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“zero, one, two, three, four, five, ... 80 there are

D5 @b 8 0=

FIGURE 10.1 What Sierpiriski should bave said.

THE EMPTY SET ~

One of the advantages of the new system is that it works even when
you are counting no objects at all. If Sierpifiski’s luggage all gets lost
en route, then, at the other end of his journey he should say:

“ 7 so there are ZERO bags here!

The usual system of counting doesn’t work for counting zero
objects, since there isn’t a last number that you used.

CANTOR'S ORDINAL NUMBERS

The great German mathematician Georg Cantor was the earliest per-
son to construct a coherent theory of counting collections that may
be infinite. For this he extended the ordinary series of numbers used
for counting, as follows:

0,1,2,...asusual,
then w, w+1, w+2, ... then wtw, otwt+l, ...

and so on.

The important point about these numbers (and, in essence, their
definition) is that, no matter how many of them you’ve used, there’s
always a (uniquely determined) earliest one that you haven’t. Cantor’s
opening infinite number,

w=1{0,1,2,..]}

is defined to be the earliest number greater than all the finite counting
numbers. We'll use

{a,b,c, ...}
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When you count things, you are really ordering them in a special

way:

fGURE 10.2 Various numbers of poles.

To count the poles in Figure 10.2(@), you'd say,

are {0, 1, 2]} = 3 poles here.” But now lo

we imagine that the road is infinite, with a
dinary integers O, 1,2,.... Obviously, we should now say:

“0,1,2,...,80 there are @ poles here.”

«Q, 1, 2, 8O there

ok at Figure 10.2(b), where
pole for each of the or-
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In the future, we’ll represent such an infinite sequence of objects by

0123

(recalling Figure 10.2(b)), but we’ll represent a finite

poles of equal height:

(recalling Figure 10.2(2).

To add two of Cantor’s ordinal numbers, you just put their pic-
tures side by side and do a recount: For instance,

OR

123

012

1 2 (old counts) '

=5

3 4 (recount)

sequence by
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Of course, we get the same answer from 3 + 2, although the re-
counting’s in a different order:

3 4

But infinite numbers give some surprises! We find that 1 + w is the

same as w:

00
TT125

’“\H\\Hn,_

012% -

but w + 1 is bigger:

0

—{0.1,2... ,0}=0+1

\\ \H\Uilunm

0123 O=0+1

In other words, this kind of addition usually fails to satisfy the com-
mutative law; B + a may be larger or smaller than o + B.
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As a bigger example, we’ll add @ = wt+w+lto B = w+4, both
ways around,

(+o+1) +  (0+4) f
012 - 3::: s :$ f;::?:a)+co+(o+4
83 s 8=s 2228
+ o +h+e
8z z3es3
* 4
. 833
(0+4) + (w+o+1)
TN S0 37 =W+ 0+ W0+1
T+ +4+ +F + ! i
8g3 a3 s s - |
s s

Since two numbers, «, B, in their two orders, can give two distinct !
sums, you might expect that three ordinal numbers, «, 3, v, could
give six different sums,

a+B+y, aty+p, B+ryta, Braty, ytat+B, y+B+a,

but it turns out that at least two of these six are equal, so that no
three ordinal numbers can have more than five different sums.
By taking the largest possible number of different sums of 7 or-

dinal numbers for n = 1, 2, 3, . .., we get the sequence
1 2 5 1% 33
&1 193 449 32% 33 X 81
82 81 X 193 1957 3% X 81 33 X 8 .
81° B8R X193 &1 X 193° 197° 33 X 81
and from here on "you multiply the previous row by &1: i
B1* B X193 812 X 1932 81 X 193° 33 X &r* ... i
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So the largest number of different sums that » ordinals can have be-
haves rather strangely. For 15 or more numbers, it will be either a
power of 193 times a power of 81, or 33 times a power of 81.

MuLTiPLYING ORDINAL NUMBERS

Now let’s see how to multiply Cantor’s numbers. The product aXf3
is what you get by placing 8 copies of « in sequence: for instance,

2

45

as you might expect, but infinite numbers continue to surprise
When we take w copies of 2, we see that 2 X  is just w:

01

?

1

L \‘l\lhw
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but w X 2 (2 copies of w) is the same as w + w:

0w X2=

What is @ X o (which we can write as w?)? It's a2 much larger
number than the ones we've seen before. It consists of w copies of

2
2
4

0123

w, placed in sequence:

OX®=

o012

‘What about @’

r
3

‘.\mllllm

o +2

0]

I

3
4

=0+ ®

\\‘H\\

3 —
+
3

o+ 2

\ \ \ HHU [ ‘\m\hnm.]l“\l\\unm

X
2

0+ O
o+ 0+1
O+n+2

get it by having w copies of a pattern of w*:

by

b Db b

w2

D"“ﬂhn.f h

. w* ... ? Well, of course, ® = &” X w. We can
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Then you get o* from w copies of this; then o’ from w copies of
that, and so on—Wwe€ won’t draw the pictures for ot e, .. . —and
there are lots of other numbers. For instance,

X449 + X8 + @*X3 + wX57 + 1001

lies between «° and w’. Figure 10.3 shows a pattern for the number
W?X2 + wX3 + 7.

N N he BN

fGURE 103 (@ X 2) + (@ X 3) + 7.

Can we go further? Yes! In Cantor’s system you can always go
further! The number

w“’=1+w+a)2+w3+a)4+~--

is obtained by juxtaposing all the patterns for 1, w, wh,e’, w*, ..., in
that order. Then you have

w?+ 1w+ 2, ... w0+t ... 0w+ oX2... W+ wXd, ...
0® + o 0+ o+ a)“’+co2+a),...,w"’+w5,...
w“’+w"’=a)“’><2,a)"’><2+1,... W X B, . .., 0 X4

+ + +
W’ X w= .. 0T e w4+ dh

-+ -+ X X,
a)w1+ww"”ww 2.”,ww+5,”.ww 2’“.ww5

2 3 4 w w1 i
w“',...w“’,...w‘“,...w”’,...w“’ > e

The “limit”’ of all these is a number that it is natural to write as

where there are @ Omegas. This famous number was called €, by
Cantor. It’s the first ordinal number that you can’t get from smaller
ones by a finite number of additions o+ B, multiplications aX B, and
exponentiations o®. Another formula for it is
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@

=1+0w+ o+ o+ o + ..

It is also the first number that satisfies Cantor’s famous equation
w® = €. You'd think that this couldn’t happen, because

o' is much bigger than 1,
w? even more so than 2,
w° still more so than w,

but Cantor showed that his equation has lots of solutions. The next
is
+1 ot
()

6= (o + D+ o+ o + o+

Then come
€3, €3, - -« €4y Eutbl> v - €wx2y « -+ Eu?y oo oy .- ‘
650, EEO+1’ “ .. EEO+w, .o €€0+ww’ Y €€OXZ7 . e e Eel, TR
€y ey Eegsve Eegpo i Cegniin o
w '\

and eventually

€e, >
€

which is the first solution of €, = a.

How FAR CAN WE GO?

The ordinal numbers go on for an awfully long time! No matter how
big the set of them you've already got, there’s always another one,
and another, and another, and . . . . The precise situation was guessed
by Cantor and proved a quarter of.a century later by his student
Zermelo in 1904: there are enough ordinals to count the members of
any set of objects, no matter how big it is. Zermelo’s proof showed
that this depends on a hitherto unrecognized principle in mathemat-
ics: the so-called axiom of choice.




