UIC Math 549

Differentiable Manifolds—Vector Calculus Background John Wood

Some sources and inspiration for this treatment are the advanced calculus or analysis books by Dieudonné, Loomis & Sternberg, and Spivak, and notes and books by Milnor.

1. The derivative

DEFINITION. Let $U \subset \mathbb{R}^m$ be an open set, $a \in U$, and $f : U \longrightarrow \mathbb{R}^n$. The map f is differentiable at a if there is a linear map $\lambda \in \operatorname{Hom}(\mathbb{R}^m, \mathbb{R}^n)$ with

$$\lim_{x \to a} \frac{|f(x) - f(a) - \lambda(x - a)|}{|x - a|} = 0.$$

LEMMA. If there is such a λ it is unique.

PROOF. Let λ and λ_1 both satisfy the definition. Then

$$|(\lambda - \lambda_1)(x - a)| \le |f(x) - f(a) - \lambda(x - a)| + |-f(x) + f(a) + \lambda_1(x - a)|$$

hence $|(\lambda - \lambda_1)(x - a)|/|x - a| \to 0$ as $x \to a$. For $v \neq 0$, letting $x = a + v \in U$,

$$|(\lambda - \lambda_1)(v)|/|v| = |(\lambda - \lambda_1)(tv)|/|tv| \to 0 \text{ as } t \to 0.$$

Therefore $\lambda(v) = \lambda_1(v)$.

When f is differentiable at a this unique linear map is denoted Df(a).

2. The case m = n = 1

Let $f : \mathbb{R} \longrightarrow \mathbb{R}$ and assume f'(a) exists. Then

$$\frac{|f(x) - f(a) - f'(a)(x - a)|}{|x - a|} = \left|\frac{f(x) - f(a)}{x - a} - f'(a)\right| \to 0 \text{ as } x \to a$$

so Df(a)(v) = f'(a)v. The 1 × 1-matrix for the linear map Df(a) has entry f'(a).

3. The case n = 1 of real-valued functions, partial derivatives

PROPOSITION. If $f : U \longrightarrow \mathbb{R}$ is differentiable at $a \in U \subset \mathbb{R}^m$, then the partial derivatives of f exist at a and determine Df(a).

PROOF. Let e_1, \ldots, e_m be the standard orthonormal basis for \mathbb{R}^m . Then

$$\lim_{t \to 0} \left| \frac{f(a+te_i) - f(a)}{t} - Df(a)(e_i) \right| = \lim_{t \to 0} \frac{|f(a+te_i) - f(a) - D(f)(a)(te_i)|}{|te_i|} = 0,$$

hence the partial derivative with respect to the ith variable exists:

$$\frac{\partial f}{\partial x_i}(a) = D_i f(a) = Df(a)(e_i) = \lim_{t \to 0} \frac{f(a + te_i) - f(a)}{t}$$

If $v = \sum_{i} v_i e_i$, then $Df(a)v = \sum_{i} D_i f(a)v_i$.

More generally, the directional derivative is defined by

$$D_v f(a) = \lim_{t \to 0} \frac{f(a+tv) - f(a)}{t}$$

This limit may exist, in some or all directions, even if f is not differentiable at a. The gradient of f at a is the vector grad $f(a) = \sum_{i} D_i f(a) e_i$ and, if f is differentiable at a,

$$Df(a)v = D_v f(a) = \operatorname{grad} f(a) \cdot v$$

For f to be differentiable at a it is necessary, but not sufficient, for the partial derivatives to exist at a. It is even necessary, but not sufficient, for the directional derivative to exist at a for all v and to define a linear function. A sufficient condition for f to be differentiable is given by the following theorem, but this condition is not necessary.

THEOREM. Let $f: U \longrightarrow \mathbb{R}$, U open in \mathbb{R}^m . Suppose the partial derivatives $D_i f$ are each continuous at $a \in U$. Then f is differentiable at a and $Df(a)v = \sum_i D_i f(a)v_i$.

PROOF. Given $\varepsilon > 0$ there exists $\delta > 0$ such that

$$|x-a| < \delta \Rightarrow |D_i f(x) - D_i f(a)| < \varepsilon$$
 for all *i*.

Let $\xi_i = (x_1, \dots, x_i, a_{i+1}, \dots, a_m); \xi_0 = a, \xi_m = x$. Then $|\xi_i - a| < \delta$ and

$$f(x) - f(a) = \sum_{i=0}^{m} f(\xi_i) - f(\xi_{i-1}).$$

Let $\varphi_i(t) = f(\xi_{i-1} + te_i)$. Then

$$f(\xi_i) - f(\xi_{i-1}) = \varphi_i(x_i - a_i) - \varphi_i(0) = \varphi'(t_i)(x_i - a_i) = D_i f(\xi_{i-1} + t_i e_i)(x_i - a_i)$$

for some t_i with $0 < t_i < x_i - a_i$, by the mean value theorem in one variable. Now

$$\left| f(x) - f(a) - \sum D_i f(a)(x_i - a_i) \right| \le \sum |f(\xi_i) - f(\xi_{i-1}) - D_i f(a)(x_i - a_i)|$$

$$\le \sum |f(\xi_i) - f(\xi_{i-1}) - D_i f(\xi_{i-1} + t_i e_i)(x_i - a_i)| + \sum |\{D_i f(\xi_{i-1} + t_i e_i) - D_i f(a)\}(x_i - a_i)|$$

$$\le 0 + n\varepsilon |x - a|.$$

Hence $\frac{|f(x) - f(a) - \lambda(x - a)|}{|x - a|} \to 0$ as $x \to a$ where λ is the linear map defined by $\lambda(v) = \sum D_i f(a) v_i$. Therefore f is differentiable at a.

4. The derivative of linear and bilinear maps

LEMMA. If f is a linear map then Df(a) = f. PROOF. Since f is linear, f(x) - f(a) - f(x - a) = 0. LEMMA. If U, V, W are vector spaces and $\beta : U \times V \longrightarrow W$ is bilinear, then $D\beta(a,b)(u,v) = \beta(a,v) + \beta(u,b)$.

PROOF. Note that the map $\ell(a,b)$ defined by $\ell(a,b)(u,v) = \beta(a,v) + \beta(u,b)$ is linear from $U \times V \longrightarrow W$ and

$$\beta(a+u,b+v) - \beta(a,b) - \ell(a,b)(u,v) = \beta(u,v).$$

The norm $|(u,v)| = \sqrt{|u|^2 + |v|^2}$, and $|u||v| \le \max\{|u|^2, |v|^2\} \le |u|^2 + |v|^2$, hence

$$\beta(u,v) = |u||v|\beta(u/|u|,v/|v|) \le |(u,v)|^2 \beta(u/|u|,v/|v|), \text{ for } u \ne 0, v \ne 0.$$

Therefore $|\beta(u,v)|/|(u,v)| \to 0$ as $(u,v) \to (0,0)$.

Examples of bilinear maps $\beta : \mathbb{R}^{\ell} \times \mathbb{R}^m \longrightarrow \mathbb{R}^n$.

$$\begin{split} \ell &= m = n = 1, \qquad \beta(r,s) = rs \\ \ell &= 1, \ m = n, \qquad \beta(r,u) = ru, \\ \ell &= m, \ n = 1, \qquad \beta(u,v) = u \cdot v, \\ \ell &= m = n = 3, \qquad \beta(u,v) = u \times v \end{split}$$

5. A norm on $\operatorname{Hom}(\mathbb{R}^m, \mathbb{R}^n)$

Let e_1, \ldots, e_m be the standard orthonormal basis for \mathbb{R}^m and $\overline{e}_1, \ldots, \overline{e}_n$ be the standard orthonormal basis for \mathbb{R}^n . Let $x = \sum_i x_i e_i \in \mathbb{R}^m$, so $x_i = x \cdot e_i$. Let $\ell \in \operatorname{Hom}(\mathbb{R}^m, \mathbb{R}^n)$ and set $\ell_i^j = \ell(e_i) \cdot \overline{e}_j$. Then $\ell(x) = \sum_i x_i \ell(e_i) = \sum_j \sum_i \ell_i^j x_i \overline{e}_j$.

PROPOSITION. If $|\ell_i^j| \le k$ for all i, j, then $|\ell(x)| \le \sqrt{mn} k |x|$.

PROOF. By Cauchy's inequality, $|\sum_i \ell_i^j x_i| \leq \{\sum_i (\ell_i^j)^2\}^{1/2} |x| \leq \sqrt{m} k |x|$. Then

$$|\ell(x)| = \left\{ \sum_{j} \left(\sum_{i} \ell_i^j x_i \right)^2 \right\}^{1/2} \le \sqrt{mn} \, k|x|$$

The continuous real-valued function $|\ell(x)|$ is bounded on the compact unit sphere, $\{x : |x| = 1\} \subset \mathbb{R}^m$, and attains its bound.

DEFINITION. For a linear map ℓ , define $\|\ell\| = \sup\{|\ell(x)| : |x| = 1\}$. COROLLARY. (i) $|\ell(x)| \le \|\ell\| |x|$ and (ii) $\|\ell\| \le \sqrt{mn} k$.

6. Lipschitz continuity of differentiable functions

PROPOSITION. If $f: U \longrightarrow \mathbb{R}^n$ where U is open in \mathbb{R}^m and f is differentiable at a, then there exist $\delta > 0$ and k > 0 such that $|x - a| < \delta \Rightarrow |f(x) - f(a)| \le k|x - a|$.

PROOF. There is a linear map λ such that the function $\varphi(x) = f(x) - f(a) - \lambda(x - a)$ satisfies $|\varphi(x)|/|x - a| \to 0$ as $x \to a$. Therefore there is a $\delta > 0$ such that $|\varphi(x)| \le |x - a|$ for $|x - a| < \delta$. Then $|f(x) - f(a)| = |\lambda(x - a) + \varphi(x)| \le (||\lambda|| + 1)|x - a|$ for $|x - a| < \delta$. Take $k = ||\lambda|| + 1$.

The conclusion of the Proposition is called Lipschitz continuity at a; it implies that f is continuous at a.

7. The chain rule

THEOREM. If $a \in U \subset \mathbb{R}^m$, $b \in V \subset \mathbb{R}^n$, $f : U \longrightarrow V$, $f(a) = b, g : V \longrightarrow \mathbb{R}^p$, f is differentiable at a, and g is differentiable at b; then $g \circ f$ is differentiable at a and

$$D(g \circ f)(a) = Dg(b) \circ Df(a).$$

PROOF. (See Spivak, p. 19.) Let $\lambda = Df(a), \mu = Dg(b)$ and set

$$\begin{aligned} \varphi(x) &= f(x) - f(a) - \lambda(x-a) \\ \psi(y) &= g(y) - g(b) - \mu(y-b) \\ \rho(x) &= g(f(x)) - g(b) - \mu(\lambda(x-a)). \end{aligned}$$

We have

(i)
$$|\varphi(x)|/|x-a| \to 0 \text{ as } x \to a,$$

(ii)
$$|\psi(y)|/|y-b| \to 0 \text{ as } y \to b.$$

From the definitions,

$$\rho(x) = g(f(x)) - g(b) - \mu(f(x) - f(a) - \varphi(x))$$

= $[g(f(x)) - g(b) - \mu(f(x) - f(a))] + \mu(\varphi(x))$
= $\psi(f(x)) + \mu(\varphi(x)).$

First $|\mu(\varphi(x))| \leq ||\mu|| |\varphi(x)|$, so by (i) $|\mu(\varphi(x))|/|x-a| \to 0$ as $x \to a$. Second, by Proposition 6, there are $k > 0, \delta > 0$ such that

$$|x-a| < \delta \Rightarrow |f(x) - f(a)| \le k|x-a|.$$

By (ii), for any $\varepsilon > 0$ there is a $\delta_1 > 0$ such that

$$|f(x) - f(a)| < \delta_1 \Rightarrow |\psi(f(x))| < \varepsilon |f(x) - f(a)|.$$

So for $0 \neq |x - a| < \min\{\delta, \delta_1/k\}$ we have $|\psi(f(x))|/|x - a| < \varepsilon k$. Hence $|\rho(x)|/|x - a| \to 0$ as $x \to a$ which gives the result.

8. Sample computations

(a) Let $f(x) = x \cdot x = \beta \circ \Delta(x)$ where $\Delta(x) = (x, x)$ is linear and $\beta(x, y) = x \cdot y$. Then $Df(a)(u) = D\beta(\Delta(a)) \circ D\Delta(a)(u) = D\beta(a, a)(u, u) = \beta(a, u) + \beta(u, a).$

Since β is symmetric, $Df(a)(u) = 2a \cdot u$ and $\operatorname{grad} f(a) = 2a$. If $g(x) = |x - p| = \sqrt{f(x - p)}$,

$$Dg(a)(u) = \frac{1}{2\sqrt{f(a-p)}}Df(a-p)(u) = \frac{a-p}{|a-p|} \cdot u \text{ for } a \neq p$$

So, for $x \neq p$, grad $g(x) = \frac{x-p}{|x-p|}$, the unit vector at x pointing away from p.

(b) The derivative of a sum.

LEMMA. Let f and $g: U \longrightarrow \mathbb{R}^n$ be differentiable at $a \in U \subset \mathbb{R}^m$. Define $(f,g): U \longrightarrow \mathbb{R}^n \times \mathbb{R}^n$ by (f,g)(x) = (f(x),g(x)). Then

$$D(f,g)(a) = (Df, Dg)(a).$$

PROOF. Let $\lambda = Df(a)$, $\varphi(x) = f(x) - f(a) - \lambda(x - a)$, $\mu = Dg(a)$, and $\psi(x) = g(x) - g(a) - \mu(x - a)$. Then $(\varphi, \psi)(x) = (f, g)(x) - (f, g)(a) - (\lambda, \mu)(x - a)$ and

$$\frac{|(\varphi,\psi)(x)|}{|x-a|} = \sqrt{\frac{|\varphi(x)|^2}{|x-a|^2}} + \frac{|\psi(x)|^2}{|x-a|^2} \to 0 \text{ as } x \to a$$

Define the linear map $s : \mathbb{R}^n \times \mathbb{R}^n \longrightarrow \mathbb{R}^n$ by $s(y_1, y_2) = y_1 + y_2$. Now $(f + g)(x) = f(x) + g(x) = s \circ (f, g)(x)$. Hence the derivative of a sum is the sum of the derivatives:

$$D(f+g) = Df + Dg.$$

(c) The set M(n) of $n \times n$ -matrices is an n^2 -dimensional vector space under addition and scalar multiplication and a ring under matrix multiplication. Let $\beta(A, B) = AB$ and $t(A) = A^t$ be the transpose. The maps t and (I, t) are linear as maps of vector spaces where I is the identity linear map. On products t satisfies t(AB) = t(B)t(A). Define $f: M(n) \longrightarrow M(n)$ by $f(A) = AA^t$, so $f = \beta \circ (I, t)$

Let $O(n) \subset M(n)$ be the orthogonal group, $O(n) = \{A : f(A) = I\}$. Thus $A \in O(n)$ means A is invertible and $A^t = A^{-1}$.

EXERCISE. This is the computational part of a proof that O(n) is a manifold of dimension n(n-a)/2. Show:

f(A) is symmetric, f(A) = t(f(A)).

 $Df(A)(M) = AM^t + MA^t.$

If $A \in O(n)$, then Df(A) maps M(n) onto the vector space of symmetric matrices. [Hint: Given a symmetric S, take $M = \frac{1}{2}SA$.]

9. Differentiability of maps to \mathbb{R}^n

The results of §3 extend to maps to \mathbb{R}^n .

PROPOSITION. If $f: U \longrightarrow \mathbb{R}^n$ is differentiable at $a \in U$ then the partial derivatives of the components $D_i f_j$ exist at a and are the entries in the matrix representing Df(a). If all the partials are continuous at a then f is differentiable at a.

PROOF. (See Spivak, p. 21, and for notation \S §3, 5.) Define the linear projection map $\pi_j: \mathbb{R}^n \longrightarrow \mathbb{R}$ by $\pi_j(y) = y \cdot \overline{e}_j$. The *j*th component of *f* is $f_j = \pi_j \circ f$, $f(x) = \sum_j f_j(x)\overline{e}_j$ and

$$Df_j(a) = D\pi_j(f(a)) \circ Df(a) = \pi_j \circ Df(a).$$

The partial derivatives $\frac{\partial f_j}{\partial x_i}(a) = D_i f_j(a) = D f_j(a)(e_i) = D f(a)(e_i) \cdot \overline{e}_j$. If $u = \sum_i u_i e_i$, then $D f(a) u = \sum_j \sum_i D_i f_j(a) u_i \overline{e}_j$.

Introducing the Jacobian matrix we write Df(a)u as a matrix product:

$$Df(a)u = \begin{pmatrix} Df_1(a)u\\ \vdots\\ Df_n(a)u \end{pmatrix} = \begin{pmatrix} D_1f_1(a) & \dots & D_mf_1(a)\\ \vdots & & \vdots\\ D_1f_n(a) & \dots & D_mf_n(a) \end{pmatrix} \begin{pmatrix} u_1\\ \vdots\\ u_m \end{pmatrix}.$$

If all the partials are continuous at a, by §3 each $D_i f(a)$ exists and by §8(b) Df(a) exists.

When m = 1, f(t) is a path in \mathbb{R}^n and we define the velocity vector $f'(t) = Df(t)(e_1)$.

10. Mean value theorems

PROPOSITION. If $U \subset \mathbb{R}^m$ is convex, $f: U \longrightarrow \mathbb{R}$ is differentiable, and $a, x \in U$, then $f(x) - f(a) = Df(\zeta)(x - a)$ where $\zeta = a + t_0(x - a)$ for some $0 < t_0 < 1$.

PROOF. Let $\varphi(t) = f(a + t(x - a))$. By the chain rule $\varphi'(t) = Df(a + t(x - a))(x - a)$. By the one-variable mean value theorem

$$f(x) - f(a) = \varphi(1) - \varphi(0) = \varphi'(t_0) = Df(\zeta)(x - a)$$

where $\zeta = a + t_0(x - a)$ for some $0 < t_0 < 1$.

COROLLARY. If $||Df(\zeta)|| \le k$ for any $\zeta \in U$, then $|f(x) - f(a)| \le k|x - a|$.

This follows from the Proposition and Corollary $\S5(i)$.

The Proposition is not true in general for maps to \mathbb{R}^n , n > 1. For example let $f:\mathbb{R}\longrightarrow\mathbb{R}^3$ describe a helix about the vertical axis and take x vertically above a. Then x - a points straight up while Df(t)(u) never does. The following Theorem extends the result of the Corollary to maps to \mathbb{R}^n . It says f is Lipschitz continuous on U.

THEOREM. If $U \subset \mathbb{R}^m$ is convex, $f: U \longrightarrow \mathbb{R}^n$ is differentiable on $U, a, x \in U$, and $\left|\frac{\partial f_j}{\partial x_i}\right| \le \frac{k}{\sqrt{mn}}$ on U for all i, j, then $|f(x) - f(a)| \le k|x - a|$.

PROOF. By the Proposition $f_i(x) - f_i(a) = Df_i(\zeta_i)(x-a)$. By §5 applied to the realvalued function f_j , $||Df_j(\zeta_j)|| \leq \frac{k}{\sqrt{n}}$. By the Corollary, $|f_j(x) - f_j(a)| \leq \frac{k}{\sqrt{n}}|x-a|$. Then $|f(x) - f(a)| \le k|x - a|$ as in §5.

10a. Alternate proof of the mean value theorem

In §10 we used the one-variable mean value theorem. The following proof gives both the Corollary and Theorem above without assuming the one-variable theorem and does not depend on bounds on the partial derivatives. See Loomis & Sternberg, p. 148, or Dieudonné, p. 153.

THEOREM. Let $f : [a, b] \longrightarrow \mathbb{R}^n$ be continuous on [a, b] and differentiable on (a, b). Assume $|f'(t)| \le k$ for a < t < b, where (see §9) $f'(t) = D_1 f(t)(e_1)$. Then

$$|f(b) - f(a)| \le k(b - a).$$

PROOF. Fix $\varepsilon > 0$. Let $A = \{x \in [a, b] : |f(x) - f(a)| \le (k + \varepsilon)(x - a) + \varepsilon\}$. (1) Since f is continuous at a there is a $\delta > 0$ such that

$$|f(x) - f(a)| \le \varepsilon$$
 for $a \le x < a + \delta$

so $x \in A$ for some x > a.

(2) Set $\ell = \sup A$. Either $\ell \in A$ or for any $\delta > 0$ there is a t with $\ell - \delta < t \leq \ell$ and $t \in A$. But then, by the continuity of f at $\ell, \ell \in A$.

(3) If $\ell < b$ then $f'(\ell)$ exists and $|f'(\ell)| \leq k$. Hence there is a $\delta > 0$ such that

$$\ell \le t < \ell + \delta \Rightarrow |f(t) - f(\ell)| \le (k + \varepsilon)(t - \ell).$$

Then

$$\begin{aligned} |f(t) - f(a)| &\leq |f(t) - f(\ell)| + |f(\ell) - f(a)| \\ &\leq (k + \varepsilon)(t - \ell) + (k + \varepsilon)(\ell - a) + \varepsilon \\ &= (k + \varepsilon)(t - a) + \varepsilon. \end{aligned}$$

and hence $t \in A$ for some $t > \ell$, a contradiction. Therefore $\ell = b$ and, as in (2), $b \in A$.

Since $\varepsilon > 0$ is arbitrary, $|f(b) - f(a)| \le k(b - a)$.

COROLLARY. Let $U \subset \mathbb{R}^m$ be convex, $a, b \in U, f : U \longrightarrow \mathbb{R}^n$ be differentiable, and assume $\|Df(x)\| \leq k$ for $x \in U$. Then

$$|f(b) - f(a)| \le k|b - a|.$$

PROOF. Define $c : \mathbb{R} \longrightarrow \mathbb{R}^n$ by c(t) = tb + (1-t)a. Then c'(t) = b - a and $f \circ c(1) - f \circ c(0) = f(b) - f(a)$. For $0 \le t \le 1$, $c(t) \in U$ and $D(f \circ c)(t)(e_1) = Df(c(t))(b-a)$, so $|(f \circ c)'(t)| \le ||Df(c(t))|| |b-a| \le k|b-a|$. The result follows from the Theorem.

11. The inverse function theorem

DEFINITION. A function $f: U \longrightarrow \mathbb{R}^n$ is said to be of class C^1 if the partial derivatives exist and are continuous everywhere on U, f is of class C^k if the partial derivatives of orders k and less are continuous, and f is C^{∞} if it is C^k for all positive integers k.

THEOREM. Given $a \in U \subset \mathbb{R}^n$, U open, and a C^1 function $f: U \longrightarrow \mathbb{R}^n$ with f(a) = bsuch that Df(a) is invertible, there are neighborhoods V of $a, V \subset U$, and W of b and a unique C^1 map $g: W \longrightarrow V$ such that the restriction f|V and g are inverses. The derivative of g is $Dg(y) = Df(g(y))^{-1}$. Further, if f is C^k $(1 \le k \le \infty)$ then g is also.

PLAN. The map g will need to satisfy g(b) = a. Let $g_0(y) = a$ be a first approximation to g. Since Df(a) is invertible, the linear approximation to $f, y = f(x) \sim f(a) + Df(a)(x-a)$, can be solved for x. Let $g_1(y)$ be this solution: $g_1(y) = a + Df(a)^{-1}(y-b)$. We will define iteratively a sequence of functions $\{g_n\}$ converging to the local inverse of f.

PROOF. (1) Define $F(x, y) = x + Df(a)^{-1}(y - f(x))$ on $U \times \mathbb{R}^n$. Let $D_1F(a, b)$ denote the derivative of the function $x \mapsto F(x, b)$ at x = a. Then

$$F(a,b) = a + Df(a)^{-1}(b - f(a)) = a$$

$$D_1F(x,y) = I - Df(a)^{-1} \circ Df(x), \text{ and}$$

$$D_1F(a,y) = I - Df(a)^{-1} \circ Df(a) = 0.$$

 $D_1F(x, y)$ does not depend on y and is the zero map for x = a. Hence for x near a, Df(x) is invertible and the entries in matrix $D_1F(x, y)$ are small. Choose k > 0 so that:

(i)
$$\overline{B_k(a)} \subset U$$
 and $Df(x)$ is invertible for $x \in \overline{B_k(a)}$, and
 $\|D_1F(x,y)\| \leq \frac{1}{2}$ for $x \in \overline{B_k(a)}$. Then
(ii) $x, \xi \in \overline{B_k(a)} \Rightarrow |F(x,y) - F(\xi,y)| \leq \frac{1}{2}|x - \xi|$

using the mean value theorem for the function $x \mapsto F(x, y)$. Since

and the same implication for the closed balls.

(2) Let \mathcal{F} be the set of continuous functions $h: \overline{B_{\delta}(b)} \longrightarrow \overline{B_k(a)}$ such that h(b) = a. For $h \in \mathcal{F}$ define Th(y) = F(h(y), y). Then Th(b) = F(a, b) = a. For $y \in \overline{B_{\delta}(b)}$,

b|,

$$\begin{aligned} |Th(y) - a| &= |F(h(y), y) - a| \\ &\leq |F(h(y), y) - F(a, y)| + |F(a, y) - a| \\ &\leq \frac{1}{2} |h(y) - a| + \frac{k}{2} \leq k \quad \text{by (ii) and (iii)} \end{aligned}$$

Hence $Th(y) \in \overline{B_k(a)}$ so $Th \in \mathcal{F}$ and $T : \mathcal{F} \longrightarrow \mathcal{F}$. The same argument, using the open version of (iii), shows $y \in B_{\delta}(b) \Rightarrow T\gamma(y) \in B_k(a)$.

(3) T has a fixed point.

Define a sequence of functions in \mathcal{F} by $g_0(y) = a$ and $g_{n+1}(y) = Tg_n(y) = F(g_n(y), y)$. Note that g_1 is as defined in the plan. To shorten notation, temporarily fix y and set $x_n = g_n(y)$. We have $x_0 = a$, $x_1 = F(a, y)$, and by (iii) $|x_1 - x_0| \leq k/2$.

$$|x_{n+1} - x_n| = |F(x_n, y) - F(x_{n-1}, y)| \le \frac{1}{2} |x_n - x_{n-1}| \le \dots \le \frac{1}{2^n} |x_1 - x_0| \le \frac{k}{2^{n+1}},$$
$$|x_m - x_n| \le |x_m - x_{m-1}| + \dots + |x_{n+1} - x_n| \le \left(\frac{1}{2^m} + \dots + \frac{1}{2^{n+1}}\right) k < \frac{k}{2^n},$$

for n < m. Therefore $\{x_n\}$ is a Cauchy sequence.

Let $x = \lim x_n$. Since each $x_n \in B_k(a), x \in B_k(a)$. Define the map

$$g: \overline{B_{\delta}(b)} \longrightarrow \overline{B_k(a)}$$
 by $g(y) = x = \lim_{n \to \infty} g_n(y).$

Since $|g(y) - g_n(y)| \leq \frac{k}{2^n}$, the sequence $\{g_n\}$ converges uniformly on $\overline{B_{\delta}(b)}$, so g is continuous and $g \in \mathcal{F}$. Since F is continuous, Tg = g:

$$g(y) = \lim g_n(y) = \lim F(g_n(y), y) = F(\lim g_n(y), y) = F(g(y), y) = Tg(y).$$

(4) g is a unique local inverse of f.

Set $W = B_{\delta}(b)$ and $V = B_k(a) \cap f^{-1}(W) \subset U$. V and W are neighborhoods of a and b respectively. If $y \in W$, by (3) Tg(y) = g(y) and by the definition of Tg, $g(y) = g(y) + Df(a)^{-1}(y - f(g(y)))$. Hence f(g(y)) = y. Then by (2), $g(y) \in V$, $g : W \longrightarrow V$, and $f \circ g = 1_W$.

If $x, \xi \in V$ and $f(x) = f(\xi) = y \in W$, then F(x, y) = x, and $F(\xi, y) = \xi$. By (ii) $|x - \xi| \leq \frac{1}{2}|x - \xi|$, hence $x = \xi$. Therefore f is one-to-one on V. If $x \in V$, let $y = f(x) \in W$ and let $\xi = g(f(x)) \in V$. Now $f(\xi) = f(g \circ f(x)) = f \circ g(f(x)) = f(x)$. Therefore $x = \xi$, g(f(x)) = x, and $g \circ f = 1_V$.

Let h be another inverse of f with h(b) = a. Let both h and g be defined on $W_1 \subset W$, and set $V_1 = B_k(a) \cap f^{-1}(W_1) \subset V$. For $y \in W_1$, let x = g(y), and $\xi = h(y)$. Since g and h are right inverses of f, $f(x) = f(\xi)$. Since f is 1-1, $x = \xi$ and hence g = h on W_1 .

(5) g is Lipschitz continuous.

Let g(y) = x, $g(\eta) = \xi$ for $y, \eta \in B_{\delta}(b)$. Since g = Tg, x = F(x, y) and $\xi = F(\xi, \eta)$. Then

$$\begin{aligned} |x - \xi| &= |F(x, y) - F(\xi, \eta)| \\ &\leq |F(x, y) - F(\xi, y)| + |F(\xi, y) - F(\xi, \eta)| \\ &\leq \frac{1}{2} |x - \xi| + |Df(a)^{-1}(y - \eta)| \end{aligned}$$

Therefore $\frac{1}{2}|x-\xi| \le \|Df(a)^{-1}\| \|y-\eta\|$ and hence $\|g(y)-g(\eta)\| \le 2\|Df(a)^{-1}\| \|y-\eta\|$.

(6) g is differentiable.

Since f is C^1 and, by (i) $Df(\xi)$ is invertible for $\xi \in \overline{B_k(a)}$, we can choose κ so that

$$||Df(\xi)^{-1}|| \le \kappa \text{ for } \xi \in \overline{B_k(a)}$$

Let

$$\varphi(x) = f(x) - f(\xi) - Df(\xi)(x - \xi).$$

Then $|\varphi(x)|/|x-\xi| \to 0$ as $x \to \xi$, so for any $\varepsilon > 0, |\varphi(x)| \le \varepsilon |x-\xi|$ for x near ξ . Let

$$\begin{split} \psi(y) &= g(y) - g(\eta) - Df(\xi)^{-1}(y - \eta) \\ &= g(y) - g(\eta) - Df(\xi)^{-1}\{\varphi(x) + Df(\xi)(x - \xi)\} \\ &= g(y) - g(\eta) - (x - \xi) - Df(\xi)^{-1}(\varphi(x)) \\ &= -Df(\xi)^{-1}(\varphi(x)). \end{split}$$

Then

$$\begin{aligned} |\psi(y)| &\leq \kappa |\varphi(x)| \leq \kappa \varepsilon |x - \xi| \text{ for } x \text{ near } \xi, \\ &\leq 2\kappa^2 \varepsilon |y - \eta| \text{ for } y \text{ near } \eta \text{ by } (5). \end{aligned}$$

Hence $|\psi(y)|/|y - \eta| \to 0$ as $y \to \eta$. Therefore g is differentiable at η and $Dg(\eta) = Df(g(\eta))^{-1}$.

(7) If f is C^k so is g.

We can write Dg as the composition $Dg = i \circ Df \circ g$ where $i(A) = A^{-1}$ is matrix inversion.

$$B_{\delta}(b) \xrightarrow{g} U \xrightarrow{Df} G\ell(n) \xrightarrow{i} G\ell(n),$$

where g is continuous, f is C^k so that Df is C^{k-1} , and i is C^{∞} by Cramer's rule. Since g is continuous, the composition, Dg is continuous, so g is C^1 . Now if g is C^j for any j < k, then similarly, Dg is C^j , and g is C^{j+1} . By induction g is C^k , for $1 \le k \le \infty$.

This completes the proof of the inverse function theorem.

12. Applications of the inverse function theorem

IMPLICIT FUNCTION THEOREM. Let $(a, b) \in \mathbb{R}^k \times \mathbb{R}^n$. Let f be a C^1 function from a neighborhood of (a, b) to \mathbb{R}^n with f(a, b) = c. Let $D_2 f(a, b)$, the derivative of the function $y \mapsto f(a, y)$, be invertible.

Then there are neighborhoods $a \in U \subset \mathbb{R}^k$, $(a, b) \in V \subset \mathbb{R}^k \times \mathbb{R}^n$, and $c \in W \subset \mathbb{R}^n$ and a C^1 function $g: U \longrightarrow \mathbb{R}^n$ such that $f(V) \subset W$ and

$$(x,y) \in V$$
 and $f(x,y) = c \iff x \in U$ and $y = g(x)$,
 $Dg(x) = -D_2 f(x,g(x))^{-1} \circ D_1 f(x,g(x)).$

Further there is a C^1 diffeomorphism $G: U \times W \longrightarrow V$ such that, defining

 $g_w(x) = \pi_2 \circ G(x, w),$ we have $f(x, y) = w \iff y = g_w(x).$

The function $\varphi_w: U \longrightarrow V$ define by $\varphi_w(x) = G(x, w)$ parameterizes the level surface

$$f^{-1}(w) = \{(x, y) \in V : f(x, y) = w\}.$$

PROOF. Define F on the domain of f with values in $\mathbb{R}^k \times \mathbb{R}^n$ by F(x, y) = (x, f(x, y)). Then F(a, b) = (a, c) and the Jacobian matrix of DF(x, y) is

$$\begin{pmatrix} I & 0 \\ L & M \end{pmatrix}$$

where

$$L = D_1 f = \frac{\partial(f_1, \dots, f_n)}{\partial(x_1, \dots, x_k)} \quad \text{and} \quad M = D_2 f = \frac{\partial(f_1, \dots, f_n)}{\partial(y_1, \dots, y_n)}.$$

Since M(a, b) is invertible, DF(a, b) is invertible.

The inverse function theorem gives a map G which we may assume is defined on a product neighborhood $U \times W \subset \mathbb{R}^k \times \mathbb{R}^n$ of (a, c). Let $V = G(U \times W)$. Then F|V and $G|U \times W$ are inverses. If $(x, y) \in V$ and $F(x, y) = (x, f(x, y)) = (x, w) \in U \times W$, then G(x, w) = (x, y)and f(x, y) = w. Define $g_w(x) = \pi_2 \circ G(x, w) = y$. Then $f(x, g_w(x)) = f(x, y) = w$. For the case f(x, y) = c, take $g = g_c$.

Since F has a C^1 inverse on V, it follows that DF is invertible on V and, from the form of its Jacobian matrix, that the matrix M(x,y) of $D_2f(x,y)$ is also invertible. As a composition, $g_w(x)$ is differentiable. Differentiating $f(x, g_w(x)) = w$ with respect to x using the chain rule we get

$$D_1 f(x, g_w(x)) + D_2 f(x, g_w(x)) \circ Dg_w(x) = 0, \text{ hence}$$
$$Dg_w(x) = -D_2 f(x, g_w(x))^{-1} \circ D_1 f(x, g_w(x)).$$

Notice that V is not a product, the slice $\{y \in \mathbb{R}^n : (x, y) \in V\}$ depends on x.

PROPOSITION 1. Let $p \in \mathbb{R}^m$ and let f be a C^1 map on a neighborhood of p to \mathbb{R}^n , $m \ge n$, with Df(p) surjective. Then there is a neighborhood $p \in V \subset \mathbb{R}^m$ and a diffeomorphism $h: U \longrightarrow V$, U open in \mathbb{R}^m , such that $f \circ h(x_1, \ldots, x_m) = (x_{m-n+1}, \ldots, x_m)$ or $f \circ h = \pi_2$.

PROOF. Let m = k + n. Since Df(p) is surjective we can reorder the variables, *i.e.* the coordinates of \mathbb{R}^m , x_1, \ldots, x_m , so that the Jacobian matrix of derivatives with respect to the last n variables is invertible. Then the implicit function theorem applies: the map $F(x) = (x_1, \ldots, x_k, f(x))$ restricted to a neighborhood V of a has an inverse $h : U \longrightarrow V$. Then $F \circ h(z) = z$ and $f \circ h = \pi_2 \circ F \circ h = \pi_2$.

PROPOSITION 2. Let $a \in U \subset \mathbb{R}^m$ be open and $f: U \longrightarrow \mathbb{R}^n$ be a C^1 map, $m \leq n$, with Df(a) injective. Then there are neighborhoods $a \in U_1 \subset U, V \subset \mathbb{R}^n$ with $f(U_1) \subset V$, and $b \in W \subset \mathbb{R}^n$ and a diffeomorphism $h: V \longrightarrow W$ such that $h \circ f(x_1, \ldots, x_m) = (x_1, \ldots, x_m, 0, \ldots, 0)$.

PROOF. The Jacobian matrix of Df(a) has an invertible $m \times m$ submatrix A. We may permute the coordinate functions, f_1, \ldots, f_n , *i.e.* the coordinates in the range \mathbb{R}^n , so that the first m rows of the Jacobian of f are an invertible matrix A.

Define $F: U \times \mathbb{R}^{n-m} \longrightarrow \mathbb{R}^n$ by

$$F(x_1, \dots, x_n) = f(x_1, \dots, x_m) + (0, \dots, 0, x_{m+1}, \dots, x_n)$$

Then F(a, 0) = f(a) + 0 = b and

$$DF(a,0) = \begin{pmatrix} A & 0 \\ B & I \end{pmatrix}$$

which is invertible. By the inverse function theorem there are neighborhoods $(a, 0) \in V \subset U \times \mathbb{R}^{n-m}$ and $b \in W \subset \mathbb{R}^n$ and a map $h: W \longrightarrow V$ inverse to $F|V: V \longrightarrow W$.

Set $i(x_1, \ldots, x_m) = (x_1, \ldots, x_m, 0, \ldots, 0)$, so $F \circ i = f$. Let $U_1 = i^{-1}(V)$. On U_1

$$h \circ f = h \circ F \circ i = i.$$

Think of (h, W) as a new coordinate chart for \mathbb{R}^n with respect to which the map f has the simplest possible form: $h \circ f = i$.

It follows that $f|U_1$ is a homeomorphism onto its image in the induced topology. That is O is open in U_1 if and only if f(O) is the intersection with $f(U_1)$ of an open set in \mathbb{R}^n .

13. Differential equations

For a continuous function $g: J \longrightarrow \mathbb{R}^n$ on an interval $J \subset \mathbb{R}$ with $t_0, t \in J$, we introduce the integral

$$G(t) = \int_{t_0}^t g(s) \, ds$$

defined componentwise by $G_i(t) = \int_{t_0}^t g_i(s) \, ds$. G is C^1 and G'(t) = g(t) by the fundamental theorem of calculus. If $|g(t)| \leq k$ on I, then

(1)
$$\left| \int_{t_0}^t g(s) \, ds \right| = |G(t) - G(t_0)| \le k|t - t_0$$

by the mean value theorem, §10a. We will also need the following stronger result.

LEMMA.
$$\left| \int_{t_0}^t g(s) \, ds \right| \leq \int_{t_0}^t |g(s)| \, ds.$$

PROOF. Since g is continuous, |g| is integrable. Let $\mathcal{P} = \{t_0, \ldots, t_n\}$ be a partition of $[t_0, t]$ and let $M_i = \sup\{|g(s)| : t_{i-1} \leq s \leq t_i\}$. Then, by (1),

$$\left| \int_{t_0}^t g(s) \, ds \right| \le \sum_{i=1}^n \left| \int_{t_{i-1}}^{t_i} g(s) \, ds \right| \le \sum_{i=1}^n M_i(t_i - t_{i-1}) = U(|g|, \mathcal{P}),$$

hence the left hand term is a lower bound for the set of all upper sums for |g|.

If $f: U \longrightarrow \mathbb{R}^n$ is continuous, $0 \in J$, and $g: J \longrightarrow U$ is differentiable, we say x = g(t) is a solution to the differential equation x' = f(x) with initial condition x_0 if

(2')
$$g'(t) = f(g(t))$$
 and $g(0) = x_0$.

By the fundamental theorem of calculus, it is equivalent that g be continuous and satisfy the integral equation

(2)
$$g(t) = x_0 + \int_0^t f(g(s)) \, ds.$$

For a continuous function $g: J \longrightarrow U$ define a map T which takes g to a new function Tg defined by

$$Tg(t) = x_0 + \int_0^t f(g(s) \, ds.$$

Then g is a solution to (2) if and only if Tg = g. The plan is to use T to construct a sequence of functions which converges uniformly to a solution to (2). This method is known as Picard iteration.

THEOREM. Let $f: U \longrightarrow \mathbb{R}^n$ be C^1 and let $a \in U$. Then there is a $\delta > 0$ and a unique C^1 function from the interval $J = (-\delta, \delta)$ to U satisfying (2).

Further there exists c > 0 and $g: J \times \overline{B_c(a)} \longrightarrow U$ such that the curve $g_x(t) = g(t, x)$ is a solution to (2) with initial condition $g_x(0) = x$.

PROOF. Let $a \in V \subset \overline{V} \subset U$ with V open and \overline{V} compact. Since f is C^1 , f and Df are bounded on \overline{V} . Let $|f(x)| \leq k$ and $||Df(x)|| \leq L$ for $x \in \overline{V}$. Choose $\delta > 0$ such that

(i)
$$r = \delta L < 1$$
 and $\overline{B_{2\delta k}(a)} \subset \overline{V}$.

Set $c = \delta k$. Let \mathcal{F} be the set of continuous functions $h: J \longrightarrow \overline{B_{2c}(a)}$ such that

(ii) if
$$x = h(0)$$
, then $x \in \overline{B_c(a)}$ and $h(J) \subset \overline{B_c(x)}$.

For $x \in \overline{B_c(a)}$, set $\mathcal{F}_x = \{h \in \mathcal{F} : h(0) = x\}$. For $h \in \mathcal{F}$ define

(3)
$$Th(t) = h(0) + \int_0^t f(h(s)) \, ds.$$

Then, by (1),

$$|Th(t) - h(0)| = \left| \int_0^t f(h(s)) \, ds \right| \le |t|k \le \delta k = c,$$

therefore $Th \in \mathcal{F}_x$ and $T : \mathcal{F}_x \longrightarrow \mathcal{F}_x$.

For any continuous, bounded function $g: J \longrightarrow \mathbb{R}^n$ define the norm

$$||g|| = \sup\{|g(t)| : t \in J\}.$$

Warning: for linear functions λ will still use the norm defined in §5.

If g and h are functions in \mathcal{F} , then

$$\begin{split} \|g - h\| &= \|h - g\|, \\ \|g - h\| &= 0 \iff g = h, \\ \|h_1 - h_3\| &\le \|h_1 - h_2\| + \|h_2 - h_3\|. \end{split}$$

The third property is called the triangle inequality by analogy with the formula for distances between points in the plane. To prove it notice that for any $t \in J$

$$|h_1(t) - h_3(t)| \le |h_1(t) - h_2(t)| + |h_2(t) - h_3(t)| \le ||h_1 - h_2|| + ||h_2 - h_3||,$$

so the left hand side is bounded by the right hand side. These three properties make \mathcal{F} a metric space with the distance between g and h given by ||g - h||.

For $f, g \in \mathcal{F}$ and $t, s \in J$ we have

(4)
$$|f(g(s)) - f(h(s))| \le L|g(s) - h(s)| \le L||g - h||, \quad \text{by §10a} \\ \left| \int_0^t f(g(s)) - f(h(s)) \, dt \right| \le L||g - h|| \, |t| \le L\delta ||g - h||. \quad \text{by (1)}$$

If also g(0) = h(0), then

(5)
$$|Tg(t) - Th(t)| \le L\delta ||g - h|| \le r ||g - h||, \qquad \text{by (i)}$$
$$||Tg - Th|| \le r ||g - h||.$$

Since r < 1, T is called a contraction map; T moves points (functions) closer together.

We will prove that the sequence $g_n \in \mathcal{F}_x$ defined inductively by

$$g_0(t) = x$$
 and $g_n = Tg_{n-1}$

converges uniformly to a function g satisfying (3) with initial condition g(0) = x. First $g_0 \in \mathcal{F}_x$, and hence $g_n \in \mathcal{F}_x$. Then (5) implies $||g_2 - g_1|| \le r ||g_1 - g_0||$ and inductively

$$||g_n - g_{n-1}|| \le r^{n-1} ||g_1 - g_0||.$$

Therefore, with m < n,

$$||g_n - g_m|| \le ||g_n - g_{n-1}|| + \dots + ||g_{m+1} - g_m||$$

$$\le (r^{n-1} + \dots + r^m)||g_1 - g_0||$$

$$\le (r^m + r^{m+1} + \dots)||g_1 - g_0||$$

$$\le \frac{r^m}{1 - r}||g_1 - g_0||.$$

Since $r^m \to 0$ as $m \to \infty$, this shows the sequence g_n is uniformly Cauchy and hence converges uniformly to a continuous function g which lies in \mathcal{F}_x .

We need to show that g is a fixed point of T. Since g_n converges uniformly to g, it follows from (4) that $f(g_n(t))$ converges uniformly to f(g(t)). Then

$$(Tg)(t) = x + \int_0^t \lim_{n \to \infty} f(g_n(s)) \, ds = \lim_{n \to \infty} \{x + \int_0^t f(g_n(s)) \, ds\} = \lim_{n \to \infty} g_{n+1}(t) = g(t).$$

Hence g is a solution to our differential equation on the interval J.

If h were another solution to (2) on an interval $J_1 \subset J$ with h(0) = g(0), then Th = hand Tg = g on J_1 . Using the norm on J_1 , $||g - h|| = ||Tg - Th|| \le r||g - h||$ and r < 1 imply ||g - h|| = 0 and hence g = h on J_1 .

Denote the constructed solution defined for $t \in J$ and $x \in \overline{B_c(a)}$ by $g_x(t)$. By the fundamental theorem of calculus $g_x(t)$ is differentiable in t and, since $g'_x(t) = f(g_x(t))$, g_x is C^1 . Set $g(t,x) = g_x(t)$.

14. Flows

The C^1 function $f: U \longrightarrow \mathbb{R}^n$ is pictured as a vector field on U, that is, an assignment to each $x \in U$ of a vector $\vec{v}_x = f(x)$ "based" at the point x. For any $a \in U$, a solution $g(t): J \longrightarrow U$ is pictured as a point moving along a path so that at time t the moving point is at g(t) and its velocity is g'(t) = f(g(t)). Each moving point that passes through a given point x has the same velocity, f(x), at the time it is at x. This motion is called a steady flow. If f depended on t and x, we would have a time-dependent flow.

In §13 we proved the existence, for any $x \in U$ and for a short time depending on x, of a unique flow C^1 in t. In this section we will give some more global results on the flow for a given f.

(1) Let g satisfy g'(s) = f(g(s)) for $s \in J$. Let $s, s + t \in J$ and define h(t) = g(s + t). Since

$$h'(t) = g'(s+t)$$
 by the chain rule
= $f(g(s+t))$
= $f(h(t))$,

h is a solution in an interval about 0 with h(0) = g(s).

(2) Let $g_i(t)$ be a solution for $t \in J_i$, i = 1, 2, satisfying $g_1(0) = g_2(0)$. Then $g_1(t) = g_2(t)$ for all $t \in J_1 \cap J_2$.

Let $J^* = \{t \in J_1 \cap J_2 : g_1(t) = g_2(t)\}$. $J^* \neq \emptyset$ since $0 \in J^*$. We will show that J^* is both open and closed in $J_1 \cap J_2$ and therefore $J^* = J_1 \cap J_2$. By the uniqueness result in §13, there is a open neighborhood $J_0 \subset J^*$ containing 0. If $s \in J^*$, by (1) there are solutions $h_i(t)$ with $h_i(0) = g_i(s)$. Since $s \in J^*$, $h_1(0) = h_2(0)$, and by uniqueness $h_1(t) = h_2(t)$ in a neighborhood of 0. Hence $g_1 = g_2$ in a neighborhood of s and therefore J^* is open. If $s \in J_1 \cap J_2$ but $s \notin J^*$ then, since \mathbb{R}^n is Hausdorff, there are disjoint neighborhoods U_i of $g_i(s)$. Then $s \in g_1^{-1}(U_1) \cap g_2^{-1}(U_2)$, an open set in $J_1 \cap J_2 - J^*$. Therefore J^* is closed in $J_1 \cap J_2$. Since $J_1 \cap J_2$ is connected, $J^* = J_1 \cap J_2$.

(3) A maximal solution. Under the hypotheses of (2), define a C^1 map $g: J_1 \cup J_2 \longrightarrow U$ by

$$g(t) = \begin{cases} g_1(t) & \text{if } t \in J_1 \\ g_2(t) & \text{if } t \in J_2. \end{cases}$$

This construction is just the union of the two functions g_1 and g_2 where a function is regarded as its graph in the product $\mathbb{R} \times U$. For $x \in U$, let \mathcal{S} be the set of all graphs of solutions defined on intervals about 0 with initial point x and let g_x be the union of the elements of \mathcal{S} . This g_x is defined on the maximal interval J_x for a solution with initial point x. Let $\Omega = \{(t, x) \in \mathbb{R} \times U : t \in J_x\}$. Define $g : \Omega \longrightarrow U$ by $g(t, x) = g_x(t)$.

(4) If $g_a(t)$ is a solution defined on the maximal J_a with $g_a(0) = a$, choose $s \in J_a$ and let $g_a(s) = b \in U$. For t such that $s + t \in J_a$ define h(t) = g(s + t); h is defined on the interval $\{t : s + t \in J_a\}$. As in (1) h is a solution with h(0) = b. Let g_b be the solution on the maximal interval J_b with $g_b(0) = b$. By (2) $g_b(t) = h(t)$ on the intersection of their intervals of definition. Then $g_a(s + t) = g_b(t)$ where $b = g_s(a)$. In terms of $g : \Omega \longrightarrow U$ we have g(t + s, a) = g(t, g(s, a)).

(5) The function $\varphi_t(x) = g(t, x)$ is called the flow for time t. For each $x \in U$, $\varphi_t(x)$ is defined for $t \in J_x$. By §13 for each $x \in U$ there is an interval $(-\delta, \delta)$ and a neighborhood N_x of x such that $y \in N_x \Rightarrow (-\delta, \delta) \subset J_y$. For all $x \in U$, $\varphi_0(x) = x$. The result of (4) restated in terms of φ and with x playing the role of a is:

$$\varphi_{t+s}(x) = \varphi_t \circ \varphi_s(x)$$
 for all x such that $s, t+s \in J_x$,

 φ is said to be a local one-parameter group. When φ is defined it takes a neighborhood of 0 in the abelian group \mathbb{R} to the set of self maps of U. We have not yet proved that φ_t is continuous. However, if $s \in J_x$, then $s + (-s) = 0 \in J_x$ and $\varphi_{-s} \circ \varphi_s(x) = x$. Therefore $\varphi_{-s} = \varphi_s^{-1}$, so φ_s is a bijection. The associative law is automatic for maps under composition, hence, except for the problem of where these maps are defined, they form an group and, for small $t, t \mapsto \varphi_t$ is a homomorphism—hence a *local* group.

(6) We next show that $\varphi_t(x) = g(t, x)$ is a continuous function of x.

LEMMA 1. Given $g: J \longrightarrow U$ and $[0, t_1] \subset J$ there is an open set $V \subset \overline{V} \subset U$ with \overline{V} compact and a c > 0 such that for any $s \in [0, t_1], \overline{B_{2c}(g(s))} \subset V$.

PROOF. Since U is open, for each $s \in [0, t_1]$ there is a $c_s > 0$ with $\overline{B_{3c_s}(g(s))} \subset U$. The set of smaller, open balls, $\{B_{c_s}(g(s)) : s \in [0, t_1]\}$ covers $g([0, t_1])$. Since $g([0, t_1])$ is compact, a finite subset of these balls covers $g([0, t_1])$, say the balls corresponding to s in the finite set $\{s_1, \ldots, s_m\} \subset [0, t_1]$. Let

$$c_i = c_{s_i}, \quad c = \min\{c_i : 1 \le i \le m\}, \quad \text{and} \quad V = \bigcup_{i=1}^m B_{3c_i}(g(s_i))$$

If $|x - g(s)| \le 2c$ there is an *i* with $|g(s) - g(s_i)| < c_i$ hence $|x - g(s_i)| < 3c_i$. Therefore $x \in V$.

LEMMA 2. Let $\nu : [0, t_1] \longrightarrow \mathbb{R}$ be continuous, $t_1 > 0$, and $\nu(t) \ge 0$. If there is an $L \ge 0$ such that

$$\nu(t) \le \nu(0) + \int_0^t L\nu(s) \, ds \quad \text{for} \quad 0 \le t \le t_1$$

Then $\nu(t) \leq \nu(0)e^{Lt}$ on $[0, t_1]$.

PROOF. First assume $C = \nu(0) > 0$. Set

$$\mu(t) = C + \int_0^t L\nu(s) \, ds.$$

Then $\nu(t) \leq \mu(t)$, $0 < \mu(t)$, and $\mu(0) = C$, hence:

$$\frac{\mu'(t)}{\mu(t)} = \frac{L\nu(t)}{\mu(t)} \le L,$$
$$\int_0^t \frac{\mu'(s)}{\mu(s)} ds \le \int_0^t L \, ds = Lt,$$
$$\log \mu(t) \le \log \mu(0) + Lt,$$
$$\mu(t) \le Ce^{Lt}.$$

The Lemma also holds for C = 0 because it holds for arbitrarily small C > 0.

PROPOSITION. Let $a \in U$ and $f: U \longrightarrow \mathbb{R}^n$ be C^1 . Let $g_a: J_a \longrightarrow U$ be a solution to §13(2') with initial value a on the maximal interval J_a . Let $[0, t_1] \subset J_a$. Then there exists $\rho > 0$ such that φ_t is defined and is Lipschitz continuous on $\overline{B_{\rho}(a)}$ for $t \in [0, t_1]$. Further, $\Omega = \{(t, x) \in \mathbb{R} \times U : t \in J_x\}$ is open and $g: \Omega \longrightarrow U$ is continuous.

PROOF. Let c > 0 and $V \subset U$ with $\overline{B_{2c}(g(s))} \subset V$ for $s \in [0, t_1]$ be as constructed in Lemma 1. Let $|f(x)| \leq k$ and $||Df(x)|| \leq L$ for $x \in \overline{V}$ as in Theorem §13. Choose $\rho > 0$ such that $\rho e^{Lt_1} \leq 2c$. Let $x \in \overline{B_{\rho}(a)}$ and $g_x : J_x \longrightarrow U$ be the maximal solution. Set $\nu(t) = |g_a(t) - g_x(t)|$ on $[0, t_1] \cap J_x$. Then

$$\nu(t) - \nu(0) = \int_0^t f(g_a(s)) - f(g_x(s)) \, ds \le \int_0^t L\nu(s) \, dt$$

so, by Lemma 2, $\nu(t) \leq \rho e^{Lt} \leq \rho e^{Lt_1} \leq 2c$, hence $g_x(t) \in V$.

If $t_1 \notin J_x$, let $t^* = \sup J_x \leq t_1$. Then $b = g_x(t^*) \in V$. By (2) the solution $g_b(t)$ is defined in a neighborhood of 0 and can be used to extend $g_x(t)$ to a neighborhood of t^* . This contradicts $t^* = \sup J_x \leq t_1$ and hence $t_1 \in J_x$. Hence for all $x \in \overline{B_\rho(a)}$, $[0, t_1] \subset J_x$.

Now, given $x, y \in \overline{B_{\rho}(a)}$, we have g_x and g_y defined on $[0, t_1]$. Let $\nu(t) = |g_x(t) - g_y(t)|$. Again $|g_x(t) - g_y(t)| \le |x - y|e^{Lt}$, so φ_t is Lipschitz on $\overline{B_{\rho}(a)}$ for $t \in [0, t_1]$.

Finally, for any $(t, a) \in \Omega$, take $t_1 > t$ with $t_1 \in J_a$ and let $s < t_1$. Then

$$|g_a(s) - g_x(t)| \le |g_a(s) - g_x(s)| + |g_x(s) - g_x(t)| \le e^{Lt_1}|a - x| + k|s - t|$$

so $g: \Omega \longrightarrow U$ is continuous at every point Ω ,

The proof also shows for $x \in B_{\rho}(a)$, $J_a \subset J_x$ from which it follows that Ω is open.