Neyman-Fisher, Theorem

Better known as "Neyman-Fisher Factorization Criterion", it provides a relatively simple procedure either to obtain sufficient statistics or check if a specific statistic could be sufficient.

Fisher was the first who established the Factorization Criterion like a sufficient condition for *sufficient* statistics in 1922. Years later, Neyman demonstrated it necessity under certain restrictive conditions in 1935. Finally, Halmos and Savage extended it in 1949 as follows:

Let $\wp = \{P_{\theta}, \theta \in \Omega\}$ be a family of probability measures on a measurable space (Θ_X, A) absolutely continuous with respect to a σ -finite measure μ . Let suppose that its probability densities in the Radon-Nicodym sense $p_{\theta}=dP_{\theta}/d\mu$ exist a.s.[μ] (almost sure for μ).

A necessary and sufficient condition for the sufficiency with respect to \wp of a statistic T transforming the probability space $(\Theta_X, A, P_{\theta})$ into (Θ_T, B, P_T) is the existence $\forall \theta \in \Omega$ of a $T^1(B)$ -measurable function $g_0 T(x)$ and an *A*-measurable function $h(x) \neq 0$ a.s. $[P_{\theta}]$, both defined $\forall x \in \Theta_X$, non-negatives and μ -integrable, such that $p_{\theta}(x) = g_{\theta}T(x) \cdot h(x)$, a.s. $[\mu]$.

Densities p_{θ} can be either probability density functions from absolutely continuous random variables or probability functions from discrete random variables among other possibilities, depending on the nature and definition of μ .

In common economic practice, this Factorization Criterion adopts simpler appearances. Thereby, in Estimation Theory under random sampling, the criterion is usually enounced as follows:

Let X be a random variable belonging to a regular family of distributions $F(x;\theta)$ which depends on a parameter θ (mixture of absolutely continuous and discrete random variables on values not depending on the parameter) representing some characteristic of certain population. Moreover, let x=(X₁, X₂, ..., X_n) represent a random sample size n of X, extracted from such a population.

A necessary and sufficient condition for the sufficiency of a statistic T=t(x) with respect to the family of distributions $F(x;\theta)$ is that the sample likelihood function $L_n(x;\theta)$ could be factorized like $L_n(x;\theta)=g(T;\theta)\cdot h(x)$. Here, "g" and "h" are non-negative real functions, "g" depending on sample observations through the statistic exclusively and "h" not depending on the parameter.

When the random variable is absolutely continuous (discrete), function $g(t;\theta)$ is closely related to the probability density function (probability function) of the statistic T. Thus, the criterion could be equivalently enounced assuming the function $g(t;\theta)$ to be exactly such probability density function (probability function). In this case, the usually complex work of deducing the distribution x|T of the original observations conditioned to the statistic T becomes easier, being specified by h(x). According to this Factorization Criterion, any invertible function of a sufficient statistic $T^*=k(T)$ is a sufficient statistic too.

Likewise, exponential family defined by probability density functions like $f(x;\theta)=k(x) \cdot p(\theta) \cdot exp[c(\theta)'T(x)]$ always admits a sufficient statistic T.

References:

Fisher, R.A. (1922) "On the mathematical foundation of theoretical statistics" *Philos. Trans. Roy. Soc. serie A.*, 222:309-368.

Neyman, J. (1935) "Sur un teorema concernente le cosidette statistiche sufficienti" *Giorn. Ist. Ital. Att.*, 6:320-334.

Halmos, P.R. and Savage, L.J. (1949) "Application of the Radon-Nikodym theorem to the theory of sufficient statistics" *Ann. Math. Statist.*, 20:225-241.

Zacks, S. (1971) The Theory of Statistical Inference. John Wiley & Sons, Inc. 38-48.