
Notes on Diagrammatic Matrix Algebra and Graphs 
by L.K. 
  
Lets first recall how matrix multiplication works. Matrices are arrays 
of elements of an arithmetic or an algebra. Here we will begin by 
assuming that the matrix elements occur in ordinary numbers 
(integers, rationals, reals or complex numbers) or their algebra. 
Two 2 x 2 arrays are multiplied by the following formula. 
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We denote a matrix  A = (Aij) by a global letter (A in this case), 
and by an indication of the form of the elements of the array, Aij. 
The subscripts range over the set {0,1} in the case of a 2 x 2 matrix, 
as shown above. The rule for multiplying two matrices is 
 

(AB)ij = Σk AikBkj. 
 
where the summation is over the index set for the matrix size that 
we are using. Compare this formula with the arrangement of indices 
and sums in the explicit matrix product given above. 
 
We now give a diagrammatic interpretation for matrix algebra. 
Each individual matrix is represented by a box with (input and 
output) lines that correspond to the matrix indices. 
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Matrix multiplication is represented by attaching the output line 
from one box to the input line of the other box. 
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Lines tying one box to another correspond to internal indices in the 
matrix product, and so one sums over all possible choices of index 
for such internal lines.  
 
With these diagrammatic conventions in place, one can often make 
very efficient insight into properties of matrix composition. For 
example, the trace of a matrix A is given by the formula 
 

Tr(A) = Σ i Aii. 
Here is the diagram. 
 

Tr(A)
A

 
 
With this diagrammatic for the trace of A, we easily prove that  
Tr(AB) = Tr(BA) by putting two boxes in a circular connection 
pattern. 
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You should compare this with the algebraic proof: 
 

Tr(AB) = Σi (AB)ii = Σi Σj AijBji 
 
= Σj Σi BjiAij = Σj (BA)jj = 
Tr(BA). 
 
Associativity 
Another application of these diagrams is to the proof that  
matrix multiplication is associative. For we see that the diagram 
for the product of three matrices A, B and C is given by 
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Matrix Multiplication is associative

because the products of matrix

entries are associative.  
 
Adjacency Matrix of a Graph 
Given a graph G, we define the adjacency matrix A(G) to be an n xn  
matrix where n = #V(G) = the number of nodes of the graph G. 
Letting A = A(G), then A is defined by the equation 
 
Aij = the number of edges in G with endpoints i and j. 
 
For example, let G be the graph shown below with  
V(G) = {1,2} and E(G) = {a,b} where a is a loop at 1 and b has 
endpoints 1 and 2. 
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Then we have 
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Walk Theorem.  
Let A = A(G) be the adjacency matrix of a graph G. 
Let B = Am for some m = 1,2,3,.... Then Bij is equal to the 
number of  walks of length m in G from node i to node j. 
 
Proof. Since 
 

(Am)ij = Σ  k1,k2,...,k(m-1) (Α ik1 Αk1k2 . . .Αk(m-

1)j) 
 
we see that each term in the sum for (Am)ij counts the number of 
walks that could happen in the pattern 

i ----> k1 ----> k2 ----> .... ----> k(m-1) -----> j. 
These add up and count the total number of walks. The proves the 
Theorem. // 
 
Exercise. (a) Let A be the adjacency matrix  for the example G just 
before the statement of the Walk Theorem. (G has two nodes 1 and 
2, a loop at 1 and an edge from 1 to 2.) Compute the first few 
powers Ak, and verify that the  entries do count walks of length k 
on the graph G.  
(b) Using the matrix A of part (a) find recursive formulas for the  
entries of Am as a function of m. Hint: Examine the first few powers 
of A to find patterns. Then prove your patterns by induction on m. 
(c) Use the method of generating functions, via the finding the  
inverse matrix (I - At)-1, to determine the values of the walks on 
G. 
(d)  Find the characteristic polynomial CG(t) = Det(A - tI) and  
use it to find the eigenvalues of G, and go through the eigenvalue 
calculations for th walks on G as in Class Notes #1. 



(e)  Now do the same work as in steps (c) and (d) above for the 
adjacency matrix for the graph G(n,m,p) with vertices 1 and 2 and  
n loops at 1, m edges from 1 to 2 and p loops at 2. Write down the 
adjacency matrix for G(n,m,p) and find the generating series, the 
characteristic polynomial, the eigenvalues and find recursion 
relations for the walks from 1 to 1 of all lengths. 
(f) Read the web site  
<http://www.math.harvard.edu/archive/21b_fall_03/goodwill/> 
(It is linked on the Graph Theory course webpage.) 
Analyse the graph given there, using what you know about the 
adjacency matrix. Can you figure out the rest of what is going on 
mathematically on that page? 
 
(See Class Notes #1) 
 ____________________________________________________ 
Graph Isomorphism and Matrices 
Let G be a finite graph  with n nodes,  and A = A(G) its adjacency 
matrix. This means that we have labeled the nodes of G from the set 
{1,2,...,n} and we then define the matrix A via 
Aij = the number of edges in G from node i to node j. 
 
Note that we can obtain many different adjacency matrices 
depending upon the labeling of the nodes. Lets figure out how A will 
change if we reorder the nodes of the graph. Suppose we take a 
permutation  σ:{1,2,...,n} -----> {1,2,... ,n}. 
 And we use the nodes in the order 

σ(1) σ(2) σ(3) ... σ(n). 
Then we would have a new adjacency matrix B with  

Bij = Aσ(i)σ(j). 
In fact the isomorphism problem for graphs can be stated in terms 
of matrices in just this way.  
 
Given adjacency matrices A and B of the same size (n x n), does 
there exist a permutation σ such that  Bij = Aσ(i)σ(j)? 
 
As you can see, this problem is a search problem among n! 
different  
possibilities and so becomes computationally hard very quickly as n  
increases. For this reason, we look for methods involving matrix 
algebra to get at least partial information about the problem. 
 



Given a permutation σ as above, we can define an n x n 
permutation matrix P via the formula 
 

Pij = δσ(i),j 
 
where   δa,b = 1 when a = b and 0 otherwise. 
 
For example, the matrix P below corresponds to the permutation 
σ = (1234) in cycle notation. That is  
σ(1) = 2, σ(2) = 3, σ(3) = 4, σ(4) = 1. 
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For a permutation matrix, it is easy to see that  the inverse matrix   
P-1is  given by the formula 

 
P-1ij = δi,σ(j). 

 
From this you can easily prove the following  
 
Theorem. Let A be given as a specific n x n matrix Aij. 
Let B be defined as above via  
 

Bij = Aσ(i)σ(j)  
 

for a permutation  σ:{1,2,.. .,n} -----> {1,2,...,n}. 
Let P be the permutation matrix corresponding to σ. 

Then B = P A P-1. 
 



Proof.  Exercise (we will do it in class).// 
 
We have seen in the class notes that it is useful for understanding 
the powers of A (and hence the walks on G) 
to use the matrix CA(t) = Det(A - t I), the characteristic 
polynomial of A. We have also pointed out that for any invertible 
matrix P (n x n) we have that if  B = P A P-1, then  
 

CB(t) = CA(t). 
 
This means that  
 
Theorem. The characteristic polynomial of any adjacency matrix 
A(G)  is an invariant of the graph isomorphism class of G. That is, 
if G is isomorphic to G' and A and A' are any choices of adjacency 
matrix for G and G' respectively, then 

CA(G)(t) = CA(G')(t). 
 

In turn, this Theorem means that you can show two graphs are not 
isomorphic if you show that they have distinct characteristic 
polynomials. The spectrum of a graph is the set of roots of its 
characteristic polynomial. Again, by the same argument,  
isomorphic graphs have the same spectrum. 
 
Exercise. Create examples to illustrate these results. 
________________________________________________ 
The Epsilon Matrix 
One of my favorite matrices is the "epsilon tensor"  εijk. 
This matrix has three indices, each of which can take the values 1, 2 
or 3. The values of the epsilon are as follows 

ε123 = ε312 = ε231 = +1 
ε132 = ε213 = ε321 = -1. 

Otherwise (if there is any repetition of indices) the epsilon is zero. 
Note that epsilon is invariant under cyclic permutation of the 
indices. 
We diagram epsilon by using a trivalent vertex. 
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There is a magic identity about the epsilon, which translates into 
diagrammatic language as 

- +=

 
 
A single line represents the identity matrix. That is, when the two 
endpoints of the line have the same index value, then the value of 
the matrix element is one, otherwise it is zero. You can see the truth 
of this diagrammatic identity by assigning some values to the lines. 
For example: 
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(0)(0)=0(1)(-1) = -1 -(1)(1) = -1  
 
Now the cross product of two three dimensional vectors is defined 
by the epsilon:   



 

(V x W)k = Σkε ijkViWj. 
 

Here one sums over the repeated index k. Note that a vector, having 
only one index is represented by a box with one line. In diagrams 
the vector cross product is given as follows. 
 

V x W  =  V     W

 
 
Similarly, the dot product of two vectors is given by the formula 
 

V.W = ΣkVkWk. 
 
In diagrams, we have: 
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Now we are prepared to see some identities about the vector cross 
product and the dot product. 
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The diagrams deform to one another in the plane. The epsilon is 
invariant under cyclic permutation of its indices. 
Here is one that uses the basic epsilon identity. 

V    W    ZV x (W x Z) =
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= - (V  W)Z + (V  Z)W

 



 
Vector algebra becomes transparent through the use of  
diagrammatic matrices. 

 
 


