Chapter 14

Exotic Spheres

by Louis H. Kauffman

In Chapter 12, the role played by exotic spheres in the detection and can-
cellation of global anomalies was extensively analyzed. The purpose of this
present chapter is to give a resumé (in the signature case) of the mathemat-
ical background involving characteristic classes that implies the existence of
exotic spheres. To this end, we first review some basic facts about Chern
classes, Pontrjagin classes, and the Hirzebruch index theorem. These facts
are then marshalled to prove the existence of exotic spheres; in particular,
the Milnor seven-sphere, ¥, and its relatives (see [1] for more information).

First, recall the infinite complex projective space CP* and its interpre-
tations for line bundles and cohomology: Let [X, CP*| denote the homotopy

classes of mappings of a space X to CP*. Then this homotopy set is isomor-
phic with the second cohomology group of X:

H? (X) 2 [X,CP).

This follows from the fact that CP is a K (Z,2), a space whose homotopy
groups all vanish except for a Z in dimension two.

It follows from the construction of CP* that {X, (C]P’Z] ~ L (X), the
isomorphism classes of complex line bundles over X. In this case, we have

the canonical line bundle A over CP*, and a map f: X — CP* induces a
line bundle f* A over X:
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Ifi € H? (C]P’°°) denotes the generator of the cohomology ring of CP*°, then
the first Chern class of f*A, ¢; (f* A), is found by taking the pull-back of
via f:

a (f*A) = f*(i) € H*(X).

It is also not hard to see that £ (X) = HZ(X) as groups, with tensor
product of line bundles corresponding to addition in H?. The first Chern
class, c1, can be interpreted as the self-intersection number of the 0-section
of the corresponding bundle.

More generally, let E 2+ B be a complex vector bundle. Then, there
exist Chern classes ¢; (E) € H* (B;2) satisfying the following properties:

14.0.1 Properties of Chern Classes

(0) ci (E) = 0 for i > n = complex fiber dimension of E.
‘ e(B) = 1+ ci(B) + cr(B) + - + e (B),
defines the total Chern class.
(1) If E and E are complex bundles isomorphic over B, then
c(E) = c(E).
IfE 2+ Band f: B — B, then [¥c(B) = c(f*E).

(2) e (E ® E) = ¢(E)c(k), where the product denotes cup product in
the cohomology ring of B, and E and E are complex bundles over B.

(3) Let A — CP* be the canonical line bundle. Then
. a(A) =

as described above. Similarly, if A\ —» 52 is the canonical line bundle over
8%, then ¢; (A) = g € H? (5?) is the generator.

i € H?(CP>)
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It is known (the splitting principle) that given a complex bundle E -2+
B, then there exists a mapping f : B — B such that f* injects the
cohomology of B into the cohomology of B and f* E is a direct sum of line
bundles. Thus we can write

f*Eng@IQ@EBLn

whence

Fre(B) = c(f B) = o(ln)e(Ls) - e(Ly)

[Tk=1 (1 +c1 (Lk))-

It

In this way, we see that the higher Chern classes can be expressed in
terms of elementary symmetric functions of line bundles.

e Example
Let B = 7 CP, = the tangent bundle to CP,,. Explicitly,
CP, = §¥1/gt
where S! is the unit complex numbers,

gl {(zo,zl,"',zn) € (C"+1||zo|2 + - |Zn|2

Il

1}.

If z = (20,21,""",20) and A € S! then Az = (/\zo)\z1,-~-,)\zn). E =
{[u,v]}l lu| = 1, v v =0, (u,v) ~ (/\u, )\v)}. Here, u,v € S?+!
and [u, v] denotes the equivalence class of the pair (u, v) under the S*-action.

Let A, — CP, denote the standard line bundle. Then,
A = {lu,pl|u € S, p € C, (u,p) ~ (Mu,Ap)}.
Let B/ = A, ® Ay & -+ @ An(n + 1copies). Then,
B = {[u,0]](4,0) € S x T, (u,0) ~ (Mu, Io)}.

Hence, E' O E, and note that E’ has the cross section v +— (u,v). There-
fore, B' &2 7CP, @ ¢, where ¢ — CP" denotes the trivial bundle in one
complex dimension. We conclude that

C(’T CIF’") = c(E) = (1 + ¢ (An))nH.
Letting ;, = ¢; (A,) be the generator of H? (CP,), we have the formula
c(r (CP™) = (1+ an)n+l .
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14.0.2 Pontrjagin Classes

IfE ii B is a real vector bundle, then we get an associated complex vector
bundle £ = E Qg C. Note that E and its complex conjugate bundle are
isomorphic, i.e. E* ~ B. This implies that 2 cgi41 (E) = 0. We define the
i*" Pontrjagin class, P; (E), by the formula:

P,(B) = (-1) s (E @& C) € H"(B),
and the total Pontrjagin class by the formula
P(E) =1+ P (E) + -+ + Puz (E),
where [M] denotes the greatest integer in M. It then follows that
2(P(E ® E') - P(E)P(E")) = 0.
The following Lemma (whose proof we omit) is useful.

Lemma 14.1 1.) Let w be a complez vector bundle. Thenwgr ® C & w @ w*.
(Here wg denotes w regarded as a real vector bundle.)

2) If P, = P,(wr), ek = c(w), then L = P+ Py —-.. £ P, =
(I—a+4ec —cs+ - -te)(l+ea+ - +ca)

e Example.

P = CP" ofr) = (14+a)™. Py = Py (). Then 1 — Py + Py— .- =
(1—a)"™ (1 4a)"" = (1= a®)™" . Hence 1+ P, +---+ Py = (1+a2)"".
Hence P, (CP™) = (n _li- 1) a?,

Now we apply the Pontrjagin classes to study manifolds. Let M4" denote
a smooth, compact 4n manifold without boundary. Let M*" € H,, (M;Z)
denote the fundamental class of M**, and suppose that &y + +«+ + 4, = n,
where 0 < 4 < n. Let I denote the sequence %;,---,2, and define the
Pontrjagin number P; [M*"] by the formula

pr[M*™] = (P, - P, M™)
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where the brackets denote the evaluation of the product P, -+ P, on the

fundamental class. For instance, from our last example, we see that

P [Cpgn] _ (2n.+1).“<2n.+1>.

11 17

The following theorem is basic to the relationship of Pontrjagin classes
and cobordism.

Theorem 14.1 If the smooth manifold M*" is the boundary of a smooth
(4n-+1)-manifold B**!, M*" = 9B+ then all Pontrjagin numbers P (M)
vanish,.

Proof. Let up denote the fundamental class in Hiny1 (B, M). Then
Oup = pm, where 0 : Hynyy (B, M) — Hy, (M) is the homology boundary
mapping. Furthermore, if v € H*" (M) then (v, dup) = (év, pB), where
6: H™(M) — H*™'(B, M) is the coboundary map on cohomology. Now,
we know that 75|M = 73 @ ¢, hence P, (r8|M) = P: (7p). It then follows
directly from the exact sequence H%" (B) s H*r(M) -5 gt (B, M)
that § (P;) = 0. Therefore,

P (M*) =

I
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This completes the proof B

Thus we have shown that the CP?" are not oriented boundaries. In fact,
more is true. We can let 2, denote the oriented cobordism group of an n-
dimensional smooth manifold. (Two oriented manifolds A" and B" are said
to be cobordant if there exists an oriented (n + 1)-manifold ™ such that
9C™1 = A" U (—B"), where —B" denotes B™ with the reverse orientation.
A manifold, A", is cobordant to @ if B™ can be taken to be empty. @
produces an inverse in cobordism classes since & (A" x I) = A* U (—4")
and it is easy to see that the connected sum A™ U B™ is cobordant to the
connected sum A" B”. Thus, A"} (—A") is cobordant to a.)
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0, is a ring with addition the operation of connected sum (f) and multi-
plication the cartesian product. It is known that Q, is finite for n # 0 (mod

4) and that Q4 ® Q has a basis
{(CIP’%l X --» X CP¥*|I = 4yi3---i,is a partition of 4k}.

See [M] for a proof of this result (due originally to René Thom).

We are now in a position to state and prove the fundamental theorem
of Hirzebruch, connecting the signature of a 4k-manifold with its Pontrja-
gin classes. The idea is to produce combinations of Pontrjagin classes that
behave formally like the signature, and then use cobordism theory to check
agreement on the relevant examples.

Recall the important properties of the signature, o (M 4"):
1) By definition, o (M ‘”‘) is the signature of the quadratic form

H*(M) x H*(M) — Z
a,b— (aUb,[M]).

2) 0'(M1 + Mg) = G(Ml) -+ U(MQ) where M1 + Mz = MluMg, the

connected sum.

3) If M* = ON*+ then o (M*) = 0.

Thus if M{* is cobordant to Mg¥, then o (M#*) = o (Mg*).

4) o (M{”c X M§k> =0 (M{”‘) o (M;”‘).

Thus o : Q. — Z is a homomorphism from the cobordism ring to the
integers. The Pontrjagin numbers already obey 2) and 3). We need to cook
up property 4). For this, we need the concept of a multiplicative sequence:
Let R be a commutative ring with unit, 1. Let A* = (A% A, 4%,--:) be a
graded R-algebra. Let A™ = {ao +aytagt-la; € Ai} be the associated

formal power series ring. Let K; (71,2, - -, ;) be a sequence of polynomials
such that each K, is homogeneous of degree n. Let

K: A™ — A"viaK(a) = 1+ Ky(a1) + Kaz(ay,a2) + Ka(ar,az,a3) + -
We say that K is multiplicative if K(ab) = K(a)K(b) for all a,b € A™.
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Lemma 14.1 Given a formal power series f(t) = 1+ At + Agt? + -+ -, there
exists a unique multiplicative sequence {K,} such that K(1+1t) = f(¢).

Proof.
For uniqueness, let A* = R[t1,t2, +,ts) and o = (1 +¢1)(1 + t2) -+
with o1, 3, -+, 0, the elementary symmetric functions so that
g=1401+02+ - + 0on
Then

K(o) = K(L+t) K1 +1t2) - K(L+t) = f(t) f(ta) - f(tn).

Thus K(oy, 03, -+, 0,) is uniquely determined by f(t). Since 01,02, -+, 04
are algebraically independent, this proves uniqueness.

For existence, let I = 41751, be a partition of k¥ and define
SI (01’ T ’O'n) = Z tilt? ' "tir

where this sum means that we sum over all choices of r-subsets, thereby
obtaining a symmetric function and hence a polynomial in the elementary

symmetric functions ¢y, 09, -, 0,. These polynomials form a basis for the
symmetric homogeneous polynomials of degree & in the variables ¢3, ¢, -+, tp.
Thus, letting Ay = A;; A, <+ Ay, we can write
-[<n (01)' trytte an) = ZAISI(O'M' "70-11)
I

where I ranges over all partitions of n. It follows that

Si(ab) = > Su(a)Ss(b),

HJ=I

where HJ denotes the partition obtained by juxtaposition. Hence

o1 ArSi(ab)

1 A1 Sprg=r Su(a) Ss(b)
Sm,g Au Su(a) Ay S;(b)

= K(a) K(b).

il

K (ab)

i
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This completes the proof B

Now let {K, (21 - -+ 2,)} be a multiplicative sequence of polynomials with
rational coefficients. Let M** be a smooth compact oriented 4k-manifold.
Define the K-genus of M* by the formula

KM% = Ki[M*¥) (K (Py,--, P, [M*¥),
where P; denotes the i** Pontrjagin class of as. If 4 { does not divide dim

(M), define K [M] = 0.

Lemma 14.1 If {K,} is any multiplicative sequence with rational coeffi-
cients, then the correspondence M +— K[M) defines a ring homomorphism
Q. — Q and hence an algebra homomorphism

Proof. We need only check the behavior on products. M x M’ has total
Pontrjagin class P x P' modulo elements of order 2. So K ((P x P')) =
K(P) x K(P') and

(K(P) % K(P),p x i) = (=1)™™ (K(P), u) (K (P), i),
Hence, K[M x M'] = K[M]K[M']m

Now we can state and prove the Hirzebruch index theorem.

Theorem 14.1 (Hirzebruch) Let {L;} be the multiplicative sequence of
polynomials corresponding to f(t) = /t/tanh (\/1_5) Then

o (M*) = LIM*™).

Proof. By the quoted result on 24 ® @, it suffices to check the theorem
for L4[CP?]. Here P = (1 + a?)?**1. Since L(1 + a?) = v/a?/tanh (\/(7),
L(P) = (a/tanha)****. Hence L[CP%*] = (L(P), u) equals the coefficient of
a®* in (L (1 + az))%“. We check this coefficient by residues. Let

e"") / (ez + e'z) .

utanh(z) = (e’ -
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Then du = (1 — u?)dz whence

du 2 4
dz = = = T+u*+u+ ) du.

; 2k+1
MCP%] = # 22(’1‘11 (tanﬁz)

_ 1 ( dz )2k+1

2 tal’lliz

1 14wt o

It 1T du ]
= 1. {

Hence, L[CP#*] = | = ¢ (C]P’Qk). This completes the proof

Here are some useful facts about the series \/f/tanh (\/f)

~

_ 1 1 2 k—~1 o2k By t* I
\/E/tanh(\/z?)_1+§t~£t R . ) Gt t
.
where By is the k%" Bernoulli number. The first few L-polynomials are: .
Ll = %Ply
Lg :41—5<7P2—P12), %
14.1 Exotic Spheres ;
The example that we are about to discuss is not the first example of an f
exotic differentiable structure on a sphere, but it is diffeomorphic to that
example. The first example is due to Milnor [2] and produces a non-standard
differentiable structure on a sphere of dimension seven. The example we are |
about to discuss is due to Brieskorn [3].
The Brieskorn examples arise from studying algebraic varieties associated a

with polynomials of the form
O

where ag, a1, -, a, are positive integers and the z’s are complex variables.
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14.1 Exotic Spheres

Let V(f) denote the variety of f:

V(f) = {z € C*|f(2) = 0},

Let K(f) denote the intersection of this variety with the unit sphere in C**!:

K(f) =V(f) n gntl
{z € C*|f(z) = Oand |2| = |20|* + -+ + |2.]? = 1}.

Il

It is not hard to check that V(f) is a manifold away from 0 € V(f) and
that the intersection of V(f) with S?** is transversal. Hence, K™ 1(f) is
a smooth manifold of dimension 2n — 1.

Under these conditions, the manifolds K?*~! (f) are sometimes home-
omorphic to spheres and sometimes cannot be diffeomorphic to standard
spheres. A case in point is K7(f) for f = 23+ 2} + 22 + 22 + z%. In general,
let ¥ (ao, a1, - ,an) denote K(f) for f = 28°+2{* +- - -+ 2%, Thus we assert
that ¥ (3,5,2,2,2) = X7 is an exotic sphere. We shall finish this chapter
with a number of different points of view on this fact. Here are the facts that
we will show:

1) 27 = % (3,5,2,2,2) is the boundary of a smooth 8-manifold of signa-
ture —8: £7 = 9N8, o (N®) = -8.

2) ©7 is homeomorphic to a 7-dimensional sphere.

With these facts in hand, the exoticity of X7 is proved as follows: An
extra fact about the manifold N® is that it is connected and has vanishing
homology except in dimension four. We can form the topological manifold
M® = N® Uy D® where D8, is a standard 8-ball. If M® is a smooth manifold,
then o(M®) = L[M®]. But H*(M) = 0 for x # 4,8.

P e HY(M®)
P, € H3(MB);

and we have

o(
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~8-45 = T[Py(M®) — PA(M®)];
~2°.3%.5 = 7[Py(M®) — P{(M®)].

Since (Py(M®) — P2(M?)) is an integer and 7 does not divide —2%- 3.
5, we conclude that M?® does not have a differentiable structure. Since ¥
diffeomorphic to S7 would allow a differentiable structure on M?, this shows
that ¥ is not diffeomorphic to S7. Thus ¥ is an exotic sphere.

For the record, Milnor’s original example [2] of an exotic 7-sphere was
constructed as follows: For each (h,j) € Z & Z let fi, : S® — SO(4)
be defined by the equation fy;(u)-v = uhvud for v € R Here we take
quaternion multiplication on the right. Let £,; denote the 3-sphere bundle
over S determined by the map fi;. That is, with $* = D} Uss DI, the
quantity &; is equivalent to D x S® over D} and f; provides the pasting
data for gluing these two trivial bundles to form {p;. Let M, 7 denote the
total space of the bundle ¢; where h +j = 1 and h —j = k. Milnor shows
that M is homeomorphic to S7 for all k and that M] is exotic when k* # 1
(mod 7). The argument involves the Pontrjagin classes of the bundle.

Now let us return to the Brieskorn manifolds and discuss some aspects
of their structures. Consider f(z) = 2§° + z* + -+ + z;* as a mapping
f: C1 — C. Tt is easy to see that f|C**! — V(f): C**!' — V(f) —
C — {0} is a fiber bundle, and that by taking the restriction to Es =
(89 L, S1 where S} = {z € Cl|z| = 6} for § small, we also get a
fiber bundle and that EsN D*+? — S} gives a fiber bundle with the bound-
ary of each fiber diffeomorphic to K (f). Milnor [9] generalized this fiber bun-
dle structure to a bundle ¢ : S — K(f) — S, 4(z) = f(2)/|f(2)]. In
the case of EsN D**2 — S} and ¢: S?™! — K(f) — S* are equivalent
bundles by using the mapping

(ZO,ZI) e 7zn) —_— (pl/aoZO,pl/anl’ . ,pl/anzn)

for p real (choosing p so that the image point is on the sphere). In the general
. case (of f with an isolated singularity at the origin) Milnor uses a vector field
to push the fibers of E5 N D***? out into the sphere.

A similar bit of geometric topology lets us see that & (:vk + f(z)) is a k-
fold branched cyclic cover of S?**! branched along I((f). This sets the stage
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separate sets of variables) in terms of K(f) c §%* and K(g) ¢ §¥mt1

where f = fz0,0 0+, 2,),9 = 9(20,++,2m). Here, the idea is as follows.
Suppose we are given maps f: D*™? — D2 and g . pmi2 __, pe
with singular fiber bundles elsewhere. Then we can form the pull-back Z =
{(z,9) € D*+2 x D™+ 1(2) = g(y)).

Z —  D?m+2
I s
pr2 L, pr
and 07 « §(D¥+? x D42y > gntm)+3, Appropriate analysis shows
that 87 C S2+m)43 i5 equivalent to K(f+g) C SHmmH3, Gee [4].

For example, in the case of #* + f(#), we have

VA — D2

| |

D2n+2 __f_> D2.

with g(z) = 22 Here it is easy to see that 87 is the k-fold cyclic branched

covering of $2+1! along K(f). Note that this construction gives a canonical
embedding in a sphere of two dimensions higher.

Thus, if k"2 < 5™ then we have K} — S™ as branched cover, and
K} C 8™ where K7 denotes the a-fold cyclic branched cover of S™,

In this way, we get an inductive definition of the Brieskorn manifolds as
iterated branched coverings. Y(ag,a;) is a torus link of type (ag,a;) in S5,
For example ¥(3, 5) C S° has diagram sketched in Figure 14.2.

Our Milnor sphere 2(3,5,2,2,2) C 59is the result of three 2-fold branched
coverings starting from the (3,5) torus knot,.
Kss C S° — K5, C S§° — K350 C S7.

These constrﬁctions give a clear view of the a)
ing manifolds. We shall only sketch these de
to [3], [4], and [5].

Given K(f) C S we have that K(f) = ON(f) is the fiber of the

Milnor fibration alluded above. The intersection form of middle dimension of

gebraic topology of the bound-
tails here, referring the reader
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Figure 14.2

Figure 14.3
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Given K(f) C S?"*! we have that K(f) = ON(f) is the fiber of the
Milnor fibration alluded above. The intersection form of middle dimension of
the homology of N(f) is given by 0(f) & 6(f)" where (f) : Hpp1 (N(f)) x
Hn41((f)) — Z is the Seifert linking pairing obtained by the formula
0(f)(a,b) = lk(a*,b) where Ik denotes the linking number and a* is the
cycle in S**1 — N(f) obtained by pushing « along a positive normal to
N(f) into the complement. One finds that 8(f + g) = 6(f) ® 0(g) and
consequently it is easy to determine intersection forms for composites. In
particular, one has 8 (f + z%) = 0(f).

The construction we have discussed generalizes to a tensor product con-
struction for K™ C S™*?, L™ C S™? (L is a fibered codimension two
submanifold of S™*? to (K ® L)"""m'H C Smt™+3). Thus, we can start
with any knot K C $° and form

K ® £(2,2,2)]" ¢ S°

If 0 is a Seifert pairing for K in S, then K ® £(2,2,2) = N, N C S°
with the same Seifert pairing. As a result, A" has intersection pairing 6 + 67
and hence ,
o W) =0 (0+07) = o(K),

the classical signature of the knot. As a consequence, many exotic spheres
can be constructed directly in relation to knots and links in 53,

The manifolds K ® £(2,2,2,---,2) (n2’s) admit actions of the orthogonal
group O(n) with orbit space D* and fixed point set K C S® = 9D*. These
are called link manifolds and are classified in [6]. We have discussed their
relationship with global anomalies in [7].

It is also worth pointing out that the Brieskorn manifolds are tensor
products of empty knots [a] : E(ao, a1, +,as) = [a0o] @ [a1] @ -+, ® [an)
where [a] : S — St [a](A) = A% The term [a] : S? — S is a fibration
corresponding to the empty knot ¢ C S* (the empty set has dimension -1).
By looking at the inverse image of a point in S* under [a], we get the fiber
consisting of discrete points (a in number), and hence the Seifert pairing of
this empty knot. It has the form:
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Finally, we should mention that so far we have only mentioned exotic
spheres that are boundaries of parallelizable manifolds. There is a big class
of exotic differentiable structures that do not bound in this way. Their prop-
erties require homotopy theory for detection. Such very exotic n-spheres are
classified by Tnyx (S¥)/Im (J), where Tnik (S*) denotes a stable homotopy
group of the sphere Sk, and Tm(J) denotes the image of the J- homomor-
phism:

T i 1 (SO(K)) — Tais (S¥)

See [8] for more information on these matters.

Very exotic spheres may have some physical relevance, according to a
conjecture by Witten. In reference [10] he postulates that gravitational
instantons and/or solitons have the structure of very exotic spheres. Our
knowledge of gravitational instantons and solitons is limited, but there is no
doubt that deeper knowledge about very exotic spheres should shed light on
these relationships. In addition to reference [10] where the role of very exotic
spheres is detailed for the case of ten-dimensional supergravity theories, the
:nterested reader may want to consult reference [11], [12], and [13] where the
contributions to superstring theory of very exotic spheres are studied.
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