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Differentiable Manifolds—Vector Calculus Background

John Wood

Some sources and inspiration for this treatment are the advanced calculus or

analysis books by Dieudonné, Loomis & Sternberg, and Spivak, and notes and

books by Milnor.

1. The derivative

Definition. Let U ⊂ Rm be an open set, a ∈ U , and f : U −→ Rn. The map f is

differentiable at a if there is a linear map λ ∈ Hom(Rm,Rn) with

lim
x→a

|f(x)− f(a)− λ(x− a)|
|x− a|

= 0.

Lemma. If there is such a λ it is unique.

Proof. Let λ and λ1 both satisfy the definition. Then

|(λ− λ1)(x− a)| ≤ |f(x)− f(a)− λ(x− a)|+ | − f(x) + f(a) + λ1(x− a)|

hence |(λ− λ1)(x− a)|/|x− a| → 0 as x→ a. For v 6= 0, letting x = a+ v ∈ U ,

|(λ− λ1)(v)|/|v| = |(λ− λ1)(tv)|/|tv| → 0 as t→ 0.

Therefore λ(v) = λ1(v).

When f is differentiable at a this unique linear map is denoted Df(a).

2. The case m = n = 1

Let f : R −→ R and assume f ′(a) exists. Then

|f(x)− f(a)− f ′(a)(x− a)|
|x− a|

=

∣∣∣∣f(x)− f(a)

x− a
− f ′(a)

∣∣∣∣ → 0 as x→ a

so Df(a)(v) = f ′(a)v. The 1× 1-matrix for the linear map Df(a) has entry f ′(a).

3. The case n = 1 of real-valued functions, partial derivatives

Proposition. If f : U −→ R is differentiable at a ∈ U ⊂ Rm, then the partial

derivatives of f exist at a and determine Df(a).
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Proof. Let e1, . . . , em be the standard orthonormal basis for Rm. Then

lim
t→0

∣∣∣∣f(a+ tei)− f(a)

t
−Df(a)(ei)

∣∣∣∣ = lim
t→0

|f(a+ tei)− f(a)−D(f)(a)(tei)|
|tei|

= 0,

hence the partial derivative with respect to the ith variable exists:

∂f

∂xi

(a) = Dif(a) = Df(a)(ei) = lim
t→0

f(a+ tei)− f(a)

t
.

If v =
∑

i viei, then Df(a)v =
∑

iDif(a)vi.

More generally, the directional derivative is defined by

Dvf(a) = lim
t→0

f(a+ tv)− f(a)

t
.

This limit may exist, in some or all directions, even if f is not differentiable at a. The

gradient of f at a is the vector grad f(a) =
∑

iDif(a)ei and, if f is differentiable at a,

Df(a)v = Dvf(a) = grad f(a) · v

For f to be differentiable at a it is necessary, but not sufficient, for the partial derivatives

to exist at a. It is even necessary, but not sufficient, for the directional derivative to exist at

a for all v and to define a linear function. A sufficient condition for f to be differentiable is

given by the following theorem, but this condition is not necessary.

Theorem. Let f : U −→ R, U open in Rm. Suppose the partial derivatives Dif are

each continuous at a ∈ U . Then f is differentiable at a and Df(a)v =
∑

iDif(a)vi.

Proof. Given ε > 0 there exists δ > 0 such that

|x− a| < δ ⇒ |Dif(x)−Dif(a)| < ε for all i.

Let ξi = (x1, . . . , xi, ai+1, . . . , am); ξ0 = a, ξm = x. Then |ξi − a| < δ and

f(x)− f(a) =
m∑

i=0

f(ξi)− f(ξi−1).

Let ϕi(t) = f(ξi−1 + tei). Then

f(ξi)− f(ξi−1) = ϕi(xi − ai)− ϕi(0) = ϕ′(ti)(xi − ai) = Dif(ξi−1 + tiei)(xi − ai)

for some ti with 0 < ti < xi − ai, by the mean value theorem in one variable. Now∣∣∣f(x)− f(a)−
∑

Dif(a)(xi − ai)
∣∣∣ ≤ ∑

|f(ξi)− f(ξi−1)−Dif(a)(xi − ai)|

≤
∑

|f(ξi)− f(ξi−1)−Dif(ξi−1 + tiei)(xi− ai)|+
∑

|{Dif(ξi−1 + tiei)−Dif(a)}(xi− ai)|

≤ 0 + nε|x− a|.

Hence
|f(x)− f(a)− λ(x− a)|

|x− a|
→ 0 as x→ a where λ is the linear map defined by λ(v) =∑

Dif(a)vi. Therefore f is differentiable at a.
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4. The derivative of linear and bilinear maps

Lemma. If f is a linear map then Df(a) = f .

Proof. Since f is linear, f(x)− f(a)− f(x− a) = 0.

Lemma. If U, V,W are vector spaces and β : U × V −→ W is bilinear, then

Dβ(a, b)(u, v) = β(a, v) + β(u, b).

Proof. Note that the map `(a, b) defined by `(a, b)(u, v) = β(a, v) + β(u, b) is linear

from U × V −→ W and

β(a+ u, b+ v)− β(a, b)− `(a, b)(u, v) = β(u, v).

The norm |(u, v)| =
√
|u|2 + |v|2, and |u||v| ≤ max{|u|2, |v|2} ≤ |u|2 + |v|2, hence

β(u, v) = |u||v|β(u/|u|, v/|v|) ≤ |(u, v)|2β(u/|u|, v/|v|), for u 6= 0, v 6= 0.

Therefore |β(u, v)|/|(u, v)| → 0 as (u, v) → (0, 0).

Examples of bilinear maps β : R` × Rm −→ Rn.

` = m = n = 1, β(r, s) = rs

` = 1, m = n, β(r, u) = ru,

` = m, n = 1, β(u, v) = u · v,
` = m = n = 3, β(u, v) = u× v.

5. A norm on Hom(Rm,Rn)

Let e1, . . . , em be the standard orthonormal basis for Rm and e1, . . . , en be the standard

orthonormal basis for Rn. Let x =
∑

i xiei ∈ Rm, so xi = x · ei. Let ` ∈ Hom(Rm,Rn) and

set `ji = `(ei) · ej. Then `(x) =
∑

i xi`(ei) =
∑

j

∑
i `

j
ixiej.

Proposition. If |`ji | ≤ k for all i, j, then |`(x)| ≤
√
mnk|x|.

Proof. By Cauchy’s inequality, |
∑

i `
j
ixi| ≤ {

∑
i(`

j
i )

2}1/2|x| ≤
√
mk|x|. Then

|`(x)| =
{∑

j

(∑
i

`jixi

)2}1/2

≤
√
mnk|x|.

The continuous real-valued function |`(x)| is bounded on the compact unit sphere,

{x : |x| = 1} ⊂ Rm, and attains its bound.

Definition. For a linear map `, define ‖`‖ = sup{|`(x)| : |x| = 1}.
Corollary. (i) |`(x)| ≤ ‖`‖ |x| and (ii) ‖`‖ ≤

√
mnk.
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6. Lipschitz continuity of differentiable functions

Proposition. If f : U −→ Rn where U is open in Rm and f is differentiable at a, then

there exist δ > 0 and k > 0 such that |x− a| < δ ⇒ |f(x)− f(a)| ≤ k|x− a|.
Proof. There is a linear map λ such that the function ϕ(x) = f(x) − f(a) − λ(x − a)

satisfies |ϕ(x)|/|x− a| → 0 as x → a. Therefore there is a δ > 0 such that |ϕ(x)| ≤ |x− a|
for |x − a| < δ. Then |f(x) − f(a)| = |λ(x − a) + ϕ(x)| ≤ (‖λ‖ + 1)|x − a| for |x − a| < δ.

Take k = ‖λ‖+ 1.

The conclusion of the Proposition is called Lipschitz continuity at a; it implies that f is

continuous at a.

7. The chain rule

Theorem. If a ∈ U ⊂ Rm, b ∈ V ⊂ Rn, f : U −→ V , f(a) = b, g : V −→ Rp, f is

differentiable at a, and g is differentiable at b; then g ◦ f is differentiable at a and

D(g ◦ f)(a) = Dg(b) ◦Df(a).

Proof. (See Spivak, p. 19.) Let λ = Df(a), µ = Dg(b) and set

ϕ(x) = f(x)− f(a)− λ(x− a)

ψ(y) = g(y)− g(b)− µ(y − b)

ρ(x) = g(f(x))− g(b)− µ(λ(x− a)).

We have

|ϕ(x)|/|x− a| → 0 as x→ a,(i)

|ψ(y)|/|y − b| → 0 as y → b.(ii)

From the definitions,

ρ(x) = g(f(x))− g(b)− µ(f(x)− f(a)− ϕ(x))

= [g(f(x))− g(b)− µ(f(x)− f(a))] + µ(ϕ(x))

= ψ(f(x)) + µ(ϕ(x)).

First |µ(ϕ(x))| ≤ ‖µ‖|ϕ(x)|, so by (i) |µ(ϕ(x))|/|x− a| → 0 as x→ a.

Second, by Proposition 6, there are k > 0, δ > 0 such that

|x− a| < δ ⇒ |f(x)− f(a)| ≤ k|x− a|.

By (ii), for any ε > 0 there is a δ1 > 0 such that

|f(x)− f(a)| < δ1 ⇒ |ψ(f(x))| < ε|f(x)− f(a)|.

So for 0 6= |x− a| < min{δ, δ1/k} we have |ψ(f(x))|/|x− a| < εk. Hence

|ρ(x)|/|x− a| → 0 as x→ a which gives the result.
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8. Sample computations

(a) Let f(x) = x · x = β ◦∆(x) where ∆(x) = (x, x) is linear and β(x, y) = x · y. Then

Df(a)(u) = Dβ(∆(a)) ◦D∆(a)(u) = Dβ(a, a)(u, u) = β(a, u) + β(u, a).

Since β is symmetric, Df(a)(u) = 2a · u and grad f(a) = 2a.

If g(x) = |x− p| =
√
f(x− p),

Dg(a)(u) =
1

2
√
f(a− p)

Df(a− p)(u) =
a− p

|a− p|
· u for a 6= p.

So, for x 6= p, grad g(x) =
x− p

|x− p|
, the unit vector at x pointing away from p.

(b) The derivative of a sum.

Lemma. Let f and g : U −→ Rn be differentiable at a ∈ U ⊂ Rm.

Define (f, g) : U −→ Rn × Rn by (f, g)(x) = (f(x), g(x)). Then

D(f, g)(a) = (Df,Dg)(a).

Proof. Let λ = Df(a), ϕ(x) = f(x) − f(a) − λ(x − a), µ = Dg(a), and ψ(x) =

g(x)− g(a)− µ(x− a). Then (ϕ, ψ)(x) = (f, g)(x)− (f, g)(a)− (λ, µ)(x− a) and

|(ϕ, ψ)(x)|
|x− a|

=

√
|ϕ(x)|2
|x− a|2

+
|ψ(x)|2
|x− a|2

→ 0 as x→ a.

Define the linear map s : Rn × Rn −→ Rn by s(y1, y2) = y1 + y2. Now (f + g)(x) =

f(x) + g(x) = s ◦ (f, g)(x). Hence the derivative of a sum is the sum of the derivatives:

D(f + g) = Df +Dg.

(c) The set M(n) of n × n-matrices is an n2-dimensional vector space under addition

and scalar multiplication and a ring under matrix multiplication. Let β(A,B) = AB and

t(A) = At be the transpose. The maps t and (I, t) are linear as maps of vector spaces

where I is the identity linear map. On products t satisfies t(AB) = t(B)t(A). Define

f : M(n) −→M(n) by f(A) = AAt, so f = β ◦ (I, t)

Let O(n) ⊂ M(n) be the orthogonal group, O(n) = {A : f(A) = I}. Thus A ∈ O(n)

means A is invertible and At = A−1.

Exercise. This is the computational part of a proof that O(n) is a manifold of dimension

n(n− a)/2. Show:

f(A) is symmetric, f(A) = t(f(A)).

Df(A)(M) = AM t +MAt.

If A ∈ O(n), then Df(A) maps M(n) onto the vector space of symmetric matrices.

[Hint: Given a symmetric S, take M = 1
2
SA.]
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9. Differentiability of maps to Rn

The results of §3 extend to maps to Rn.

Proposition. If f : U −→ Rn is differentiable at a ∈ U then the partial derivatives of

the components Difj exist at a and are the entries in the matrix representing Df(a). If all

the partials are continuous at a then f is differentiable at a.

Proof. (See Spivak, p. 21, and for notation §§3, 5.) Define the linear projection map

πj : Rn −→ R by πj(y) = y · ej. The jth component of f is fj = πj ◦ f , f(x) =
∑

j fj(x)ej

and

Dfj(a) = Dπj(f(a)) ◦Df(a) = πj ◦Df(a).

The partial derivatives
∂fj

∂xi
(a) = Difj(a) = Dfj(a)(ei) = Df(a)(ei) · ej.

If u =
∑

i uiei, then Df(a)u =
∑

j

∑
iDifj(a)uiej.

Introducing the Jacobian matrix we write Df(a)u as a matrix product:

Df(a)u =

Df1(a)u
...

Dfn(a)u

 =

D1f1(a) . . . Dmf1(a)
...

...

D1fn(a) . . . Dmfn(a)


u1

...

um

 .

If all the partials are continuous at a, by §3 each Dif(a) exists and by §8(b) Df(a) exists.

When m = 1, f(t) is a path in Rn and we define the velocity vector f ′(t) = Df(t)(e1).

10. Mean value theorems

Proposition. If U ⊂ Rm is convex, f : U −→ R is differentiable, and a, x ∈ U , then

f(x)− f(a) = Df(ζ)(x− a) where ζ = a+ t0(x− a) for some 0 < t0 < 1.

Proof. Let ϕ(t) = f(a+ t(x− a)). By the chain rule ϕ′(t) = Df(a+ t(x− a))(x− a).

By the one-variable mean value theorem

f(x)− f(a) = ϕ(1)− ϕ(0) = ϕ′(t0) = Df(ζ)(x− a)

where ζ = a+ t0(x− a) for some 0 < t0 < 1.

Corollary. If ‖Df(ζ)‖ ≤ k for any ζ ∈ U , then |f(x)− f(a)| ≤ k|x− a|.
This follows from the Proposition and Corollary §5(i).

The Proposition is not true in general for maps to Rn, n > 1. For example let

f : R −→ R3 describe a helix about the vertical axis and take x vertically above a. Then

x − a points straight up while Df(t)(u) never does. The following Theorem extends the

result of the Corollary to maps to Rn. It says f is Lipschitz continuous on U .

Theorem. If U ⊂ Rm is convex, f : U −→ Rn is differentiable on U , a, x ∈ U , and∣∣∣∣∂fj

∂xi

∣∣∣∣ ≤ k√
mn

on U for all i, j, then |f(x)− f(a)| ≤ k|x− a|.

Proof. By the Proposition fj(x) − fj(a) = Dfj(ζj)(x − a). By §5 applied to the real-

valued function fj, ‖Dfj(ζj)‖ ≤ k√
n
. By the Corollary, |fj(x) − fj(a)| ≤ k√

n
|x − a|. Then

|f(x)− f(a)| ≤ k|x− a| as in §5.
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10a. Alternate proof of the mean value theorem

In §10 we used the one-variable mean value theorem. The following proof gives both

the Corollary and Theorem above without assuming the one-variable theorem and does not

depend on bounds on the partial derivatives. See Loomis & Sternberg, p. 148, or Dieudonné,

p. 153.

Theorem. Let f : [a, b] −→ Rn be continuous on [a, b] and differentiable on (a, b).

Assume |f ′(t)| ≤ k for a < t < b, where (see §9) f ′(t) = D1f(t)(e1). Then

|f(b)− f(a)| ≤ k(b− a).

Proof. Fix ε > 0. Let A = {x ∈ [a, b] : |f(x)− f(a)| ≤ (k + ε)(x− a) + ε}.
(1) Since f is continuous at a there is a δ > 0 such that

|f(x)− f(a)| ≤ ε for a ≤ x < a+ δ

so x ∈ A for some x > a.

(2) Set ` = supA. Either ` ∈ A or for any δ > 0 there is a t with `− δ < t ≤ ` and t ∈ A.

But then, by the continuity of f at `, ` ∈ A.

(3) If ` < b then f ′(`) exists and |f ′(`)| ≤ k. Hence there is a δ > 0 such that

` ≤ t < `+ δ ⇒ |f(t)− f(`)| ≤ (k + ε)(t− `).

Then

|f(t)− f(a)| ≤ |f(t)− f(`)|+ |f(`)− f(a)|
≤ (k + ε)(t− `) + (k + ε)(`− a) + ε

= (k + ε)(t− a) + ε.

and hence t ∈ A for some t > `, a contradiction. Therefore ` = b and, as in (2), b ∈ A.

Since ε > 0 is arbitrary, |f(b)− f(a)| ≤ k(b− a).

Corollary. Let U ⊂ Rm be convex, a, b ∈ U , f : U −→ Rn be differentiable, and

assume ‖Df(x)‖ ≤ k for x ∈ U . Then

|f(b)− f(a)| ≤ k|b− a|.

Proof. Define c : R −→ Rn by c(t) = tb + (1 − t)a. Then c′(t) = b − a and f ◦ c(1) −
f ◦ c(0) = f(b) − f(a). For 0 ≤ t ≤ 1, c(t) ∈ U and D(f ◦ c)(t)(e1) = Df(c(t))(b − a), so

|(f ◦ c)′(t)| ≤ ‖Df(c(t))‖ |b− a| ≤ k|b− a|. The result follows from the Theorem.
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11. The inverse function theorem

Definition. A function f : U −→ Rn is said to be of class C1 if the partial derivatives

exist and are continuous everywhere on U , f is of class Ck if the partial derivatives of orders

k and less are continuous, and f is C∞ if it is Ck for all positive integers k.

Theorem. Given a ∈ U ⊂ Rn, U open, and a C1 function f : U −→ Rn with f(a) = b

such that Df(a) is invertible, there are neighborhoods V of a, V ⊂ U , and W of b and a

unique C1 map g : W −→ V such that the restriction f |V and g are inverses. The derivative

of g is Dg(y) = Df(g(y))−1. Further, if f is Ck (1 ≤ k ≤ ∞) then g is also.

Plan. The map g will need to satisfy g(b) = a. Let g0(y) = a be a first approximation to

g. Since Df(a) is invertible, the linear approximation to f , y = f(x) ∼ f(a)+Df(a)(x−a),
can be solved for x. Let g1(y) be this solution: g1(y) = a +Df(a)−1(y − b). We will define

iteratively a sequence of functions {gn} converging to the local inverse of f .

Proof. (1) Define F (x, y) = x +Df(a)−1(y − f(x)) on U × Rn. Let D1F (a, b) denote

the derivative of the function x 7→ F (x, b) at x = a. Then

F (a, b) = a+Df(a)−1(b− f(a)) = a,

D1F (x, y) = I −Df(a)−1 ◦Df(x), and

D1F (a, y) = I −Df(a)−1 ◦Df(a) = 0.

D1F (x, y) does not depend on y and is the zero map for x = a. Hence for x near a, Df(x)

is invertible and the entries in matrix D1F (x, y) are small. Choose k > 0 so that:

Bk(a) ⊂ U and Df(x) is invertible for x ∈ Bk(a), and(i)

‖D1F (x, y)‖ ≤ 1

2
for x ∈ Bk(a). Then

x, ξ ∈ Bk(a) ⇒ |F (x, y)− F (ξ, y)| ≤ 1

2
|x− ξ|(ii)

using the mean value theorem for the function x 7→ F (x, y). Since

|F (a, y)− a| = |Df(a)−1(y − b)| ≤ ‖Df(a)−1‖ |y − b|,

if we set δ =
k

2‖Df(a)−1‖
we have:

(iii) y ∈ Bδ(b) ⇒ F (a, y) ∈ Bk/2(a)

and the same implication for the closed balls.

(2) Let F be the set of continuous functions h : Bδ(b) −→ Bk(a) such that h(b) = a. For

h ∈ F define Th(y) = F (h(y), y). Then Th(b) = F (a, b) = a. For y ∈ Bδ(b),

|Th(y)− a| = |F (h(y), y)− a|
≤ |F (h(y), y)− F (a, y)|+ |F (a, y)− a|

≤ 1

2
|h(y)− a|+ k

2
≤ k by (ii) and (iii).
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Hence Th(y) ∈ Bk(a) so Th ∈ F and T : F −→ F . The same argument, using the open

version of (iii), shows y ∈ Bδ(b) ⇒ Tγ(y) ∈ Bk(a).

(3) T has a fixed point.

Define a sequence of functions in F by g0(y) = a and gn+1(y) = Tgn(y) = F (gn(y), y).

Note that g1 is as defined in the plan. To shorten notation, temporarily fix y and set

xn = gn(y). We have x0 = a, x1 = F (a, y), and by (iii) |x1 − x0| ≤ k/2.

|xn+1 − xn| = |F (xn, y)− F (xn−1, y)| ≤
1

2
|xn − xn−1| ≤ · · · ≤ 1

2n
|x1 − x0| ≤

k

2n+1
,

|xm − xn| ≤ |xm − xm−1|+ · · ·+ |xn+1 − xn| ≤
(

1

2m
+ · · ·+ 1

2n+1

)
k <

k

2n
,

for n < m. Therefore {xn} is a Cauchy sequence.

Let x = lim xn. Since each xn ∈ Bk(a), x ∈ Bk(a). Define the map

g : Bδ(b) −→ Bk(a) by g(y) = x = lim
n→∞

gn(y).

Since |g(y)−gn(y)| ≤ k

2n
, the sequence {gn} converges uniformly on Bδ(b), so g is continuous

and g ∈ F . Since F is continuous, Tg = g:

g(y) = lim gn(y) = limF (gn(y), y) = F (lim gn(y), y) = F (g(y), y) = Tg(y).

(4) g is a unique local inverse of f .

Set W = Bδ(b) and V = Bk(a) ∩ f−1(W ) ⊂ U . V and W are neighborhoods of a

and b respectively. If y ∈ W , by (3) Tg(y) = g(y) and by the definition of Tg, g(y) =

g(y) +Df(a)−1(y − f(g(y))). Hence f(g(y)) = y. Then by (2), g(y) ∈ V , g : W −→ V , and

f ◦ g = 1W .

If x, ξ ∈ V and f(x) = f(ξ) = y ∈ W , then F (x, y) = x, and F (ξ, y) = ξ. By (ii)

|x− ξ| ≤ 1
2
|x− ξ|, hence x = ξ. Therefore f is one-to-one on V . If x ∈ V , let y = f(x) ∈ W

and let ξ = g(f(x)) ∈ V . Now f(ξ) = f(g ◦ f(x)) = f ◦ g(f(x)) = f(x). Therefore x = ξ,

g(f(x)) = x, and g ◦ f = 1V .

Let h be another inverse of f with h(b) = a. Let both h and g be defined on W1 ⊂ W ,

and set V1 = Bk(a) ∩ f−1(W1) ⊂ V . For y ∈ W1, let x = g(y), and ξ = h(y). Since g and h

are right inverses of f , f(x) = f(ξ). Since f is 1-1, x = ξ and hence g = h on W1.

(5) g is Lipschitz continuous.

Let g(y) = x, g(η) = ξ for y, η ∈ Bδ(b). Since g = Tg, x = F (x, y) and ξ = F (ξ, η).

Then

|x− ξ| = |F (x, y)− F (ξ, η)|
≤ |F (x, y)− F (ξ, y)|+ |F (ξ, y)− F (ξ, η)|

≤ 1

2
|x− ξ|+ |Df(a)−1(y − η)|

Therefore 1
2
|x− ξ| ≤ ‖Df(a)−1‖ |y − η| and hence |g(y)− g(η)| ≤ 2‖Df(a)−1‖ |y − η|.
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(6) g is differentiable.

Since f is C1 and, by (i) Df(ξ) is invertible for ξ ∈ Bk(a), we can choose κ so that

‖Df(ξ)−1‖ ≤ κ for ξ ∈ Bk(a).

Let

ϕ(x) = f(x)− f(ξ)−Df(ξ)(x− ξ).

Then |ϕ(x)|/|x− ξ| → 0 as x→ ξ, so for any ε > 0, |ϕ(x)| ≤ ε|x− ξ| for x near ξ.

Let

ψ(y) = g(y)− g(η)−Df(ξ)−1(y − η)

= g(y)− g(η)−Df(ξ)−1{ϕ(x) +Df(ξ)(x− ξ)}
= g(y)− g(η)− (x− ξ)−Df(ξ)−1(ϕ(x))

= −Df(ξ)−1(ϕ(x)).

Then

|ψ(y)| ≤ κ|ϕ(x)| ≤ κε|x− ξ| for x near ξ,

≤ 2κ2ε|y − η| for y near η by (5).

Hence |ψ(y)|/|y − η| → 0 as y → η. Therefore g is differentiable at η and Dg(η) =

Df(g(η))−1.

(7) If f is Ck so is g.

We can write Dg as the composition Dg = i◦Df ◦g where i(A) = A−1 is matrix inversion.

Bδ(b)
g−→U

Df−→G`(n)
i−→G`(n),

where g is continuous, f is Ck so that Df is Ck−1, and i is C∞ by Cramer’s rule. Since g

is continuous, the composition, Dg is continuous, so g is C1. Now if g is Cj for any j < k,

then similarly, Dg is Cj, and g is Cj+1. By induction g is Ck, for 1 ≤ k ≤ ∞.

This completes the proof of the inverse function theorem.

12. Applications of the inverse function theorem

Implicit Function Theorem. Let (a, b) ∈ Rk × Rn. Let f be a C1 function from a

neighborhood of (a, b) to Rn with f(a, b) = c. Let D2f(a, b), the derivative of the function

y 7→ f(a, y), be invertible.

Then there are neighborhoods a ∈ U ⊂ Rk, (a, b) ∈ V ⊂ Rk × Rn, and c ∈ W ⊂ Rn and

a C1 function g : U −→ Rn such that f(V ) ⊂ W and

(x, y) ∈ V and f(x, y) = c ⇐⇒ x ∈ U and y = g(x),

Dg(x) = −D2f(x, g(x))−1 ◦D1f(x, g(x)).
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Further there is a C1 diffeomorphism G : U ×W −→ V such that, defining

gw(x) = π2 ◦G(x,w), we have f(x, y) = w ⇐⇒ y = gw(x).

The function ϕw : U −→ V define by ϕw(x) = G(x,w) parameterizes the level surface

f−1(w) = {(x, y) ∈ V : f(x, y) = w}.

Proof. Define F on the domain of f with values in Rk × Rn by F (x, y) = (x, f(x, y)).

Then F (a, b) = (a, c) and the Jacobian matrix of DF (x, y) is(
I 0

L M

)
where

L = D1f =
∂(f1, . . . , fn)

∂(x1, . . . , xk)
and M = D2f =

∂(f1, . . . , fn)

∂(y1, . . . , yn)
.

Since M(a, b) is invertible, DF (a, b) is invertible.

The inverse function theorem gives a map G which we may assume is defined on a product

neighborhood U ×W ⊂ Rk×Rn of (a, c). Let V = G(U ×W ). Then F |V and G|U ×W are

inverses. If (x, y) ∈ V and F (x, y) = (x, f(x, y)) = (x,w) ∈ U ×W , then G(x,w) = (x, y)

and f(x, y) = w. Define gw(x) = π2 ◦G(x,w) = y. Then f(x, gw(x)) = f(x, y) = w. For the

case f(x, y) = c, take g = gc.

Since F has a C1 inverse on V , it follows that DF is invertible on V and, from the

form of its Jacobian matrix, that the matrix M(x, y) of D2f(x, y) is also invertible. As a

composition, gw(x) is differentiable. Differentiating f(x, gw(x)) = w with respect to x using

the chain rule we get

D1f(x, gw(x)) +D2f(x, gw(x)) ◦Dgw(x) = 0, hence

Dgw(x) = −D2f(x, gw(x))−1 ◦D1f(x, gw(x)).

Notice that V is not a product, the slice {y ∈ Rn : (x, y) ∈ V } depends on x.

Proposition 1. Let p ∈ Rm and let f be a C1 map on a neighborhood of p to Rn, m ≥ n,

with Df(p) surjective. Then there is a neighborhood p ∈ V ⊂ Rm and a diffeomorphism

h : U −→ V , U open in Rm, such that f ◦ h(x1, . . . , xm) = (xm−n+1, . . . , xm) or f ◦ h = π2.

Proof. Let m = k + n. Since Df(p) is surjective we can reorder the variables, i.e.

the coordinates of Rm, x1, . . . , xm, so that the Jacobian matrix of derivatives with respect

to the last n variables is invertible. Then the implicit function theorem applies: the map

F (x) = (x1, . . . , xk, f(x)) restricted to a neighborhood V of a has an inverse h : U −→ V .

Then F ◦ h(z) = z and f ◦ h = π2 ◦ F ◦ h = π2.
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Proposition 2. Let a ∈ U ⊂ Rm be open and f : U −→ Rn be a C1 map, m ≤ n,

with Df(a) injective. Then there are neighborhoods a ∈ U1 ⊂ U , V ⊂ Rn with f(U1) ⊂ V ,

and b ∈ W ⊂ Rn and a diffeomorphism h : V −→ W such that h ◦ f(x1, . . . , xm) =

(x1, . . . , xm, 0, . . . , 0).

Proof. The Jacobian matrix of Df(a) has an invertible m×m submatrix A. We may

permute the coordinate functions, f1, . . . , fn, i.e. the coordinates in the range Rn, so that

the first m rows of the Jacobian of f are an invertible matrix A.

Define F : U × Rn−m −→ Rn by

F (x1, . . . , xn) = f(x1, . . . , xm) + (0, . . . , 0, xm+1, . . . , xn)

Then F (a, 0) = f(a) + 0 = b and

DF (a, 0) =

(
A 0

B I

)
which is invertible. By the inverse function theorem there are neighborhoods (a, 0) ∈ V ⊂
U × Rn−m and b ∈ W ⊂ Rn and a map h : W −→ V inverse to F |V : V −→ W .

Set i(x1, . . . , xm) = (x1, . . . , xm, 0, . . . , 0), so F ◦ i = f . Let U1 = i−1(V ). On U1

h ◦ f = h ◦ F ◦ i = i.

Think of (h,W ) as a new coordinate chart for Rn with respect to which the map f has

the simplest possible form: h ◦ f = i.

It follows that f |U1 is a homeomorphism onto its image in the induced topology. That

is O is open in U1 if and only if f(O) is the intersection with f(U1) of an open set in Rn.

13. Differential equations

For a continuous function g : J −→ Rn on an interval J ⊂ R with t0, t ∈ J , we introduce

the integral

G(t) =

∫ t

t0

g(s) ds

defined componentwise by Gi(t) =
∫ t

t0
gi(s) ds. G is C1 and G′(t) = g(t) by the fundamental

theorem of calculus. If |g(t)| ≤ k on I, then

(1)

∣∣∣∣∫ t

t0

g(s) ds

∣∣∣∣ = |G(t)−G(t0)| ≤ k|t− t0|

by the mean value theorem, §10a. We will also need the following stronger result.

Lemma.

∣∣∣∣∫ t

t0

g(s) ds

∣∣∣∣ ≤ ∫ t

t0

|g(s)| ds.
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Proof. Since g is continuous, |g| is integrable. Let P = {t0, . . . , tn} be a partition of

[t0, t] and let Mi = sup{|g(s)| : ti−1 ≤ s ≤ ti}. Then, by (1),∣∣∣∣∫ t

t0

g(s) ds

∣∣∣∣ ≤ n∑
i=1

∣∣∣∣∫ ti

ti−1

g(s) ds

∣∣∣∣ ≤ n∑
i=1

Mi(ti − ti−1) = U(|g|,P),

hence the left hand term is a lower bound for the set of all upper sums for |g|.
If f : U −→ Rn is continuous, 0 ∈ J , and g : J −→ U is differentiable, we say x = g(t) is

a solution to the differential equation x′ = f(x) with initial condition x0 if

(2′) g′(t) = f(g(t)) and g(0) = x0.

By the fundamental theorem of calculus, it is equivalent that g be continuous and satisfy

the integral equation

(2) g(t) = x0 +

∫ t

0

f(g(s)) ds.

For a continuous function g : J −→ U define a map T which takes g to a new function

Tg defined by

Tg(t) = x0 +

∫ t

0

f(g(s) ds.

Then g is a solution to (2) if and only if Tg = g. The plan is to use T to construct a sequence

of functions which converges uniformly to a solution to (2). This method is known as Picard

iteration.

Theorem. Let f : U −→ Rn be C1 and let a ∈ U . Then there is a δ > 0 and a unique

C1 function from the interval J = (−δ, δ) to U satisfying (2).

Further there exists c > 0 and g : J × Bc(a) −→ U such that the curve gx(t) = g(t, x) is

a solution to (2) with initial condition gx(0) = x.

Proof. Let a ∈ V ⊂ V ⊂ U with V open and V compact. Since f is C1, f and Df are

bounded on V . Let |f(x)| ≤ k and ‖Df(x)‖ ≤ L for x ∈ V . Choose δ > 0 such that

r = δL < 1 and B2δk(a) ⊂ V .(i)

Set c = δk. Let F be the set of continuous functions h : J −→ B2c(a) such that

if x = h(0), then x ∈ Bc(a) and h(J) ⊂ Bc(x).(ii)

For x ∈ Bc(a), set Fx = {h ∈ F : h(0) = x}. For h ∈ F define

(3) Th(t) = h(0) +

∫ t

0

f(h(s)) ds.
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Then, by (1),

|Th(t)− h(0)| =
∣∣∣∣∫ t

0

f(h(s)) ds

∣∣∣∣ ≤ |t|k ≤ δk = c,

therefore Th ∈ Fx and T : Fx −→ Fx.

For any continuous, bounded function g : J −→ Rn define the norm

‖g‖ = sup{|g(t)| : t ∈ J}.

Warning: for linear functions λ will still use the norm defined in §5.

If g and h are functions in F , then

‖g − h‖ = ‖h− g‖,
‖g − h‖ = 0 ⇐⇒ g = h,

‖h1 − h3‖ ≤ ‖h1 − h2‖+ ‖h2 − h3‖.

The third property is called the triangle inequality by analogy with the formula for distances

between points in the plane. To prove it notice that for any t ∈ J

|h1(t)− h3(t)| ≤ |h1(t)− h2(t)|+ |h2(t)− h3(t)| ≤ ‖h1 − h2‖+ ‖h2 − h3‖,

so the left hand side is bounded by the right hand side. These three properties make F a

metric space with the distance between g and h given by ‖g − h‖.
For f, g ∈ F and t, s ∈ J we have

|f(g(s))− f(h(s))| ≤ L|g(s)− h(s)| ≤ L‖g − h‖, by §10a(4) ∣∣∣∣∫ t

0

f(g(s))− f(h(s)) dt

∣∣∣∣ ≤ L‖g − h‖ |t| ≤ Lδ‖g − h‖. by (1)

If also g(0) = h(0), then

|Tg(t)− Th(t)| ≤ Lδ‖g − h‖ ≤ r‖g − h‖, by (i)

‖Tg − Th‖ ≤ r‖g − h‖.(5)

Since r < 1, T is called a contraction map; T moves points (functions) closer together.

We will prove that the sequence gn ∈ Fx defined inductively by

g0(t) = x and gn = Tgn−1

converges uniformly to a function g satisfying (3) with initial condition g(0) = x. First

g0 ∈ Fx, and hence gn ∈ Fx. Then (5) implies ‖g2 − g1‖ ≤ r‖g1 − g0‖ and inductively

‖gn − gn−1‖ ≤ rn−1‖g1 − g0‖.
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Therefore, with m < n,

‖gn − gm‖ ≤ ‖gn − gn−1‖+ · · ·+ ‖gm+1 − gm‖
≤ (rn−1 + · · ·+ rm)‖g1 − g0‖
≤ (rm + rm+1 + · · · )‖g1 − g0‖

≤ rm

1− r
‖g1 − g0‖.

Since rm → 0 as m → ∞, this shows the sequence gn is uniformly Cauchy and hence

converges uniformly to a continuous function g which lies in Fx.

We need to show that g is a fixed point of T . Since gn converges uniformly to g, it follows

from (4) that f(gn(t)) converges uniformly to f(g(t)). Then

(Tg)(t) = x+

∫ t

0

lim
n→∞

f(gn(s)) ds = lim
n→∞

{x+

∫ t

0

f(gn(s)) ds} = lim
n→∞

gn+1(t) = g(t).

Hence g is a solution to our differential equation on the interval J .

If h were another solution to (2) on an interval J1 ⊂ J with h(0) = g(0), then Th = h

and Tg = g on J1. Using the norm on J1, ‖g−h‖ = ‖Tg−Th‖ ≤ r‖g−h‖ and r < 1 imply

‖g − h‖ = 0 and hence g = h on J1.

Denote the constructed solution defined for t ∈ J and x ∈ Bc(a) by gx(t). By the

fundamental theorem of calculus gx(t) is differentiable in t and, since g′x(t) = f(gx(t)), gx is

C1. Set g(t, x) = gx(t).

14. Flows

The C1 function f : U −→ Rn is pictured as a vector field on U , that is, an assignment

to each x ∈ U of a vector ~vx = f(x) “based” at the point x. For any a ∈ U , a solution

g(t) : J −→ U is pictured as a point moving along a path so that at time t the moving point

is at g(t) and its velocity is g′(t) = f(g(t)). Each moving point that passes through a given

point x has the same velocity, f(x), at the time it is at x. This motion is called a steady

flow. If f depended on t and x, we would have a time-dependent flow.

In §13 we proved the existence, for any x ∈ U and for a short time depending on x, of a

unique flow C1 in t. In this section we will give some more global results on the flow for a

given f .

(1) Let g satisfy g′(s) = f(g(s)) for s ∈ J . Let s, s + t ∈ J and define h(t) = g(s + t).

Since

h′(t) = g′(s+ t) by the chain rule

= f(g(s+ t))

= f(h(t)),

h is a solution in an interval about 0 with h(0) = g(s).
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(2) Let gi(t) be a solution for t ∈ Ji, i = 1, 2, satisfying g1(0) = g2(0). Then g1(t) = g2(t)

for all t ∈ J1 ∩ J2.

Let J∗ = {t ∈ J1 ∩ J2 : g1(t) = g2(t)}. J∗ 6= ∅ since 0 ∈ J∗. We will show that J∗ is

both open and closed in J1 ∩ J2 and therefore J∗ = J1 ∩ J2. By the uniqueness result in §13,

there is a open neighborhood J0 ⊂ J∗ containing 0. If s ∈ J∗, by (1) there are solutions

hi(t) with hi(0) = gi(s). Since s ∈ J∗, h1(0) = h2(0), and by uniqueness h1(t) = h2(t) in

a neighborhood of 0. Hence g1 = g2 in a neighborhood of s and therefore J∗ is open. If

s ∈ J1 ∩ J2 but s /∈ J∗ then, since Rn is Hausdorff, there are disjoint neighborhoods Ui of

gi(s). Then s ∈ g−1
1 (U1) ∩ g−1

2 (U2), an open set in J1 ∩ J2 − J∗. Therefore J∗ is closed in

J1 ∩ J2. Since J1 ∩ J2 is connected, J∗ = J1 ∩ J2.

(3) A maximal solution. Under the hypotheses of (2), define a C1 map g : J1∪J2 −→ U

by

g(t) =

{
g1(t) if t ∈ J1

g2(t) if t ∈ J2.

This construction is just the union of the two functions g1 and g2 where a function is regarded

as its graph in the product R × U . For x ∈ U , let S be the set of all graphs of solutions

defined on intervals about 0 with initial point x and let gx be the union of the elements of

S. This gx is defined on the maximal interval Jx for a solution with initial point x. Let

Ω = {(t, x) ∈ R× U : t ∈ Jx}. Define g : Ω −→ U by g(t, x) = gx(t).

(4) If ga(t) is a solution defined on the maximal Ja with ga(0) = a, choose s ∈ Ja and

let ga(s) = b ∈ U . For t such that s + t ∈ Ja define h(t) = g(s + t); h is defined on the

interval {t : s + t ∈ Ja}. As in (1) h is a solution with h(0) = b. Let gb be the solution

on the maximal interval Jb with gb(0) = b. By (2) gb(t) = h(t) on the intersection of their

intervals of definition. Then ga(s + t) = gb(t) where b = gs(a). In terms of g : Ω −→ U we

have g(t+ s, a) = g(t, g(s, a)).

(5) The function ϕt(x) = g(t, x) is called the flow for time t. For each x ∈ U , ϕt(x) is

defined for t ∈ Jx. By §13 for each x ∈ U there is an interval (−δ, δ) and a neighborhood Nx

of x such that y ∈ Nx ⇒ (−δ, δ) ⊂ Jy. For all x ∈ U , ϕ0(x) = x. The result of (4) restated

in terms of ϕ and with x playing the role of a is:

ϕt+s(x) = ϕt ◦ ϕs(x) for all x such that s, t+ s ∈ Jx,

ϕ is said to be a local one-parameter group. When ϕ is defined it takes a neighborhood of

0 in the abelian group R to the set of self maps of U . We have not yet proved that ϕt is

continuous. However, if s ∈ Jx, then s + (−s) = 0 ∈ Jx and ϕ−s ◦ ϕs(x) = x. Therefore

ϕ−s = ϕ−1
s , so ϕs is a bijection. The associative law is automatic for maps under composition,

hence, except for the problem of where these maps are defined, they form an group and, for

small t, t 7→ ϕt is a homomorphism—hence a local group.

(6) We next show that ϕt(x) = g(t, x) is a continuous function of x.
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Lemma 1. Given g : J −→ U and [0, t1] ⊂ J there is an open set V ⊂ V ⊂ U with V

compact and a c > 0 such that for any s ∈ [0, t1], B2c(g(s)) ⊂ V .

Proof. Since U is open, for each s ∈ [0, t1] there is a cs > 0 with B3cs(g(s)) ⊂ U . The

set of smaller, open balls, {Bcs(g(s)) : s ∈ [0, t1]} covers g([0, t1]). Since g([0, t1]) is compact,

a finite subset of these balls covers g([0, t1]), say the balls corresponding to s in the finite set

{s1, . . . , sm} ⊂ [0, t1]. Let

ci = csi
, c = min{ci : 1 ≤ i ≤ m}, and V =

m⋃
i=1

B3ci
(g(si))

If |x − g(s)| ≤ 2c there is an i with |g(s) − g(si)| < ci hence |x − g(si)| < 3ci. Therefore

x ∈ V .

Lemma 2. Let ν : [0, t1] −→ R be continuous, t1 > 0, and ν(t) ≥ 0. If there is an L ≥ 0

such that

ν(t) ≤ ν(0) +

∫ t

0

Lν(s) ds for 0 ≤ t ≤ t1.

Then ν(t) ≤ ν(0)eLt on [0, t1].

Proof. First assume C = ν(0) > 0. Set

µ(t) = C +

∫ t

0

Lν(s) ds.

Then ν(t) ≤ µ(t), 0 < µ(t), and µ(0) = C, hence:

µ′(t)

µ(t)
=
Lν(t)

µ(t)
≤ L,∫ t

0

µ′(s)

µ(s)
ds ≤

∫ t

0

Lds = Lt,

log µ(t) ≤ log µ(0) + Lt,

µ(t) ≤ CeLt.

The Lemma also holds for C = 0 because it holds for arbitrarily small C > 0.

Proposition. Let a ∈ U and f : U −→ Rn be C1. Let ga : Ja −→ U be a solution to

§13(2′) with initial value a on the maximal interval Ja. Let [0, t1] ⊂ Ja. Then there exists

ρ > 0 such that ϕt is defined and is Lipschitz continuous on Bρ(a) for t ∈ [0, t1]. Further,

Ω = {(t, x) ∈ R× U : t ∈ Jx} is open and g : Ω −→ U is continuous.

Proof. Let c > 0 and V ⊂ U with B2c(g(s)) ⊂ V for s ∈ [0, t1] be as constructed in

Lemma 1. Let |f(x)| ≤ k and ‖Df(x)‖ ≤ L for x ∈ V as in Theorem §13. Choose ρ > 0

such that ρeLt1 ≤ 2c. Let x ∈ Bρ(a) and gx : Jx −→ U be the maximal solution. Set

ν(t) = |ga(t)− gx(t)| on [0, t1] ∩ Jx. Then

ν(t)− ν(0) =

∫ t

0

f(ga(s))− f(gx(s)) ds ≤
∫ t

0

Lν(s) dt
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so, by Lemma 2, ν(t) ≤ ρeLt ≤ ρeLt1 ≤ 2c, hence gx(t) ∈ V .

If t1 /∈ Jx, let t∗ = sup Jx ≤ t1. Then b = gx(t
∗) ∈ V . By (2) the solution gb(t) is

defined in a neighborhood of 0 and can be used to extend gx(t) to a neighborhood of t∗. This

contradicts t∗ = sup Jx ≤ t1 and hence t1 ∈ Jx. Hence for all x ∈ Bρ(a), [0, t1] ⊂ Jx.

Now, given x, y ∈ Bρ(a), we have gx and gy defined on [0, t1]. Let ν(t) = |gx(t)− gy(t)|.
Again |gx(t)− gy(t)| ≤ |x− y|eLt, so ϕt is Lipschitz on Bρ(a) for t ∈ [0, t1].

Finally, for any (t, a) ∈ Ω, take t1 > t with t1 ∈ Ja and let s < t1. Then

|ga(s)− gx(t)| ≤ |ga(s)− gx(s)|+ |gx(s)− gx(t)| ≤ eLt1|a− x|+ k|s− t|

so g : Ω −→ U is continuous at every point Ω,

The proof also shows for x ∈ Bρ(a), Ja ⊂ Jx from which it follows that Ω is open.
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