Polynomials

A polynomial \(f(X) \) with coefficients in an integral domain \(R \) is a finite sum

\[
f(X) = \sum_{i=1}^{m} a_i X^i.
\]

The symbol \(X \) is called a variable, but more formally we may define \(f \) to be a sequence of coefficients

\[
f = \{a_0, a_1, \ldots, a_m, 0, 0, \ldots\}
\]

which has only finitely many nonzero terms \(a_i \in R \). The sum and product of polynomials may be defined in terms of such sequences. The polynomial \(X \) corresponds to the sequence \(\{0, 1, 0, 0, \ldots\} \). The set of polynomials with coefficients in \(R \) is a commutative ring \(R[X] \).

For the \(f \in R[X] \) defined above and for \(c \in R \), we define the evaluation of \(f \) on \(c \) to be

\[
f(c) = \sum_{i=1}^{m} a_i c^i \in R.
\]

We say \(g(X) \) divides \(f(X) \), written \(g(X)|f(X) \), if there is a polynomial \(Q \) such that \(f(X) = q(X)g(X) \).

If \(a_i = 0 \) for \(i < m \) and \(a_m \neq 0 \), we say \(a_m \) is the leading coefficient, \(a_m X^m \) is the leading term, and \(m \) is the degree of \(f \), \(\deg f = m \). It is convenient to define the degree of the zero polynomial by \(\deg 0 = -\infty \). Then

\[
\deg(fg) = \deg f + \deg g \quad \text{and} \quad \deg(f+g) \leq \max\{\deg f, \deg g\}.
\]

The formula for \(\deg(fg) \) holds because \(R \) has no zero divisors. A polynomial is called monic if its leading coefficient is 1.

Division Theorem. If \(f, g \in R[X] \) and \(g \) is monic, then there are unique polynomials \(q \) and \(r \) such that

\[
f(X) = q(X)g(X) + r(X), \quad \text{where} \quad \deg r < \deg g.
\]

Proof. Let \(\deg f = m \) and \(\deg g = n \). Since \(g \) is monic, \(n \geq 1 \).

If \(m < n \), set \(q(X) = 0 \) and \(r(X) = f(X) \).

For the case \(m \geq n \) we use induction on \(m \). Since \(0 < n \), the result is proved for \(m = 0 \). Assume the result has been proved for \(\deg f \leq m - 1 \).

Recall the long division process; let \(m \geq n \) and

\[
f(X) = a_m X^m + \text{lower order terms}, \quad g(X) = X^n + \text{lower order terms}.
\]
The initial step in dividing g into f is
\[
\frac{a_mX^{m-n}}{X^n + \text{ lower order terms}} \frac{a_mX^m + \text{ lower order terms}}{a_mX^m + \text{ lower order terms}} \frac{0 + \text{ lower order terms}}{.}
\]
Hence $q(X) = a_mX^{m-n} + \text{ lower order terms}$.

Since $f(X) - a_mX^{m-n}g(X)$ has degree at most $m-1$, by the inductive hypothesis, there exist $q_1(X)$ and $r_1(X)$ such that
\[
f(X) - a_mX^{m-n}g(X) = q_1(X)g(X) + r_1(X) \quad \text{with} \quad \deg r_1 < \deg g
\]
and therefore
\[
f(X) = (a_mX^{m-n} + q_1(X))g(X) + r_1(X).
\]
Setting $q(X) = a_mX^{m-n} + q_1(X)$ and $r(X) = r_1(X)$ gives the existence result.

For uniqueness, suppose that also
\[
f(X) = \tilde{q}(X)g(X) + \tilde{r}(X), \quad \text{where} \quad \deg r < \deg g.
\]
Then $g(q - \tilde{q}) = \tilde{r} - r$ and $\deg(\tilde{r} - r) < \deg g$, hence $\deg g + \deg(q - \tilde{q}) < \deg g$. Therefore $\deg(q - \tilde{q}) < 0$ so $q = \tilde{q}$ and hence $r = \tilde{r}$.

If F is a field and $f \in F[X]$ is not identically zero, then $x \in F$ is a root of f if $f(x) = 0$.

Corollary. Let F be a field, $f \in F[X]$, and $x \in F$. Then x is a root of f if and only if $X - x$ divides $f(X)$.

Proof. If $X - x$ divides $f(X)$, then $f(X) = q(X)(X - x)$ and $f(x) = q(x)(x - x) = 0$. In general, by the division theorem $f(X) = q(X)(X - x) + r(X)$ where $\deg r \leq \deg(X - x) = 1$. Therefore $r(X) = r_0$, a constant. If x is a root of f then $r_0 = 0$ and $X - x$ divides $f(X)$.

If $(X - x)^k | f(X)$ but $(X - x)^{k+1} \not| f(X)$, then x is called a root of multiplicity k.

Algebraic numbers and field extensions

Definition. Let $F \subset K$ be fields. The field K is called an extension of F. If $x \in K$, then x is algebraic over F if there is a nonzero polynomial $p \in F[X]$ with $p(x) = 0$. An element $x \in K$ which is not algebraic is said to be transcendental. If every element of K is algebraic over F, K is said to be an algebraic extension of F.

Theorem 2. If K is a finite extension of F, $[K : F] = n$, then K is an algebraic extension. Each element $x \in K$ is a root of some polynomial of degree $\leq n$.

Proof. The elements $1, x, x^2, \ldots, x^n$ are linearly dependent over F (since there are more than n of them). Hence there is a dependence relation $\sum_{i=1}^n a_i x^i = 0_K$ where not all the $a_i = 0_F$. Thus x is a root of the nonzero polynomial $p(X) = \sum_{i=1}^n a_i X^i \in F[X]$. This polynomial has degree less than or equal to n.

2
Given \(x \in K \) algebraic over \(F \), let \(p \in F[X] \) be a polynomial of minimal degree such that \(x \) is a root of \(p \). Then \(\deg p \geq 0 \) if \(x \neq 0 \) and \(\deg p = 1 \) if and only if \(0 \neq x \in F \).

A polynomial is called **irreducible** if it is not the product of two polynomials of lower degree. A polynomial \(p \) with root \(x \) of minimal degree is irreducible in \(F[X] \) because if \(p \) factored, say \(p(X) = g(X)h(X) \), then \(g(x)h(x) = 0 \) and hence one of these lower degree polynomials would have \(x \) as a root. Multiplying \(p(X) \) by the inverse in \(F \) of its leading coefficient, we get a monic polynomial of the same degree.

If \(p \) and \(f \) are two monic polynomials of the same degree in \(F[X] \), both with root \(x \), then \(p(X) - f(X) \) is a polynomial of lower degree with root \(x \). Therefore there is a unique monic polynomial with root \(x \) of minimal degree called the **minimal** polynomial of \(x \) over \(F \). The **degree of \(x \) over \(F \)** is the degree of this minimal polynomial.

For a fixed \(x \in K \), the set \(F[x] = \{ g(x) : g \in F[X] \} \subset K \) is a commutative ring, \(F \subset F[x] \subset K \), and \(F[x] \) is a vector space over \(F \). The main result we will need is:

Theorem. Let \(F \subset K \) be fields and \(a \in K \). The following are equivalent:

1. \(x \) is algebraic of degree \(n \) over \(F \),
2. \(F[x] \) is an \(n \)-dimensional vector space over \(F \) with basis \(1, x, x^2, \ldots, x^{n-1} \),
3. \(F[x] \) is a subfield of \(K \) and the index \([F[x] : F] = n \).

Proof. We show (1) \(\Rightarrow \) (2) \(\Rightarrow \) (3) \(\Rightarrow \) (1). Actually, the proofs give only inequalities on the dimensions, but we fix that at the end.

First assume (1) and let \(f \) be the minimal polynomial of \(x \). Then

\[
x^n = -a_0 - a_1x - \cdots - a_{n-1}x^{n-1},
\]

so \(x^n \in L = L(1, x, \ldots, x^{n-1}) \). If \(x^n, \ldots, x^{n+k} \in L \), then

\[
x^{n+k+1} = -a_0x^{k+1} - a_1x^{k+2} - \cdots - a_{n-1}x^{n+k} \in L.
\]

Hence, by induction, \(x^\ell \in L \) for all \(\ell \geq 0 \). Thus for any \(g \in F[X] \), \(g(x) \in L \), hence \(F[x] = L \). Therefore \(1, x, \ldots, x^{n-1} \) is a spanning set for \(F[x] \) and \(\dim_F F[x] = m \leq n \).

Second assume \(\dim_F F[x] = m < \infty \). \(F[x] \) is a commutative ring. To prove it is a field we must show every nonzero element \(u \in F[x] \) has a multiplicative inverse. Define a map \(\phi : F[x] \to F[x] \) by \(\phi(v) = uv \); the product is in the ring \(F[x] \subset K \). This map is a linear map of vector spaces over \(F \) since

\[
\phi(v + w) = u(v + w) = uv + uw = \phi(v) + \phi(w),
\]

\[
\phi(cv) = u(cv) = c(uv) = c\phi(v) \quad \text{for } c \in F.
\]

Now \(u, v \in K \) and \(u \neq 0 \) so if \(uv = 0 \) then \(v = 0 \). Thus \(\ker \phi = \{ v \in F[a] : uv = 0 \} = \{ 0 \} \) and \(\dim \ker \phi = 0 \). Therefore \(\dim \im \phi = m \). Hence \(\im \phi = F[x] \) and, in particular, \(1 \in \im \phi \).
So there is a \(v \in F[x] \) with \(\phi(v) = 1 \). This means \(uv = 1 \) and \(v \) is the multiplicative inverse of \(u \). The index \([F[x] : F] = \dim_F F[x] = m \).

Third assume more generally that \(E \) is a field, \(F \subset E \subset K \), \([E : F] = m \), and \(\alpha \in E \) is any element. The elements \(1, \alpha, \ldots, \alpha^m \) of \(E \) cannot be linearly independent over \(F \) since there are \(m + 1 > m \) of them. hence there is a dependence relation

\[
a_0 + a_1 \alpha + \cdots + a_m \alpha^m = 0,
\]

that is there is a polynomial \(f \in F[X] \) with \(f(\alpha) = 0 \) and \(\deg f \leq m \). Therefore \(\alpha \) is algebraic over \(F \) and the degree of \(\alpha \) is less than or equal to \(m \).

Finally, note that for \(a \) as in (1), putting these arguments together, we have

\[
\text{degree of } x = n \geq m \geq \text{degree of } x.
\]

Therefore \(m = n = \) the degree of \(x \). Thus \(\dim F[x] = n \). If the spanning set \(1, x, \ldots x^{n-1} \)
in the first argument were dependent, a set with fewer than \(n \) elements would span \(F[x] \) contradicting the fact that its dimension is \(n \), so this set is a basis.