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Wang Algebra and Matroids 
RICHARD J. DUFFIN AND T. D. MORLEY 

A&met-Wang alebra is defined by three rules: i) go =yx; ii) x + x = 
0; and iii) xx =O. K. T. Wang showed that these rules give a shortcut 
method for finding tbe joint resistance (or driving point reshance) of an 
electrical network. However, there are electrical systems more general 
than the KIrckhoff network. For these system regular matroids repiace‘ 
networks. It is shown in this paper that Wang algebra is an excellent tool 
to develop proper&s of networks. Moreover tke Wang shortcut ~method 
can still be used to find the joint resistance of an electrical network. 

I. NETWORK DISXIMINANTS 

IRCHHOFF gave himself the problem of determin- 
ing the joint resistance of an electrical network. He 

found a formula for the joint resistance as a ratio of two 
‘determinants having a very special form. These determi- 
nants are homogeneous multilinear polynomial functions 
of the branch resistance. The polynomials have the re- 
markable property in that the coefficients of all of the 
terms have the value + 1. Such determinants are termed 
unimodular discriminants. 

Later Maxwell, in his well-known treatise, gave a dif- 
ferent analysis of the network problem. His treatment is 
based on branch conductances rather than branch resis- 
tances. This led to the joint resistance being represented 
as a ratio of unimodular discriminants in the branch 
conductances. This was pointed out in a footnote by J. J.. 
Thompson. 

In 1934, K. T. Wang found simple algebraic rules which 
directly determine the unimodular discriminants [lo]. 
Thus it is unnecessary to go through the tedious process of 
formulating Kirchhoff’s equations.. Wang’s method is a 
rapid method of determining the joint resistance as a 
function of the parameters, especially for hand calcula- 
tion. (Optimal numerical procedures, when the parameters 
are fixed rather than variable, are an entirely different 
problem.) 

There are electrical systems more general than the 
classical Kirchhoff network. The question then arises as to 
whether or not the joint resistance is a ratio of unimodular 
discriminants. The answer is yes, if the Kirchhoff graph is 
replaced by a generalization termed a regular matroid. The 
branch resistors are assigned to quasi-circuits of the 
matroid. Then applying Kirchhoff’s voltage drop law to 
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the quasi-circuits leads to a system of equations which 
determine the current in the system. Moreover, the Wang 
rules can be used to evaluate the joint resistance function. 

The main goal of this paper is to give a simple defini- 
tion and analysis of matroids. This proves possible by 
using the Wang algebra as a tool. 

Before proceeding to the matroid generalization we 
show in Section II how to apply Wang algebra to compute 
network functions for the classical Kirchhoff network. 
Wang’s original method used the mesh formulation of 
Kirchhoff’s laws. In Section II we apply the Wang algebra 
to the nodal formulation of Kirchhoffs laws. As a 
corollary it is shown how to evaluate any symmetric 
determinant by Wang’s three rules: i) xy =yx; ii) x + x = 
0; and iii) XX = 0. 

The Wang algebra is considered abstractly in Section 
III. It is found to be an ideal tool in analyzing linear 
dependence and independence in a. vector space U with 
mod 2 scalars. Since U is’ a vector space over the two 
element field (sometimes denoted Z, or GF(2)), the only 
scalars we are allowed to multiply by vectors are the 
scalars 0 and 1. The subspaces of U are shown to be 
characterized by’ Wang products of independent vectors. 

The Wang product of vectors x and y is denoted as xy. 
We also introduce another product denoted as (x,y). 
These two products are termed outer and inner, respec- 
tively. The inner product (x,y) is the ordinary scalar 
product evaluated modulo 2. Thus (x,y) is either zero or 
one. This inner product is not positive definite but many 
of the usual properties of the ordinary scalar product 
continue to hold. 

A binary matroid is defined as a pair (V, V’) of a 
subspace V of U and subspace V’which is the orthogonal 
complement of V under the above defined inner product. 
Of course, since the inner product (x,y) is not positive 
definite V n V’ need not be equal to {O}. However many 
of the usual properties of the orthogonal complement 
remain true, for instance dim (U) = dim ( V) + dim (I”). 
We use the notation V’ to distinguish this orthogonaI 
complement from the standard orthogonal complement. 
The electric interpretation of V is the voltage space and 
the interpretation of V’ is the current space. Thereby 
electrical duality is built into the theory from the begin- 
ning. The outer product of a set of basis vectors (it 
matters not which basis) of V is a network discriminant. 

A tree of a matroid is defined to be a term in the outer 
(Wang) product of a set of basis vectors of P’ (it makes no 
difference which basis). A cotree is defined to be a term in 
the outer product of a basis of V’. 
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Let e,,, e,, * * * ,e, be the main basis vectors for the vector 
space Cr. In the case where the matroid is derived from a 
graph, with V being the cut space and V’ being the mesh 
space, these basis vectors will correspond to the branches. 
The outer product for a set of n vectors may be regarded 
as a polynomial of degree n in the e,‘s. The Wang trick is 
now to :regard e,, . . - ,e, as real variables. This polynomial 
is interpreted as the discriminant. The discriminant is of 
primary importance in studying matroids. For instance, 
we show that the discriminant is factorable into two 
polynomials of smaller degree if and only if the matroid is 
separable. This means that the matroid can be written as a 
direct sum of smaller matroids. 

Fig. 1. A Wheatstone bridge. 

To obtain a real electrical correspondence it is neces- 
sary to assign a “direction” to the “edges” of the matroid. 
This means that the vectors of V now have some compo- 
nents with values other than 0 and 1. Thus the mod- two 
vector space U .is replaced by RN. When the Wang trick 
works f,or a subspace of RN, then the pair (S, S *) of S 
and its orthogonal complement then (S, S ‘) is termed a 
regular matroid; the orthogonal complement is taken rela- 
tive to -the standard inner product of RN. The theory of 
regular matroids is closely related to the theory of totally 
unimodular matrices. A regular matroid has a unimodular 
discriminant and it results that electrical systems based on 
regular matroids will be very similar to the classical 
netw0rk.s based on graphs. The advantage of regular 
matroids over graphs is that regular matroids will without 
exception satisfy the principle of electrical duality. It is 
thought by some (see [ll]) that the closer analysis of 
netw0rk.s based on regular matroids may lead to insight to 
the solution of the resistive n-port problem. 

junctions 1 and 0. The element D is defined to be the 
Wang product of all the star elements except one. (It 
makes no difference which one.) The joint resistance R 
between 0 and 1 is symbolized by 

R=;. 

Here N and D are to be simplified by carrying out the 
indicated operations and making use of the Wang rules 
(1). After that the Wang algebra is dropped, and the 
resulting polynomials are considered ordinary polynomi- 
als, and the symbols p, b, c, * . . , are taken to be the 
conductances of the corresponding branches.. 

In the network in Fig. 1 we have 

N=(b+d+k)(a+c+k) 
=ab+bc+bk+ad+cd+dk+ak,+ck 

and 

D=(a+b)N 
II. WANG ALGEBRA APPLIED TO GRAPHS F abc + acd + adk + ack.+ abd + bed + bdk + bck. 

An algebra with the property that so 

x+x=0 and x.x=0 (1) 
for each element x of the algebra is termed a Wang 
algebra. This algebra gives an interesting method of de- 
termining the basic functions associated with an electrical 
network. 

R= 
ab+bc+bk+ad+cd+dk+ak+ck 

abc + acd + adk + ack + abd + bed + b)dk + bck * 

That this is true may be seen by solving Kirchhoff’s 
equations in the form 

The application of the Wang algebra to networks can 
be illustrated by the problem of determining the joint 
resistance of the network shown in Fig. 1. The letters a, b, 
c, d, an.d k designate the five branches of the network. 
The numbers 0, 1, 2, 3 designate the four junctions of the 
network.. The problem is to determine the current I flow- 
ing when a battery of potential difference E is connected 
between. 0 and 1. By Ohm’s law E = IR, where R desig- 
nates the joint resistance of all branches between junc- 
tions 0 and 1. 

Z=(a+b)E .- aE, 
o= -bE+(b+d+k)E, -- kE, 
o= --aE+ -kE,+(a+c+k)E3. 

For a second example consider the graph in Fig. 2. 
Then 

N=(a+b+c)(c+d+e) 
=ac+.ad+ac+bc+bd+be+cd-tee 

and 
D=aN 

A star of a network is defined as the branches meeting 
at a given junction. Let the branches of the network be 
regarded as independent generators of a Wang algebra. A 
star element of the algebra consists of the sum of the 
associated branches; thus the star element at junction 3 is 
a + c + k. The element N is defined to be the product in 
the-Wang algebra of all the star elements except those at 

so 
= abc + abd + abe + acd + hce 

R=N= ac+ad+ae+bc+bd+be+cd+ce 
D abc + abd + abe + acd + ace ’ 

Of course, the network in Fig. 2 is a s’eries-parallel 
network, but notice that Wang algebra is simpler than 

(2) 
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Fig. 2. A network. 

rationalizing 

4 
(a-‘+(b+(c-‘+(d+e)-‘)-‘)v’)-I)-l. 

The Wang algebra may be used to evaluate any sym- 
metric determinant. It is simply necessary to transform 
the determinant to network type. For example, to evaluate 
the three by three determinant: 

e’ b a 

I I 
b d’ k 
a k c’ 

let -e=e’+a+b, -d=d’+b+k, and -c=c’+a+k. 
Then the determinant is obtained by forming the Wang 
product 

-S=(a+b+e)(b+k+d)(a+k+c). 

[See J. J. Sylvester’s unisignant determinant [6] or [8]. The 
Wang algebra can also be used with meshes instead of 
stars, see [3]. 

III. THE WANG ALGEBRA AND LINEAR 
INDEPENDENCE 

To make the definition of the Wang algebra more 
precise, we need to make use of vector spaces defined over 
the two element field. The two element field, sometimes 
called GF(2), has two elements 0 and 1, with the rules 
O+O=l+l=O, O+l=l+O=l, and 0~1=1~0=0~0=0, 
1 . 1 = 1. All notions of linear algebra, unless explicitly 
stated otherwise, carry over with minor modifications to 
vector spaces over the two element field. For instance 
vectors u,,z)~, us are linear dependent if there are A,,&,& 
not all zero, X,=0 or 1, X,=0 or 1, etc., with X,u,+X,u,+ 
h3v3 = 0. 

Let U be a finite dimensional vector space over the two 
element field. Let { e,}y=, be a basis pf U. Then the Wang 
algebra, W(U), over U is the commutative algebra gener- 
ated by {ei} subject to the rules: 

1) v=yx 
2) xi-x=0 
3) xx=o. 
For every set I= { ij, * * * ,h} of distinct integers from 

the set { 1,2,3; - - ,m} set 

E,= ei*q; * * ,e, 

then the EI form a basis of W(U), as I ranges over all 
subsets of {1,2;.. ,m}. If WEW(U), then we may write 

w= x d,E, (d,=Oor 1) 

which we call the canonicaI form of w. If dI = 1 we call E, 
a term of w. 

For example, we compute 
, 

(e, + e2)( ei + e3) = e,e3 + e2e3 

so EC1,3j = e,e3 and E,, 3l =e,e, are the terms of (e,+ 
e2)(eI + e3). 

For the rest of this paper U and the basis { ei} are fixed. 
The elements e,, + - - , e, of this basis are called edges. 
Given any vector u E U, we can write u uniquely as 
u=ZZielei and thus we sometimes identify the vector u 
with the subset 1~{1,2,3;-*,m}. 

The following lemma shows how the Wang algebra may 
be used to determine the linear independence or linear 
dependence of a set of vectors of U. This lemma, as well 
as the one following it, may be found in [3]. 

Lemma I 

A set of vectors p,,p2, * * - ,p,, of U are linearly indepen- 
dent if and on& if II=p,p2.. *p,,#O. 

Proof: If (pi} are dependent, then by renumbering, we 
may assume that 

n-1 
P”’ x c&3, 

i=l 
so 

Each term on the right contains a repeated factor, and 
thus vanishes. 

For the converse we proceed by induction. The case 
n = 1 is clear. Therefore we assume that the lemma is true 
for integers less than n. Then writing p,, as a linear 
combination of the { ei} one of the coefficients must not 
vanish. By renumbering we may assume that the 
coefficient of e, is 1. Let us write 

PI’ ‘Pi + cip,Y i= 1,i; . * ,n- 1 

where ci = 0 if the coefficient of e, in the expansion of pi in 
terms of the e, is 0, and ci = 1 if the coefficient is 1. Thenpi 
does not contain e,, i.e., the coefficient of e, in the 
expansion of pf is zero. If the pl,. - * ,p, were linearly 
independent, then the vectors pi,. . - ,pA- i will also be 
linearly independent. Thus by induction we have II’ =p;, 
. . . ,p,- ,,#O. Then 
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This f,ollows since p;p,, =O. Let p,, = e, + q, where the 
coefficient of e, in q is zero. Then 

ll=nle,+II’q 

and clearly e,#O. Moreover no term of ?r’q can cancel 
with a term of II’e,. Thus II#O. 

Lemma 2 

Let V be a subspace of U, and suppose that pi and qi are 
two bases bf V. Then 

npi= rIq;#O. 
i i 

Prooj Letpi=EJ=,tiUs for i=1,2;**,r. Then 

nPic~~cij4,=c?4, i J 

for some scalar c #O. Therefore c = 1. 
In vi’ew of the above lemma, if V is a subspace of U we 

set II( ly) = lljpj for some (and hence every) basis { pj} of 
V. lJ( V) is termed the outer product of V. 

If V is a subspace of U, then we may represent V by 
giving .a basis { pj}5=, and then write each pj as a linear 
combination of the fixed basis {e,}“, 1. Thus we have 
pj = Eieicij, where all the cij’s are zero or one. Thus we can 
represent the subspace V in terms of a matrix { c~}. Note 
the column operations applied to the matrix {c~} do not 
change the subspace that it represents. Moreover if we 
label the rows of { cij} with the basis elements {e,}, then 
we maly interchange two rows of cii without changing V as 
long Qs we also change the labels. For example: 

Certain types of bases of a subspace of U are important 
in network theory, for ‘we shall see later that they corre- 
spond .to trees. 

Definition: A diagonal basis of a subspace V of U is a 
basis such that the representing matrix has the form: 

eh, 
ehz 

,ek. 
I 

.A 

where I is the n by n identity matrix and A is arbitrary. 
Given such a basis, we say that it is a diagonal basis with . . 
respect to the edges e,,,, - . . , eh . The last basis m the last 
example is a diagonal basis with respect to e3,e,. 

Lemma 3 

Let n be the outer product of the subspace V. Then 
eh,y"-7 h, e is a term of Il in canonical form if and only if 
there is a diagonal basis of V with respect to e,,, - - * eh,. 

Procfi See [3]. / 

Let 

X= 5 ciei and y= 5 d,ei 
i=l i=l 

be two vectors of U. Then we define an inner product by 
the formula 

(mod 2). 

For example if x = e, + e3 + e6 and y = e2 + es, then (x, y) = 
1, (x,x)= 1 and (y,y)=O. Thus we see that in general 
either (x,y) = 1 or (x,y) = 0. If (x,y) =O, we say that x and 
y are orthogonal. This inner product is not positive defi- 
nite ((x,x) may be zero when x#O), but most of the usual 
properties of inner product spaces hold. In particular if we 
define V’= {y : (x,y) =0 for all x E V} then we have the 
following. 

Lemma 4 

If V ij. a subspace of U, then V’ is also a subspace of U. 
In addition dim ( V) + dim ( V’) = dim (U), and (V’), = V. 
Here dim (V) denotes the number of elemen,ts in any (and 
hence eoev) basis of B. 

Proof: Similar to the usual proof. 
If we are given a diagonal basis of V then we can give a 

diagonal basis of V’ by a simple construction. Suppose 
the basis of V is given by 

I ( 1 _____ 
A 

then a diagonal basis of’ V’ is given by 

AT ( 1 - - - - - - - 
T 

where A T denotes the transpose of A. We shall often write 
this as 

We call the above the Brand tableau [2]. 
For instance, in the above example we obtain 

e3 

e1 

e2 

v V’ 
1 or.1 

1 I 0 l[l * 
1 ljl 

IV. BINARYMATROIDS _ 

In this section we give a (slightly nonstandard) defini- 
tion of a binary matroid and relate the concept to graphs. 

Definition:’ A pair (V, vl) of a subspace 17 of U and its 
orthogonal complement V’ is called a binary mutroid. 
Recall that U has a fixed basis { ei}, and the elements of 
this basis are called edges. 

To see that our definition is equivilent to the usual 
definition see [5] or [9]. 

Consider the graph shown in Fig. 1. 

. 
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Let U be the mod 2 vector space with preferred basis 
{a,b,c,d,e}. Thus m=6, e,=2, e,=b;*-,e,=e. 

Definition: A cut of a graph is a symmetric sum of 
stars. A mesh is a symmetric sum is simple closed cycles. 

The cuts of the graph in Fig. 2 are 
{a,b) 

EC? 
&,k) 
{b,c,k} 
{a,c,k} 
{a,W,e}. 

The meshes are 

IaZ 
{;d,c,d]. 

It can be seen that the set of all cut forms a subspace of U 
if we, for example identify {a, b} with a + b, {a, c,d} with 
a + c + d, etc. In a similar way the set of all meshes forms 
a subspace of U. Let us call the subspace of cuts the cut 
space and the subspace of all meshes the mesh space. 
These spaces are of use in network analysis, see [7]. 

Lemma 4 

Let G be a graph. Then both the cuts and meshes form 
vector spaces over the two eIement field. If we set U to be 
the vector space over the two element field, with preferred 
basis being the branches of G, and set V to be the cut space, 
then the mesh space is equal to V’. 

Proof See [7]. 
A basis for the cut space of the graph in Fig. 2 is 

, 3 a110 b 
b100 c 
co10 e 
doll a 

: eLO 0 1, d 

So the Brand tableau is 

V 
b’l 0 0 
co 10 
e0 0 1 
a 1 1 0. 
d.0 1 1 

.l 0 0 
0 1 0 
0 0 1 
1 1 0 
0 1 1. 

V’ 
1 0 
1 1 
0 1 
1 0 
0 1, 

and it can be seen that V’ is the mesh space of the graph 
in Fig. 2. 

In general, given a graph G, let V be its cut space, then 
V’ will be its mesh space. Thus (V, V’) will be a binary 
matroid, called the matroid of G. 

In an arbitrary matroid, the elements of V are called 
cuts and the elements of V’ are called meshes. 

Given a graph G we could perform the same procedure 
as above, but instead take for V the mesh space of the 
graph, and thus V’ will be the cut space of G. This is a 
special case of the following. 

Fig: 3. The trees of G.’ 

Theorem 1 

Let (V, V’) be a binary matroid. Then (V’, V) is also a 
binary matroid, called the dual matroid of (V, V’). 

Proof (V’)’ = V. 
The above theorem illustrates the power to matroids 

over graphs:If a graph is planar then we can construct its 
dual (in the sense of Whitney, see [5]), and this will allow 
the principle of electrical dual@ to be applied. In fact if G 
is a planar graph then the matroid of the dual graph will 
be the dual matroid of G. 

Not all binary matroids can arise as the matroid of a 
graph. For example let G be the complete graph on five 
nodes. In this graph there is a branch between every pair 
of the five nodes. Then the dual of the matroid of G 
cannot be the matroid of any graph. For a characteriza- 
tion of which matroids can or cannot arise as the matroid 
of a graph see [9]. 

V. TREES OF MATROIDS 

Let G be a connected graph. Recall that a tree of G is a 
subset T of the branches of G such that a) T contains no 
mesh, and b) T is maximal with respect to a). 

Sometimes this notion is called a spanning tree. If G is 
the graph shown in Fig. 2 then {a, b,d} is a tree while 
{a,b,c} and {a,b} are not. 

Let us consider the Wang product of all but one star of 
the graph G: 

n=(a+b)(a+c+d)(d+e) 
x acd + ace + ade + bad + bae + bed + bee + bde. 

Notice that all the terms of II correspond to trees of G. 
Note that now any term Et, Z= {j, k,. . . ,I} corresponds 
with the set of edges { q,e,, - . - ,e,}. Thus we can associate 
with any term of an outer product a set of edges of the 
matroid. (Note: Previously we associated a set of edges 
with any vector x E U. These two notions are not to be 
confused.) For example, acd corresponds to the tree 
{a, c, d }. Moreover all the trees of G correspond to terms 
of II. This is a special case of the following. 

Lemma5 

Let G be a connected graph. Then the trees of G (Fig. 3) 
are exactly the sets of edges corresponding to the terms in 
the outer product of the cut space. 

Proof See [3]. 
The above lemma leads us to the following definition. 
Definition: Let (V, V’) be a binary matroid. A tree of 

(V, V’) is a subset of the preferred basis corresponding to 
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a term of the outer product of V. A cotree is a subset given in a) and b). But first we need the ft3uowing theo- 
corresponding to a term of’ the outer product of v’. rem. 

We see by definition that a tree of (V, V’) is a cotree of 
the dual binary matroid, and that a cotree of a binary Theorem 5 
matro:id is a tree of the dual binary matroid. 

Let T be a tree and let x be an edge that is not in T, then 
Theorem 2 T u x contains a mesh. 

T= e,,; * * ,eh, is >a tree if and or@ if there is a basis of Proof Without loss of generality x = e,, , in the prece’d- 
the form ing Brand tableau (*). Then T u x contains the mesh 

eh 
< corresponding to the first V’ column. 

ehz 
Theorem 6 

I 

ehr -----_ 

rest of 
{ei} ( \. A ’ 

T is a tree if and on& if T contains ncl mesh and is 
maximal with respect to that property. 

Proof One direction follows from Theorems 4 and 5. 
For the converse direction we need a lemma. 

where I is the r by r identity matrix and A is arbitrary. 
Pro& See Lemma 3. 
Corollary : All trees have the same cardinal@, nameb 

the dimension of V. 
By duality, the above statements hold for cotrees, i.e., a 

cotree ,corresponds to a diagonal basis of V’, and they all 
have the same cardinality, namely dim (V’). Thus in 
binary matroids, we get two theorems for the price of one. 

The&em 3 

The complement of a tree is a cotree. 
Proqf: v V’ 

e1 

tree : 

. li I 
I AT t*> - - - _ _ _ _ _ 

% A Z e r+l 
* 

I 
cotree. 

en 
Theorem 3’ 

The (complement of a cotree is a tree. 

Theorem 4 

A tree contains no mesh. 
ProoJ If {e,;-+ ,e,} is a tree then there is a diagonal 

basis with respect to e,, . . . ,e,. Therefore the situation is 
as indicated (*). It can be seen from the Brand tableau 
that every mesh (element of V’) contains a member of 
{e,+,,- f * ,e,>. 

Theorem 4 ’ 

Lemma 6 

Suppose that F contains no mesh. Let a basis of V be 
given as 

(eir-F “B ( 1 

then the rows of F are 1inearIy independent. 
Proof: If the rows of A were not linearly independent, 

then one could find a nonzero solution to A Tx = 0, where 
x is a zero-one vector. It is easily seen that th!e vector [ 1 ;5 
is orthogonal to every cut and is thus a mesh. Moreover 
this mesh is contained in F. 

Proof of Theorem 6 (continued): If T is a maximal set of 
edges containing no mesh then by column operations we 
may diagonalize the matrix A in the above lemma. 

VI. SEPARATION IN MATROIDS 

In analogy with graphs we make the following defini- 
tion. 

Definition: A binary matroid (V, V’) is separable if 
there is a partition of the set of edges { ei>= E’u E” 
where E’n E”=0 and E’f0, E”Z0, and a basis of V 
of the form 

E’ A 0 
( 1 E” 0 B 

where 0 denotes an appropriately sized zero matrix, and A 
and B are arbitrary. (V, V’) is called nonseparable if it is 
not separable. 

A cotree contains no cut. Lemma 7 
Theorem 4’ is obtained from Theorem 4 by replacing V 

by V’. 
A binary matroid is separable, if and only if there is a 

We are now in a position to show that the trees of- a 
diagonal basis of the form 

binary matroid can be defined in the same terms as the I 
trees of a .graph, that is that our definition of trees in a 

--------___ 

binary matroid is equivalent to the graphical definition i I 
c 0 
0 D 
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where C and D are arbitrary, 0 is the z&o matrix of the 
appropriate order, and I is the identity matrix. 

Proof Apply column operations (Gaussian elimination) 
to the matrix in the definition of separable. 

Theorem 7 

A binary matroid is separable if and only if its dual is 
separable. 

Proof Applying the brand tableau 
Lemma 7 we obtain 

to the matrix of 

The theorem follows. 
The Wang algebra, however, affords an algebraic way 

of telling whether or not a binary matroid is separable or 
not. This is useful because of the above definition is 
difficult to check in practice. 

Definition: Let r = X:,d,E, be the outer product uf a 
subspace V in canonical form. We define the Bott-Duffin 
discriminant, D, of the subspace V of U as the multilinear 
form 

4(x,,* * - ,x,J=Cd,x,; . . xl,. 

Many properties of the Bott-Duffin discriminant were 
studied in [l]. 

If (V, V’) is separable then we have a basis of V of the 
form 

VI v* 

I 1 
A 0. 
0 B I 

Let D, = Dy,, and D,= Dv2. It can now be seen that 
D, = D, D,, and thus the Bott-Duffin discriminant of V is 
reducible, that is it is the product of two nonconstant 
polynomials. This in fact characterizes separable binary 
matroids. 

Theorem 8 

The Bott-Duffin discriminant is reducible if and only if 
the matroid is separable. 

Proof We have just proved one direction. For the 
converse suppose that D, = D, D,. Setting all the variables 
except xi to algebraically independent transcendentals we 
have 

for some real numbers a and b. Thus the two polynomials 
D, and D, contain distinct variables. It now follows that 
,each of the Di’s is multilinear and by a suitable normaliza- 
tion we may assume that all nonzero coefficients of D, 
and D, are equal to one. Picking some tree of (V, V’) we 

have a basis of V of the form 

TnF, 
I 0 

TWO I 1 1 TnF, A B 

TnF ’ D 2 

where F, corresponds to the variable contained in D,, F2 
corresponds to the variable. contained in D,, T is a tree of 
(V, V’), and T denotes the complement of T. The conclu- 
sion of the theorem is equivalent to B = 0, C= 0. Suppose 
(say) CZO. Then there will be a tree of V containing 
x E ~II F,; all but one element of T n F, and all the 
elements of T n F2. This tree must be a term of D = D, D,, 
but this is impossible. 

VII. REGULARMATROIDS 

Suppose that instead of U we take RN with basis {e,}. 
Then when will the Wang trick work? 

Definition: Let S be a subspace of RN. Then the Bott- 
Duffin discriminant of S is defined by 

D(x,; +. ,x,)=det (GP+ P’) 

where G is a diagonal matrix of the variables xi, P is the 
perpendicular projection onto S, and P’ is the perpendicu- 
lar projection onto S I. 

Theorem 8 

Let S be an m dimensional subspace of RN. Letf be the 
Bott-Duffin discriminant of S. Let V be the set of vectors 
of S whose components are + 1, - 1, or 0. Then f = cll for 
some scalar c and some Wang product II if and only if V 
forms an m dimensional vector space under addition 
modulo 2. 

Proof See [l]. 
Definition: A vector x E RN is just if all of its compo- 

nents are + 1, - 1, or 0. 
Definition: A regular matroid is a pair (S, S I) of a 

subspace of RN and its orthogonal complement, such that 
S satisfies the conditions of Theorem 8. 

Proofs of the following are contained in [l] or [3]. 
Proposition I: If (S, S I) is a regular matroid, then so is 

W,S). 
Proposition 2: Let V be as in Theorem 8, and let W be 

the just vectors of S; then W= V’. In particular (V, W) is 
a binary matroid. 

By Theorem 8 and the above proposition we can com- 
pute discriminants of a regular matroid by applying the 
Wang trick to (V, W). The following theorem from [l] 
tells whether or not a binary matroid comes from a 
regular matroid. 

Theorem 9 

Let (V, V’) be a binary matroid, then (V, V’) is the 
binary matroid of a regular if and only if ItY is a perfect 
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square for each i and j. Here 

a=-& log det ( Dv). 

111 
VI 
[31 

[41 

[51 

[61 
171 

181 
PI 

1101 
[III 
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Fenchel Duality of Nonlinear Network:s 
WILLIAM N. ANDERSON, JR., T. D. MORLEY, AND GEORGE E. TRAPP 

Abstmct-This paper cunths an analysis of the interconnectlo~~ bf 
nonlinear n-port networks. The primary goal of the paper is to extend to 
nonllnear networlu~tbe results derived previously for linear networks. The 
class of nonlinear networks considered have impedanw functions that are 
subdifferentials of convex functions. Using the propertles of the convex 
and impe&mce functions, it is shown that the network connections induce 
a natural operation on the class of @edance functions. The classical 
ddlty of ement and voltage is expressed by using the concepts of 
conjugate funetiorw, alsu known as Fen&l duality. hqualltles reluting 
different network connections are also presented. 

I. INTR~DuC~~N 

I N THIS PAPER we consider the interconnection of 
nonlinear n-port networks. Our primary goal is to 

extend to nonlinear networks the results derived in [l] for 
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Illinois, Ilrbana, IL 61801. 

linear networks. The networks are represented by their 
impedance functions; their internal structure is irrelevant 
to our discussion. We consider a special class of nonlinear 
networks whose impedance functions are the subdifferen- 
tials of convex functions. By using the properties of bot,h 
the convex and impedance functions, and by using the 
formulation of Kirchhoff’s laws given in [ 11, -we are able to 
show that our results for linear networks extend to nonlin- 
ear networks. For example, we are able to show that a 
network connection induces an operation on the class of 
impedance functions; this operation is called the router 
sum, and represents the impedance function of the inter- 
connected network. We also show that the n.atural duality 
of the curreni and voltage variables may be expressed by 
using the concepts of conjugate functions, atlso’ known as 
Fenchel duality [8]. 

In the case of linear networks, n-ports are represented 
by positive semidefinite impedance matrices. Then, by 
using only Kirchhoff’s laws, we have shown that any 
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