
UIC Mtht 435 Class notes

Linear equations and linear maps

Let A = (aij) =

a11 · · · a1n
...

...

am1 · · · amn

, an m × n matrix. The entry aij is in the ith row

and jth column for 1 ≤ i ≤ m and 1 ≤ j ≤ n. Let x =

x1...
xn

, an n× 1 matrix or a vector

written vertically. The matrix product Ax is the m×1 matrix

 a11x1 + · · ·+ a1nxn
...

am1x1 + · · ·+ amnxn

 with

only one rather wide column. Example:

(
5 −2 3

−4 3 2

)x1x2
x3

 =

(
5x1 − 2x2 + 3x3
−4x1 + 3x2 + 2x3

)

If b =

(
1

2

)
, the equation Ax = b is the system of equations:

5x1 − 2x2 + 3x3 = 1

−4x1 + 3x2 + 2x3 = 2.

The rule for matrix multiplication gives the two properties: A(x + y) = Ax + Ay and

A(rx) = rAx for r ∈ R. Define φ : Rn −→ Rm by φ(x) = Ax where we think of Rn as the

n-dimensional space of column vectors. φ is a linear map and φ(x) = b is a system of m

equations in n unknowns.

Questions: If b ∈ Rm, does b ∈ imφ? If b ∈ imφ, which x ∈ Rn have φ(x) = b?

Let φ : V −→ W be a linear map. Recall imφ = {φ(v) : v ∈ V } ⊂ W and kerφ = {v ∈
V : φ(v) = 0W} ⊂ V . The kernel and the image are both subspaces. φ is onto if and only if

imφ = W .

Proposition. φ is one-to-one ⇐⇒ kerφ = {0V }.
Proof. ⇒: If v ∈ kerφ, then φ(v) = 0W . Also φ(0V ) = 0W . If φ is one-to-one this

implies v = 0V , so kerφ = {0V }.
⇐: If φ(u) = φ(v) then φ(u−v) = 0W so u−v ∈ kerφ. If kerφ = {0V }, then this implies

u− v = 0V so u = v and φ is one-to-one.
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Let dimV = n, dimW = m, and dim kerφ = k. Since kerφ ⊂ V , by Proposition 1.1

kerφ has a basis. Let v1, . . . , vk be a basis for kerφ. By Proposition 2.1 there are vectors

vk+1, . . . , vn so that v1, . . . , vn is a basis for V . Let U = L(vk+1, . . . , vn); dimU = n− k.

If w ∈ imφ then w = φ(v) for some v ∈ V . We can write v =
∑n

i=1 aivi Then w =

φ(v) =
∑n

i=1 aiφ(vi). But φ(vi) = 0W for 1 ≤ i ≤ k so w =
∑n

i=k+1 aiφ(vi). therefore

L(φ(vk+1), . . . , φ(vn)) = imφ.

Lemma. φ(vk+1), . . . , φ(vn) is a basis for imφ; dim imφ = n− k.

Proof. We have shown these vectors generate imφ. We need to show they are linearly

independent. Suppose
∑n

i=k+1 aiφ(vi) = 0W . Then φ(
∑n

i=k+1 aivi) = 0W , so
∑n

i=k+1 aivi ∈
kerφ. Hence

∑n
i=k+1 aivi =

∑k
i=1 aivi. Since v1, . . . , vn are independent, all ai = 0. Hence

φ(vk+1), . . . , φ(vn) are independent.

We have shown that dim kerφ+ dim imφ = dimV .

If b /∈ imφ, there is no solution x ∈ V to φ(x) = b. If b ∈ imφ then there is some u ∈ V
with φ(u) = b. Let v ∈ kerφ. Then φ(u + v) = φ(u) + φ(v) = b + 0W = b. Conversely, if

φ(x) = b then φ(x − u) = b − b = 0W , so x − u ∈ kerφ and x = u + v for some v ∈ kerφ.

Hence if u is a particular solution, φ(u) = b, then the set of all solutions is :

{x : φ(x) = b} = {u+ v : v ∈ kerφ}.

This set of solutions is also written u+kerφ. Think of it as a k-dimensional plane parallel

to kerφ through the point u.
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We return to the example on page 1. To solve this system of two equations in three

unknowns, we look for a simpler system with the same solutions. We can get such an

equivalent system by multiplying one equation by a nonzero number, adding a multiple of

one equation to another equation, or by interchanging two equations. These operations can

be done as operations on the augmented matrix consisting of A together with the column

matrix b.
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The augmented matrix in the example is(
5 −2 3 1

−4 3 2 2

)
.

Add the second row to the first to get:(
1 1 5 3

−4 3 2 2

)
.

The add 4 times the first row to the second:(
1 1 5 3

0 7 22 14

)
.

Now multiply the second row by 7−1:(
1 1 5 3

0 1 22/7 2

)
and subtract the second row from the first:(

1 0 13/7 1

0 1 22/7 2

)
.

The new set of equations is

x1 + (13/7)x3 = 1

x2 + (22/7)x3 = 2.

Setting the third variable, x3 = 0 now determines values for the other two: x1 = 1 and

x2 = 2, so x =

1

2

0

 is a particular solution.

Replacing the last column with 0s gives the equations for the kernel. Let x3 = 7 Then

x1 = −13 and x2 = −22, so the vector v =

−13

−22

7

 is in the kernel. Any choice of x3 gives

exactly one element of kerφ, so kerφ is one-dimensional and this v is a basis for it. The

general solution is x1x2
x3

 =

1

2

0

+ t

−13

−22

7

 for any real t.

The image of φ has dimension dimV − dim kerφ = 2, so imφ = W and there is a solution

for any b ∈ W .
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Fields and vector spaces

Let K be a field with a subfield F , F ⊂ K. K is called an extension of F . K also has

the structure of a vector space over F . In fact, the properties which must hold for K to be

a vector space over F hold because K is a field with F as a subfield. Specifically:

K,+ is an abelian group,

for a ∈ F and v ∈ K, av ∈ K is defined,

the associative law (ab)v = a(bv) holds,

the distributive laws a(v1 + v2) = av1 + av2 and (a+ b)v = av + bv hold, and

1 ∈ F satisfies 1v = v in K.

We just forget for the moment that we can multiply any two elements of K.

Definition. The degree of the field K over F is the dimension of K as a vector space

over F , [K : F ] = dimF K.

Proposition. If F ⊂ K ⊂ L are fields and [L : F ] is finite, then [K : F ] and [L : K]

are both finite.

Proof. K ⊂ L are vector spaces over F , so by Proposition 1.1, since L is finitely

generated over F , K has a basis over F and dimF K ≤ dimF L. For the second statement,

let z1, . . . , zd generate L over F . Then any w ∈ L can be written w =
∑
aizi for ai ∈ F .

Since also ai ∈ K, z1, . . . , zd generate L over K.

Theorem 1. If F ⊂ K ⊂ L are fields and [K : F ] and [L : K] are both finite, then

[L : F ] is finite and [L : F ] = [L : K][K : F ].

Proof. Let v1, . . . , vm be a basis for K over F and let w1, . . . , wn be a basis for L

over K. Any w ∈ L can be written as a sum w =
∑n

j=1 cjwj where cj ∈ K. Then each

cj =
∑m

i=1 aijvi and hence w =
∑n

j=1

∑m
i=1 aijviwj.

Hence {viwj : 1 ≤ i ≤ m, 1 ≤ j ≤ n} is a set of generators for L over F .

We must show that this set is linearly independent over F . Suppose that

n∑
j=1

m∑
i=1

aijviwj = 0L.

Then
∑n

j=1 (
∑m

i=1 aijvi)wj = 0L. Since w1, . . . , wn are linearly independent over K each

coefficient
∑m

i=1 aijvi = 0K . Then, since v1, . . . , vm are linearly independent over F , each

aij = 0F . Therefore {viwj : 1 ≤ i ≤ m, 1 ≤ j ≤ n} is a set of vectors in L which is linearly

independent over F . It follows that dimF L = mn = dimF K dimK L.
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