A vector space V over a field F is defined to be a set V with an operation $+$ taking two elements $v, w \in V$ to $v + w \in V$ and an operation taking $r \in F$ and $v \in V$ to $rv \in V$. The operation $+$ is associative and commutative, there is an element $\vec{0} \in V$ with $v + \vec{0} = v$, and for each $v \in V$ there is an element $-v \in V$ such that $v + (-v) = \vec{0}$. The multiplicative operation satisfies the distributive properties $(r + s)v = rv + sv$ and $r(v + w) = rv + rw$ for $r,s \in F$ and $v,w \in V$.

The most familiar example of a vector space is the plane \mathbb{R}^2 consisting of pairs (x,y) of real numbers with

$$(a,b) + (x,y) = (a + x, b + y)$$

and

$$r(x,y) = (rx, ry).$$

Let V be a vector space over the field F. We say a subset $U \subset V$ is closed (under addition of vectors and multiplication of vectors by scalars), if

$$v,w \in U \Rightarrow v + w \in U \quad \text{and} \quad v \in U, a \in F \Rightarrow av \in U.$$

Under this condition the addition and scalar multiplication of V define operations on U making U a vector space over F. U is called a subspace of V. There are some things to check, for example, if $v \in U$ then $-v \in U$.

If S is a set of vectors in V a linear combination of vectors in S is a finite sum, $\sum a_i v_i$, where the vectors $v_i \in S$ and scalars $a_i \in F$. The set $L(S)$ of all linear combinations of vectors in S is closed under vector addition and multiplication by scalars and therefore is a subspace of V. A set S of vectors in V is a generating set for V if $L(S) = V$.

Lemma 1. If $S \subset U$ for some subspace U of V, then $L(S) \subset U$.

Proof. Since U is closed under vector addition and scalar multiplication, the elements of $L(S)$ all lie in U.

The lemma says that $L(S)$ is the smallest vector subspace of V containing S.

Lemma 2. If $V = L(S)$, U is a subspace of V, and $U \neq V$, then there is a vector $v \in S$ with $v \notin U$.

Proof. Otherwise $S \subset U$ and, by lemma 1, $V = L(S) \subset U$ which would imply $V = U$.

The vectors v_1, \ldots, v_n are linearly dependent if there is a sum

$$\sum_{i=1}^{n} a_i v_i = \vec{0} \quad \text{where not all } a_i = 0.$$
In this case, if \(a_j \neq 0 \), then \(v_j \) is a linear combination of the other vectors. The vectors \(v_1, \ldots, v_n \) are \textit{linearly independent} if they are not linearly dependent, so if

\[
\sum_{i=1}^{n} a_i v_i = \vec{0} \Rightarrow \text{all } a_i = 0.
\]

A set \(S \) of vectors in \(V \) is \textit{independent} if every finite subset of \(S \) is linearly independent.

Lemma 3. If \(I \subset V \) is an independent set of vectors and if \(v \in V \) with \(v \notin L(I) \), then \(I \cup \{ v \} \) is independent.

Proof. If there were a dependence relation, then \(av + \sum a_i v_i = \vec{0} \) for a finite set of vectors \(v_i \in I \) where not all the \(a \)'s are 0. Since \(I \) is independent, we must have \(a \neq 0 \). Then \(v = -\sum a^{-1} a_i v_i \in L(I) \), a contradiction.

Bases.

A \textit{basis} for \(V \) is a generating set \(B \) of vectors in \(V \) which are also linearly independent. This means that

1. every vector \(v \in V \) can be written as a finite sum:

\[
v = \sum a_i v_i \text{ where each } v_i \in B \text{ and only a finite number of } a_i \neq 0,
\]

2. the expression for \(v \) is unique because, if also \(v = \sum b_i v_i \), then \(\sum (a_i - b_i) v_i = \vec{0} \), so \(a_i = b_i \) for each \(i \).

The set \(\{ \vec{0} \} \) is dependent because \(1\vec{0} = \vec{0} \) and \(1 \neq 0 \). On the other hand, the empty set is independent since there is no dependence relation. The set \(V = \{ \vec{0} \} \) is a vector space and the empty set is a basis for it using the convention that the empty sum of vectors is \(\vec{0} \).

If a vector space \(V \) is generated by a finite subset \(S \subset V \), we say \(V \) is \textit{finitely generated}.

Proposition 1. If a finite set of vectors, \(S = \{ v_1, \ldots, v_n \} \), generate a vector space \(V \), then a subset of these vectors is a basis for \(V \).

Proof. We construct a basis \(B \) which is a subset of \(S \). Start by letting \(B \) be the empty set. If \(V = \{ \vec{0} \} \), then \(B \) is a basis for \(V \). If \(V \neq \{ \vec{0} \} \) then, by lemma 2, there is a vector in \(S \) which is not in \(L(B) = \{ \vec{0} \} \). Renumber the vectors so that \(v_1 \neq \vec{0} \) and set \(B = \{ v_1 \} \). \(B \) is a linearly independent set.

Suppose inductively that \(B = \{ v_1, \ldots, v_k \} \) is independent. If \(L(B) = V \) we are done. If \(L(B) \neq V \), then by lemma 2 there is a vector in \(S \) which is not in \(L(B) \). Renumber so that the vector \(v_{k+1} \notin L(B) \). Then \(B \cup \{ v_{k+1} \} \) is independent by lemma 3. Now set \(B = \{ v_1, \ldots, v_{k+1} \} \). After \(m \) steps where \(m \leq n \) we have \(L(B) = V \) where \(B = \{ v_1, \ldots, v_m \} \) is independent. This \(B \) is a basis for \(V \).
Proposition 2. Let V be a vector space and assume:

$I = \{u_1, \ldots, u_m\}$ are independent vectors in V,

$S = \{v_1, \ldots, v_n\}$ generate V.

Then $m \leq n$.

Proof. We construct a sequence of generating sets in which the u’s replace the v’s. Since S is a generating set, $u_1 = \sum a_i v_i$. Since $u_1 \neq \vec{0}$, some $a_j \neq 0$, renumber to assume $a_1 \neq 0$. Then

$v_1 = a_1^{-1} u_1 - \sum_{i=2}^{n} a_1^{-1} a_i v_i \in L(u_1, v_2, \ldots, v_n)$.

Then $V = L(v_1, \ldots, v_n) \subset L(u_1, v_2, \ldots, v_n)$ so $L(u_1, v_2, \ldots, v_n) = V$.

Now assume $L(u_1, \ldots, u_k, v_{k+1}, \ldots, v_n) = V$ for some $k < m$. Then

$u_{k+1} = \sum_{i=1}^{k} a_i u_i + \sum_{i=k+1}^{n} a_i v_i$.

If $a_i = 0$ for all $i \geq k + 1$, then this is a dependence relation on u_1, \ldots, u_{k+1}, but these vectors are independent. So there must be $a_i \neq 0$ for some $i \geq k + 1$ Reumber so that $a_{k+1} \neq 0$. Then $v_{k+1} \in L(u_1, \ldots, u_{k+1}, v_{k+2}, \ldots, v_n)$ and therefore $L(u_1, \ldots, u_{k+1}, v_{k+2}, \ldots, v_n) = V$.

This can be repeated to show $L(u_1, \ldots, u_m, v_{n+1}, \ldots, v_n) = V$. It follows that $m \leq n$.

Theorem. If V is finitely generated, then V has a basis and any two bases have the same number of vectors.

Proof. The existence of a basis is proposition 1. Let B_1 and B_2 be two bases with m and n vectors respectively. Since B_1 is independent and B_2 generates, proposition 2 shows $m \leq n$. Also B_2 is independent and B_1 generates, so $n \leq m$. Hence $m = n$.

The dimension of a vector space V, $\dim V$, is the number of vectors in a basis. A vector space with a finite set of generators is said to be finitely generated and by the theorem has finite dimension.

If F is a field, a basis for the vector space $F^n = \{(f_1, \ldots, f_n) : f_i \in F\}$ is given by the vectors:

$e_1 = (1, 0, 0, \ldots, 0)$

$e_2 = (0, 1, 0, \ldots, 0)$

\vdots

$e_n = (0, 0, \ldots, 0, 1)$.

Proposition 3. If V is finite dimensional over F and $\dim F = n$, then V is isomorphic to F^n.
Proof. Let \(v_1, \ldots, v_n \) be a basis for \(V \). The map \(\phi : V \rightarrow F^n \) defined on the basis by \(\phi(v_i) = e_i \) and extended to \(V \) by \(\phi(\sum a_i v_i) = \sum a_i e_i \) is one-to-one and onto and preserves the vector operations:

\[
\phi(v + w) = \phi(v) + \phi(w) \\
\phi(fv) = f\phi(v).
\]

The proof of Proposition 2 gives a useful result that was not stated in the proposition:

Proposition 2.1 Any independent set of vectors in a finitely generated vector space is contained in a basis.

By contrast, Proposition 1 states that any finite set of generators contains a basis. There is a stronger version of Proposition 1 that requires a new proof.

Proposition 1.1 If \(U \) is a subspace of a finitely generated vector space \(V \), then \(U \) has a basis and \(\text{dim} U \leq \text{dim} V \).

Proof. If \(U = \{ \vec{0} \} \), the empty set is a basis. If \(U \neq \{ \vec{0} \} \), choose a nonzero vector \(u_1 \in U \) and set \(B = \{ u_1 \} \). \(B \) is a linearly independent set.

Suppose, inductively, that \(B = \{ u_1, \ldots, u_k \} \subset U \) is a linearly independent set. If \(L(B) = U \), then \(B \) is a basis for \(U \). If \(L(B) \neq U \), choose \(u_{k+1} \in U \) with \(u_{k+1} \notin L(B) \). By Lemma 3, \(B \cup \{ u_{k+1} \} \) is an independent set. Redefine \(B = \{ u_1, \ldots, u_{k+1} \} \).

Since the independent set \(B \) is a subset of \(V \), by Proposition 2.1 \(B \) is contained in a basis \(B' \) for \(V \). Hence the number of vectors in \(B \), \(\#(B) \leq \text{dim} V \) and, if \(\#(B) = \text{dim} V \), then by Lemma 3 \(L(B) = V \) so \(U = V \). Thus after \(m \leq \text{dim} V \) steps we find a basis \(B = \{ u_1, \ldots, u_m \} \) for \(U \).

Linear maps. Let \(V \) and \(W \) be vector spaces over a field \(F \). A function \(\phi \) with domain \(V \) and range \(W \) which satisfies the conditions

\[
\phi(u + v) = \phi(u) + \phi(v) \quad \text{and} \quad \phi(av) = a\phi(v) \quad \text{for} \ u, v \in V \quad \text{and} \ a \in F
\]

is called a **linear map** and written \(\phi : V \rightarrow W \).

The set of vectors in \(V \) which the map \(\phi \) takes to \(\vec{0} \in W \) is called the **kernel** of \(\phi \),

\[
\ker \phi = \{ v \in V : \phi(v) = \vec{0} \} \subset V.
\]

The **image** of \(\phi \) is the set

\[
\text{im} \phi = \{ \phi(v) : v \in V \} \subset W.
\]

Proposition 3. If \(\phi : V \rightarrow W \) is a linear map, then

- \(\ker \phi \) is a subspace of \(V \),
- \(\text{im} \phi \) is a subspace of \(W \).