.64 < Y < 12.6] = P[Y < 12.6]− P[Y < 1.64] ≈ 0.95− 0.05 = 0.90 .

3. Let X1, X2, and X3 be iid random variables, each with pdf f(x) = e−x, 0 < x <∞, zero elsewhere.

(a) Find the distribution of Y = min(X1, X2, X3).

Solution:

First, we find the CDF of X.

P[X ≤ x] =

∫ x

0

e−t dt = −e−t
∣∣x
0

= −e−x + e0 = 1− e−x.

The CDF of X is:

FX(x) =

{
0, x < 0

1− e−x 0 ≤ x <∞
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We can find the CDF of Y :

P[Y < y] = 1− P[Y > y]

= 1− P[X1 > y,X2 > y,X3 > y]

= 1− P[X1 > y]P[X2 > y]P[X3 > y]; by independence

= 1− (P[X1 > y])3 ; since the variables are iid

= 1− (1− P[X1 < y])3

= 1−
(
1−

[
1− e−y

])3

= 1−
(
e−y
)3

= 1− e−3y.

The CDF of Y is:

FY (y) =

{
0, y < 0

1− e−3y, 0 ≤ y <∞

The PDF of Y is:

fY (y) =

{
3e−3y, 0 < y <∞
0, otherwise

(b) Find the distribution of Y = max(X1, X2, X3).

Solution:

Recall that the CDF of X is:

FX(x) =

{
0, x < 0

1− e−x 0 ≤ x <∞

We can find the CDF of Y :

P[Y < y] = P[X1 < y,X2 < y,X3 < y]

= P[X1 < y]P[X2 < y]P[X3 < y]; by independence

= (P[X1 < y])3 ; since the variables are iid

=
(
1− e−y

)3
.

The CDF of Y is:

FY (y) =

{
0, y < 0

(1− e−y)3
0 ≤ y <∞

The PDF of Y is:

fY (y) =

{
3e−y (1− e−y)2

0 < y <∞
0, otherwise.
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4. Determine the constant c so that f(x) is a β pdf:

f(x) =

{
cx4(1− x)5, 0 < x < 1

0, otherwise.

Solution:

The Beta PDF for a generic random variable X is:

fX(x) =

{
Γ(α+β)

Γ(α)Γ(β)
xα−1(1− x)β−1, 0 < x < 1

0, otherwise.

Based on what we want: α− 1 = 4⇒ α = 5 and β − 1 = 5⇒ β = 6. Therefore

c =
Γ(α + β)

Γ(α)Γ(β)
=

Γ(5 + 6)

Γ(5)Γ(6)
=

Γ(11)

Γ(5)Γ(6)
=

10!

4!5!
=

3628800

(24)(120)
= 1260 .

Section 3.4

5. State the MGF of a random variable X ∼ N(µ, σ2).
Solution:

MX(t) = eµt+
σ2t2

2 , −∞ < t <∞.

6. Find the value of zp where p = 0.95.

Solution:

By definition, zp = Φ−1(p), so

z0.95 = Φ−1(0.95)⇒ Φ(z0.95) = 0.95.

This means that
z0.95 = 1.645 .

7. Find the value of zp where p = 0.9207.

Solution:

By definition, zp = Φ−1(p), so

z0.9207 = Φ−1(0.9207)⇒ Φ(z0.9207) = 0.9207.

This means that
z0.9207 = 1.41 .
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8. If X has the MGF
MX(t) = e4t+64t2 ,

what distribution does X have and what are its parameter values?

Solution:

This is the MGF for a Normally Distributed random variable. In particular, µ = 4 and

σ2

2
= 64⇒ σ2 = 128.

Therefore, X ∼ N(4, 128) .

9. Suppose X ∼ N(100, 16). Find the value of z for:

(a) x = 90
Solution:

z =
90− 100

4
= −2.5

(b) x = 110
Solution:

z =
110− 100

4
= 2.5

(c) x = 80
Solution:

z =
80− 100

4
= −5

(d) x = 105
Solution:

z =
105− 100

4
= 1.25

10. Suppose X ∼ N(100, 16). Find the following probabilities.

(a) P[X < 90].
Solution:

P[X < 90] = φ(−2.5) = 0.0062 .

(b) P[105 < X < 110] ‘
Solution:

P[105 < X < 110] = Φ(2.5)− Φ(1.25) = 0.9938− 0.8944 = 0.0994 .

(c) P[X ≥ 90].
Solution:

P[X ≥ 90] = 1− P[X < 90] = 1− Φ(−2.5) = 1− 0.0062 = 0.9938 .

(d) P[90 < X ≤ 105]
Solution:

P[90 < X ≤ 105] = Φ(1.25)− Φ(−2.5) = 0.8944− 0.0062 = 0.8882 .
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11. Suppose X ∼ N(100, 16).

(a) Is a value of 90 or smaller likely to occur? Why or why not?

Solution:

It is not likely to happen because P[X < 90] = 0.0062 is very small.

(b) Is a value of 80 or smaller likely to occur? Why or why not?

Solution:

If a value of 90 or smaller is not likely to occur, then seeing a value of 80 or smaller is even
less likely to occur. In fact,

P[X < 80] ≈ 0.

12. If the random variable X ∼ N(µ, σ2), where σ2 > 0, then show that the random variable (X −
µ)2/σ2 ∼ χ2(1).

Solution:

First note that
(X − µ)2

σ2
=

(
X − µ
σ

)2

= Z2, Z ∼ N(0, 1).

Let V = Z2. The CDF for V is:

P[V ≤ v] = P[Z2 ≤ v] = P[−
√
v < Z <

√
v];

since −∞ < z < ∞, we have to take into account both the positive and negative square roots.
However, since Z is symmetric, if v ≥ 0, then

P[V ≤ v] = 2

∫ √v
0

1√
2π
e−z

2/2 dz

Using u-substitution, let u = z2 so that z =
√
u, du = 2zdz, and 1

2
√
u
du = dz. Then

P[V ≤ v] = 2

∫ √v
0

1√
2π
e−z

2/2 dz = 2

∫ v

0

1√
2π
e−u/2 · 1

2
√
u
du =

∫ v

0

1√
2π
√
u
e−u/2 du.

The CDF for V is:

FV (v) =

{
0, v < 0∫ v

0
1√

2π
√
u
e−u/2 du, 0 ≤ v

The PDF for V is:

fV (v) =

{
1√

π·21/2v
1
2
−1e−v/2, 0 < v <∞

0, otherwise

Note that
√
π = Γ(1/2), and therefore V ∼ χ2(1).

13. Remember the following corollary:

Corollary 2. Let X1, . . . , Xn be iid random variables with common N(µ, σ2) distribution. Let
X̄ = n−1

∑n
i=1Xi. Then X̄ ∼ N(µ, σ2/n).
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Section 3.5

14. Let X and Y have bivariate normal distribution with parameters µ1 = 3, µ2 = 1, σ2
1 = 16, σ2

2 = 25,
and ρ = 3/5. Determine the following probabilities.

(a) P[3 < Y < 8]

Solution:

One property of the bivariate normal distribution is that the marginal distribution of Y ∼
N(µ2, σ

2
2) = N(1, 25).

z1 =
3− 1

5
=

2

5
= 0.4; z2 =

8− 1

5
=

7

5
= 1.4

Then

P[3 < Y < 8] = P[0.4 < Z < 1.4] = Φ(1.4)− Φ(0.4) = 0.9192− 0.6554 = 0.2638 .

(b) P[3 < Y < 8 | X = 7]

Solution:

We know from the bivariate normal distribution that

Y | X = x ∼ N

(
µ2 +

σ2

σ1

ρ (x− µ1) , σ2
2

(
1− ρ2

))
Y | X = 7 ∼ N

(
1 +

5

4

(
3

5

)
(7− 3) , 25

(
1−

(
3

5

)2
))

= N (4, 16) .

From the normal distribution, we have

z1 =
3− 4

4
= −0.25; z2 =

8− 4

4
= 1

Then

P[3 < Y < 8 | X = 7] = P[−0.25 < Z < 1] = Φ(1)− Φ(−0.25) = 0.8413− 0.4013 = 0.44 .
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(c) P[−3 < X < 3]

Solution:

One property of the bivariate normal distribution is that the marginal distribution of X ∼
N(µ1, σ

2
1) = N(3, 16).

z1 =
−3− 3

4
=
−6

4
= −1.5; z2 =

3− 3

4
=

0

4
= 0

Then

P[−3 < X < 3] = P[−1.5 < Z < 0] = Φ(0)− Φ(−1.5) = 0.5− 0.0668 = 0.4332 .

(d) P[−3 < X < 3 | Y = −4]

Solution:

We know from the bivariate normal distribution that

X | Y = y ∼ N

(
µ1 +

σ1

σ2

ρ (y − µ2) , σ2
1

(
1− ρ2

))
X | Y = −4 ∼ N

(
3 +

4

5

(
3

5

)
(−4− 1) , 16

(
1−

(
3

5

)2
))

= N (0.6, 10.24)

From the normal distribution, we have

z1 =
−3− 0.6√

10.24
= −1.125; z2 =

3− 0.6√
10.24

= 0.75.

Then

P[−3 < X < 3 | Y = −4] = P[−1.125 < Z < 0.75]

≈ P[−1.13 < Z < 0.75]

= Φ(0.75)− Φ(−1.13) = 0.7734− 0.1292 = 0.6442 .

If we used a graphing calculator, R, etc, we would be able to use the exact z1 value of −1.125.
In that case,

P[−3 < X < 3 | Y = −4] = 0.6431 .
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15. Let X and Y have bivariate normal distribution with parameters µ1 = 5, µ2 = 10, σ2
1 = 1, σ2

2 = 25,
and ρ > 0. if P[4 < Y < 16 | X = 5] = 0.954, determine ρ.

Solution:

We know from the bivariate normal distribution that

Y | X = x ∼ N

(
µ2 +

σ2

σ1

ρ (x− µ1) , σ2
2

(
1− ρ2

))
Y | X = 5 ∼ N

(
10 +

5

1
ρ(5− 5), 25

(
1− ρ2

))
= N

(
10, 25

(
1− ρ2

))
.

From the normal distribution, we have

z1 =
4− 10

5
√

1− ρ2
=

−6

5
√

1− ρ2
; z2 =

16− 10

5
√

1− ρ2
=

6

5
√

1− ρ2
.

Then

0.954 = P[4 < Y < 16 | X = 5] = P

[
− 6

5
√

1− ρ2
< Z <

6

5
√

1− ρ2

]

= Φ

(
6

5
√

1− ρ2

)
− Φ

(
−6

5
√

1− ρ2

)

= 1− 2Φ

(
−6

5
√

1− ρ2

)
.

This implies that

⇒ 1− 0.954 = 2Φ

(
−6

5
√

1− ρ2

)

⇒ 0.046

2
= 0.023 = Φ

(
−6

5
√

1− ρ2

)
.

Hence

z ≈ −2 =
−6

5
√

1− ρ2√
1− ρ2 =

−6

5(−2)√
1− ρ2 = 0.6

1− ρ2 = 0.36

1− 0.36 = ρ2

0.64 = ρ2

4

5
= 0.8 = ρ since ρ > 0.

We find that ρ = 4/5 .
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Section 3.6

16. Let T have a t-distribution with 14 degrees of freedom. Determine b so that P[−b < T < b] = 0.90.

Solution:

Since the t-distribution is symmetric,

P[−b < T < b] = 1− 2P[T > b] = 0.90.

Then

1− 0.90 = 2P[T > b]⇒ 0.10

2
= 0.05 = P[T > b].

From the table, for 14 degrees of freedom, b = 1.761 .

17. Find the corresponding t-values or areas.

(a) Find the t-value such that P (T > t0.01(16)) = 0.01.

Solution:

t0.01(16) = 2.583.

(b) Find the value of t0.975(14).

Solution:

t0.975(14) = −t0.025(14) = −2.145.

(c) Find P (−t0.025(v) < T < t0.05(v)). v is unknown.

Solution:

We know the area to the left of −t0.025(v) is 0.025. We also know that the area to the right
of t0.05(v) is 0.05. The area in between these two values is 1− 0.025− 0.05 = 0.925 .

(d) Find k such that P(T > k) = 0.025 for 23 degrees of freedom.

Solution:

Our corresponding t-value with 23 degrees of freedom is k = t0.025(23) = 2.069 .
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Section 3.7

18. Suppose you have the mixture 0.75N(0, 1) + 0.25N(1.5, 4).

(a) Find its expected value.
Solution:

E[X] =
k∑
i=1

piµi = 0.75(0) + 0.25(1.5) = 0.375 .

(b) Find its variance.
Solution:

V[X] =
k∑
i=1

piσ
2
i +

k∑
i=1

pi (µi − µ̄)2

= 0.75(1) + 0.25(4) + 0.75(0− 0.375)2 + 0.25(1.5− 0.375)2 = 2.171875 .

19. Suppose you have the mixture 0.5N(−1, 1) + 0.5N(1, 1).

(a) Find its expected value.
Solution:

E[X] =
k∑
i=1

piµi = (0.5)(−1) + (0.5)(1) = 0

(b) Find its variance.
Solution:

V[X] =
k∑
i=1

piσ
2
i +

k∑
i=1

pi (µi − µ̄)2

= 0.5(1) + 0.5(1) + 0.5(−1− 0)2 + 0.5(1− 0)2 = 2 .

20. Suppose you have the mixture 0.25Pois(5) + 0.75χ2(8).

(a) Find its expected value.

Solution:

For the Poisson Distribution, µ1 = 5. For the χ2 distribution, µ2 = 8.

E[X] =
k∑
i=1

piµ1 = 0.25(5) + 0.75(8) = 7.25 .

(b) Find its variance.

Solution:

For the Poisson Distribution, σ2
1 = 5. For the χ2 distribution, σ2

2 = 16.

V[X] =
k∑
i=1

piσ
2
i +

k∑
i=1

pi (µi − µ̄)2

= 0.25(5) + 0.75(16) + 0.25(5− 7.25)2 + 0.75(8− 7.25)2 = 14.9375 .
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Section 5.1

21. Suppose X1, . . . , Xn is a random sample from a Uniform(0, θ) distribution. Suppose θ is unknown.
An intuitive estimate of θ is the maximum of the sample. Let Yn = max{X1, . . . , Xn}. Note: A
uniform random variable X ∼ Unif(a, b) has the pdf

f(x) =
1

b− a
, −∞ < a < x < b <∞.

(a) Show that the CDF of Yn is

FYn(t) =


1, t > θ(
t
θ

)n
, 0 < t ≤ θ

0, t ≤ 0.

Proof. If Xi ∼ Unif(0, θ), then

f(xi) =
1

θ − 0
=

1

θ
, 0 < x < θ.

The Xi’s are independent because they come from a random sample.

P[Yn < t] = P[X1 < t,X2 < t, . . . , Xn < t]

= P[X1 < t]P[X2 < t] · · ·P[Xn < t]; by independence

= (P[X < t])n ; since the Xi’s are iid.

Now we need to find the CDF of X.

P[X ≤ x] =

∫ x

0

1

θ
dt =

1

θ
t

∣∣∣∣x
0

=
1

θ
(x− 0) =


0, x ≤ 0
x
θ
, 0 < x < θ

1, θ ≤ x

Now,

P[Yn < t] = (P[X < t])n =

(
t

θ

)n
.

Therefore, the CDF of Yn is

FYn(t) =


1, t > θ(
t
θ

)n
, 0 < t ≤ θ

0, t ≤ 0.
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(b) Find the PDF of Yn.

Solution:

Find the first derivative of the CDF with respect to t.

d

dt

(
t

θ

)n
=

d

dt

tn

θn
=
ntn−1

θn
.

The PDF of Yn is

fYn(t) =

{
n
θn
tn−1, 0 < t < θ

0, otherwise.

(c) Show that Yn is a biased estimator of θ.

Solution:

We need to show that E[Yn] 6= θ.

E[Yn] =

∫ θ

0

t · n
θn
tn−1 dt =

n

θn

∫ θ

0

tn dt =
n

θn

[
tn+1

n+ 1

∣∣∣∣θ
0

]
=

n

(n+ 1)θn
[
θn+1 − 0n+1

]
=

n

(n+ 1)θn
θn+1

=
n

n+ 1
θ 6= θ .

(d) Show that n+1
n
Yn is an unbiased estimator of θ.

Solution:

We need to show that E
[
n+1
n
Yn
]

= θ. From the previous part, we already know that

E[Yn] =
n

n+ 1
θ.

Now,

E

[
n+ 1

n
Yn

]
=
n+ 1

n
E[Yn] =

n+ 1

n
· n

n+ 1
θ = θ.

16



(e) Show that Yn
P−→ θ, i.e. show that Yn is a consistent estimator of θ.

Solution:

We need to show that limn→∞ P {|Yn − θ| > ε} = 0.

P {|Yn − θ| > ε} = P {|Yn − θ| > ε} = P {θ − Yn > ε} ; since 0 < t < θ, Yn − θ < 0

= P {−Yn > ε− θ} = P {Yn < θ − ε} = FYn(θ − ε)

=

(
θ − ε
θ

)n
=
(

1− ε

θ

)n
.

Since ε > 0 is “small”, WLOG assume 0 < ε < θ, and we have 0 < ε/θ < 1. This means that

1− ε

θ
< 1.

Hence
(
1− ε

θ

)n → 0 as n→∞. Therefore

lim
n→∞

P {|Yn − θ| > ε} =
(

1− ε

θ

)n
= 0.

Therefore, Yn
P−→ θ.

(f) Show that n+1
n
Yn is a consistent estimator of θ.

Solution:

We need to show that limn→∞ P
{∣∣n+1

n
Yn − θ

∣∣ > ε
}

= 0.

P

{∣∣∣∣n+ 1

n
Yn − θ

∣∣∣∣ > ε

}
= P

{∣∣∣∣n+ 1

n

∣∣∣∣∣∣∣∣Yn − n

n+ 1
θ

∣∣∣∣ > ε

}
; note

∣∣∣∣n+ 1

n

∣∣∣∣ =
n+ 1

n

= P

{∣∣∣∣Yn − n

n+ 1
θ

∣∣∣∣ > n

n+ 1
ε

}
; note E[Yn] =

n

n+ 1
θ

≤ V[Yn](
n
n+1

ε
)2 ; Chebyshev’s Inequality

We need to find V[Yn].

E [Yn]2 =

∫ θ

0

t2 · n
θn
tn−1 dt =

n

θn

∫ θ

0

tn+1 dt

=
n

θn

[
tn+2

n+ 2

∣∣∣∣θ
0

]
=

n

(n+ 2)θn
[
θn+2 − 0

]
=

n

n+ 2
θ2

V[Yn] =
n

n+ 2
θ2 −

(
n

n+ 1
θ

)2

=
n

n+ 2
θ2 − n2

(n+ 1)2
θ2 =

[
n

n+ 2
− n2

(n+ 1)2

]
θ2.
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Then

P

{∣∣∣∣n+ 1

n
Yn − θ

∣∣∣∣ > ε

}
≤ V[Yn](

n
n+1

ε
)2 =

[
n
n+2
− n2

(n+1)2

]
θ2

n2

(n+1)2
ε2

=
θ2

ε2
·
[

n

n+ 2
− n2

(n+ 1)2

]
· (n+ 1)2

n2

=
θ2

ε2
·
[

(n+ 1)2

n(n+ 2)
− 1

]
=
θ2

ε2
·
[
n2 + 2n+ 1

n2 + 2n
− 1

]
.

Recall from Calculus (L’Hopital’s Rule) that

lim
n→∞

n2 + 2n+ 1

n2 + 2n
= lim

n→∞

2n+ 2

2n+ 2
= lim

n→∞
1 = 1.

We have

P

{∣∣∣∣n+ 1

n
Yn − θ

∣∣∣∣ > ε

}
≤ V[Yn](

n
n+1

ε
)2 =

θ2

ε2
·
[
n2 + 2n+ 1

n2 + 2n
− 1

]
→ θ2

ε2
· [1− 1] as n→∞

=
θ2

ε2
(0) = 0.

Therefore n+1
n
Yn

P−→ θ.

22. Suppose X1, . . . , Xn is a random sample from a Uniform(0, θ) distribution. Suppose θ is unknown.
Show that X̄n is a consistent estimator of θ/2.

Solution:

We need to show that X̄n
P−→ θ/2. Recall that the CDF of X is:

P[X ≤ x] =

∫ x

0

1

θ
dt =

1

θ
t

∣∣∣∣x
0

=
1

θ
(x− 0) =


0, x ≤ 0
x
θ
, 0 < x < θ

1, θ ≤ x

The PDF of X is

f(x) =

{
1
θ
, 0 < x < θ

0, otherwise.

The expected value of X is

E[X] =

∫ θ

0

x · 1

θ
dx =

1

θ

[
x2

2

∣∣∣∣θ
0

]
=

1

2θ

(
θ2 − 0

)
=

1

2
θ.

By the WLLN, X̄n
P−→ θ

2
.
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Section 5.2

23. Suppose X1, . . . , Xn is a random sample from a Uniform(0, θ) distribution. Suppose θ is unknown.
An intuitive estimate of θ is the maximum of the sample. Let Yn = max{X1, . . . , Xn}. Consider

the random variable Zn = n (θ − Yn). Let t ∈ (0, nθ). Show that Zn
D−→ Z, where Z ∼ Exp(θ).

Proof. Recall that the CDF of Yn is

FYn(t) =


1, t > θ(
t
θ

)n
, 0 < t ≤ θ

0, t ≤ 0.

P[Zn ≤ t] = P [n (θ − Yn) ≤ t] = P

[
θ − Yn ≤

t

n

]
= P

[
−Yn ≤

t

n
− θ
]

= P

[
Yn ≥ θ − t

n

]
= 1− P

[
Yn ≤ θ − t

n

]
= 1−

(
θ − t

n

θ

)n
= 1−

(
1− t

nθ

)n
= 1−

(
1 +
−t/θ
n

)n
→ 1− e(−t/θ)(1) as n→∞

= 1− e−t/θ

Note that 1 − e−t/θ is the CDF of an exponential random variable with mean θ. Therefore

Zn
D−→ Exp(θ).

24. Let Zn ∼ χ2(n). Find the limiting distribution of the random variable Yn = (Zn − n)/
√

2n by
using Moment Generating Functions and Taylor’s Expansion.

Solution:

Recall that MZn(t) = 1
(1−2t)n/2

, t < 1/2. We also have E[Zn] = n; V[Zn] = 2n.

MYn(t) = E
[
etYn

]
= E

[
exp

{
t · Zn − n√

2n

}]
= E

[
exp

{
t√
2n
Zn

}
exp

{
−nt√

2n

}]
= e−t

√
n/2MZn

(
t√
2n

)
= e−t

√
n/2

(
1− 2 · t√

2n

)−n/2
= e−t

√
n/2

(
1− t

√
2

n

)−n/2
, t <

√
n

2

= e

−t
√
n/2

√
n/2
√

2/n︸ ︷︷ ︸
=1

(
1− t

√
2

n

)−n/2
, t <

√
n

2

= et
√

2/n(−n/2)

(
1− t

√
2

n

)−n/2
, t <

√
n

2
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=

[
et
√

2/n

(
1− t

√
2

n

)]−n/2
, t <

√
n

2
.

By Taylor’s Expansion, there exists a number c(n), between 0 and t
√

2/n such that

et
√

2/n = 1 + t

√
2

n
+

1

2

(
t

√
2

n

)2

+
ec(n)

6

(
t

√
2

n

)3

.

Then

et
√

2/n

(
1− t

√
2

n

)
=

1 + t

√
2

n
+

1

2

(
t

√
2

n

)2

+
ec(n)

6

(
t

√
2

n

)3
(1− t

√
2

n

)

= 1 + t

√
2

n
+

1

2

(
t

√
2

n

)2

+
ec(n)

6

(
t

√
2

n

)3

− t
√

2

n
− t2 · 2

n
− t

2

√
2

n

(
t

√
2

n

)2

− ec(n)

6

(
t

√
2

n

)3

· t
√

2

n

= 1 +
t2

2
· 2

n
+
ec(n)t3

6
· 2

n

√
2

n
− 2t2

n
− t

2

√
2

n
· t2 · 2

n
− t4ec(n)

6
· 2

n
· 2

n

= 1 +
t2

n
+
t3ec(n)

√
2

3n
√
n
− 2t2

n
− t3
√

2

n
√
n
− 2t4ec(n)

3n2

= 1 +
−t2

n
+
ψ(n)

n
,

where

ψ(n) =
t3ec(n)

√
2

3
√
n
− t3
√

2√
n
− 2t4ec(n)

3n
.

This means that

MYn(t) =

[
1 +
−t2

n
+
ψ(n)

n

]−n/2
.

Note that t
√

2/n→ 0 as n→∞. This means that c(n)→ 0 and ec(n) → 1 as n→∞. For every
fixed value of t,

lim
n→∞

ψ(n) = 0− 0− 0 = 0.

Recall

lim
n→∞

[
1 +

b

n
+
ψ(n)

n

]cn
= lim

n→∞

(
1 +

b

n

)cn
= ebc,

where b and c do not depend on n and where limn→∞ ψ(n) = 0. This gives us the conclusion
that

lim
n→∞

MYn(t) = e(−t2)(−1/2) = et
2/2 = e0t+t2/2, ∀t.

This is the MGF of the Standard Normal Distribution. Therefore

Yn
D−→ N(0, 1).
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Section 5.3

25. Let X̄ denote the mean of a random sample of size 128 from a Gamma Distribution with α = 2
and β = 4. Approximate P[7 < X̄ < 9].

Solution:

For a Gamma Distribution,

µ = αβ = 2(4) = 8

σ2 = αβ2 = 2(4)2 = 2(16) = 32

Then

P[7 < X̄ < 9] = P

[
7− 8√

32/
√

128
<
X̄ − µ
σ/
√
n
<

9− 8√
32/
√

128

]
= P

[
−2 <

X̄ − µ
σ/
√
n
< 2

]
≈ P[−2 < Z < 2]

= Φ(2)− Φ(−2) = 0.9772− 0.0228

= 0.9544 .

26. Let Y ∼ Bin
(
72, 1

3

)
. Approximate P[22 ≤ Y ≤ 28].

Solution:

For the Binomial Distribution,

µ = np = 72

(
1

3

)
= 24

σ2 = np(1− p) = 72

(
1

3

)(
2

3

)
= 16

σ =
√

16 = 4

Then

P[22 ≤ Y ≤ 28] = P[21.5 < Y < 28.5] = P

[
21.5− 24

4
<
Y − 24

4
<

28.5− 24

4

]
= P

[
−0.625 <

Y − 24

4
< 1.125

]
≈ P[−0.63 < Z < 1.13]

= Φ(1.13)− Φ(−0.63) = 0.8708− 0.2643

= 0.6065 .

If you use technology (graphing calculator, R, etc), then

P[22 ≤ Y ≤ 28] ≈ 0.6037 .

21



27. Let Y ∼ Bin
(
400, 1

5

)
. Compute an approximate value of P

[
0.25 < Y

400

]
.

Solution:

For the Binomial Distribution,

µ = np = 400

(
1

5

)
= 80

σ2 = np(1− p) = 400

(
1

5

)(
4

5

)
= 64

σ =
√

64 = 8.

Then

P

[
0.25 <

Y

400

]
= P [0.25(400) < Y ] = P[Y > 100] = P[Y > 100.5]

= P

[
Y − 80

8
>

100.5− 80

8

]
= P

[
Y − 80

8
> 2.5625

]
≈ P[Z > 2.56] = 1− P[Z ≤ 2.56] = 1− Φ(2.56) = 1− 0.9948

= 0.0052 .

If you use technology (graphing calculator, R, etc), then

P

[
0.25 <

Y

400

]
≈ 1− Φ(2.5625) = 1− 0.9948 = 0.0052 .

28. If Y ∼ Bin
(
100, 1

2

)
, approximate the value of P[Y = 50].

Solution:

For the Binomial Distribution,

µ = np = 100

(
1

2

)
= 50

σ2 = np(1− p) = 100

(
1

2

)(
1

2

)
= 25

σ =
√

25 = 5.

Then

P[Y = 50] = P[49.5 < Y < 50.5] = P

[
49.5− 50

5
<
Y − 50

5
<

50.5− 50

5

]
= P

[
−0.1 <

Y − 50

5
< 0.1

]
≈ P[−0.1 < Z < 0.1]

= Φ(0.1)− Φ(−0.1) = 0.5398− 0.4602

= 0.0796 .
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