- **1.** Exercise 7.3 on page 420.
- **2.** Exercise 7.11 on page 422.
- 3. Justify the second part of Result 7.10 on page 395. That is,
 - (1) $\hat{\boldsymbol{\beta}}$ has a normal distribution with $E(\hat{\boldsymbol{\beta}}) = \boldsymbol{\beta}$ and $\operatorname{Cov}(\hat{\boldsymbol{\beta}}_{(i)}, \hat{\boldsymbol{\beta}}_{(k)}) = \sigma_{ik} (\mathbf{Z}'\mathbf{Z})^{-1}$.
 - (2) $\hat{\boldsymbol{\beta}}$ is independent of $\hat{\boldsymbol{\Sigma}}$.
 - (3) $n\hat{\Sigma}$ is distributed as $W_{m,n-r-1}(\Sigma)$, the Wishart distribution with n-r-1 degrees of freedom.