Some sources and inspiration for this treatment are the advanced calculus or analysis books by Dieudonné, Loomis & Sternberg, and Spivak, and notes and books by Milnor.

1. The derivative

Definition. Let $U \subset \mathbb{R}^m$ be an open set, $a \in U$, and $f : U \rightarrow \mathbb{R}^n$. The map f is differentiable at a if there is a linear map $\lambda \in \text{Hom}(\mathbb{R}^m, \mathbb{R}^n)$ with

$$\lim_{x \to a} \frac{|f(x) - f(a) - \lambda(x - a)|}{|x - a|} = 0.$$

Lemma. If there is such a λ, it is unique.

Proof. Let λ and λ_1 both satisfy the definition. Then

$$|(\lambda - \lambda_1)(x - a)| \leq |f(x) - f(a) - \lambda(x - a)| + | - f(x) + f(a) + \lambda_1(x - a)|$$

hence $|(\lambda - \lambda_1)(x - a)|/|x - a| \to 0$ as $x \to a$. For $v \neq 0$, letting $x = a + v \in U$,

$$|(\lambda - \lambda_1)(v)|/|v| = |(\lambda - \lambda_1)(tv)|/|tv| \to 0 \text{ as } t \to 0.$$

Therefore $\lambda(v) = \lambda_1(v)$.

When f is differentiable at a this unique linear map is denoted $Df(a)$.

2. The case $m = n = 1$

Let $f : \mathbb{R} \rightarrow \mathbb{R}$ and assume $f'(a)$ exists. Then

$$\frac{|f(x) - f(a) - f'(a)(x - a)|}{|x - a|} = \left| \frac{f(x) - f(a)}{x - a} - f'(a) \right| \rightarrow 0 \text{ as } x \to a$$

so $Df(a)(v) = f'(a)v$. The 1×1-matrix for the linear map $Df(a)$ has entry $f'(a)$.

3. The case $n = 1$ of real-valued functions, partial derivatives

Proposition. If $f : U \rightarrow \mathbb{R}$ is differentiable at $a \in U \subset \mathbb{R}^m$, then the partial derivatives of f exist at a and determine $Df(a)$.

PROOF. Let e_1, \ldots, e_m be the standard orthonormal basis for \mathbb{R}^m. Then

$$ \lim_{t \to 0} \left| \frac{f(a + te_i) - f(a)}{t} - Df(a)(e_i) \right| = \lim_{t \to 0} \left| \frac{f(a + te_i) - f(a) - D(f)(a)(te_i)}{|te_i|} \right| = 0,$$

hence the partial derivative with respect to the ith variable exists:

$$ \frac{\partial f}{\partial x_i}(a) = D_1f(a) = Df(a)(e_i) = \lim_{t \to 0} \frac{f(a + te_i) - f(a)}{t}.$$

If $v = \sum_i v_i e_i$, then $Df(a)v = \sum_i D_i f(a)v_i$.

More generally, the directional derivative is defined by

$$ D_v f(a) = \lim_{t \to 0} \frac{f(a + tv) - f(a)}{t}. $$

This limit may exist, in some or all directions, even if f is not differentiable at a. The gradient of f at a is the vector $\nabla f(a) = \sum_i D_i f(a)e_i$ and, if f is differentiable at a,

$$ Df(a)v = D_v f(a) = \nabla f(a) \cdot v. $$

For f to be differentiable at a it is necessary, but not sufficient, for the partial derivatives to exist at a. It is even necessary, but not sufficient, for the directional derivative to exist at a for all v and to define a linear function. A sufficient condition for f to be differentiable is given by the following theorem, but this condition is not necessary.

Theorem. Let $f : U \to \mathbb{R}$, U open in \mathbb{R}^m. Suppose the partial derivatives $D_i f$ are each continuous at $a \in U$. Then f is differentiable at a and $Df(a)v = \sum_i D_i f(a)v_i$.

Proof. Given $\varepsilon > 0$ there exists $\delta > 0$ such that

$$ |x - a| < \delta \Rightarrow |D_i f(x) - D_i f(a)| < \varepsilon \text{ for all } i.$$

Let $\xi_i = (x_1, \ldots, x_i, a_{i+1}, \ldots, a_m); \xi_0 = a, \xi_m = x$. Then $|\xi_i - a| < \delta$ and

$$ f(x) - f(a) = \sum_{i=0}^m f(\xi_i) - f(\xi_{i-1}). $$

Let $\varphi_i(t) = f(\xi_{i-1} + te_i)$. Then

$$ f(\xi_i) - f(\xi_{i-1}) = \varphi_i(x_i - a_i) - \varphi_i(0) = \varphi'(t_i)(x_i - a_i) = D_i f(\xi_{i-1} + t_i e_i)(x_i - a_i) $$

for some t_i with $0 < t_i < x_i - a_i$, by the mean value theorem in one variable. Now

$$ \left| f(x) - f(a) - \sum D_i f(a)(x_i - a_i) \right| \leq \sum |f(\xi_i) - f(\xi_{i-1}) - D_i f(a)(x_i - a_i)| $$

$$ \leq \sum |f(\xi_i) - f(\xi_{i-1}) - D_i f(\xi_{i-1} + t_i e_i)(x_i - a_i)| + \sum |(D_i f(\xi_{i-1} + t_i e_i) - D_i f(a))(x_i - a_i)| $$

$$ \leq 0 + n\varepsilon |x - a|. $$

Hence

$$ \frac{|f(x) - f(a) - \lambda(x - a)|}{|x - a|} \to 0 \text{ as } x \to a \text{ where } \lambda \text{ is the linear map defined by } \lambda(v) = \sum D_i f(a)v_i. \text{ Therefore } f \text{ is differentiable at } a.
4. The derivative of linear and bilinear maps

Lemma. If \(f \) is a linear map then \(Df(a) = f \).

Proof. Since \(f \) is linear, \(f(x) - f(a) - f(x - a) = 0 \).

Lemma. If \(U, V, W \) are vector spaces and \(\beta : U \times V \longrightarrow W \) is bilinear, then

\[
D\beta(a, b)(u, v) = \beta(a, v) + \beta(u, b).
\]

Proof. Note that the map \(\ell(a, b) \) defined by \(\ell(a, b)(u, v) = \beta(a, v) + \beta(u, b) \) is linear from \(U \times V \longrightarrow W \) and

\[
\beta(a + u, b + v) - \beta(a, b) - \ell(a, b)(u, v) = \beta(u, v).
\]

The norm \(|(u, v)| = \sqrt{|u|^2 + |v|^2} \), and \(|u||v| \leq \max\{|u|^2, |v|^2\} \leq |u|^2 + |v|^2 \), hence

\[
\beta(u, v) = |u||v|\beta(u/|u|, v/|v|) \leq |(u, v)|^2 \beta(u/|u|, v/|v|), \text{ for } u \neq 0, v \neq 0.
\]

Therefore \(|\beta(u, v)| / |(u, v)| \to 0 \text{ as } (u, v) \to (0, 0)\).

Examples of bilinear maps \(\beta : \mathbb{R}^k \times \mathbb{R}^m \longrightarrow \mathbb{R}^n \).

\[
\ell = m = n = 1, \quad \beta(r, s) = rs
\]
\[
\ell = 1, \quad m = n, \quad \beta(r, u) = ru,
\]
\[
\ell = m, \quad n = 1, \quad \beta(u, v) = u \cdot v,
\]
\[
\ell = m = n = 3, \quad \beta(u, v) = u \times v.
\]

5. A norm on \(\text{Hom}(\mathbb{R}^m, \mathbb{R}^n) \)

Let \(e_1, \ldots, e_m \) be the standard orthonormal basis for \(\mathbb{R}^m \) and \(\bar{e}_1, \ldots, \bar{e}_n \) be the standard orthonormal basis for \(\mathbb{R}^n \). Let \(x = \sum_i x_i e_i \in \mathbb{R}^m \), so \(x_i = x \cdot e_i \). Let \(\ell \in \text{Hom}(\mathbb{R}^m, \mathbb{R}^n) \) and set \(\ell_i = \ell(e_i) \cdot \bar{e}_j \). Then \(\ell(x) = \sum_i x_i \ell(e_i) = \sum_j \sum_i \ell_i \cdot e_i \cdot \bar{e}_j \).

Proposition. If \(|\ell_i|^2 \leq k \) for all \(i, j \), then \(|\ell(x)| \leq \sqrt{mn}k|x| \).

Proof. By Cauchy’s inequality, \(|\sum_i \ell_i \cdot x_i| \leq \left\{ \sum_i (\ell_i)^2 \right\}^{1/2} |x| \leq \sqrt{m}k|x| \). Then

\[
|\ell(x)| = \left\{ \sum_j \left(\sum_i \ell_i \cdot x_i \right)^2 \right\}^{1/2} \leq \sqrt{mn}k|x|.
\]

The continuous real-valued function \(|\ell(x)| \) is bounded on the compact unit sphere, \(|x : |x| = 1| \subset \mathbb{R}^m \), and attains its bound.

Definition. For a linear map \(\ell \), define \(\|\ell\| = \sup\{|\ell(x)| : |x| = 1\} \).

Corollary. (i) \(|\ell(x)| \leq \|\ell\| |x| \) and (ii) \(\|\ell\| \leq \sqrt{mn}k \).
6. Lipschitz continuity of differentiable functions

Proposition. If \(f : U \rightarrow \mathbb{R}^n \) where \(U \) is open in \(\mathbb{R}^m \) and \(f \) is differentiable at \(a \), then there exist \(\delta > 0 \) and \(k > 0 \) such that \(|x - a| < \delta \Rightarrow |f(x) - f(a)| \leq k|x - a| \).

Proof. There is a linear map \(\lambda \) such that the function \(\varphi(x) = f(x) - f(a) - \lambda(x - a) \) satisfies \(|\varphi(x)|/|x - a| \rightarrow 0 \) as \(x \rightarrow a \). Therefore there is a \(\delta > 0 \) such that \(|\varphi(x)| \leq |x - a| \) for \(|x - a| < \delta \). Then \(|f(x) - f(a)| = |\lambda(x - a) + \varphi(x)| \leq (\|\lambda\| + 1)|x - a| \) for \(|x - a| < \delta \). Take \(k = \|\lambda\| + 1 \).

The conclusion of the Proposition is called Lipschitz continuity at \(a \); it implies that \(f \) is continuous at \(a \).

7. The chain rule

Theorem. If \(a \in U \subset \mathbb{R}^m \), \(b \in V \subset \mathbb{R}^n \), \(f : U \rightarrow V \), \(f(a) = b \), \(g : V \rightarrow \mathbb{R}^p \), \(f \) is differentiable at \(a \), and \(g \) is differentiable at \(b \); then \(g \circ f \) is differentiable at \(a \) and

\[
D(g \circ f)(a) = Dg(b) \circ Df(a).
\]

Proof. (See Spivak, p. 19.) Let \(\lambda = Df(a) \), \(\mu = Dg(b) \) and set

\[
\begin{align*}
\varphi(x) &= f(x) - f(a) - \lambda(x - a) \\
\psi(y) &= g(y) - g(b) - \mu(y - b) \\
\rho(x) &= g(f(x)) - g(b) - \mu(\lambda(x - a)).
\end{align*}
\]

We have

(i) \(|\varphi(x)|/|x - a| \rightarrow 0 \) as \(x \rightarrow a \),

(ii) \(|\psi(y)|/|y - b| \rightarrow 0 \) as \(y \rightarrow b \).

From the definitions,

\[
\begin{align*}
\rho(x) &= g(f(x)) - g(b) - \mu(f(x) - f(a) - \varphi(x)) \\
&= [g(f(x)) - g(b) - \mu(f(x) - f(a))] + \mu(\varphi(x)) \\
&= \psi(f(x)) + \mu(\varphi(x)).
\end{align*}
\]

First \(|\mu(\varphi(x))| \leq \|\mu\||\varphi(x)| \), so by (i) \(|\mu(\varphi(x))|/|x - a| \rightarrow 0 \) as \(x \rightarrow a \).

Second, by Proposition 6, there are \(k > 0, \delta > 0 \) such that

\(|x - a| < \delta \Rightarrow |f(x) - f(a)| \leq k|x - a| \).

By (ii), for any \(\varepsilon > 0 \) there is a \(\delta_1 > 0 \) such that

\(|f(x) - f(a)| < \delta_1 \Rightarrow |\psi(f(x))| < \varepsilon|f(x) - f(a)| \).

So for \(0 \neq |x - a| < \min\{\delta, \delta_1/k\} \) we have \(|\psi(f(x))|/|x - a| < \varepsilon k \). Hence \(|\rho(x)|/|x - a| \rightarrow 0 \) as \(x \rightarrow a \) which gives the result.
8. Sample computations

(a) Let \(f(x) = x \cdot x = \beta \circ \Delta(x) \) where \(\Delta(x) = (x, x) \) is linear and \(\beta(x, y) = x \cdot y \). Then
\[
Df(a)(u) = D\beta(\Delta(a)) \circ D\Delta(a)(u) = D\beta(a)(u, u) = \beta(a, u) + \beta(u, a).
\]
Since \(\beta \) is symmetric, \(Df(a)(u) = 2a \cdot u \) and \(\text{grad } f(a) = 2a \).

If \(g(x) = |x - p| = \sqrt{f(x - p)} \),
\[
Dg(a)(u) = \frac{1}{2\sqrt{f(a - p)}} Df(a - p)(u) = \frac{a - p}{|a - p|} \cdot u \quad \text{for } a \neq p.
\]
So, for \(x \neq p \), \(\text{grad } g(x) = \frac{x - p}{|x - p|} \), the unit vector at \(x \) pointing away from \(p \).

(b) The derivative of a sum.

Lemma. Let \(f \) and \(g : U \rightarrow R^n \) be differentiable at \(a \in U \subset \mathbb{R}^m \).

Define \((f, g) : U \rightarrow \mathbb{R}^n \times \mathbb{R}^n \) by \((f, g)(x) = (f(x), g(x))\). Then
\[
D(f, g)(a) = (Df, Dg)(a).
\]

Proof. Let \(\lambda = Df(a) \), \(\varphi(x) = f(x) - f(a) - \lambda(x-a) \), \(\mu = Dg(a) \), and \(\psi(x) = g(x) - g(a) - \mu(x-a) \). Then \((\varphi, \psi)(x) = (f, g)(x) - (f, g)(a) - (\lambda, \mu)(x-a)\) and
\[
\frac{|(\varphi, \psi)(x)|}{|x-a|} = \sqrt{\frac{\varphi(x)^2}{|x-a|^2} + \frac{\psi(x)^2}{|x-a|^2}} \rightarrow 0 \text{ as } x \rightarrow a.
\]

Define the linear map \(s : \mathbb{R}^n \times \mathbb{R}^n \rightarrow \mathbb{R}^n \) by \(s(y_1, y_2) = y_1 + y_2 \). Now \((f + g)(x) = f(x) + g(x) = s \circ (f, g)(x)\). Hence the derivative of a sum is the sum of the derivatives:
\[
D(f + g) = Df + Dg.
\]

(c) The set \(M(n) \) of \(n \times n \)-matrices is an \(n^2 \)-dimensional vector space under addition and scalar multiplication and a ring under matrix multiplication. Let \(\beta(A, B) = AB \) and \(t(A) = A^t \) be the transpose. The maps \(t \) and \((I, t)\) are linear as maps of vector spaces where \(I \) is the identity linear map. On products \(t \) satisfies \(t(AB) = t(B)t(A) \). Define \(f : M(n) \rightarrow M(n) \) by \(f(A) = AA^t \), so \(f = \beta \circ (I, t) \).

Let \(O(n) \subset M(n) \) be the orthogonal group, \(O(n) = \{ A : f(A) = I \} \). Thus \(A \in O(n) \) means \(A \) is invertible and \(A^t = A^{-1} \).

Exercise. This is the computational part of a proof that \(O(n) \) is a manifold of dimension \(n(n-a)/2 \).

Show:
- \(f(A) \) is symmetric, \(f(A) = t(f(A)) \).
- \(Df(A)(M) = AM^t + MA^t \).
- If \(A \in O(n) \), then \(Df(A) \) maps \(M(n) \) onto the vector space of symmetric matrices.

[Hint: Given a symmetric \(S \), take \(M = \frac{1}{2} SA \).]
9. Differentiability of maps to \mathbb{R}^n

The results of §3 extend to maps to \mathbb{R}^n.

Proposition. If $f : U \rightarrow \mathbb{R}^n$ is differentiable at $a \in U$ then the partial derivatives of the components D_jf_j exist at a and are the entries in the matrix representing $Df(a)$. If all the partials are continuous at a then f is differentiable at a.

Proof. (See Spivak, p. 21, and for notation §§3, 5.) Define the linear projection map $\pi_j : \mathbb{R}^n \rightarrow \mathbb{R}$ by $\pi_j(y) = y \cdot \bar{e}_j$. The jth component of f is $f_j = \pi_j \circ f$, $f(x) = \sum_j f_j(x)\bar{e}_j$ and

$$Df_j(a) = D\pi_j(f(a)) \circ Df(a) = \pi_j \circ Df(a).$$

The partial derivatives $\frac{\partial f}{\partial x_i}(a) = D_i f_j(a) = Df_j(a)(e_i) = Df(a)(e_i) \cdot \bar{e}_j$.

If $u = \sum_i u_i e_i$, then $Df(a)u = \sum_j \sum_i D_i f_j(a) u_i \bar{e}_j$.

Introducing the Jacobian matrix we write $Df(a)u$ as a matrix product:

$$Df(a)u = \begin{pmatrix} Df_1(a)u \\ \vdots \\ Df_n(a)u \end{pmatrix} = \begin{pmatrix} D_1f_1(a) & \ldots & D_mf_1(a) \\ \vdots & \ddots & \vdots \\ D_1f_n(a) & \ldots & D_mf_n(a) \end{pmatrix} \begin{pmatrix} u_1 \\ \vdots \\ u_m \end{pmatrix}.$$

If all the partials are continuous at a, by §3 each $D_i f(a)$ exists and by §8(b) $Df(a)$ exists.

When $m = 1$, $f(t)$ is a path in \mathbb{R}^n and we define the velocity vector $f'(t) = Df(t)(e_1)$.

10. Mean value theorems

Proposition. If $U \subset \mathbb{R}^m$ is convex, $f : U \rightarrow \mathbb{R}$ is differentiable, and $a, x \in U$, then $f(x) - f(a) = Df(\zeta)(x - a)$ where $\zeta = a + t_0(x - a)$ for some $0 < t_0 < 1$.

Proof. Let $\varphi(t) = f(a + t(x - a))$. By the chain rule $\varphi'(t) = Df(a + t(x - a))(x - a)$.

By the one-variable mean value theorem

$$f(x) - f(a) = \varphi(1) - \varphi(0) = \varphi'(t_0) = Df(\zeta)(x - a)$$

where $\zeta = a + t_0(x - a)$ for some $0 < t_0 < 1$.

Corollary. If $\|Df(\zeta)\| \leq k$ for any $\zeta \in U$, then $|f(x) - f(a)| \leq k|x - a|$.

This follows from the Proposition and Corollary §5(i).

The Proposition is not true in general for maps to \mathbb{R}^n, $n > 1$. For example let $f : \mathbb{R} \rightarrow \mathbb{R}^3$ describe a helix about the vertical axis and take x vertically above a. Then $x - a$ points straight up while $Df(t)(u)$ never does. The following Theorem extends the result of the Corollary to maps to \mathbb{R}^n. It says f is Lipschitz continuous on U.

Theorem. If $U \subset \mathbb{R}^m$ is convex, $f : U \rightarrow \mathbb{R}^n$ is differentiable on U, $a, x \in U$, and

$$\left| \frac{\partial f_j}{\partial x_i}(a) \right| \leq \frac{k}{\sqrt{m}}$$

on U for all i, j, then $|f(x) - f(a)| \leq k|x - a|$.

Proof. By the Proposition $f_j(x) - f_j(a) = Df_j(\zeta_j)(x - a)$. By §5 applied to the real-valued function f_j, $\|Df_j(\zeta_j)\| \leq \frac{k}{\sqrt{n}}$. By the Corollary, $|f_j(x) - f_j(a)| \leq \frac{k}{\sqrt{n}}|x - a|$. Then $|f(x) - f(a)| \leq k|x - a|$ as in §5.
10a. Alternate proof of the mean value theorem

In §10 we used the one-variable mean value theorem. The following proof gives both the Corollary and Theorem above without assuming the one-variable theorem and does not depend on bounds on the partial derivatives. See Loomis & Sternberg, p. 148, or Dieudonné, p. 153.

Theorem. Let \(f : [a, b] \to \mathbb{R}^n \) be continuous on \([a, b]\) and differentiable on \((a, b)\). Assume \(|f'(t)| \leq k \) for \(a < t < b \), where \((\text{see } \S \text{9})\) \(f'(t) = D_1 f(t)(e_1) \). Then

\[
|f(b) - f(a)| \leq k(b - a).
\]

Proof. Fix \(\varepsilon > 0 \). Let \(A = \{ x \in [a, b] : |f(x) - f(a)| \leq (k + \varepsilon)(x - a) + \varepsilon \} \).

(1) Since \(f \) is continuous at \(a \) there is a \(\delta > 0 \) such that

\[
|f(x) - f(a)| \leq \varepsilon \text{ for } a \leq x < a + \delta
\]

so \(x \in A \) for some \(x > a \).

(2) Set \(\ell = \sup A \). Either \(\ell \in A \) or for any \(\delta > 0 \) there is a \(t \) with \(\ell - \delta < t \leq \ell \) and \(t \in A \). But then by the continuity of \(f \) at \(\ell \), \(\ell \in A \).

(3) If \(\ell < b \) then \(f'(\ell) \) exists and \(|f'(\ell)| \leq k \). Hence there is a \(\delta > 0 \) such that

\[
\ell \leq t < \ell + \delta \Rightarrow |f(t) - f(\ell)| \leq (k + \varepsilon)(t - \ell).
\]

Then

\[
|f(t) - f(a)| \leq |f(t) - f(\ell)| + |f(\ell) - f(a)| \\
\leq (k + \varepsilon)(t - \ell) + (k + \varepsilon)(\ell - a) + \varepsilon \\
= (k + \varepsilon)(t - a) + \varepsilon.
\]

and hence \(t \in A \) for some \(t > \ell \), a contradiction. Therefore \(\ell = b \) and, as in (2), \(b \in A \).

Since \(\varepsilon > 0 \) is arbitrary, \(|f(b) - f(a)| \leq k(b - a) \).

Corollary. Let \(U \subseteq \mathbb{R}^n \) be convex, \(a, b \in U \), \(f : U \to \mathbb{R}^n \) be differentiable, and assume \(\|Df(x)\| \leq k \) for \(x \in U \). Then

\[
|f(b) - f(a)| \leq k|b - a|.
\]

Proof. Define \(c : \mathbb{R} \to \mathbb{R}^n \) by \(c(t) = tb + (1 - t)a \). Then \(c'(t) = b - a \) and \(f \circ c(1) - f \circ c(0) = f(b) - f(a) \). For \(0 \leq t \leq 1 \), \(c(t) \in U \) and \(D(f \circ c)(t)(e_1) = Df(c(t))(b - a) \), so

\[
|(f \circ c)'(t)| \leq \|Df(c(t))\| \|b - a\| \leq k|b - a|.
\]

The result follows from the Theorem.
11. The inverse function theorem

Definition. A function $f : U \rightarrow \mathbb{R}^n$ is said to be of class C^1 if the partial derivatives exist and are continuous everywhere on U, f is of class C^k if the partial derivatives of orders k and less are continuous, and f is C^∞ if it is C^k for all positive integers k.

Theorem. Given $a \in U \subset \mathbb{R}^n$, U open, and a C^1 function $f : U \rightarrow \mathbb{R}^n$ with $f(a) = b$ such that $Df(a)$ is invertible, there are neighborhoods V of a, $V \subset U$, and W of b and a unique C^1 map $g : W \rightarrow V$ such that the restriction $f|V$ and g are inverses. The derivative of g is $Dg(y) = Df(g(y))^{-1}$. Further, if f is C^k ($1 \leq k \leq \infty$) then g is also.

Plan. The map g will need to satisfy $g(b) = a$. Let $g_0(y) = a$ be a first approximation to g. Since $Df(a)$ is invertible, the linear approximation to f, $y = f(x) \sim f(a) + Df(a)(x-a)$, can be solved for x. Let $g_1(y)$ be this solution: $g_1(y) = a + Df(a)^{-1}(y-b)$. We will define iteratively a sequence of functions $\{g_n\}$ converging to the local inverse of f.

Proof. (1) Define $F(x, y) = x + Df(a)^{-1}(y - f(x))$ on $U \times \mathbb{R}^n$. Let $D_1F(a, b)$ denote the derivative of the function $x \mapsto F(x, b)$ at $x = a$. Then
\[F(a, b) = a + Df(a)^{-1}(b - f(a)) = a, \]
\[D_1F(x, y) = I - Df(a)^{-1} \circ Df(x), \]
\[D_1F(a, y) = I - Df(a)^{-1} \circ Df(a) = 0. \]

$D_1F(x, y)$ does not depend on y and is the zero map for $x = a$. Hence for x near a, $Df(x)$ is invertible and the entries in matrix $D_1F(x, y)$ are small. Choose $k > 0$ so that:

(i) $\overline{B_k(a)} \subset U$ and $Df(x)$ is invertible for $x \in \overline{B_k(a)}$, and
\[\|D_1F(x, y)\| \leq \frac{1}{2} \text{ for } x \in \overline{B_k(a)}. \]

Then
\[x, \xi \in \overline{B_k(a)} \Rightarrow |F(x, y) - F(\xi, y)| \leq \frac{1}{2}|x - \xi| \]

using the mean value theorem for the function $x \mapsto F(x, y)$. Since
\[|F(a, y) - a| = |Df(a)^{-1}(y - b)| \leq \|Df(a)^{-1}\| |y - b|, \]

if we set $\delta = \frac{k}{2\|Df(a)^{-1}\|}$ we have:

(ii) $y \in \overline{B_\delta(b)} \Rightarrow F(a, y) \in B_{\delta/2}(a)$

and the same implication for the closed balls.

(2) Let \mathcal{F} be the set of continuous functions $h : \overline{B_\delta(b)} \rightarrow \overline{B_k(a)}$ such that $h(b) = a$. For $h \in \mathcal{F}$ define $Th(y) = F(h(y), y)$. Then $Th(b) = F(a, b) = a$. For $y \in \overline{B_\delta(b)}$,
\[|Th(y) - a| = |F(h(y), y) - a| \leq |F(h(y), y) - F(a, y)| + |F(a, y) - a| \leq \frac{1}{2}|h(y) - a| + \frac{k}{2} \leq k \quad \text{by (ii) and (iii)}. \]
Hence $Th(y) \in \overline{B_k(a)}$ so $Th \in \mathcal{F}$ and $T : \mathcal{F} \rightarrow \mathcal{F}$. The same argument, using the open version of (iii), shows $y \in B_\delta(b) \Rightarrow T_\gamma(y) \in B_k(a)$.

(3) T has a fixed point.

Define a sequence of functions in \mathcal{F} by $g_0(y) = a$ and $g_{n+1}(y) = Tg_n(y) = F(g_n(y), y)$. Note that g_1 is as defined in the plan. To shorten notation, temporarily fix y and set $x_n = g_n(y)$. We have $x_0 = a$, $x_1 = F(a, y)$, and by (iii) $|x_1 - x_0| \leq k/2$.

\[
|x_{n+1} - x_n| = |F(x_n, y) - F(x_{n-1}, y)| \leq \frac{1}{2}|x_n - x_{n-1}| \leq \cdots \leq \frac{1}{2^n}|x_1 - x_0| \leq \frac{k}{2^{n+1}},
\]

\[
|x_m - x_n| \leq |x_m - x_{m-1}| + \cdots + |x_{n+1} - x_n| \leq \left(\frac{1}{2^m} + \cdots + \frac{1}{2^{n+1}} \right) k < \frac{k}{2^n},
\]

for $n < m$. Therefore $\{x_n\}$ is a Cauchy sequence.

Let $x = \lim x_n$. Since each $x_n \in B_k(a)$, $x \in \overline{B_k(a)}$. Define the map

$$g : \overline{B_\delta(b)} \rightarrow \overline{B_k(a)} \quad \text{by} \quad g(y) = x = \lim_{n \rightarrow \infty} g_n(y).$$

Since $|g(y) - g_n(y)| \leq \frac{k}{2^n}$, the sequence $\{g_n\}$ converges uniformly on $\overline{B_\delta(b)}$, so g is continuous and $g \in \mathcal{F}$. Since F is continuous, $Tg = g$:

$$g(y) = \lim g_n(y) = \lim F(g_n(y), y) = F(\lim g_n(y), y) = F(g(y), y) = Tg(y).$$

(4) g is a unique local inverse of f.

Set $W = B_\delta(b)$ and $V = B_k(a) \cap f^{-1}(W) \subset U$. V and W are neighborhoods of a and b respectively. If $y \in W$, by (3) $Tg(y) = g(y)$ and by the definition of Tg, $g(y) = g(y) + Df(a)^{-1}(y - f(g(y)))$. Hence $f(g(y)) = y$. Then by (2), $g(y) \in V$, $g : W \rightarrow V$, and $f \circ g = 1_W$.

If $x, \xi \in V$ and $f(x) = f(\xi) = y \in W$, then $F(x, y) = x$, and $F(\xi, y) = \xi$. By (ii) $|x - \xi| \leq \frac{1}{2}|x - \xi|$, hence $x = \xi$. Therefore f is one-to-one on V. If $x \in V$, let $y = f(x) \in W$ and let $\xi = g(f(x)) \in V$. Now $f(\xi) = f(g \circ f(x)) = f \circ g(f(x)) = f(x)$. Therefore $x = \xi$, $g(f(x)) = x$, and $g \circ f = 1_V$.

Let h be another inverse of f with $h(b) = a$. Let both h and g be defined on $W_1 \subset W$, and set $V_1 = B_k(a) \cap f^{-1}(W_1) \subset V$. For $y \in W_1$, let $x = g(y)$, and $\xi = h(y)$. Since g and h are right inverses of f, $f(x) = f(\xi)$. Since f is 1-1, $x = \xi$ and hence $g = h$ on W_1.

(5) g is Lipschitz continuous.

Let $g(y) = x$, $g(\eta) = \xi$ for $y, \eta \in B_\delta(b)$. Since $g = Tg$, $x = F(x, y)$ and $\xi = F(\xi, \eta)$. Then

$$|x - \xi| = |F(x, y) - F(\xi, \eta)|$$

$$\leq |F(x, y) - F(\xi, y)| + |F(\xi, y) - F(\xi, \eta)|$$

$$\leq \frac{1}{2}|x - \xi| + |Df(a)^{-1}(y - \eta)|$$

Therefore $\frac{1}{2}|x - \xi| \leq \|Df(a)^{-1}\| |y - \eta|$ and hence $|g(y) - g(\eta)| \leq 2\|Df(a)^{-1}\| |y - \eta|$.

9
(6) g is differentiable.
Since f is C^1 and, by (i) $Df(\xi)$ is invertible for $\xi \in \overline{B_k(a)}$, we can choose κ so that
\[
\|Df(\xi)^{-1}\| \leq \kappa \text{ for } \xi \in \overline{B_k(a)}.
\]
Let
\[
\varphi(x) = f(x) - f(\xi) - Df(\xi)(x - \xi).
\]
Then $|\varphi(x)|/|x - \xi| \to 0$ as $x \to \xi$, so for any $\epsilon > 0$, $|\varphi(x)| \leq \epsilon|x - \xi|$ for x near ξ.
Let
\[
\psi(y) = g(y) - g(\eta) - Df(\xi)^{-1}(y - \eta) \\
= g(y) - g(\eta) - Df(\xi)^{-1}\{\varphi(x) + Df(\xi)(x - \xi)\} \\
= g(y) - g(\eta) - (x - \xi) - Df(\xi)^{-1}(\varphi(x)) \\
= -Df(\xi)^{-1}(\varphi(x)).
\]
Then
\[
|\psi(y)| \leq \kappa|\varphi(x)| \leq \kappa \epsilon|x - \xi| \text{ for } x \text{ near } \xi,
\]
\[
\leq 2\kappa^2 \epsilon|y - \eta| \text{ for } y \text{ near } \eta \text{ by (5)}.
\]
Hence $|\psi(y)|/|y - \eta| \to 0$ as $y \to \eta$. Therefore g is differentiable at η and $Dg(\eta) = Df(g(\eta))^{-1}$.

(7) If f is C^k so is g.
We can write Dg as the composition $Dg = i \circ Df \circ g$ where $i(A) = A^{-1}$ is matrix inversion.
\[
B_\delta(b) \xrightarrow{g} U \xrightarrow{Df} G\ell(n) \xrightarrow{i} G\ell(n),
\]
where g is continuous, f is C^k so that Df is C^{k-1}, and i is C^∞ by Cramer’s rule. Since g is continuous, the composition, Dg is continuous, so g is C^1. Now if g is C^j for any $j < k$, then similarly, Dg is C^j, and g is C^{j+1}. By induction g is C^k, for $1 \leq k \leq \infty$.

This completes the proof of the inverse function theorem.

12. Applications of the inverse function theorem

Implicit Function Theorem. Let $(a, b) \in \mathbb{R}^k \times \mathbb{R}^n$. Let f be a C^1 function from a neighborhood of (a, b) to \mathbb{R}^n with $f(a, b) = c$. Let $D_2f(a, b)$, the derivative of the function $y \mapsto f(a, y)$, be invertible.

Then there are neighborhoods $a \in U \subset \mathbb{R}^k$, $(a, b) \in V \subset \mathbb{R}^k \times \mathbb{R}^n$, and $c \in W \subset \mathbb{R}^n$ and a C^1 function $g : U \rightarrow \mathbb{R}^n$ such that $f(V) \subset W$ and

\[(x, y) \in V \text{ and } f(x, y) = c \iff x \in U \text{ and } y = g(x),
\]
\[Dg(x) = -D_2f(x, g(x))^{-1} \circ D_1f(x, g(x)).\]
Further there is a C^1 diffeomorphism $G : U \times W \to V$ such that, defining
\[g_w(x) = \pi_2 \circ G(x,w), \quad \text{we have} \quad f(x,y) = w \iff y = g_w(x). \]
The function $\varphi_w : U \to V$ define by $\varphi_w(x) = G(x,w)$ parameterizes the level surface
\[f^{-1}(w) = \{(x,y) \in V : f(x,y) = w\}. \]

Proof. Define F on the domain of f with values in $\mathbb{R}^k \times \mathbb{R}^n$ by $F(x,y) = (x,f(x,y))$. Then $F(a,b) = (a,c)$ and the Jacobian matrix of $DF(x,y)$ is
\[\begin{pmatrix} I & 0 \\ L & M \end{pmatrix} \]
where
\[L = D_1f = \frac{\partial(f_1, \ldots, f_n)}{\partial(x_1, \ldots, x_k)} \quad \text{and} \quad M = D_2f = \frac{\partial(f_1, \ldots, f_n)}{\partial(y_1, \ldots, y_n)}. \]

Since $M(a,b)$ is invertible, $DF(a,b)$ is invertible.

The inverse function theorem gives a map G which we may assume is defined on a product neighborhood $U \times W \subset \mathbb{R}^k \times \mathbb{R}^n$ of (a,c). Let $V = G(U \times W)$. Then $F|V$ and $G|U \times W$ are inverses. If $(x,y) \in V$ and $F(x,y) = (x,f(x,y)) = (x,w) \in U \times W$, then $G(x,w) = (x,y)$ and $f(x,y) = w$. Define $g_w(x) = \pi_2 \circ G(x,w) = y$. Then $f(x, g_w(x)) = f(x,y) = w$. For the case $f(x,y) = c$, take $g = g_c$.

Since F has a C^1 inverse on V, it follows that DF is invertible on V and, from the form of its Jacobian matrix, that the matrix $M(x,y)$ of $D_2f(x,y)$ is also invertible. As a composition, $g_w(x)$ is differentiable. Differentiating $f(x,g_w(x)) = w$ with respect to x using the chain rule we get
\[
D_1f(x,g_w(x)) + D_2f(x,g_w(x)) \circ Dg_w(x) = 0, \quad \text{hence} \quad Dg_w(x) = -D_2f(x,g_w(x))^{-1} \circ D_1f(x,g_w(x)).
\]

Notice that V is not a product, the slice $\{y \in \mathbb{R}^n : (x,y) \in V\}$ depends on x.

Proposition 1. Let $p \in \mathbb{R}^m$ and let f be a C^1 map on a neighborhood of p to \mathbb{R}^n, $m \geq n$, with $Df(p)$ surjective. Then there is a neighborhood $p \in V \subset \mathbb{R}^m$ and a diffeomorphism $h : U \to V$, U open in \mathbb{R}^m, such that $f \circ h(x_1, \ldots, x_m) = (x_{m-n+1}, \ldots, x_m)$ or $f \circ h = \pi_2$.

Proof. Let $m = k + n$. Since $Df(p)$ is surjective we can reorder the variables, i.e. the coordinates of \mathbb{R}^m, x_1, \ldots, x_m, so that the Jacobian matrix of derivatives with respect to the last n variables is invertible. Then the implicit function theorem applies: the map $F(x) = (x_1, \ldots, x_k, f(x))$ restricted to a neighborhood V of a has an inverse $h : U \to V$. Then $F \circ h(z) = z$ and $f \circ h = \pi_2 \circ F \circ h = \pi_2$.
Proposition 2. Let \(a \in U \subset \mathbb{R}^m \) be open and \(f : U \rightarrow \mathbb{R}^n \) be a \(C^1 \) map, \(m \leq n \), with \(Df(a) \) injective. Then there are neighborhoods \(a \in U_1 \subset U \), \(V \subset \mathbb{R}^n \) with \(f(U_1) \subset V \), and \(b \in W \subset \mathbb{R}^n \) and a diffeomorphism \(h : V \rightarrow W \) such that \(h \circ f(x_1, \ldots, x_m) = (x_1, \ldots, x_m, 0, \ldots, 0) \).

Proof. The Jacobian matrix of \(Df(a) \) has an invertible \(m \times m \) submatrix \(A \). We may permute the coordinate functions, \(f_1, \ldots, f_n \), i.e. the coordinates in the range \(\mathbb{R}^n \), so that the first \(m \) rows of the Jacobian of \(f \) are an invertible matrix \(A \).

Define \(F : U \times \mathbb{R}^{n-m} \rightarrow \mathbb{R}^n \) by
\[
F(x_1, \ldots, x_n) = f(x_1, \ldots, x_m) + (0, \ldots, 0, x_{m+1}, \ldots, x_n)
\]
Then \(F(a, 0) = f(a) + 0 = b \) and
\[
DF(a, 0) = \begin{pmatrix} A & 0 \\ B & I \end{pmatrix}
\]
which is invertible. By the inverse function theorem there are neighborhoods \((a, 0) \in V \subset U \times \mathbb{R}^{n-m} \) and \(b \in W \subset \mathbb{R}^n \) and a map \(h : W \rightarrow V \) inverse to \(F|V : V \rightarrow W \).

Set \(i(x_1, \ldots, x_m) = (x_1, \ldots, x_m, 0, \ldots, 0) \), so \(F \circ i = f \). Let \(U_1 = i^{-1}(V) \). On \(U_1 \)
\[
h \circ f = h \circ F \circ i = i.
\]

Think of \((h, W)\) as a new coordinate chart for \(\mathbb{R}^n \) with respect to which the map \(f \) has the simplest possible form: \(h \circ f = i \).

It follows that \(f|U_1 \) is a homeomorphism onto its image in the induced topology. That is \(O \) is open in \(U_1 \) if and only if \(f(O) \) is the intersection with \(f(U_1) \) of an open set in \(\mathbb{R}^n \).

13. Differential equations

For a continuous function \(g : J \rightarrow \mathbb{R}^n \) on an interval \(J \subset \mathbb{R} \) with \(t_0, t \in J \), we introduce the integral
\[
G(t) = \int_{t_0}^{t} g(s) \, ds
\]
defined componentwise by \(G_i(t) = \int_{t_0}^{t} g_i(s) \, ds \). \(G \) is \(C^1 \) and \(G'(t) = g(t) \) by the fundamental theorem of calculus. If \(|g(t)| \leq k\) on \(I \), then
\[
\left| \int_{t_0}^{t} g(s) \, ds \right| = |G(t) - G(t_0)| \leq k|t - t_0|
\]
by the mean value theorem, §10a. We will also need the following stronger result.

Lemma. \(\left| \int_{t_0}^{t} g(s) \, ds \right| \leq \int_{t_0}^{t} |g(s)| \, ds \).
Proof. Since \(g \) is continuous, \(|g|\) is integrable. Let \(P = \{t_0, \ldots, t_n\} \) be a partition of \([t_0, t]\) and let \(M_i = \sup\{|g(s)| : t_{i-1} \leq s \leq t_i\} \). Then, by (1),
\[
\left| \int_{t_0}^{t} g(s) \, ds \right| \leq \sum_{i=1}^{n} \left| \int_{t_{i-1}}^{t_i} g(s) \, ds \right| \leq \sum_{i=1}^{n} M_i(t_i - t_{i-1}) = U(|g|, P),
\]
hence the left hand term is a lower bound for the set of all upper sums for \(|g|\).

If \(f : U \rightarrow \mathbb{R}^n \) is continuous, \(0 \in J \), and \(g : J \rightarrow U \) is differentiable, we say \(x = g(t) \) is a solution to the differential equation \(x' = f(x) \) with initial condition \(x_0 \) if
\[
(2') \quad g'(t) = f(g(t)) \quad \text{and} \quad g(0) = x_0.
\]

By the fundamental theorem of calculus, it is equivalent that \(g \) be continuous and satisfy the integral equation
\[
(2) \quad g(t) = x_0 + \int_0^t f(g(s)) \, ds.
\]

For a continuous function \(g : J \rightarrow U \) define a map \(T \) which takes \(g \) to a new function \(Tg \) defined by
\[
Tg(t) = x_0 + \int_0^t f(g(s)) \, ds.
\]
Then \(g \) is a solution to (2) if and only if \(Tg = g \). The plan is to use \(T \) to construct a sequence of functions which converges uniformly to a solution to (2). This method is known as Picard iteration.

Theorem. Let \(f : U \rightarrow \mathbb{R}^n \) be \(C^1 \) and let \(a \in U \). Then there is a \(\delta > 0 \) and a unique \(C^1 \) function from the interval \(J = (-\delta, \delta) \) to \(U \) satisfying (2).

Further there exists \(c > 0 \) and \(g : J \times \overline{B_c(a)} \rightarrow U \) such that the curve \(g_x(t) = g(t, x) \) is a solution to (2) with initial condition \(g_x(0) = x \).

Proof. Let \(a \in V \subset \overline{V} \subset U \) with \(V \) open and \(\overline{V} \) compact. Since \(f \) is \(C^1 \), \(f \) and \(Df \) are bounded on \(\overline{V} \). Let \(|f(x)| \leq k \) and \(\|Df(x)\| \leq L \) for \(x \in \overline{V} \). Choose \(\delta > 0 \) such that
\[
(i) \quad r = \delta L < 1 \quad \text{and} \quad B_{2\delta k}(a) \subset \overline{V}.
\]
Set \(c = \delta k \). Let \(\mathcal{F} \) be the set of continuous functions \(h : J \rightarrow \overline{B_{2c}(a)} \) such that
\[
(ii) \quad \text{if} \quad x = h(0), \quad \text{then} \quad x \in \overline{B_c(a)} \quad \text{and} \quad h(J) \subset \overline{B_c(x)}.
\]
For \(x \in \overline{B_c(a)} \), set \(\mathcal{F}_x = \{h \in \mathcal{F} : h(0) = x\} \). For \(h \in \mathcal{F} \) define
\[
(3) \quad Th(t) = h(0) + \int_0^t f(h(s)) \, ds.
\]
Then, by (1),
\[|Th(t) - h(0)| = \left| \int_0^t f(h(s)) \, ds \right| \leq |t| \delta k = c, \]
therefore \(Th \in F_x \) and \(T : F_x \rightarrow F_x \).

For any continuous, bounded function \(g : J \rightarrow \mathbb{R}^n \) define the norm
\[\|g\| = \sup \{|g(t)| : t \in J\}. \]

Warning: for linear functions \(\lambda \) will still use the norm defined in §5.

If \(g \) and \(h \) are functions in \(F_x \), then
\[\|g - h\| = \|h - g\|, \]
\[\|g - h\| = 0 \iff g = h, \]
\[\|h_1 - h_3\| \leq \|h_1 - h_2\| + \|h_2 - h_3\|. \]

The third property is called the triangle inequality by analogy with the formula for distances between points in the plane. To prove it notice that for any \(t \in J \)
\[|h_1(t) - h_3(t)| \leq |h_1(t) - h_2(t)| + |h_2(t) - h_3(t)| \leq \|h_1 - h_2\| + \|h_2 - h_3\|, \]
so the left hand side is bounded by the right hand side. These three properties make \(F \) a metric space with the distance between \(g \) and \(h \) given by \(\|g - h\| \).

For \(f, g \in F \) and \(t, s \in J \) we have
\[|f(g(s)) - f(h(s))| \leq L|g(s) - h(s)| \leq L\|g - h\|, \quad \text{by §10a} \]
\[\left| \int_0^t f(g(s)) - f(h(s)) \, dt \right| \leq L\|g - h\| |t| \leq L\delta \|g - h\|. \quad \text{by (1)} \]

If also \(g(0) = h(0) \), then
\[|Tg(t) - Th(t)| \leq L\delta \|g - h\| \leq r\|g - h\|, \quad \text{by (i)} \]
\[\|Tg - Th\| \leq r\|g - h\|. \quad \text{(5)} \]

Since \(r < 1 \), \(T \) is called a contraction map; \(T \) moves points (functions) closer together.

We will prove that the sequence \(g_n \in F_x \) defined inductively by
\[g_0(t) = x \quad \text{and} \quad g_n = Tg_{n-1} \]
converges uniformly to a function \(g \) satisfying (3) with initial condition \(g(0) = x \). First \(g_0 \in F_x \), and hence \(g_n \in F_x \). Then (5) implies \(\|g_2 - g_1\| \leq r\|g_1 - g_0\| \) and inductively
\[\|g_n - g_{n-1}\| \leq r^{n-1}\|g_1 - g_0\|. \]
Therefore, with \(m < n \),
\[
\|g_n - g_m\| \leq \|g_n - g_{n-1}\| + \cdots + \|g_{m+1} - g_m\|
\leq (r^{n-1} + \cdots + r^m)\|g_1 - g_0\|
\leq (r^m + r^{m+1} + \cdots)\|g_1 - g_0\|
\leq \frac{r^m}{1-r}\|g_1 - g_0\|.
\]

Since \(r^m \to 0 \) as \(m \to \infty \), this shows the sequence \(g_n \) is uniformly Cauchy and hence converges uniformly to a continuous function \(g \) which lies in \(\mathcal{F}_x \).

We need to show that \(g \) is a fixed point of \(T \). Since \(g_n \) converges uniformly to \(g \), it follows from (4) that \(f(g_n(t)) \) converges uniformly to \(f(g(t)) \). Then
\[
(Tg)(t) = x + \int_0^t \lim_{n \to \infty} f(g_n(s)) \, ds = \lim_{n \to \infty} \{ x + \int_0^t f(g_n(s)) \, ds \} = \lim_{n \to \infty} g_{n+1}(t) = g(t).
\]

Hence \(g \) is a solution to our differential equation on the interval \(J \).

If \(h \) were another solution to (2) on an interval \(J_1 \subset J \) with \(h(0) = g(0) \), then \(Th = h \) and \(Tg = g \) on \(J_1 \). Using the norm on \(J_1 \), \(\|g - h\| = \|Tg - Th\| \leq r\|g - h\| \) and \(r < 1 \) imply \(\|g - h\| = 0 \) and hence \(g = h \) on \(J_1 \).

Denote the constructed solution defined for \(t \in J \) and \(x \in \overline{B_c(a)} \) by \(g_x(t) \). By the fundamental theorem of calculus \(g_x(t) \) is differentiable in \(t \) and, since \(g_x'(t) = f(g_x(t)) \), \(g_x \) is \(C^1 \). Set \(g(t, x) = g_x(t) \).

14. Flows

The \(C^1 \) function \(f : U \to \mathbb{R}^n \) is pictured as a vector field on \(U \), that is, an assignment to each \(x \in U \) of a vector \(\vec{v}_x = f(x) \) “based” at the point \(x \). For any \(a \in U \), a solution \(g(t) : J \to U \) is pictured as a point moving along a path so that at time \(t \) the moving point is at \(g(t) \) and its velocity is \(g'(t) = f(g(t)) \). Each moving point that passes through a given point \(x \) has the same velocity, \(f(x) \), at the time it is at \(x \). This motion is called a steady flow. If \(f \) depended on \(t \) and \(x \), we would have a time-dependent flow.

In §13 we proved the existence, for any \(x \in U \) and for a short time depending on \(x \), of a unique flow \(C^1 \) in \(t \). In this section we will give some more global results on the flow for a given \(f \).

1. Let \(g \) satisfy \(g'(s) = f(g(s)) \) for \(s \in J \). Let \(s, s + t \in J \) and define \(h(t) = g(s + t) \). Since
\[
h'(t) = g'(s + t) \quad \text{by the chain rule}
\]
\[
= f(g(s + t))
\]
\[
= f(h(t)),
\]
h is a solution in an interval about 0 with \(h(0) = g(s) \).
(2) Let \(g_i(t) \) be a solution for \(t \in J_i, \ i = 1, 2 \), satisfying \(g_1(0) = g_2(0) \). Then \(g_1(t) = g_2(t) \) for all \(t \in J_1 \cap J_2 \).

Let \(J^* = \{ t \in J_1 \cap J_2 : g_1(t) = g_2(t) \} \). \(J^* \neq \emptyset \) since \(0 \in J^* \). We will show that \(J^* \) is both open and closed in \(J_1 \cap J_2 \) and therefore \(J^* = J_1 \cap J_2 \). By the uniqueness result in §13, there is an open neighborhood \(J_0 \subset J^* \) containing 0. If \(s \in J^* \), by (1) there are solutions \(h_i(t) \) with \(h_i(0) = g_i(s) \). Since \(s \in J^* \), \(h_1(0) = h_2(0) \), and by uniqueness \(h_1(t) = h_2(t) \) in a neighborhood of 0. Hence \(g_1 = g_2 \) in a neighborhood of \(s \) and therefore \(J^* \) is open. If \(s \in J_1 \cap J_2 \) but \(s \notin J^* \) then, since \(\mathbb{R}^n \) is Hausdorff, there are disjoint neighborhoods \(U_i \) of \(g_i(s) \). Then \(s \in g_1^{-1}(U_1) \cap g_2^{-1}(U_2) \), an open set in \(J_1 \cap J_2 = J^* \). Therefore \(J^* \) is closed in \(J_1 \cap J_2 \). Since \(J_1 \cap J_2 \) is connected, \(J^* = J_1 \cap J_2 \).

(3) A maximal solution. Under the hypotheses of (2), define a \(C^1 \) map \(g : J_1 \cup J_2 \to U \) by

\[
g(t) = \begin{cases}
 g_1(t) & \text{if } t \in J_1 \\
 g_2(t) & \text{if } t \in J_2.
\end{cases}
\]

This construction is just the union of the two functions \(g_1 \) and \(g_2 \) where a function is regarded as its graph in the product \(\mathbb{R} \times U \). For \(x \in U \), let \(S \) be the set of all graphs of solutions defined on intervals about 0 with initial point \(x \) and let \(g_x \) be the union of the elements of \(S \). This \(g_x \) is defined on the maximal interval \(J_x \) for a solution with initial point \(x \). Let \(\Omega = \{(t, x) \in \mathbb{R} \times U : t \in J_x \} \). Define \(g : \Omega \to U \) by \(g(t, x) = g_x(t) \).

(4) If \(g_a(t) \) is a solution defined on the maximal \(J_a \) with \(g_a(0) = a \), choose \(s \in J_a \) and let \(g_a(s) = b \in U \). For \(t \) such that \(s + t \in J_a \) define \(h(t) = g(s + t) \); \(h \) is defined on the interval \(\{ t : s + t \in J_a \} \). As in (1) \(h \) is a solution with \(h(0) = b \). Let \(g_b \) be the solution on the maximal interval \(J_b \) with \(g_b(0) = b \). By (2) \(g_b(t) = h(t) \) on the intersection of their intervals of definition. Then \(g_a(s + t) = g_b(t) \) where \(b = g_a(a) \). In terms of \(g : \Omega \to U \) we have \(g(t + s, a) = g(t, g(s, a)) \).

(5) The function \(\varphi_t(x) = g(t, x) \) is called the flow for time \(t \). For each \(x \in U \), \(\varphi_t(x) \) is defined for \(t \in J_x \). By §13 for each \(x \in U \) there is an interval \((-\delta, \delta) \) and a neighborhood \(N_x \) of \(x \) such that \(y \in N_x \Rightarrow (-\delta, \delta) \subset J_y \). For all \(x \in U \), \(\varphi_0(x) = x \). The result of (4) restated in terms of \(\varphi \) and with \(x \) playing the role of \(a \) is:

\[
\varphi_{t+s}(x) = \varphi_t \circ \varphi_s(x) \text{ for all } x \text{ such that } s, t + s \in J_x,
\]

\(\varphi \) is said to be a local one-parameter group. When \(\varphi \) is defined it takes a neighborhood of 0 in the abelian group \(\mathbb{R} \) to the set of self maps of \(U \). We have not yet proved that \(\varphi_t \) is continuous. However, if \(s \in J_x \), then \(s + (-s) = 0 \in J_x \) and \(\varphi_{-s} \circ \varphi_s(x) = x \). Therefore \(\varphi_{-s} = \varphi_s^{-1} \), so \(\varphi_s \) is a bijection. The associative law is automatic for maps under composition, hence, except for the problem of where these maps are defined, they form an group and, for small \(t, t \mapsto \varphi_t \) is a homomorphism—hence a local group.

(6) We next show that \(\varphi_t(x) = g(t, x) \) is a continuous function of \(x \).
LEMMA 1. Given \(g : J \rightarrow U \) and \([0, t_1] \subset J \) there is an open set \(V \subset \nabla \subset U \) with \(\nabla \) compact and a \(c > 0 \) such that for any \(s \in [0, t_1] \), \(B_{2c}(g(s)) \subset V \).

PROOF. Since \(U \) is open, for each \(s \in [0, t_1] \) there is a \(c_s > 0 \) with \(B_{3c_s}(g(s)) \subset U \). The set of smaller, open balls, \(\{ B_{c_s}(g(s)) : s \in [0, t_1] \} \) covers \(g([0, t_1]) \). Since \(g([0, t_1]) \) is compact, a finite subset of these balls covers \(g([0, t_1]) \), say the balls corresponding to \(s \) in the finite set \(\{ s_1, \ldots, s_m \} \subset [0, t_1] \). Let

\[
c_i = c_{s_i}, \quad c = \min \{ c_i : 1 \leq i \leq m \}, \quad \text{and} \quad V = \bigcup_{i=1}^{m} B_{3c_i}(g(s_i))
\]

If \(|x - g(s)| \leq 2c \) there is an \(i \) with \(|g(s) - g(s_i)| < c_i \) hence \(|x - g(s)| < 3c_i \). Therefore \(x \in V \).

LEMMA 2. Let \(\nu : [0, t_1] \rightarrow \mathbb{R} \) be continuous, \(t_1 > 0 \), and \(\nu(t) \geq 0 \). If there is an \(L \geq 0 \) such that

\[
\nu(t) \leq \nu(0) + \int_{0}^{t} L \nu(s) \, ds \quad \text{for} \quad 0 \leq t \leq t_1.
\]

Then \(\nu(t) \leq \nu(0)e^{Lt} \) on \([0, t_1]\).

PROOF. First assume \(C = \nu(0) > 0 \). Set

\[
\mu(t) = C + \int_{0}^{t} L \nu(s) \, ds.
\]

Then \(\nu(t) \leq \mu(t) \), \(0 < \mu(t) \), and \(\mu(0) = C \), hence:

\[
\frac{\mu'(t)}{\mu(t)} = \frac{L\nu(t)}{\mu(t)} \leq L,
\]

\[
\int_{0}^{t} \frac{\mu'(s)}{\mu(s)} \, ds \leq \int_{0}^{t} L \, ds = Lt,
\]

\[
\log \mu(t) \leq \log \mu(0) + Lt,
\]

\[
\mu(t) \leq Ce^{Lt}.
\]

The Lemma also holds for \(C = 0 \) because it holds for arbitrarily small \(C > 0 \).

PROPOSITION. Let \(a \in U \) and \(f : U \rightarrow \mathbb{R}^n \) be \(C^1 \). Let \(g_a : J_a \rightarrow U \) be a solution to §13(2') with initial value \(a \) on the maximal interval \(J_a \). Let \([0, t_1] \subset J_a \). Then there exists \(\rho > 0 \) such that \(\varphi_t \) is defined and is Lipschitz continuous on \(\overline{B_{\rho}(a)} \) for \(t \in [0, t_1] \). Further, \(\Omega = \{ (t, x) \in \mathbb{R} \times U : t \in J_x \} \) is open and \(g : \Omega \rightarrow U \) is continuous.

PROOF. Let \(c > 0 \) and \(V \subset U \) with \(\overline{B_{2c}(g(s))} \subset V \) for \(s \in [0, t_1] \) be as constructed in Lemma 1. Let \(|f(x)| \leq k \) and \(\|Df(x)\| \leq L \) for \(x \in V \) as in Theorem §13. Choose \(\rho > 0 \) such that \(\rho e^{Lt_1} \leq 2c \). Let \(x \in \overline{B_{\rho}(a)} \) and \(g_x : J_x \rightarrow U \) be the maximal solution. Set \(\nu(t) = |g_a(t) - g_x(t)| \) on \([0, t_1] \cap J_x \). Then

\[
\nu(t) - \nu(0) = \int_{0}^{t} f(g_a(s)) - f(g_x(s)) \, ds \leq \int_{0}^{t} L \nu(s) \, dt.
\]
so, by Lemma 2, \(\nu(t) \leq \rho e^{Lt} \leq \rho e^{Lt_1} \leq 2c \), hence \(g_x(t) \in V \).

If \(t_1 \not\in J_x \), let \(t^* = \sup J_x \leq t_1 \). Then \(b = g_x(t^*) \in V \). By (2) the solution \(g_b(t) \) is defined in a neighborhood of 0 and can be used to extend \(g_x(t) \) to a neighborhood of \(t^* \). This contradicts \(t^* = \sup J_x \leq t_1 \) and hence \(t_1 \in J_x \). Hence for all \(x \in \overline{B}_\rho(a) \), \([0, t_1] \subset J_x \).

Now, given \(x, y \in B_\rho(a) \), we have \(g_x \) and \(g_y \) defined on \([0, t_1] \). Let \(\nu(t) = |g_x(t) - g_y(t)| \). Again \(|g_x(t) - g_y(t)| \leq |x - y|e^{Lt} \), so \(\varphi_t \) is Lipschitz on \(\overline{B}_\rho(a) \) for \(t \in [0, t_1] \).

Finally, for any \((t, a) \in \Omega \), take \(t_1 > t \) with \(t_1 \in J_a \) and let \(s < t_1 \). Then

\[
|g_a(s) - g_x(t)| \leq |g_a(s) - g_x(s)| + |g_x(s) - g_x(t)| \leq e^{Lt_1}|a - x| + k|s - t|
\]

so \(g : \Omega \longrightarrow U \) is continuous at every point \(\Omega \).

The proof also shows for \(x \in B_\rho(a) \), \(J_a \subset J_x \) from which it follows that \(\Omega \) is open.