Notes:

- THIS STUDY GUIDE COVERS SECTIONS 3.3-3.7; 5.1-5.3
- You should also study all of your old homework assignments and in-class notes. Possible exam questions may come from those as well. This study guide is NOT exhaustive.
- You should also review material from the entire semester (not just the material presented here). A better summary of old material will come closer to the final exam date.
- REMINDERS: No cheat sheet. You may use a scientific, but not graphing calculator.

Section 3.3: Gamma, Chi-Square, and Beta Distributions

1. If X is $\chi^{2}(5)$, determine the constants c and d so that $\mathrm{P}[c<X<d]=0.95$ and $\mathrm{P}[X<$ $c]=0.025$.
2. Find $\mathrm{P}[3.28<X<25.2]$ if X has a gamma distribution with $\alpha=3$ and $\beta=4$. Hint: Consider the probability of the equivalent event $1.64<Y<12.6$, where $Y=2 X / 4=$ $X / 2$.
3. Let X_{1}, X_{2}, and X_{3} be iid random variables, each with pdf $f(x)=e^{-x}, 0<x<\infty$, zero elsewhere.
(a) Find the distribution of $Y=\min \left(X_{1}, X_{2}, X_{3}\right)$.
(b) Find the distribution of $Y=\max \left(X_{1}, X_{2}, X_{3}\right)$.
4. Determine the constant c so that $f(x)$ is a β pdf:

$$
f(x)= \begin{cases}c x^{4}(1-x)^{5}, & 0<x<1 \\ 0, & \text { otherwise }\end{cases}
$$

Section 3.4: Normal Distribution

5. State the MGF of a random variable $X \sim \mathrm{~N}\left(\mu, \sigma^{2}\right)$.
6. Find the value of z_{p} where $p=0.95$.
7. Find the value of z_{p} where $p=0.9207$.
8. If X has the MGF

$$
M_{X}(t)=e^{4 t+64 t^{2}}
$$

what distribution does X have and what are its parameter values?
9. Suppose $X \sim \mathrm{~N}(100,16)$. Find the value of z for:
(a) $x=90$
(c) $x=80$
(b) $x=110$
(d) $x=105$
10. Suppose $X \sim \mathrm{~N}(100,16)$. Find the following probabilities.
(a) $\mathrm{P}[X<90]$.
(c) $\mathrm{P}[X \geq 90]$.
(b) $\mathrm{P}[105<X<110]$
(d) $\mathrm{P}[90<X \leq 105]$
11. Suppose $X \sim \mathrm{~N}(100,16)$.
(a) Is a value of 90 or smaller likely to occur? Why or why not?
(b) Is a value of 80 or smaller likely to occur? Why or why not?
12. If the random variable $X \sim \mathrm{~N}\left(\mu, \sigma^{2}\right)$, where $\sigma^{2}>0$, then show that the random variable $(X-\mu)^{2} / \sigma^{2} \sim \chi^{2}(1)$.
13. Remember the following corollary:

Corollary 1. Let X_{1}, \ldots, X_{n} be iid random variables with common $\mathrm{N}\left(\mu, \sigma^{2}\right)$ distribution. Let $\bar{X}=n^{-1} \sum_{i=1}^{n} X_{i}$. Then $\bar{X} \sim \mathbf{N}\left(\mu, \sigma^{2} / n\right)$.

Section 3.5: Multivariate Normal Distribution

14. Let X and Y have bivariate normal distribution with parameters $\mu_{1}=3, \mu_{2}=1, \sigma_{1}^{2}=16$, $\sigma_{2}^{2}=25$, and $\rho=3 / 5$. Determine the following probabilities.
(a) $\mathrm{P}[3<Y<8]$
(c) $\mathrm{P}[-3<X<3]$
(b) $\mathrm{P}[3<Y<8 \mid X=7]$
(d) $\mathrm{P}[-3<X<3 \mid Y=-4]$
15. Let X and Y have bivariate normal distribution with parameters $\mu_{1}=5, \mu_{2}=10, \sigma_{1}^{2}=1$, $\sigma_{2}^{2}=25$, and $\rho>0$. if $\mathrm{P}[4<Y<16 \mid X=5]=0.954$, determine ρ.

Section 3.6: t- and F- distributions

16. Let T have a t-distribution with 14 degrees of freedom. Determine b so that $\mathrm{P}[-b<T<b]=0.90$.
17. Find the corresponding t-values or areas.
(a) Find the t-value such that $\mathrm{P}\left(T>t_{0.01}(16)\right)=0.01$.
(b) Find the value of $t_{0.975}(14)$.
(c) Find $\mathrm{P}\left(-t_{0.025}(v)<T<t_{0.05}(v)\right)$. v is unknown.
(d) Find k such that $\mathrm{P}(T>k)=0.025$ for 23 degrees of freedom.

Section 3.7: Mixture Distributions

18. Suppose you have the mixture $0.75 \mathrm{~N}(0,1)+0.25 \mathrm{~N}(1.5,4)$.
(a) Find its expected value.
(b) Find its variance.
19. Suppose you have the mixture $0.5 \mathrm{~N}(-1,1)+0.5 \mathrm{~N}(1,1)$.
(a) Find its expected value.
(b) Find its variance.
20. Suppose you have the mixture $0.25 \operatorname{Pois}(5)+0.75 \chi^{2}(8)$.
(a) Find its expected value.
(b) Find its variance.
21. Suppose X_{1}, \ldots, X_{n} is a random sample from a $\operatorname{Uniform}(0, \theta)$ distribution. Suppose θ is unknown. An intuitive estimate of θ is the maximum of the sample. Let $Y_{n}=$ $\max \left\{X_{1}, \ldots, X_{n}\right\}$. Note: A uniform random variable $X \sim \operatorname{Unif}(a, b)$ has the pdf

$$
f(x)=\frac{1}{b-a}, \quad-\infty<a<x<b<\infty .
$$

(a) Show that the CDF of Y_{n} is

$$
F_{Y_{n}}(t)= \begin{cases}1, & t>\theta \\ \left(\frac{t}{\theta}\right)^{n}, & 0<t \leq \theta \\ 0, & t \leq 0\end{cases}
$$

(b) Find the PDF of Y_{n}.
(c) Show that Y_{n} is a biased estimator of θ.
(d) Show that $\frac{n+1}{n} Y_{n}$ is an unbiased estimator of θ.
(e) Show that $Y_{n} \xrightarrow{P} \theta$, i.e. show that Y_{n} is a consistent estimator of θ.
(f) Show that $\frac{n+1}{n} Y_{n}$ is a consistent estimator of θ.
22. Suppose X_{1}, \ldots, X_{n} is a random sample from a $\operatorname{Uniform}(0, \theta)$ distribution. Suppose θ is unknown. Show that \bar{X}_{n} is a consistent estimator of $\theta / 2$.

Section 5.2: Convergence in Distribution

23. Suppose X_{1}, \ldots, X_{n} is a random sample from a $\operatorname{Uniform}(0, \theta)$ distribution. Suppose θ is unknown. An intuitive estimate of θ is the maximum of the sample. Let $Y_{n}=$ $\max \left\{X_{1}, \ldots, X_{n}\right\}$. Consider the random variable $Z_{n}=n\left(\theta-Y_{n}\right)$. Let $t \in(0, n \theta)$. Show that $Z_{n} \xrightarrow{D} Z$, where $Z \sim \operatorname{Exp}(\theta)$.
24. Let $Z_{n} \sim \chi^{2}(n)$. Find the limiting distribution of the random variable $Y_{n}=\left(Z_{n}-n\right) / \sqrt{2 n}$ by using Moment Generating Functions and Taylor's Expansion.

Section 5.3: Central Limit Theorem

25. Let \bar{X} denote the mean of a random sample of size 128 from a Gamma Distribution with $\alpha=2$ and $\beta=4$. Approximate $\mathrm{P}[7<\bar{X}<9]$.
26. Let $Y \sim \operatorname{Bin}\left(72, \frac{1}{3}\right)$. Approximate $\mathrm{P}[22 \leq Y \leq 28]$.
27. Let $Y \sim \operatorname{Bin}\left(400, \frac{1}{5}\right)$. Compute an approximate value of $\mathrm{P}\left[0.25<\frac{Y}{400}\right]$.
28. If $Y \sim \operatorname{Bin}\left(100, \frac{1}{2}\right)$, approximate the value of $\mathrm{P}[Y=50]$.

Solutions

Section 3.3

1. If X is $\chi^{2}(5)$, determine the constants c and d so that $\mathrm{P}[c<X<d]=0.95$ and $\mathrm{P}[X<c]=0.025$.

Solution:

We can use Table II from the back of the textbook to help identify the values of c and d. In this scenario, there are 5 degrees of freedom.

$$
\mathrm{P}[X<c]=0.025 \Rightarrow c=0.831 .
$$

We can now identify d :

$$
\begin{aligned}
0.95=\mathrm{P}[c<X<d] & =\mathrm{P}[0.831<X<d]=\mathrm{P}[X<d]-\mathrm{P}[X<0.831]=\mathrm{P}[X<d]-0.025 \\
& \Rightarrow 0.975=\mathrm{P}[X<d] \\
& \Rightarrow d=12.833 .
\end{aligned}
$$

2. Find $\mathrm{P}[3.28<X<25.2]$ if X has a gamma distribution with $\alpha=3$ and $\beta=4$. Hint: Consider the probability of the equivalent event $1.64<Y<12.6$, where $Y=2 X / 4=X / 2$.

Solution:

If we use the hint, we need to identify the distribution of $Y=X / 2$.

$$
\begin{aligned}
& M_{X}(t)=\frac{1}{(1-4 t)^{3}}, \quad t<\frac{1}{4} \\
& M_{Y}(t)=\mathbf{E}\left[e^{t Y}\right]=\mathbf{E}\left[e^{t X / 2}\right]=\mathbf{E}\left[e^{(t / 2) X}\right]=M_{X}(t / 2)=\frac{1}{\left(1-4\left(\frac{t}{2}\right)\right)^{3}}=\frac{1}{(1-2 t)^{3}}, t<\frac{1}{2}
\end{aligned}
$$

This is the MGF of a χ^{2} random variable with degrees of freedom of $r / 2=3 \Rightarrow r=6$.

$$
\mathrm{P}[3.28<X<25.2]=\mathrm{P}[1.64<Y<12.6]=\mathrm{P}[Y<12.6]-\mathrm{P}[Y<1.64] \approx 0.95-0.05=0.90 .
$$

3. Let X_{1}, X_{2}, and X_{3} be iid random variables, each with pdf $f(x)=e^{-x}, 0<x<\infty$, zero elsewhere.
(a) Find the distribution of $Y=\min \left(X_{1}, X_{2}, X_{3}\right)$.

Solution:

First, we find the CDF of X.

$$
\mathrm{P}[X \leq x]=\int_{0}^{x} e^{-t} d t=-\left.e^{-t}\right|_{0} ^{x}=-e^{-x}+e^{0}=1-e^{-x}
$$

The CDF of X is:

$$
F_{X}(x)= \begin{cases}0, & x<0 \\ 1-e^{-x} & 0 \leq x<\infty\end{cases}
$$

We can find the CDF of Y :

$$
\begin{aligned}
\mathrm{P}[Y<y] & =1-\mathrm{P}[Y>y] \\
& =1-\mathrm{P}\left[X_{1}>y, X_{2}>y, X_{3}>y\right] \\
& =1-\mathrm{P}\left[X_{1}>y\right] \mathrm{P}\left[X_{2}>y\right] \mathrm{P}\left[X_{3}>y\right] ; \text { by independence } \\
& =1-\left(\mathrm{P}\left[X_{1}>y\right]\right)^{3} ; \text { since the variables are iid } \\
& =1-\left(1-\mathrm{P}\left[X_{1}<y\right]\right)^{3} \\
& =1-\left(1-\left[1-e^{-y}\right]\right)^{3} \\
& =1-\left(e^{-y}\right)^{3} \\
& =1-e^{-3 y} .
\end{aligned}
$$

The CDF of Y is:

$$
F_{Y}(y)= \begin{cases}0, & y<0 \\ 1-e^{-3 y}, & 0 \leq y<\infty\end{cases}
$$

The PDF of Y is:

$$
f_{Y}(y)= \begin{cases}3 e^{-3 y}, & 0<y<\infty \\ 0, & \text { otherwise }\end{cases}
$$

(b) Find the distribution of $Y=\max \left(X_{1}, X_{2}, X_{3}\right)$.

Solution:

Recall that the CDF of X is:

$$
F_{X}(x)= \begin{cases}0, & x<0 \\ 1-e^{-x} & 0 \leq x<\infty\end{cases}
$$

We can find the CDF of Y :

$$
\begin{aligned}
\mathrm{P}[Y<y] & =\mathrm{P}\left[X_{1}<y, X_{2}<y, X_{3}<y\right] \\
& =\mathrm{P}\left[X_{1}<y\right] \mathrm{P}\left[X_{2}<y\right] \mathrm{P}\left[X_{3}<y\right] ; \text { by independence } \\
& =\left(\mathrm{P}\left[X_{1}<y\right]\right)^{3} ; \text { since the variables are iid } \\
& =\left(1-e^{-y}\right)^{3} .
\end{aligned}
$$

The CDF of Y is:

$$
F_{Y}(y)= \begin{cases}0, & y<0 \\ \left(1-e^{-y}\right)^{3} & 0 \leq y<\infty\end{cases}
$$

The PDF of Y is:

$$
f_{Y}(y)= \begin{cases}3 e^{-y}\left(1-e^{-y}\right)^{2} & 0<y<\infty \\ 0, & \text { otherwise }\end{cases}
$$

4. Determine the constant c so that $f(x)$ is a β pdf:

$$
f(x)= \begin{cases}c x^{4}(1-x)^{5}, & 0<x<1 \\ 0, & \text { otherwise }\end{cases}
$$

Solution:

The Beta PDF for a generic random variable X is:

$$
f_{X}(x)= \begin{cases}\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} x^{\alpha-1}(1-x)^{\beta-1}, & 0<x<1 \\ 0, & \text { otherwise }\end{cases}
$$

Based on what we want: $\alpha-1=4 \Rightarrow \alpha=5$ and $\beta-1=5 \Rightarrow \beta=6$. Therefore

$$
c=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)}=\frac{\Gamma(5+6)}{\Gamma(5) \Gamma(6)}=\frac{\Gamma(11)}{\Gamma(5) \Gamma(6)}=\frac{10!}{4!5!}=\frac{3628800}{(24)(120)}=1260 .
$$

Section 3.4
5. State the MGF of a random variable $X \sim \mathrm{~N}\left(\mu, \sigma^{2}\right)$.

Solution:

$$
M_{X}(t)=e^{\mu t+\frac{\sigma^{2} t^{2}}{2}}, \quad-\infty<t<\infty .
$$

6. Find the value of z_{p} where $p=0.95$.

Solution:

By definition, $z_{p}=\Phi^{-1}(p)$, so

$$
z_{0.95}=\Phi^{-1}(0.95) \Rightarrow \Phi\left(z_{0.95}\right)=0.95
$$

This means that

$$
z_{0.95}=1.645 \text {. }
$$

7. Find the value of z_{p} where $p=0.9207$.

Solution:

By definition, $z_{p}=\Phi^{-1}(p)$, so

$$
z_{0.9207}=\Phi^{-1}(0.9207) \Rightarrow \Phi\left(z_{0.9207}\right)=0.9207
$$

This means that

$$
z_{0.9207}=1.41 \text {. }
$$

8. If X has the MGF

$$
M_{X}(t)=e^{4 t+64 t^{2}}
$$

what distribution does X have and what are its parameter values?

Solution:

This is the MGF for a Normally Distributed random variable. In particular, $\mu=4$ and

$$
\frac{\sigma^{2}}{2}=64 \Rightarrow \sigma^{2}=128
$$

Therefore, $X \sim \mathrm{~N}(4,128)$.
9. Suppose $X \sim \mathrm{~N}(100,16)$. Find the value of z for:
(a) $x=90$
(c) $x=80$

Solution:
Solution:

$$
z=\frac{90-100}{4}=-2.5
$$

$$
z=\frac{80-100}{4}=-5
$$

(b) $x=110$
(d) $x=105$

Solution:
Solution:

$$
z=\frac{110-100}{4}=2.5
$$

$$
z=\frac{105-100}{4}=1.25
$$

10. Suppose $X \sim N(100,16)$. Find the following probabilities.
(a) $\mathrm{P}[X<90]$.

Solution:

$$
\mathrm{P}[X<90]=\phi(-2.5)=0.0062 .
$$

(b) $\mathrm{P}[105<X<110]$ '

Solution:

$$
\mathrm{P}[105<X<110]=\Phi(2.5)-\Phi(1.25)=0.9938-0.8944=0.0994 .
$$

(c) $\mathrm{P}[X \geq 90]$.

Solution:

$$
\mathrm{P}[X \geq 90]=1-\mathrm{P}[X<90]=1-\Phi(-2.5)=1-0.0062=0.9938 .
$$

(d) $\mathrm{P}[90<X \leq 105]$

Solution:

$$
\mathrm{P}[90<X \leq 105]=\Phi(1.25)-\Phi(-2.5)=0.8944-0.0062=0.8882 .
$$

11. Suppose $X \sim \mathrm{~N}(100,16)$.
(a) Is a value of 90 or smaller likely to occur? Why or why not?

Solution:

It is not likely to happen because $\mathrm{P}[X<90]=0.0062$ is very small.
(b) Is a value of 80 or smaller likely to occur? Why or why not?

Solution:

If a value of 90 or smaller is not likely to occur, then seeing a value of 80 or smaller is even less likely to occur. In fact,

$$
\mathrm{P}[X<80] \approx 0
$$

12. If the random variable $X \sim \mathrm{~N}\left(\mu, \sigma^{2}\right)$, where $\sigma^{2}>0$, then show that the random variable ($X-$ $\mu)^{2} / \sigma^{2} \sim \chi^{2}(1)$.

Solution:

First note that

$$
\frac{(X-\mu)^{2}}{\sigma^{2}}=\left(\frac{X-\mu}{\sigma}\right)^{2}=Z^{2}, \quad Z \sim \mathrm{~N}(0,1)
$$

Let $V=Z^{2}$. The CDF for V is:

$$
\mathrm{P}[V \leq v]=\mathrm{P}\left[Z^{2} \leq v\right]=\mathrm{P}[-\sqrt{v}<Z<\sqrt{v}]
$$

since $-\infty<z<\infty$, we have to take into account both the positive and negative square roots. However, since Z is symmetric, if $v \geq 0$, then

$$
\mathrm{P}[V \leq v]=2 \int_{0}^{\sqrt{v}} \frac{1}{\sqrt{2 \pi}} e^{-z^{2} / 2} d z
$$

Using u-substitution, let $u=z^{2}$ so that $z=\sqrt{u}, d u=2 z d z$, and $\frac{1}{2 \sqrt{u}} d u=d z$. Then

$$
\mathrm{P}[V \leq v]=2 \int_{0}^{\sqrt{v}} \frac{1}{\sqrt{2 \pi}} e^{-z^{2} / 2} d z=2 \int_{0}^{v} \frac{1}{\sqrt{2 \pi}} e^{-u / 2} \cdot \frac{1}{2 \sqrt{u}} d u=\int_{0}^{v} \frac{1}{\sqrt{2 \pi} \sqrt{u}} e^{-u / 2} d u
$$

The CDF for V is:

$$
F_{V}(v)= \begin{cases}0, & v<0 \\ \int_{0}^{v} \frac{1}{\sqrt{2 \pi} \sqrt{u}} e^{-u / 2} d u, & 0 \leq v\end{cases}
$$

The PDF for V is:

$$
f_{V}(v)= \begin{cases}\frac{1}{\sqrt{\pi} \cdot 2^{1 / 2}} v^{\frac{1}{2}-1} e^{-v / 2}, & 0<v<\infty \\ 0, & \text { otherwise }\end{cases}
$$

Note that $\sqrt{\pi}=\Gamma(1 / 2)$, and therefore $V \sim \chi^{2}(1)$.
13. Remember the following corollary:

Corollary 2. Let X_{1}, \ldots, X_{n} be iid random variables with common $\mathrm{N}\left(\mu, \sigma^{2}\right)$ distribution. Let $\bar{X}=n^{-1} \sum_{i=1}^{n} X_{i}$. Then $\bar{X} \sim \mathrm{~N}\left(\mu, \sigma^{2} / n\right)$.

Section 3.5

14. Let X and Y have bivariate normal distribution with parameters $\mu_{1}=3, \mu_{2}=1, \sigma_{1}^{2}=16, \sigma_{2}^{2}=25$, and $\rho=3 / 5$. Determine the following probabilities.
(a) $\mathrm{P}[3<Y<8]$

Solution:

One property of the bivariate normal distribution is that the marginal distribution of $Y \sim$ $\mathrm{N}\left(\mu_{2}, \sigma_{2}^{2}\right)=\mathrm{N}(1,25)$.

$$
z_{1}=\frac{3-1}{5}=\frac{2}{5}=0.4 ; \quad z_{2}=\frac{8-1}{5}=\frac{7}{5}=1.4
$$

Then

$$
\mathrm{P}[3<Y<8]=\mathrm{P}[0.4<Z<1.4]=\Phi(1.4)-\Phi(0.4)=0.9192-0.6554=0.2638 .
$$

(b) $\mathrm{P}[3<Y<8 \mid X=7]$

Solution:

We know from the bivariate normal distribution that

$$
\begin{aligned}
& Y \left\lvert\, X=x \sim \mathrm{~N}\left(\mu_{2}+\frac{\sigma_{2}}{\sigma_{1}} \rho\left(x-\mu_{1}\right), \sigma_{2}^{2}\left(1-\rho^{2}\right)\right)\right. \\
& Y \left\lvert\, X=7 \sim \mathrm{~N}\left(1+\frac{5}{4}\left(\frac{3}{5}\right)(7-3), \quad 25\left(1-\left(\frac{3}{5}\right)^{2}\right)\right)=\mathrm{N}(4,16)\right.
\end{aligned}
$$

From the normal distribution, we have

$$
z_{1}=\frac{3-4}{4}=-0.25 ; \quad z_{2}=\frac{8-4}{4}=1
$$

Then

$$
\mathrm{P}[3<Y<8 \mid X=7]=\mathrm{P}[-0.25<Z<1]=\Phi(1)-\Phi(-0.25)=0.8413-0.4013=0.44 \text {. }
$$

(c) $\mathrm{P}[-3<X<3]$

Solution:

One property of the bivariate normal distribution is that the marginal distribution of $X \sim$ $\mathrm{N}\left(\mu_{1}, \sigma_{1}^{2}\right)=\mathrm{N}(3,16)$.

$$
z_{1}=\frac{-3-3}{4}=\frac{-6}{4}=-1.5 ; \quad z_{2}=\frac{3-3}{4}=\frac{0}{4}=0
$$

Then

$$
\mathrm{P}[-3<X<3]=\mathrm{P}[-1.5<Z<0]=\Phi(0)-\Phi(-1.5)=0.5-0.0668=0.4332 .
$$

(d) $\mathrm{P}[-3<X<3 \mid Y=-4]$

Solution:

We know from the bivariate normal distribution that

$$
\begin{aligned}
X \mid Y=y & \sim \mathrm{~N}\left(\mu_{1}+\frac{\sigma_{1}}{\sigma_{2}} \rho\left(y-\mu_{2}\right), \sigma_{1}^{2}\left(1-\rho^{2}\right)\right) \\
X \mid Y=-4 & \sim \mathrm{~N}\left(3+\frac{4}{5}\left(\frac{3}{5}\right)(-4-1), \quad 16\left(1-\left(\frac{3}{5}\right)^{2}\right)\right)=\mathrm{N}(0.6,10.24)
\end{aligned}
$$

From the normal distribution, we have

$$
z_{1}=\frac{-3-0.6}{\sqrt{10.24}}=-1.125 ; \quad z_{2}=\frac{3-0.6}{\sqrt{10.24}}=0.75
$$

Then

$$
\begin{aligned}
\mathrm{P}[-3<X<3 \mid Y=-4] & =\mathrm{P}[-1.125<Z<0.75] \\
& \approx \mathrm{P}[-1.13<Z<0.75] \\
& =\Phi(0.75)-\Phi(-1.13)=0.7734-0.1292=0.6442 .
\end{aligned}
$$

If we used a graphing calculator, R , etc, we would be able to use the exact z_{1} value of -1.125 . In that case,

$$
\mathrm{P}[-3<X<3 \mid Y=-4]=0.6431 .
$$

15. Let X and Y have bivariate normal distribution with parameters $\mu_{1}=5, \mu_{2}=10, \sigma_{1}^{2}=1, \sigma_{2}^{2}=25$, and $\rho>0$. if $\mathrm{P}[4<Y<16 \mid X=5]=0.954$, determine ρ.

Solution:

We know from the bivariate normal distribution that

$$
\begin{aligned}
& Y \left\lvert\, X=x \sim \mathrm{~N}\left(\mu_{2}+\frac{\sigma_{2}}{\sigma_{1}} \rho\left(x-\mu_{1}\right), \sigma_{2}^{2}\left(1-\rho^{2}\right)\right)\right. \\
& Y \left\lvert\, X=5 \sim \mathrm{~N}\left(10+\frac{5}{1} \rho(5-5), 25\left(1-\rho^{2}\right)\right)=\mathrm{N}\left(10,25\left(1-\rho^{2}\right)\right)\right.
\end{aligned}
$$

From the normal distribution, we have

$$
z_{1}=\frac{4-10}{5 \sqrt{1-\rho^{2}}}=\frac{-6}{5 \sqrt{1-\rho^{2}}} ; \quad z_{2}=\frac{16-10}{5 \sqrt{1-\rho^{2}}}=\frac{6}{5 \sqrt{1-\rho^{2}}}
$$

Then

$$
\begin{aligned}
0.954 & =\mathrm{P}[4<Y<16 \mid X=5]=\mathrm{P}\left[-\frac{6}{5 \sqrt{1-\rho^{2}}}<Z<\frac{6}{5 \sqrt{1-\rho^{2}}}\right] \\
& =\Phi\left(\frac{6}{5 \sqrt{1-\rho^{2}}}\right)-\Phi\left(\frac{-6}{5 \sqrt{1-\rho^{2}}}\right) \\
& =1-2 \Phi\left(\frac{-6}{5 \sqrt{1-\rho^{2}}}\right) .
\end{aligned}
$$

This implies that

$$
\begin{aligned}
& \Rightarrow 1-0.954=2 \Phi\left(\frac{-6}{5 \sqrt{1-\rho^{2}}}\right) \\
& \Rightarrow \frac{0.046}{2}=0.023=\Phi\left(\frac{-6}{5 \sqrt{1-\rho^{2}}}\right) .
\end{aligned}
$$

Hence

$$
\begin{aligned}
z \approx-2 & =\frac{-6}{5 \sqrt{1-\rho^{2}}} \\
\sqrt{1-\rho^{2}} & =\frac{-6}{5(-2)} \\
\sqrt{1-\rho^{2}} & =0.6 \\
1-\rho^{2} & =0.36 \\
1-0.36 & =\rho^{2} \\
0.64 & =\rho^{2} \\
\frac{4}{5}=0.8 & =\rho \text { since } \rho>0
\end{aligned}
$$

We find that $\rho=4 / 5$.

Section 3.6

16. Let T have a t-distribution with 14 degrees of freedom. Determine b so that $\mathrm{P}[-b<T<b]=0.90$.

Solution:

Since the t-distribution is symmetric,

$$
\mathrm{P}[-b<T<b]=1-2 \mathrm{P}[T>b]=0.90
$$

Then

$$
1-0.90=2 \mathrm{P}[T>b] \Rightarrow \frac{0.10}{2}=0.05=\mathrm{P}[T>b]
$$

From the table, for 14 degrees of freedom, $b=1.761$.
17. Find the corresponding t-values or areas.
(a) Find the t-value such that $\mathrm{P}\left(T>t_{0.01}(16)\right)=0.01$.

Solution:

$t_{0.01}(16)=2.583$.
(b) Find the value of $t_{0.975}(14)$.

Solution:

$t_{0.975}(14)=-t_{0.025}(14)=-2.145$.
(c) Find $\mathrm{P}\left(-t_{0.025}(v)<T<t_{0.05}(v)\right) . v$ is unknown.

Solution:

We know the area to the left of $-t_{0.025}(v)$ is 0.025 . We also know that the area to the right of $t_{0.05}(v)$ is 0.05 . The area in between these two values is $1-0.025-0.05=0.925$.
(d) Find k such that $\mathrm{P}(T>k)=0.025$ for 23 degrees of freedom.

Solution:

Our corresponding t-value with 23 degrees of freedom is $k=t_{0.025}(23)=2.069$.

Section 3.7

18. Suppose you have the mixture $0.75 \mathrm{~N}(0,1)+0.25 \mathrm{~N}(1.5,4)$.
(a) Find its expected value.

Solution:

$$
\mathbf{E}[X]=\sum_{i=1}^{k} p_{i} \mu_{i}=0.75(0)+0.25(1.5)=0.375
$$

(b) Find its variance.

Solution:

$$
\begin{aligned}
\mathbf{V}[X] & =\sum_{i=1}^{k} p_{i} \sigma_{i}^{2}+\sum_{i=1}^{k} p_{i}\left(\mu_{i}-\bar{\mu}\right)^{2} \\
& =0.75(1)+0.25(4)+0.75(0-0.375)^{2}+0.25(1.5-0.375)^{2}=2.171875
\end{aligned}
$$

19. Suppose you have the mixture $0.5 \mathrm{~N}(-1,1)+0.5 \mathrm{~N}(1,1)$.
(a) Find its expected value.

Solution:

$$
\mathbf{E}[X]=\sum_{i=1}^{k} p_{i} \mu_{i}=(0.5)(-1)+(0.5)(1)=0
$$

(b) Find its variance.

Solution:

$$
\begin{aligned}
\mathbf{V}[X] & =\sum_{i=1}^{k} p_{i} \sigma_{i}^{2}+\sum_{i=1}^{k} p_{i}\left(\mu_{i}-\bar{\mu}\right)^{2} \\
& =0.5(1)+0.5(1)+0.5(-1-0)^{2}+0.5(1-0)^{2}=2
\end{aligned}
$$

20. Suppose you have the mixture 0.25 Pois $(5)+0.75 \chi^{2}(8)$.
(a) Find its expected value.

Solution:

For the Poisson Distribution, $\mu_{1}=5$. For the χ^{2} distribution, $\mu_{2}=8$.

$$
\mathbf{E}[X]=\sum_{i=1}^{k} p_{i} \mu_{1}=0.25(5)+0.75(8)=7.25
$$

(b) Find its variance.

Solution:

For the Poisson Distribution, $\sigma_{1}^{2}=5$. For the χ^{2} distribution, $\sigma_{2}^{2}=16$.

$$
\begin{aligned}
\mathbf{V}[X] & =\sum_{i=1}^{k} p_{i} \sigma_{i}^{2}+\sum_{i=1}^{k} p_{i}\left(\mu_{i}-\bar{\mu}\right)^{2} \\
& =0.25(5)+0.75(16)+0.25(5-7.25)^{2}+0.75(8-7.25)^{2}=14.9375
\end{aligned}
$$

Section 5.1

21. Suppose X_{1}, \ldots, X_{n} is a random sample from a $\operatorname{Uniform}(0, \theta)$ distribution. Suppose θ is unknown. An intuitive estimate of θ is the maximum of the sample. Let $Y_{n}=\max \left\{X_{1}, \ldots, X_{n}\right\}$. Note: A uniform random variable $X \sim \operatorname{Unif}(a, b)$ has the pdf

$$
f(x)=\frac{1}{b-a}, \quad-\infty<a<x<b<\infty .
$$

(a) Show that the CDF of Y_{n} is

$$
F_{Y_{n}}(t)= \begin{cases}1, & t>\theta \\ \left(\frac{t}{\theta}\right)^{n}, & 0<t \leq \theta \\ 0, & t \leq 0\end{cases}
$$

Proof. If $X_{i} \sim \operatorname{Unif}(0, \theta)$, then

$$
f\left(x_{i}\right)=\frac{1}{\theta-0}=\frac{1}{\theta}, \quad 0<x<\theta
$$

The X_{i} 's are independent because they come from a random sample.

$$
\begin{aligned}
\mathrm{P}\left[Y_{n}<t\right] & =\mathrm{P}\left[X_{1}<t, X_{2}<t, \ldots, X_{n}<t\right] \\
& =\mathrm{P}\left[X_{1}<t\right] \mathrm{P}\left[X_{2}<t\right] \cdots \mathrm{P}\left[X_{n}<t\right] ; \text { by independence } \\
& =(\mathrm{P}[X<t])^{n} ; \text { since the } X_{i}^{\prime} \text { 's are iid. }
\end{aligned}
$$

Now we need to find the CDF of X.

$$
\mathrm{P}[X \leq x]=\int_{0}^{x} \frac{1}{\theta} d t=\left.\frac{1}{\theta} t\right|_{0} ^{x}=\frac{1}{\theta}(x-0)= \begin{cases}0, & x \leq 0 \\ \frac{x}{\theta}, & 0<x<\theta \\ 1, & \theta \leq x\end{cases}
$$

Now,

$$
\mathrm{P}\left[Y_{n}<t\right]=(\mathrm{P}[X<t])^{n}=\left(\frac{t}{\theta}\right)^{n}
$$

Therefore, the CDF of Y_{n} is

$$
F_{Y_{n}}(t)= \begin{cases}1, & t>\theta \\ \left(\frac{t}{\theta}\right)^{n}, & 0<t \leq \theta \\ 0, & t \leq 0\end{cases}
$$

(b) Find the PDF of Y_{n}.

Solution:

Find the first derivative of the CDF with respect to t.

$$
\frac{d}{d t}\left(\frac{t}{\theta}\right)^{n}=\frac{d}{d t} \frac{t^{n}}{\theta^{n}}=\frac{n t^{n-1}}{\theta^{n}}
$$

The PDF of Y_{n} is

$$
f_{Y_{n}}(t)= \begin{cases}\frac{n}{\theta^{n}} t^{n-1}, & 0<t<\theta \\ 0, & \text { otherwise }\end{cases}
$$

(c) Show that Y_{n} is a biased estimator of θ.

Solution:

We need to show that $\mathbf{E}\left[Y_{n}\right] \neq \theta$.

$$
\begin{aligned}
\mathbf{E}\left[Y_{n}\right] & =\int_{0}^{\theta} t \cdot \frac{n}{\theta^{n}} t^{n-1} d t=\frac{n}{\theta^{n}} \int_{0}^{\theta} t^{n} d t=\frac{n}{\theta^{n}}\left[\left.\frac{t^{n+1}}{n+1}\right|_{0} ^{\theta}\right] \\
& =\frac{n}{(n+1) \theta^{n}}\left[\theta^{n+1}-0^{n+1}\right]=\frac{n}{(n+1) \theta^{n}} \theta^{n+1} \\
& =\frac{n}{n+1} \theta \neq \theta .
\end{aligned}
$$

(d) Show that $\frac{n+1}{n} Y_{n}$ is an unbiased estimator of θ.

Solution:

We need to show that $\mathbf{E}\left[\frac{n+1}{n} Y_{n}\right]=\theta$. From the previous part, we already know that

$$
\mathbf{E}\left[Y_{n}\right]=\frac{n}{n+1} \theta .
$$

Now,

$$
\mathbf{E}\left[\frac{n+1}{n} Y_{n}\right]=\frac{n+1}{n} \mathbf{E}\left[Y_{n}\right]=\frac{n+1}{n} \cdot \frac{n}{n+1} \theta=\theta
$$

(e) Show that $Y_{n} \xrightarrow{P} \theta$, i.e. show that Y_{n} is a consistent estimator of θ.

Solution:

We need to show that $\lim _{n \rightarrow \infty} \mathrm{P}\left\{\left|Y_{n}-\theta\right|>\epsilon\right\}=0$.

$$
\begin{aligned}
\mathrm{P}\left\{\left|Y_{n}-\theta\right|>\epsilon\right\} & =\mathrm{P}\left\{\left|Y_{n}-\theta\right|>\epsilon\right\}=\mathrm{P}\left\{\theta-Y_{n}>\epsilon\right\} ; \text { since } 0<t<\theta, Y_{n}-\theta<0 \\
& =\mathrm{P}\left\{-Y_{n}>\epsilon-\theta\right\}=\mathrm{P}\left\{Y_{n}<\theta-\epsilon\right\}=F_{Y_{n}}(\theta-\epsilon) \\
& =\left(\frac{\theta-\epsilon}{\theta}\right)^{n}=\left(1-\frac{\epsilon}{\theta}\right)^{n} .
\end{aligned}
$$

Since $\epsilon>0$ is "small", WLOG assume $0<\epsilon<\theta$, and we have $0<\epsilon / \theta<1$. This means that

$$
1-\frac{\epsilon}{\theta}<1
$$

Hence $\left(1-\frac{\epsilon}{\theta}\right)^{n} \rightarrow 0$ as $n \rightarrow \infty$. Therefore

$$
\lim _{n \rightarrow \infty} P\left\{\left|Y_{n}-\theta\right|>\epsilon\right\}=\left(1-\frac{\epsilon}{\theta}\right)^{n}=0
$$

Therefore, $Y_{n} \xrightarrow{P} \theta$.
(f) Show that $\frac{n+1}{n} Y_{n}$ is a consistent estimator of θ.

Solution:

We need to show that $\lim _{n \rightarrow \infty} \mathrm{P}\left\{\left|\frac{n+1}{n} Y_{n}-\theta\right|>\epsilon\right\}=0$.

$$
\begin{aligned}
\mathrm{P}\left\{\left|\frac{n+1}{n} Y_{n}-\theta\right|>\epsilon\right\} & =\mathrm{P}\left\{\left|\frac{n+1}{n}\right|\left|Y_{n}-\frac{n}{n+1} \theta\right|>\epsilon\right\} ; \text { note }\left|\frac{n+1}{n}\right|=\frac{n+1}{n} \\
& =\mathrm{P}\left\{\left|Y_{n}-\frac{n}{n+1} \theta\right|>\frac{n}{n+1} \epsilon\right\} ; \text { note } \mathbf{E}\left[Y_{n}\right]=\frac{n}{n+1} \theta \\
& \leq \frac{\mathbf{V}\left[Y_{n}\right]}{\left(\frac{n}{n+1} \epsilon\right)^{2}} ; \text { Chebyshev's Inequality }
\end{aligned}
$$

We need to find $\mathbf{V}\left[Y_{n}\right]$.

$$
\begin{aligned}
\mathbf{E}\left[Y_{n}\right]^{2} & =\int_{0}^{\theta} t^{2} \cdot \frac{n}{\theta^{n}} t^{n-1} d t=\frac{n}{\theta^{n}} \int_{0}^{\theta} t^{n+1} d t \\
& =\frac{n}{\theta^{n}}\left[\left.\frac{t^{n+2}}{n+2}\right|_{0} ^{\theta}\right]=\frac{n}{(n+2) \theta^{n}}\left[\theta^{n+2}-0\right]=\frac{n}{n+2} \theta^{2} \\
\mathbf{V}\left[Y_{n}\right] & =\frac{n}{n+2} \theta^{2}-\left(\frac{n}{n+1} \theta\right)^{2}=\frac{n}{n+2} \theta^{2}-\frac{n^{2}}{(n+1)^{2}} \theta^{2}=\left[\frac{n}{n+2}-\frac{n^{2}}{(n+1)^{2}}\right] \theta^{2} .
\end{aligned}
$$

Then

$$
\begin{aligned}
\mathrm{P}\left\{\left|\frac{n+1}{n} Y_{n}-\theta\right|>\epsilon\right\} & \leq \frac{\mathbf{V}\left[Y_{n}\right]}{\left(\frac{n}{n+1} \epsilon\right)^{2}}=\frac{\left[\frac{n}{n+2}-\frac{n^{2}}{(n+1)^{2}}\right] \theta^{2}}{\frac{n^{2}}{(n+1)^{2}} \epsilon^{2}} \\
& =\frac{\theta^{2}}{\epsilon^{2}} \cdot\left[\frac{n}{n+2}-\frac{n^{2}}{(n+1)^{2}}\right] \cdot \frac{(n+1)^{2}}{n^{2}} \\
& =\frac{\theta^{2}}{\epsilon^{2}} \cdot\left[\frac{(n+1)^{2}}{n(n+2)}-1\right]=\frac{\theta^{2}}{\epsilon^{2}} \cdot\left[\frac{n^{2}+2 n+1}{n^{2}+2 n}-1\right] .
\end{aligned}
$$

Recall from Calculus (L'Hopital's Rule) that

$$
\lim _{n \rightarrow \infty} \frac{n^{2}+2 n+1}{n^{2}+2 n}=\lim _{n \rightarrow \infty} \frac{2 n+2}{2 n+2}=\lim _{n \rightarrow \infty} 1=1 .
$$

We have

$$
\begin{aligned}
\mathrm{P}\left\{\left|\frac{n+1}{n} Y_{n}-\theta\right|>\epsilon\right\} & \leq \frac{\mathbf{V}\left[Y_{n}\right]}{\left(\frac{n}{n+1} \epsilon\right)^{2}}=\frac{\theta^{2}}{\epsilon^{2}} \cdot\left[\frac{n^{2}+2 n+1}{n^{2}+2 n}-1\right] \\
& \rightarrow \frac{\theta^{2}}{\epsilon^{2}} \cdot[1-1] \text { as } n \rightarrow \infty \\
& =\frac{\theta^{2}}{\epsilon^{2}}(0)=0 .
\end{aligned}
$$

Therefore $\frac{n+1}{n} Y_{n} \xrightarrow{P} \theta$.
22. Suppose X_{1}, \ldots, X_{n} is a random sample from a $\operatorname{Uniform}(0, \theta)$ distribution. Suppose θ is unknown. Show that \bar{X}_{n} is a consistent estimator of $\theta / 2$.

Solution:

We need to show that $\bar{X}_{n} \xrightarrow{P} \theta / 2$. Recall that the CDF of X is:

$$
\mathrm{P}[X \leq x]=\int_{0}^{x} \frac{1}{\theta} d t=\left.\frac{1}{\theta} t\right|_{0} ^{x}=\frac{1}{\theta}(x-0)= \begin{cases}0, & x \leq 0 \\ \frac{x}{\theta}, & 0<x<\theta \\ 1, & \theta \leq x\end{cases}
$$

The PDF of X is

$$
f(x)= \begin{cases}\frac{1}{\theta}, & 0<x<\theta \\ 0, & \text { otherwise }\end{cases}
$$

The expected value of X is

$$
\mathbf{E}[X]=\int_{0}^{\theta} x \cdot \frac{1}{\theta} d x=\frac{1}{\theta}\left[\left.\frac{x^{2}}{2}\right|_{0} ^{\theta}\right]=\frac{1}{2 \theta}\left(\theta^{2}-0\right)=\frac{1}{2} \theta .
$$

By the WLLN, $\bar{X}_{n} \xrightarrow{P} \frac{\theta}{2}$.

Section 5.2

23. Suppose X_{1}, \ldots, X_{n} is a random sample from a $\operatorname{Uniform}(0, \theta)$ distribution. Suppose θ is unknown. An intuitive estimate of θ is the maximum of the sample. Let $Y_{n}=\max \left\{X_{1}, \ldots, X_{n}\right\}$. Consider the random variable $Z_{n}=n\left(\theta-Y_{n}\right)$. Let $t \in(0, n \theta)$. Show that $Z_{n} \xrightarrow{D} Z$, where $Z \sim \operatorname{Exp}(\theta)$.

Proof. Recall that the CDF of Y_{n} is

$$
\begin{aligned}
F_{Y_{n}}(t)= \begin{cases}1, & t>\theta \\
\left(\frac{t}{\theta}\right)^{n}, & 0<t \leq \theta \\
0, & t \leq 0 .\end{cases} \\
\begin{aligned}
\mathrm{P}\left[Z_{n} \leq t\right] & =\mathrm{P}\left[n\left(\theta-Y_{n}\right) \leq t\right]=\mathrm{P}\left[\theta-Y_{n} \leq \frac{t}{n}\right]=\mathrm{P}\left[-Y_{n} \leq \frac{t}{n}-\theta\right] \\
& =\mathrm{P}\left[Y_{n} \geq \theta-\frac{t}{n}\right]=1-\mathrm{P}\left[Y_{n} \leq \theta-\frac{t}{n}\right]=1-\left(\frac{\theta-\frac{t}{n}}{\theta}\right)^{n} \\
& =1-\left(1-\frac{t}{n \theta}\right)^{n}=1-\left(1+\frac{-t / \theta}{n}\right)^{n} \rightarrow 1-e^{(-t / \theta)(1)} \text { as } n \rightarrow \infty
\end{aligned} \\
=1-e^{-t / \theta}
\end{aligned}
$$

Note that $1-e^{-t / \theta}$ is the CDF of an exponential random variable with mean θ. Therefore $Z_{n} \xrightarrow{D} \operatorname{Exp}(\theta)$.
24. Let $Z_{n} \sim \chi^{2}(n)$. Find the limiting distribution of the random variable $Y_{n}=\left(Z_{n}-n\right) / \sqrt{2 n}$ by using Moment Generating Functions and Taylor's Expansion.

Solution:

Recall that $M_{Z_{n}}(t)=\frac{1}{(1-2 t)^{n / 2}}, t<1 / 2$. We also have $\mathbf{E}\left[Z_{n}\right]=n ; \quad \mathbf{V}\left[Z_{n}\right]=2 n$.

$$
\begin{aligned}
M_{Y_{n}}(t) & =\mathbf{E}\left[e^{t Y_{n}}\right]=\mathbf{E}\left[\exp \left\{t \cdot \frac{Z_{n}-n}{\sqrt{2 n}}\right\}\right]=\mathbf{E}\left[\exp \left\{\frac{t}{\sqrt{2 n}} Z_{n}\right\} \exp \left\{\frac{-n t}{\sqrt{2 n}}\right\}\right] \\
& =e^{-t \sqrt{n / 2}} M_{Z_{n}}\left(\frac{t}{\sqrt{2 n}}\right)=e^{-t \sqrt{n / 2}}\left(1-2 \cdot \frac{t}{\sqrt{2 n}}\right)^{-n / 2} \\
& =e^{-t \sqrt{n / 2}}\left(1-t \sqrt{\frac{2}{n}}\right)^{-n / 2}, t<\sqrt{\frac{n}{2}} \\
& =e^{-t \sqrt{n / 2}} \underbrace{\sqrt{n / 2} \sqrt{2 / n}}_{=1}\left(1-t \sqrt{\frac{2}{n}}\right)^{-n / 2}, t<\sqrt{\frac{n}{2}} \\
& =e^{t \sqrt{2 / n}(-n / 2)}\left(1-t \sqrt{\frac{2}{n}}\right)^{-n / 2}, t<\sqrt{\frac{n}{2}}
\end{aligned}
$$

$$
=\left[e^{t \sqrt{2 / n}}\left(1-t \sqrt{\frac{2}{n}}\right)\right]^{-n / 2}, t<\sqrt{\frac{n}{2}}
$$

By Taylor's Expansion, there exists a number $c(n)$, between 0 and $t \sqrt{2 / n}$ such that

$$
e^{t \sqrt{2 / n}}=1+t \sqrt{\frac{2}{n}}+\frac{1}{2}\left(t \sqrt{\frac{2}{n}}\right)^{2}+\frac{e^{c(n)}}{6}\left(t \sqrt{\frac{2}{n}}\right)^{3}
$$

Then

$$
\begin{aligned}
e^{t \sqrt{2 / n}}\left(1-t \sqrt{\frac{2}{n}}\right)= & \left(1+t \sqrt{\frac{2}{n}}+\frac{1}{2}\left(t \sqrt{\frac{2}{n}}\right)^{2}+\frac{e^{c(n)}}{6}\left(t \sqrt{\frac{2}{n}}\right)^{3}\right)\left(1-t \sqrt{\frac{2}{n}}\right) \\
= & 1+t \sqrt{\frac{2}{n}}+\frac{1}{2}\left(t \sqrt{\frac{2}{n}}\right)^{2}+\frac{e^{c(n)}}{6}\left(t \sqrt{\frac{2}{n}}\right)^{3} \\
& -t \sqrt{\frac{2}{n}}-t^{2} \cdot \frac{2}{n}-\frac{t}{2} \sqrt{\frac{2}{n}}\left(t \sqrt{\frac{2}{n}}\right)^{2}-\frac{e^{c(n)}}{6}\left(t \sqrt{\frac{2}{n}}\right)^{3} \cdot t \sqrt{\frac{2}{n}} \\
= & 1+\frac{t^{2}}{2} \cdot \frac{2}{n}+\frac{e^{c(n)} t^{3}}{6} \cdot \frac{2}{n} \sqrt{\frac{2}{n}}-\frac{2 t^{2}}{n}-\frac{t}{2} \sqrt{\frac{2}{n}} \cdot t^{2} \cdot \frac{2}{n}-\frac{t^{4} e^{c(n)}}{6} \cdot \frac{2}{n} \cdot \frac{2}{n} \\
= & 1+\frac{t^{2}}{n}+\frac{t^{3} e^{c(n)} \sqrt{2}}{3 n \sqrt{n}}-\frac{2 t^{2}}{n}-\frac{t^{3} \sqrt{2}}{n \sqrt{n}}-\frac{2 t^{4} e^{c(n)}}{3 n^{2}} \\
= & 1+\frac{-t^{2}}{n}+\frac{\psi(n)}{n}
\end{aligned}
$$

where

$$
\psi(n)=\frac{t^{3} e^{c(n)} \sqrt{2}}{3 \sqrt{n}}-\frac{t^{3} \sqrt{2}}{\sqrt{n}}-\frac{2 t^{4} e^{c(n)}}{3 n}
$$

This means that

$$
M_{Y_{n}}(t)=\left[1+\frac{-t^{2}}{n}+\frac{\psi(n)}{n}\right]^{-n / 2}
$$

Note that $t \sqrt{2 / n} \rightarrow 0$ as $n \rightarrow \infty$. This means that $c(n) \rightarrow 0$ and $e^{c(n)} \rightarrow 1$ as $n \rightarrow \infty$. For every fixed value of t,

$$
\lim _{n \rightarrow \infty} \psi(n)=0-0-0=0
$$

Recall

$$
\lim _{n \rightarrow \infty}\left[1+\frac{b}{n}+\frac{\psi(n)}{n}\right]^{c n}=\lim _{n \rightarrow \infty}\left(1+\frac{b}{n}\right)^{c n}=e^{b c}
$$

where b and c do not depend on n and where $\lim _{n \rightarrow \infty} \psi(n)=0$. This gives us the conclusion that

$$
\lim _{n \rightarrow \infty} M_{Y_{n}}(t)=e^{\left(-t^{2}\right)(-1 / 2)}=e^{t^{2} / 2}=e^{0 t+t^{2} / 2}, \quad \forall t
$$

This is the MGF of the Standard Normal Distribution. Therefore

$$
Y_{n} \xrightarrow{D} N(0,1) .
$$

Section 5.3

25. Let \bar{X} denote the mean of a random sample of size 128 from a Gamma Distribution with $\alpha=2$ and $\beta=4$. Approximate $\mathrm{P}[7<\bar{X}<9]$.

Solution:

For a Gamma Distribution,

$$
\begin{aligned}
\mu & =\alpha \beta=2(4)=8 \\
\sigma^{2} & =\alpha \beta^{2}=2(4)^{2}=2(16)=32
\end{aligned}
$$

Then

$$
\begin{aligned}
\mathrm{P}[7<\bar{X}<9] & =\mathrm{P}\left[\frac{7-8}{\sqrt{32} / \sqrt{128}}<\frac{\bar{X}-\mu}{\sigma / \sqrt{n}}<\frac{9-8}{\sqrt{32} / \sqrt{128}}\right] \\
& =\mathrm{P}\left[-2<\frac{\bar{X}-\mu}{\sigma / \sqrt{n}}<2\right] \approx \mathrm{P}[-2<Z<2] \\
& =\Phi(2)-\Phi(-2)=0.9772-0.0228 \\
& =0.9544 .
\end{aligned}
$$

26. Let $Y \sim \operatorname{Bin}\left(72, \frac{1}{3}\right)$. Approximate $\mathrm{P}[22 \leq Y \leq 28]$.

Solution:

For the Binomial Distribution,

$$
\begin{aligned}
\mu & =n p=72\left(\frac{1}{3}\right)=24 \\
\sigma^{2} & =n p(1-p)=72\left(\frac{1}{3}\right)\left(\frac{2}{3}\right)=16 \\
\sigma & =\sqrt{16}=4
\end{aligned}
$$

Then

$$
\begin{aligned}
\mathrm{P}[22 \leq Y \leq 28] & =\mathrm{P}[21.5<Y<28.5]=\mathrm{P}\left[\frac{21.5-24}{4}<\frac{Y-24}{4}<\frac{28.5-24}{4}\right] \\
& =\mathrm{P}\left[-0.625<\frac{Y-24}{4}<1.125\right] \approx \mathrm{P}[-0.63<Z<1.13] \\
& =\Phi(1.13)-\Phi(-0.63)=0.8708-0.2643 \\
& =0.6065 .
\end{aligned}
$$

If you use technology (graphing calculator, R, etc), then

$$
\mathrm{P}[22 \leq Y \leq 28] \approx 0.6037
$$

27. Let $Y \sim \operatorname{Bin}\left(400, \frac{1}{5}\right)$. Compute an approximate value of $\mathrm{P}\left[0.25<\frac{Y}{400}\right]$.

Solution:

For the Binomial Distribution,

$$
\begin{aligned}
\mu & =n p=400\left(\frac{1}{5}\right)=80 \\
\sigma^{2} & =n p(1-p)=400\left(\frac{1}{5}\right)\left(\frac{4}{5}\right)=64 \\
\sigma & =\sqrt{64}=8
\end{aligned}
$$

Then

$$
\begin{aligned}
\mathrm{P}\left[0.25<\frac{Y}{400}\right] & =\mathrm{P}[0.25(400)<Y]=\mathrm{P}[Y>100]=\mathrm{P}[Y>100.5] \\
& =\mathrm{P}\left[\frac{Y-80}{8}>\frac{100.5-80}{8}\right]=\mathrm{P}\left[\frac{Y-80}{8}>2.5625\right] \\
& \approx \mathrm{P}[Z>2.56]=1-\mathrm{P}[Z \leq 2.56]=1-\Phi(2.56)=1-0.9948 \\
& =0.0052 .
\end{aligned}
$$

If you use technology (graphing calculator, R, etc), then

$$
\mathrm{P}\left[0.25<\frac{Y}{400}\right] \approx 1-\Phi(2.5625)=1-0.9948=0.0052 .
$$

28. If $Y \sim \operatorname{Bin}\left(100, \frac{1}{2}\right)$, approximate the value of $\mathrm{P}[Y=50]$.

Solution:

For the Binomial Distribution,

$$
\begin{aligned}
\mu & =n p=100\left(\frac{1}{2}\right)=50 \\
\sigma^{2} & =n p(1-p)=100\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)=25 \\
\sigma & =\sqrt{25}=5 .
\end{aligned}
$$

Then

$$
\begin{aligned}
\mathrm{P}[Y=50] & =\mathrm{P}[49.5<Y<50.5]=\mathrm{P}\left[\frac{49.5-50}{5}<\frac{Y-50}{5}<\frac{50.5-50}{5}\right] \\
& =\mathrm{P}\left[-0.1<\frac{Y-50}{5}<0.1\right] \approx \mathrm{P}[-0.1<Z<0.1] \\
& =\Phi(0.1)-\Phi(-0.1)=0.5398-0.4602 \\
& =0.0796 .
\end{aligned}
$$

