§1.1 Random experiment, sample space, outcome, event, relative frequency

§1.2 Set Theory:
- Set, element, subset, empty set or null set \emptyset
- Union, intersection, complement
- Venn diagram, space C or D
- DeMorgan’s laws: $(C_1 \cap C_2)^c = C_1^c \cup C_2^c$, $(C_1 \cup C_2)^c = C_1^c \cap C_2^c$
- Distributive laws: $C_1 \cap (C_2 \cup C_3) = (C_1 \cap C_2) \cup (C_1 \cap C_3)$, $C_1 \cup (C_2 \cap C_3) = (C_1 \cup C_2) \cap (C_1 \cup C_3)$
- Limit of a sequence of sets C_1, C_2, C_3, \ldots:
 \[\lim_{k \to \infty} C_k = \bigcap_{k=1}^{\infty} C_k, \text{ if the sequence is non-increasing}; \]
 \[\lim_{k \to \infty} C_k = \bigcup_{k=1}^{\infty} C_k, \text{ if the sequence is non-decreasing} \]

§1.3 The Probability Set Function
- σ-Field \mathcal{B} of the sample space \mathcal{C}
 - Smallest σ-Field: $\{\emptyset, \mathcal{C}\}$
 - Greatest σ-Field: $2^\mathcal{C}$, the power set of \mathcal{C}
 - σ-Field generated by D: $\sigma(D) = \bigcap \{\mathcal{E} : D \subset \mathcal{E} \text{ and } \mathcal{E} \text{ is a } \sigma\text{-field} \}$
 - Borel σ-field: \mathcal{B}_0, the σ-field generated by the set of all open intervals
- Probability set function P defined on the σ-field \mathcal{B}:
 - $P(C) \geq 0$, for all $C \in \mathcal{B}$
 - $P(\emptyset) = 0$
 - $P(C) = 1$
 - $P(\bigcup_{n=1}^{\infty} C_n) = \sum_{n=1}^{\infty} P(C_n)$, if C_1, C_2, C_3, \ldots are mutually disjoint

 Properties of the probability set function P:
 - $P(C^c) = 1 - P(C)$, for all $C \in \mathcal{B}$
 - $P(\emptyset) = 0$
 - $P(C_1) \leq P(C_2)$, if $C_1 \subset C_2$
 - $0 \leq P(C) \leq 1$, for all $C \in \mathcal{B}$
 - $P(C_1 \cup C_2) = P(C_1) + P(C_2) - P(C_1 \cap C_2)$
 - $\lim_{n \to \infty} P(C_n) = P(\lim_{n \to \infty} C_n)$, if $\{C_n\}$ is increasing or decreasing
 - $P(\bigcup_{n=1}^{\infty} C_n) \leq \sum_{n=1}^{\infty} P(C_n)$, for arbitrary sequence $\{C_n\}$

- Inclusion-Exclusion formula: $P(C_1 \cup C_2 \cup C_3) = p_1 - p_2 + p_3$
 where $p_1 = P(C_1) + P(C_2) + P(C_3)$,$$
 p_2 = P(C_1 \cap C_2) + P(C_1 \cap C_3) + P(C_2 \cap C_3),
 p_3 = P(C_1 \cap C_2 \cap C_3)$
§1.4 Conditional Probability and Independence

- Permutations and combinations: Draw \(k \) elements from \(n \) elements

 With order and with replacement: \(n^k \);

 With order and without replacement: \(P_k^n = n!/(n-k)! = \binom{n}{k} k! \);

 Without order and without replacement: \(\binom{n}{k} = n!/[k!(n-k)!] \)

§1.4 Conditional Probability and Independence

- Conditional probability: \(P(C_2|C_1) = P(C_1 \cap C_2)/P(C_1) \), if \(P(C_1) > 0 \)

 \(P(C_2|C_1) \geq 0 \);

 \(P(C_1 \cup C_2 \cup C_3 \cup \cdots |C) = P(C_1|C) + P(C_2|C) + P(C_3|C) + \cdots \), if

 \(C_1, C_2, C_3, \ldots \) are mutually disjoint;

 \(P(C_1 \cap C_2) = P(C_1)P(C_2|C_1) \);

 \(P(C_1 \cap C_2 \cap C_3) = P(C_1)P(C_2|C_1)P(C_3|C_1 \cap C_2) \)

- Law of total probability and Bayes’ theorem:

 \[
P(C) = \sum_{i=1}^k P(C_i)P(C|C_i),
 \]

 \[
P(C_j|C) = \frac{P(C_j)P(C|C_j)}{P(C)} = \frac{P(C_j)P(C|C_j)}{\sum_{i=1}^k P(C_i)P(C|C_i)},
 \]

 where \(\{C_1, C_2, \ldots, C_k\} \) is a partition of \(C \), and \(P(C_i) > 0, i = 1, \ldots, k \)

- The events \(C_1 \) and \(C_2 \) are independent, if and only if

 \(P(C_1 \cap C_2) = P(C_1)P(C_2) \).

 Then the following three pairs of events are independent:

 \(C_1 \) and \(C_1^\circ \); \(C_1^\circ \) and \(C_2 \); \(C_2^\circ \) and \(C_2^\circ \).

(updated on 10/26/2006)

- The events \(C_1, C_2, \ldots, C_n \) are independent, if and only if

 \(P(C_{d_1} \cap C_{d_2} \cap \cdots \cap C_{d_k}) = P(C_{d_1})P(C_{d_2}) \cdots P(C_{d_k}) \), for any \(2 \leq k \leq n \)

 and any subset \(\{d_1, d_2, \ldots, d_k\} \) of \(\{1, 2, \ldots, n\} \). Therefore

 \(P(A_1 \cap A_2 \cap \cdots \cap A_n) = P(A_1)P(A_2) \cdots P(A_n) \), where \(A_i = C_i \) or \(C_i^\circ \).

 Those events with disjoint index sets are independent too.

 For example, \(C_1 \cup C_2^\circ, C_3^\circ \), and \(C_4 \cap C_5^\circ \) are independent.

§1.5 Random Variables

- Random variable \(X \): a function defined on the sample space \(\mathcal{C} \)

 Range (or space) of \(X \): \(\mathcal{D} = \{X(c) : c \in \mathcal{C}\} \)

- Cumulative distribution function (cdf) of a random variable \(X \):

 \[
 F(x) = P(X \leq x) = P(\{c \in \mathcal{C} : X(c) \leq x\})
 \]

 which always satisfies

 \((a) \) \(F \) is nondecreasing, that is, \(F(a) \leq F(b) \) for all \(a < b \);
1.6 Discrete Random Variables

Other properties of the cdf \(F \) of \(X \):

- \(P(a < X \leq b) = F(b) - F(a) \);
- \(P(X = x) = F(x) - F(x-), \) where \(F(x-) = \lim_{x \uparrow x} F(z) \);
- Discrete random variable \(X \): \(D \) is finite or countable
 - Probability mass function (pmf) of \(X \):
 \[
 p(x) = P(X = x) = P\{\{c \in C : X(c) = x\}\}
 \]
 which must satisfy: [1] \(0 \leq p(x) \leq 1 \) for all \(x \in D \); [2] \(\sum_{x \in D} p(x) = 1 \).
 - Continuous random variable \(X \): there exists a probability density function (pdf) \(f(x) \) such that the cdf
 \[
 F(x) = \int_{-\infty}^{x} f(t) dt, \text{ for all } x \in R.
 \]
 Note that \(f(x) \) must satisfy: [1] \(f(x) \geq 0 \) for all \(x \); [2] \(\int_{-\infty}^{\infty} f(x) dx = 1 \).
 - Properties of continuous random variable \(X \) with cdf \(F(x) \) and pdf \(f(x) \):
 - \(F(x) \) is continuous. Thus \(P(X = x) = F(x) - F(x-) = 0 \), for all \(x \).
 - \(\frac{d}{dx} F(x) = f(x) \), for almost all \(x \).
 - \(P(a < X \leq b) = P(a < X < b) = P(a \leq X \leq b) = \int_{a}^{b} f(x) dx \).

§1.6 Discrete Random Variables

- Uniform distribution on a finite set, for example, \(\{-2,-1,0,1,2\} \):
 - The pmf is
 \[
 \begin{array}{c|c|c|c|c|c}
 x & -2 & -1 & 0 & 1 & 2 \\
 p(x) & 1/5 & 1/5 & 1/5 & 1/5 & 1/5 \\
 \end{array}
 \]
 - Bernoulli trial:
 - \(C = \{ \text{success, failure} \} \), \(P(\{\text{success}\}) = p, P(\{\text{failure}\}) = 1 - p \),
 - where \(p \) is the parameter of the Bernoulli trial such that \(0 < p < 1 \)
 - Bernoulli distribution:
 \(X(\text{success}) = 1, X(\text{failure}) = 0 \), pmf:
 \[
 \begin{array}{c|c|c}
 x & 0 & 1 \\
 p(x) & 1 - p & p \\
 \end{array}
 \]
 - Geometric distribution:
 - Repeat a Bernoulli trial independently until a success appears.
 - Let \(X \) be the number of trials needed.
 - The range of \(X \): \(D = \{1, 2, 3, \ldots, n, \ldots\} \)
 - The pmf of \(X \): \(p(x) = (1 - p)^{x-1} p \), for \(x = 1, 2, 3, \ldots \),
 - which has the property “lack-of-memory”:
 \[
 P(X = k + m | X > k) = P(X = m)
 \]
Hypergeometric distribution:
Suppose an urn contains N balls. Exactly M balls are red. Draw n ($n < N - M$) balls from the urn at random and without replacement. Let X be the number of red balls drawn.
The range of X: $D = \{0, 1, 2, \ldots, \min\{n, M\}\}$
The pmf of X:
$$p(x) = \binom{M}{x} \binom{N-M}{n-x} / \binom{N}{n}$$

Transformation of a discrete random variable X: $Y = g(X)$
Y is a discrete random variable too. The pmf of Y:
$$p_Y(y) = \sum_{x: g(x) = y} p_X(x)$$

§1.7 Continuous Random Variables

– Uniform distribution on a finite interval (a, b): The pdf is
$$f(x) = \begin{cases} 1/(b-a), & \text{if } x \in (a, b); \\ 0, & \text{elsewhere} \end{cases}$$

– Cauchy distribution: $f(x) = 1/[\pi(1+x^2)]$, $-\infty < x < \infty$

– Transformation of a continuous random variable X: $Y = g(X)$
Y is a continuous random variable too. The pdf of Y:
$$f_Y(y) = f_X(g^{-1}(y)) \left| \frac{dg^{-1}(y)}{dy} \right|, \text{ for } y \in S_Y = \{g(x): x \in S_X\},$$
if $g(x)$ is a one-to-one differentiable function on S_X, the support of X.
Alternative approach: (1) Calculate the cdf of Y first
$$F_Y(y) = P(Y \leq y) = P(g(X) \leq y)$$

(2) The pdf of Y: $f_Y(y) = \frac{dF_Y(y)}{dy}$, for $y \in S_Y = \{g(x): x \in S_X\}$

– Mode of a distribution: a value of x that maximizes the pdf or pmf

– Median of a distribution: a value of x such that
$$P(X \leq x) \geq \frac{1}{2}, \ P(X \geq x) \geq \frac{1}{2}$$

§1.8 Expectation of a Random Variable
– Expectation of a discrete random variable X, if $\sum_x |x|p(x) < \infty$:

$$E(X) = \sum_x xp(x)$$

Expectation of $g(X)$, if $\sum_x |g(x)|p(x) < \infty$:

$$E[g(X)] = \sum_x g(x)p(x)$$

– Expectation of a continuous random variable X, if $\int_{-\infty}^{\infty} |x|f(x)dx < \infty$:

$$E(X) = \int_{-\infty}^{\infty} xf(x)dx$$

Expectation of $g(X)$, if $\int_{-\infty}^{\infty} |g(x)|f(x)dx < \infty$:

$$E[g(X)] = \int_{-\infty}^{\infty} g(x)f(x)dx$$

– Properties of expectations:

1. $E(c) = c$, if c is a constant;
2. $E(cX) = cE(X)$, if c is a constant;
3. $E(aX + bY) = aE(X) + bE(Y)$, if a, b are constants

§1.9 Some Special Expectations

– Mean: $\mu = E(X)$
– Variance: $\sigma^2 = Var(X) = E[(X - \mu)^2] = E(X^2) - \mu^2$

 Standard deviation: $\sigma = \sqrt{Var(X)}$
– Skewness: $\gamma_1 = E[(X - \mu)^3]/\sigma^3 = E(X^3)/\sigma^3 - 3\mu/\sigma - (\mu/\sigma)^3$

 $\gamma_1 < 0$ (skewed to the left); $\gamma_1 > 0$ (skewed to the right);

 $\gamma_1 = 0$ (not skewed)
– Moments: $E(X^m)$, mth moment; $E[(X - \mu)^m]$, mth central moment
– Moment generating function (mgf): If $E(e^{tX})$ exists for $t \in (-h, h)$,

$$M(t) = E(e^{tX}) = 1 + tE(X) + \frac{t^2}{2!}E(X^2) + \frac{t^3}{3!}E(X^3) + \cdots$$

$M'(0) = \mu$, $M''(0) = E(X^2)$, \ldots In general, $M^{(m)}(0) = E(X^m)$.

– If $M_X(t) = M_Y(t)$ for all $t \in (-h, h)$, then $F_X(z) = F_Y(z)$ for all $z \in R$. That is, X and Y have the same distribution, denoted by $X \overset{D}{=} Y$.
– Characteristic function (cf): $\varphi(t) = E(e^{itX}) = M(it)$, where $i = \sqrt{-1}$ is the imaginary unit. Note that cf exists for all real t.

5
Cumulant generating function: \(\psi(t) = \log M(t) \)
\(\psi'(0) = \mu, \; \psi''(0) = \sigma^2 \)

§1.10 Important Inequalities

- Markov’s inequality: Let \(u(X) \) be a nonnegative function, \(c > 0 \),
 \[P[u(X) \geq c] \leq \frac{E[u(X)]}{c} \]

- Chebyshev’s inequality: For \(k > 0 \),
 \[P(|X - \mu| \geq k\sigma) \leq \frac{1}{k^2} \]
 or \(P(|X - \mu| \geq \epsilon) \leq \frac{\sigma^2}{\epsilon^2} \) for all \(\epsilon > 0 \)

- Convex function \(\phi \): For all \(x, y \) and all \(0 < \gamma < 1 \),
 \[\phi[\gamma x + (1 - \gamma)y] \leq \gamma \phi(x) + (1 - \gamma)\phi(y) \]
 \(\phi \) is convex if \(\phi' \) is nondecreasing or \(\phi'' \) is nonnegative.

- Jensen’s inequality: If \(\phi \) is convex on the support of \(X \), then
 \[\phi[E(X)] \leq E[\phi(X)] \]