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Abstract

This paper is an exposition of the relationship between the heuristics of Witten’s functional
integral and the theory of knots and links in three-dimensional space. c© 2000 Elsevier Science
B.V. All rights reserved.

1. Introduction

This paper shows how the Kontsevich integrals, giving Vassiliev invariants in knot
theory, arise naturally in the perturbative expansion of Witten’s functional integral.
The relationship between Vassiliev invariants and Witten’s integral has been known
since Bar-Natan’s thesis [1] where he discovered, through this connection, how to
de�ne Lie algebraic weight systems for these invariants.
The paper is a sequel to Ref. [2]. See also the work of Labastida and P�erez [3] on this

same subject. Their work comes to an identical conclusion, interpreting the Kontsevich
integrals in terms of the light-cone gauge and thereby extending the original work of
Fr�ohlich and King [4]. The purpose of this paper is to give an exposition of these
relationships and to introduce diagrammatic techniques that illuminate the connections.
In particular, we use a diagrammatic operator method that is useful both for Vassiliev
invariants and for relations of this subject with the quantum gravity formalism of
Ashtekar et al. [5]. This paper also treats the perturbation expansion via three-space
integrals leading to Vassiliev invariants as in Refs. [1,6], see also Ref. [7]. We do not
deal with the combinatorial reformulation of Vassiliev invariants that proceeds from
the Kontsevich integrals as in Ref. [8].
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The paper is divided into �ve sections. Section 2 discusses Vassiliev invariants and
invariants of rigid vertex graphs. Section 3 introduces the basic formalism and shows
how the functional integral is related directly to Vassiliev invariants. In this section
we also show how our formalism works for the loop transform of Ashtekar, Smolin
and Rovelli. Section 4 discusses, without gauge �xing, the integral heuristics for the
three-dimensional perturbative expansion. Section 5 shows how the Kontsevich integral
arises in the perturbative expansion of Witten’s integral in the light-cone gauge. One
feature of Section 5 is a new and simpli�ed calculation of the necessary correlation
functions by using complex numbers and the two-dimensional Laplacian. We show how
the Kontsevich integrals are the Feynman integrals for this theory. In a �nal section we
discuss some of the possibilities of justifying functional integration on formal grounds.

2. Vassiliev invariants and invariants of rigid vertex graphs

If V (K) is a (Laurent polynomial-valued, or more generally commutative ring-valued)
invariant of knots, then it can be naturally extended to an invariant of rigid vertex
graphs [9] by de�ning the invariant of graphs in terms of the knot invariant via an
“unfolding” of the vertex. That is, we can regard the vertex as a “black box” and
replace it by any tangle of our choice. Rigid vertex motions of the graph preserve
the contents of the black box, and hence implicate ambient isotopies of the link ob-
tained by replacing the black box by its contents. Invariants of knots and links that are
evaluated on these replacements are then automatically rigid vertex invariants of the
corresponding graphs. If we set up a collection of multiple replacements at the vertices
with standard conventions for the insertions of the tangles, then a summation over all
possible replacements can lead to a graph invariant with new coe�cients corresponding
to the di�erent replacements. In this way each invariant of knots and links implicates
a large collection of graph invariants; see Refs. [9,10].
The simplest tangle replacements for a 4-valent vertex are the two crossings, positive

and negative, and the oriented smoothing. Let V (K) be any invariant of knots and links.
Extend V to the category of rigid vertex embeddings of 4-valent graphs by the formula

V (K∗) = aV (K+) + bV (K−) + cV (K0) ;

where K+ denotes a knot diagram K with a speci�c choice of positive crossing, K−
denotes a diagram identical to the �rst with the positive crossing replaced by a negative
crossing and K∗ denotes a diagram identical to the �rst with the positive crossing
replaced by a graphical node.
This formula means that we de�ne V (G) for an embedded 4-valent graph G by

taking the sum

V (G) =
∑
S

ai+(S)bi−(S)ci0(S)V (S)

with the summation over all knots and links S obtained from G by replacing a node
of G with either a crossing of positive or negative type, or with a smoothing of the
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Fig. 1. Exchange identity for Vassiliev invariants.

crossing that replaces it by a planar embedding of non-touching segments (denoted 0).
It is not hard to see that if V (K) is an ambient isotopy invariant of knots, then, this
extension is an rigid vertex isotopy invariant of graphs. In rigid vertex isotopy the
cyclic order at the vertex is preserved, so that the vertex behaves like a rigid disk with
exible strings attached to it at speci�c points.
There is a rich class of graph invariants that can be studied in this manner. The Vas-

siliev invariants [11–13] constitute the important special case of these graph invariants
where a=+1, b=−1 and c = 0: Thus V (G) is a Vassiliev invariant if

V (K∗) = V (K+)− V (K−) :

Call this formula the exchange identity for the Vassiliev invariant V . See Fig. 1. V is
said to be of �nite type k if V (G)=0 whenever |G|¿k where |G| denotes the number
of (4-valent) nodes in the graph G: The notion of �nite type is of extraordinary signif-
icance in studying these invariants. One reason for this is the following basic Lemma.

Lemma. If a graph G has exactly k nodes; then the value of a Vassiliev invariant vk
of type k on G; vk(G); is independent of the embedding of G.

Proof. The di�erent embeddings of G can be represented by link diagrams with some
of the 4-valent vertices in the diagram corresponding to the nodes of G. It su�ces to
show that the value of vk(G) is unchanged under switching of a crossing. However,
the exchange identity for vk shows that this di�erence is equal to the evaluation of vk
on a graph with k +1 nodes and hence is equal to zero. This completes the proof.

The upshot of this lemma is that Vassiliev invariants of type k are intimately in-
volved with certain abstract evaluations of graphs with k nodes. In fact, there are
restrictions (the four-term relations) on these evaluations demanded by the topology
and it follows from results of Kontsevich [13] that such abstract evaluations actually
determine the invariants. The knot invariants derived from classical Lie algebras are
all built from Vassiliev invariants of �nite type. All this is directly related to Witten’s
functional integral [14].
In the next few �gures we illustrate some of these main points. In Fig. 2 we show

how one associates a so-called chord diagram to represent the abstract graph associated
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Fig. 2. Chord diagrams.

Fig. 3. The four-term relation from topology.

with an embedded graph. The chord diagram is a circle with arcs connecting those
points on the circle that are welded to form the corresponding graph. In Fig. 3 we
illustrate how the four-term relation is a consequence of topological invariance. In
Fig. 4 we show how the four-term relation is a consequence of the abstract pattern of
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Fig. 4. The four-term relation from categorical Lie algebra.

Fig. 5. Calculating Lie algebra weights.

the commutator identity for a matrix Lie algebra. This shows that the four-term relation
is directly related to a categorical generalization of Lie algebras. Fig. 5 illustrates how
the weights are assigned to the chord diagrams in the Lie algebra case – by inserting
Lie algebra matrices into the circle and taking a trace of a sum of matrix products.
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3. Vassiliev invariants and Witten’s functional integral

In [14] Edward Witten proposed a formulation of a class of 3-manifold invariants
as generalized Feynman integrals taking the form Z(M) where

Z(M) =
∫

DAe(ik=4�)S(M;A) :

Here M denotes a 3-manifold without boundary and A is a gauge �eld (also called
a gauge potential or gauge connection) de�ned on M . The gauge �eld is a one-form
on a trivial G-bundle over M with values in a representation of the Lie algebra of G:
The group G corresponding to this Lie algebra is said to be the gauge group. In this
integral the “action” S(M;A) is taken to be the integral over M of the trace of the
Chern-Simons three-form A∧ dA+ (2=3)A∧ A∧ A. (The product is the wedge product
of di�erential forms.)

Z(M) integrates over all gauge �elds modulo gauge equivalence. (See Ref. [15] for
a discussion of the de�nition and meaning of gauge equivalence.)
The formalism and internal logic of Witten’s integral supports the existence of a

large class of topological invariants of 3-manifolds and associated invariants of knots
and links in these manifolds.
The invariants associated with this integral have been given rigorous combinatorial

descriptions [16–21], but questions and conjectures arising from the integral formulation
are still outstanding (see, for example, Refs. [22–27]). Speci�c conjectures about this
integral take the form of just how it implicates invariants of links and 3-manifolds, and
how these invariants behave in certain limits of the coupling constant k in the integral.
Many conjectures of this sort can be veri�ed through the combinatorial models. On
the other hand, the really outstanding conjecture about the integral is that it exists! At
the present time there is no measure theory or generalization of measure theory that
supports it. Here is a formal structure of great beauty. It is also a structure whose
consequences can be veri�ed by a remarkable variety of alternative means.
We now look at the formalism of the Witten integral in more detail and see how it

implicates invariants of knots and links corresponding to each classical Lie algebra. In
order to accomplish this task, we need to introduce the Wilson loop. The Wilson loop
is an exponentiated version of integrating the gauge �eld along a loop K in three space
that we take to be an embedding (knot) or a curve with transversal self-intersections.
For this discussion, the Wilson loop will be denoted by the notation WK (A) = 〈K |A〉
to denote the dependence on the loop K and the �eld A. It is usually indicated by the

symbolism tr(Pe
∮

K
A) . Thus

WK (A) = 〈K |A〉= tr(Pe
∮

K
A) :

Here P denotes path-ordered integration – we are integrating and exponentiating matrix-
valued functions, and so must keep track of the order of the operations. The symbol
tr denotes the trace of the resulting matrix.
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With the help of the Wilson loop functional on knots and links, Witten writes down
a functional integral for link invariants in a 3-manifold M :

Z(M;K) =
∫

DAe(ik=4�)S(M;A)tr(Pe
∮

K
A)

=
∫

DAe(ik=4�)S〈K |A〉 :

Here S(M;A) is the Chern–Simons Lagrangian, as in the previous discussion. We abbre-
viate S(M;A) as S and write 〈K |A〉 for the Wilson loop. Unless otherwise mentioned,
the manifold M will be the three-dimensional sphere S3.
An analysis of the formalism of this functional integral reveals quite a bit about its

role in knot theory. This analysis depends upon key facts relating the curvature of the
gauge �eld to both the Wilson loop and the Chern–Simons Lagrangian. The idea for
using the curvature in this way is due to Lee Smolin [28] (see also Ref. [29]). To
this end, let us recall the local coordinate structure of the gauge �eld A(x), where x
is a point in three space. We can write A(x) = Aa

k(x)Ta dxk where the index a ranges
from 1 to m with the Lie algebra basis {T1; T2; T3; : : : ; Tm}. The index k goes from 1
to 3. For each choice of a and k; Aa

k(x) is a smooth function de�ned on three space.
In A(x) we sum over the values of repeated indices. The Lie algebra generators Ta

are matrices corresponding to a given representation of the Lie algebra of the gauge
group G: We assume some properties of these matrices as follows:
(1) [Ta; Tb] = ifabcTc where [x; y] = xy − yx, and fabc (the matrix of structure

constants) is totally antisymmetric. There is summation over repeated indices.
(2) tr(TaTb) = �ab=2 where �ab is the Kronecker delta (�ab = 1 if a = b and zero

otherwise).
We also assume some facts about curvature. (The reader may enjoy comparing with

the exposition in Ref. [30]. But note the di�erence of conventions on the use of i in
the Wilson loops and curvature de�nitions.) The �rst fact is the relation of Wilson
loops and curvature for small loops:

Fact 1. The result of evaluating a Wilson loop about a very small planar circle
around a point x is proportional to the area enclosed by this circle times the corre-
sponding value of the curvature tensor of the gauge �eld evaluated at x.

The curvature tensor is written

Fa
rs(x)Ta dxr dys :

It is the local coordinate expression of F = dA+ A ∧ A.

Application of Fact 1. Consider a given Wilson line 〈K |S〉. Ask how its value will
change if it is deformed in�nitesimally in the neighborhood of a point x on the line.
Approximate the change according to Fact 1, and regard the point x as the place of
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Fig. 6. Lie algebra and curvature tensor insertion into the Wilson loop.

curvature evaluation. Let �〈K |A〉 denote the change in the value of the line. �〈K |A〉 is
given by the formula

�〈K |A〉= dxrdxsFrs
a (x)Ta〈K |A〉 :

This is the �rst-order approximation to the change in the Wilson line.
In this formula it is understood that the Lie algebra matrices Ta are to be inserted

into the Wilson line at the point x, and that we are summing over repeated indices.
This means that each Ta〈K |A〉 is a new Wilson line obtained from the original line
〈K |A〉 by leaving the form of the loop unchanged, but inserting the matrix Ta into that
loop at the point x. In Fig. 6 we have illustrated this mode of insertion of Lie algebra
into the Wilson loop. Here and in further illustrations in this section we use WK (A)
to denote the Wilson loop. Note that in the diagrammatic version shown in Fig. 6 we
have let small triangles with legs indicate dxi: The legs correspond to indices just as
in our work in the last section with Lie algebras and chord diagrams. The curvature
tensor is indicated as a circle with three legs corresponding to the indices of Frs

a .

Notation. In the diagrams in this section we have dropped mention of the factor of
(1=4�) that occurs in the integral. This convention saves space in the �gures. In these
�gures L denotes the Chern–Simons Lagrangian.

Remark. In thinking about the Wilson line 〈K |A〉 = tr(Pe
∮

K
A), it is helpful to recall

Euler’s formula for the exponential:

ex = lim
n→∞(1 + x=n)n :

The Wilson line is the limit, over partitions of the loop K , of products of the matrices
(1 + A(x)) where x runs over the partition. Thus we can write symbolically,

〈K |A〉=
∏
x∈K

(1 + A(x))

=
∏
x∈K

(1 + Aa
k(x)Tadxk) :

It is understood that a product of matrices around a closed loop connotes the trace of
the product. The ordering is forced by the one-dimensional nature of the loop. Insertion
of a given matrix into this product at a point on the loop is then a well-de�ned concept.
If T is a given matrix then it is understood that T 〈K |A〉 denotes the insertion of T
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Fig. 7. Di�erentiating the Wilson line.

into some point of the loop. In the case above, it is understood from context in the
formula that the insertion is to be performed at the point x indicated in the argument
of the curvature.

Remark. The previous remark implies the following formula for the variation of the
Wilson loop with respect to the gauge �eld:

�〈K |A〉=�(Aa
k(x)) = dx

k Ta〈K |A〉 :
Varying the Wilson loop with respect to the gauge �eld results in the insertion of an
in�nitesimal Lie algebra element into the loop. Fig. 7 gives a diagrammatic form for
this formula. In the �gure we use a capital D with up and down legs to denote the
derivative �=�(Aa

k(x)): Insertions in the Wilson line are indicated directly by matrix
boxes placed in a representative bit of line.

Proof.

�〈K |A〉=�(Aa
k(x))

=�
∏
y∈K

(1 + Aa
k(y)Tadyk)=�(Aa

k(x))

=
∏

y¡x∈K

(1 + Aa
k(y)Tadyk)[Tadxk ]

∏
y¿x∈K

(1 + Aa
k(y)Tadyk)

=dxk Ta〈K |A〉 :

Fact 2. The variation of the Chern–Simons Lagrangian S with respect to the gauge
potential at a given point in three-space is related to the values of the curvature
tensor at that point by the following formula:

Fa
rs(x) = �rst�S=�(Aa

t (x)) :

Here �abc is the epsilon symbol for three indices; i.e. it is +1 for positive permutations
of 123 and −1 for negative permutations of 123 and zero if any two indices are
repeated. A diagrammatic for this formula is shown in Fig. 8.

With these facts at hand we are prepared to determine how the Witten integral
behaves under a small deformation of the loop K .
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Fig. 8. Variational formula for curvature.

Theorem. (1) Let Z(K) = Z(S3; K) and let �Z(K) denote the change of Z(K) under
an in�nitesimal change in the loop K . Then

�Z(K) = (4�i=k)
∫
dA e(ik=4�)S [Vol]TaTa〈K |A〉 ;

where Vol= �rst dxr dxs dxt .
The sum is taken over repeated indices; and the insertion is taken of the matrices

TaTa at the chosen point x on the loop K that is regarded as the “center” of the
deformation. The volume element Vol = �rst dxr dxs dxt is taken with regard to the
in�nitesimal directions of the loop deformation from this point on the original loop.
(2) The same formula applies, with a di�erent interpretation; to the case where x is

a double point of transversal self-intersection of a loop K; and the deformation consists
in shifting one of the crossing segments perpendicularly to the plane of intersection
so that the self-intersection point disappears. In this case; one Ta is inserted into each
of the transversal crossing segments so that TaTa〈K |A〉 denotes a Wilson loop with
a self intersection at x and insertions of Ta at x + �1 and x + �2 where �1 and �2
denote small displacements along the two arcs of K that intersect at x. In this case;
the volume form is nonzero; with two directions coming from the plane of movement
of one arc; and the perpendicular direction is the direction of the other arc.

Proof.

�Z(K) =
∫

DAe(ik=4�)S�〈K |A〉

=
∫

DAe(ik=4�)SdxrdysFa
rs(x)Ta〈K |A〉

=
∫

DAe(ik=4�)Sdxrdys�rst(�S=�(Aa
t (x)))Ta〈K |A〉

= (−4�i=k)
∫

DA(�e(ik=4�)S=�(Aa
t (x)))�rstdx

rdysTa〈K |A〉

= (4�i=k)
∫

DAe(ik=4�)S�rstdxrdys(�Ta〈K |A〉=�(Aa
t (x)))
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Fig. 9. Varying the functional integral by varying the line.

(integration by parts and the boundary terms vanish)

= (4�i=k)
∫

DAe(ik=4�)S [Vol]TaTa〈K |A〉 :

This completes the formalism of the proof. In the case of part (2), a change of in-
terpretation occurs at the point in the argument when the Wilson line is di�erentiated.
Di�erentiating a self-intersecting Wilson line at a point of self-intersection is equiva-
lent to di�erentiating the corresponding product of matrices with respect to a variable
that occurs at two points in the product (corresponding to the two places where the
loop passes through the point). One of these derivatives gives rise to a term with vol-
ume form equal to zero, the other term is the one that is described in part (2). This
completes the proof of the theorem.

The formalism of this proof is illustrated in Fig. 9.
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Fig. 10. The di�erence formula.

In the case of switching a crossing the key point is to write the crossing switch as a
composition of �rst moving a segment to obtain a transversal intersection of the diagram
with itself, and then to continue the motion to complete the switch. One then analyses
separately the case where x is a double point of transversal self-intersection of a loop K;
and the deformation consists in shifting one of the crossing segments perpendicularly to
the plane of intersection so that the self-intersection point disappears. In this case, one
Ta is inserted into each of the transversal crossing segments so that TaTa〈K |A〉 denotes
a Wilson loop with a self-intersection at x and insertions of Ta at x + �1 and x + �2
as in part (2) of the theorem above. The �rst insertion is in the moving line, due to
curvature. The second insertion is the consequence of di�erentiating the self-touching
Wilson line. Since this line can be regarded as a product, the di�erentiation occurs
twice at the point of intersection, and it is the second direction that produces the
non-vanishing volume form.
Up to the choice of our conventions for constants, the switching formula is, as shown

below (see Fig. 10)

Z(K+)− Z(K−) = (4�i=k)
∫

DAe(ik=4�)STaTa〈K∗∗|A〉

= (4�i=k)Z(TaTaK∗∗) ;

where K∗∗ denotes the result of replacing the crossing by a self-touching crossing. We
distinguish this from adding a graphical node at this crossing by using the double-star
notation.
A key point is to notice that the Lie algebra insertion for this di�erence is exactly

what is done (in chord diagrams) to make the weight systems for Vassiliev invariants
(without the framing compensation). Here we take formally the perturbative expansion
of the Witten integral to obtain Vassiliev invariants as coe�cients of the powers of
(1=kn). Thus, the formalism of the Witten functional integral takes one directly to these
weight systems in the case of the classical Lie algebras. In this way the functional
integral is central to the structure of the Vassiliev invariants.
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Fig. 11. The loop transform and operators G and H .

3.1. The loop transform

Suppose that  (A) is a (complex-valued) function de�ned on gauge �elds. Then
we de�ne formally the loop transform  ̂ (K), a function on embedded loops in three-
dimensional space, by the formula

 ̂ (K) =
∫

DA (A)WK (A) :

If � is a di�erential operator de�ned on  (A); then we can use this integral transform
to shift the e�ect of � to an operator on loops via integration by parts:

�̂ (K) =
∫

DA� (A)WK (A)

=−
∫

DA (A)�WK (A) :

When � is applied to the Wilson loop the result can be an understandable geometric or
topological operation. In Figs. 11–13 we illustrate this situation with diagrammatically
de�ned operators G and H .
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Fig. 12. The di�eomorphism constraint.

Fig. 13. The Hamiltonian constraint.
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We see from Fig. 12 that

Ĝ (K) = � ̂ (K) ;

where this variation refers to the e�ect of varying K by a small loop. As we saw in
this section, this means that if  ̂ (K) is a topological invariant of knots and links, then
Ĝ (K) = 0 for all embedded loops K: This condition is a transform analogue of the
equation G (A) = 0: This equation is the di�erential analogue of an invariant of knots
and links. It may happen that � ̂ (K) is not strictly zero, as in the case of our framed
knot invariants. For example with

 (A) = e(ik=4�)
∫

tr(A∧dA+(2=3)A∧A∧A)

we conclude that Ĝ (K) is zero for at deformations (in the sense of this section) of
the loop K , but can be non-zero in the presence of a twist or curl. In this sense the
loop transform provides a subtle variation on the strict condition G (A) = 0.
In [5] and earlier publications by these authors, the loop transform is used to study

a reformulation and quantization of Einstein gravity. The di�erential geometric gravity
theory is reformulated in terms of a background gauge connection and in the quan-
tization, the Hilbert space consists of functions  (A) that are required to satisfy the
constraints

G = 0

and

H = 0 ;

where H is the operator shown in Fig. 13. Thus we see that Ĝ(K) can be partially
zero in the sense of producing a framed knot invariant, and (from Fig. 13 and the
antisymmetry of the epsilon) that Ĥ (K) is zero for non-self-intersecting loops. This
means that the loop transforms of G and H can be used to investigate a subtle variation
of the original scheme for the quantization of gravity. This program is being actively
pursued by a number of researchers. The Vassiliev invariants arising from a topologi-
cally invariant loop transform should be of signi�cance to this theory. This theme will
be explored in a subsequent paper.

4. The three-dimensional perturbative expansion

In this section we will �rst show how linking and self-linking numbers arise from the
functional integral, and then how this formalism generalizes to produce combinations
of space integrals that express Vassiliev invariants. See Ref. [1] for a treatment of
the gauge �xing that is relevant to this approach. Here we will follow a heuristic
that avoids gauge-�xing altogether. This makes the derivation in this section wholly
heuristic even from the physical point of view, but it is worth the experiment since
it actually does come up with a correct topological answer as the work of Bott and
Taubes [7] and Altschuler–Friedel [6] shows.
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Let us begin with a simple vector �eld (A1(x); A2(x); A3(x)) = A(x) where x is a
point in three-dimensional Euclidean space R3: This is equivalent to taking the circle
(U (1)) as gauge group. Now consider �elds of the form A + � where � is a scalar
�eld (regarded as a fourth coordinate if you like). De�ne an operator L on A+ � by
the formula

L(A+ �) =−∇× A−∇ · A+∇� ;

then it is easy to see that

L2(A+ �) =−∇2(A)−∇2(�) :

If we identify A with the one-form A1dx1 + A2dx2 + A3dx3, then∫
R3

tr(A ∧ dA) =
∫
R3

A · (∇× A) dvol ;

where dvol denotes the volume form on R3 and the A appearing on the right-hand part
of the above formula is the vector �eld version of A. Since we are integrating with
respect to volume, the scalar part of L(A) does not matter and we can write∫

R3
tr(A ∧ dA) =

∫
R3

A · L(A) dvol

and take as a de�nition of a quadratic form on vector �elds

〈A; B〉=
∫
R3

A · B dvol

so that

〈A; LA〉=
∫
R3

tr(A ∧ dA) :

With this in mind, consider the following functional integral de�ned for a link of two
components K and K ′:

�(K; K ′) =
∫

DAe−(1=2)〈A;LA〉
∫ ∫

(x;y)∈K×K′
A(x)A(y) :

Regarding this as a Gaussian integral, we need to determine the inverse of the operator
L. Within the context of the quadratic form we have L2 = −∇2: We know that the
Green’s function

G = (−1=4�)(1=|x − y|)
is the inverse of the three-dimensional Laplacian

∇2G(x) = �(x − y) ;

where �(x − y) denotes the Dirac delta function.
Thus if J (y) stands for an arbitrary vector �eld, and we de�ne

G ∗ J =
∫
R3
dyG(x − y)J (y) ;
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then

(∇2G) ∗ J (x) =
∫
R3
dy∇2G(x − y)J (y)

=
∫
R3
dy �(x − y)J (y) = J (x) :

Thus

(L2G) ∗ J = J :

Hence

L((LG) ∗ J ) = J

and

L−1J = (LG) ∗ J :

It is then easy to calculate that

〈J; L−1J 〉= (1=4�)
∫ ∫

K×K′
(J (x)× J (y)) · (x − y)=|x − y|3 :

Now returning to our functional integral we have

�(K; K ′) =
∫

DAe−(1=2)〈A;LA〉
∫ ∫

(x;y)∈K×K′
A(x)A(y)

=
∫ ∫

K×K′

∫
DAe(−1=2)〈A;LA〉A(x)A(y)

=
∫ ∫

K×K′
@=@J (x)@=@J (y)|J=0e(1=2)〈J;L−1J〉 :

The last equality, being the basic hypothesis for evaluating the functional integral.
Using our results on L−1 and a few calculations suppressed here, we conclude that

�(K; K ′) = (1=4�)
∫ ∫

K×K′
(dx × dy) · (x − y)=|x − y|3

= Lk(K; K ′) :

Here L(K; K ′) denotes the linking number of the curves K and K ′. The last equality
is the statement of Gauss’s integral representation for the linking number of two space
curves.
Now consider the Witten functional integral for arbitrary gauge group. Then one can

check that a formula of the following type expresses the trace of the Chern–Simons
di�erential form. Here fabc denotes the structure constants for the Lie algebra

tr(A dA+ (2=3)A3) = (�ijk =2)

∑
a

Aa
i @jAa

k + (1=3)
∑
a;b;c

Aa
i A

b
jA

c
kfabc

 dvol :
This means that we can think of this trace as a sum of a Gaussian term directly
analogous to the term for the linking number (but involving the Lie algebra indices)
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and a separate term corresponding to the A3 term in the Chern–Simons form. We want
the coe�cient of the Gaussian term in the integral to be constant (independent of the
coupling constant k). To accomplish this, we replace A by A=

√
k and obtain

ZK =
∫

DAe(i=4�)
∫

tr(A dA)e(i=4�
√

k)
∫

tr(2=3)A3
∑
n

(1=
√
k)n
∫ ∫

· · ·
∫
K1¡K2¡···¡Kn

An :

Here we have used an expansion of the Wilson loop as a sum of integrated integrals:

WK (A) = tr
∏
x∈K

(1 + A=
√
k)

=
∑
n

(1=
√
k)n
∫ ∫

· · ·
∫
K1¡K2¡···¡Kn

An :

The notation K1¡K2¡ · · ·¡Kn means that in the integration process we choose
points xi from K so that x1¡x2¡ · · ·¡xn and the term An in the integration formula
denotes A(x1)A(x2) : : : A(xn). With this reformulation of ZK ; we see that the full integral
can be considered as a Gaussian integral with correlations corresponding to the products
of copies of A in the iterated integrals and other products involving the A3 term. We
will explicate this integration heuristically, without doing any gauge �xing.
Using

e(i=4�
√

k)
∫

tr(2=3)A3 =
∑
m

(1=m!)(i=6�
√
k)m

(∫
tr(A3)

)m
;

substituting and rewriting, we have

ZK =
∑
m

∑
n

(1=m!)(i=6�)m(1=
√
k)m+nCmn

where

Cmn =
∫

DAe(i=4�)
∫

tr(A dA)
∫

tr(A3)m
∫ ∫

· · ·
∫
K1¡K2¡···¡Kn

An :

The term Cmn shows that we will have to consider correlations combined from the
Wilson loop and from the A3 term. The quadratic form

∫
tr(A dA) is a direct general-

ization of the quadratic form that we explicated at the beginning of the section and the
inverse operator is obtained by applying the Laplacian to the same Green’s function.
As a result, the Feynman diagrams for these correlations have triple vertices in space
(corresponding to the A3 term) and single vertices on the knot or link (corresponding
to an A in the iterated integral. Each triple vertex contributes 1=

√
k and each vertex

on the link also contributes 1=
√
k. At a triple vertex there is a factor proportional to

�ijkfabc

(coming from the expression we gave earlier in this section for tr(A dA+(2=3)A3)). At
a single vertex (corresponding to one A), there is an insertion of Lie algebra in the line
(i.e., the knot or link), and along each edge in the Feynman diagram there is a Gauss
kernel (the propagator) i=4��ab�ijk(x−y)k =|x−y|3. This is tied into the relevant indices
which are the indices of tangent directions along the lines of the link and the factors



L.H. Kau�man / Physica A 281 (2000) 173–200 191

at the triple vertices. For a given order of diagram one integrates the positions of the
vertices along the link and the positions of the triple vertices in three-dimensional space
to obtain the contribution of the diagram to the correlator. In this way, a given Cmn

contributes to the order (1=
√
k)m+n of the perturbative expansion of the integral. By

taking an appropriate sum of the Cmn for m+ n= 2N one obtains an explicit formula
for the N th-order Vassiliev invariants arising from the functional integral.

5. Wilson lines, light-cone gauge and the Kontsevich integrals

In this section we follow the gauge �xing method used by Fr�ohlich and King [4].
Their paper was written before the advent of Vassiliev invariants, but contains, as we
shall see, nearly the whole story about the Kontsevich integral. A similar approach to
ours can be found in Ref. [3]. In our case we have simpli�ed the determination of
the inverse operator for this formalism and we have given a few more details about the
calculation of the correlation functions than is customary in physics literature. I hope
that this approach makes this subject more accessible to mathematicians. A heuristic
argument of this kind contains a great deal of valuable mathematics. It is clear that these
matters will eventually be given a fully rigorous treatment. In fact, in the present case
there is a rigorous treatment, due to Albevario and Sen-Gupta [31] of the functional
integral after the light-cone gauge has been imposed.
Let (x0; x1; x2) denote a point in three-dimensional space. Change to light-cone

coordinates

x+ = x1 + x2

and

x− = x1 − x2 :

Let t denote x0.
Then the gauge connection can be written in the form

A(x) = A+(x)dx+ + A−(x)dx− + A0(x)dt :

Let CS(A) denote the Chern–Simons integral (over the three-dimensional sphere)

CS(A) = (1=4�)
∫

tr(A ∧ dA+ (2=3)A ∧ A ∧ A) :

We de�ne axial gauge (light-cone gauge) to be the condition that A− = 0. We shall
now work with the functional integral of the previous section under the axial gauge
restriction. In axial gauge we have that A ∧ A ∧ A= 0 and so

CS(A) = (1=4�)
∫

tr(A ∧ dA) :

Letting @± denote partial di�erentiation with respect to x±, we get the following
formula in axial gauge:

A ∧ dA= (A+@−A0 − A0@−A+)dx+ ∧ dx− ∧ dt :
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Thus, after integration by parts, we obtain the following formula for the Chern–Simons
integral:

CS(A) = (1=2�)
∫

tr(A+@−A0)dx+ ∧ dx− ∧ dt :

Letting @i denote the partial derivative with respect to xi, we have that

@+@− = @21 − @22 :

If we replace x2 with ix2 where i2 =−1, then @+@− is replaced by

@21 + @22 =∇2 :

We now make this replacement so that the analysis can be expressed over the complex
numbers.
Letting

z = x1 + ix2 ;

it is well known that

∇2 ln(z) = 2��(z) ;

where �(z) denotes the Dirac delta function and ln(z) is the natural logarithm of z.
Thus we can write

(@+@−)−1 = (1=2�)ln(z) :

Note that @+ = @z = @=@z after the replacement of x2 by ix2. As a result we have that

(@−)−1 = @+(@+@−)−1 = @+(1=2�)ln(z) = 1=2�z :

Now that we know the inverse of the operator @− we are in a position to treat the
Chern–Simons integral as a quadratic form in the pattern

(−1=2)〈A; LA〉=−iCS(A) ;

where the operator

L= @− :

Since we know L−1, we can express the functional integral as a Gaussian integral.
We replace

Z(K) =
∫

DAeikCS(A)tr(Pe
∮

K
A)

by

Z(K) =
∫

DAeiCS(A)tr(Pe
∮

K
A=
√

k)

by sending A to (1=
√
k)A. We then replace this version by

Z(K) =
∫

DAe(−1=2)〈A;LA〉tr(Pe
∮

K
A=
√

k) :
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In this last formulation we can use our knowledge of L−1 to determine the correlation
functions and express Z(K) perturbatively in powers of (1=

√
k).

Proposition. Letting

〈�(A)〉=
∫

DAe(−1=2)〈A;LA〉�(A)
/∫

DAe(−1=2)〈A;LA〉

for any functional �(A); we �nd that

〈Aa
+(z; t)A

b
+(w; s)〉= 0 ;

〈Aa
0(z; t)A

b
0(w; s)〉= 0 ;

〈Aa
+(z; t)A

b
0(w; s)〉= ��ab�(t − s)=(z − w)

where � is a constant.

Proof (sketch).
Let us recall how these correlation functions are obtained. The basic formalism for

the Gaussian integration is in the pattern

〈A(z)A(w)〉=
∫

DAe(−1=2)〈A;LA〉A(z)A(w)
/∫

DAe(−1=2)〈A;LA〉

= ((@=@J (z))(@=@J (w))|J=0)e(1=2)〈J;L−1J〉 :

Letting G ∗ J (z) =
∫
dwG(z − w)J (w), we have that when

LG(z) = �(z)

(�(z) is a Dirac delta function of z.) then

LG ∗ J (z) =
∫
dw LG(z − w)J (w) =

∫
dw �(z − w)J (w) = J (z) :

Thus G ∗ J (z) can be identi�ed with L−1J (z).
In our case

G(z) = 1=2�z

and

L−1J (z) = G ∗ J (z) =
∫
dw J (w)=(z − w) :

Thus

〈J (z); L−1J (z)〉= 〈J (z); G ∗ J (z)〉= (1=2�)
∫

trJ (z)
(∫

dw J (w)=(z − w)
)
dz

= (1=2�)
∫ ∫

dz dw tr(J (z)J (w))=(z − w) :

The results on the correlation functions then follow directly from di�erentiating this
expression. Note that the Kronecker delta on Lie algebra indices is a result of the
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corresponding Kronecker delta in the trace formula tr(TaTb) = �ab=2 for products of
Lie algebra generators. The Kronecker delta for the x0=t; s coordinates is a consequence
of the evaluation at J equal to zero.

We are now prepared to give an explicit form to the perturbative expansion for

〈K〉= Z(K)
/∫

DAe(−1=2)〈A;LA〉

=
∫

DAe(−1=2)〈A;LA〉tr(Pe
∮

K
A=
√

k)
/∫

DAe(−1=2)〈A;LA〉

=
∫

DAe(−1=2)〈A;LA〉tr

(∏
x∈K

(1 + (A=
√
k))

)/∫
DAe(−1=2)〈A;LA〉

=
∑
n

(1=kn=2)
∮

K1¡···¡Kn

〈A(x1) : : : A(xn)〉 :

The latter summation can be rewritten (Wick expansion) into a sum over products of
pair correlations, and we have already worked out the values of these. In the formula
above we have written K1¡ · · ·¡Kn to denote the integration over variables x1; : : : ; xn

on K so that x1¡ · · ·¡xn in the ordering induced on the loop K by choosing a
basepoint on the loop. After the Wick expansion, we get

〈K〉=
∑
m

(1=km)
∮

K1¡···¡Kn

∑
P={xi¡x′i | i=1;:::;m}

∏
i

〈A(xi)A(x′i)〉 :

Now we know that

〈A(xi)A(x′i)〉= 〈Aa
k(xi)A

b
l (x

′
i)〉TaTb dxk dxl :

Rewriting this in the complexi�ed axial gauge coordinates, the only contribution is

〈Aa
+(z; t)A

b
0(s; w)〉= ��ab�(t − s)=(z − w) :

Thus

〈A(xi)A(x′i)〉
= 〈Aa

+(xi)A
a
0(x

′
i)〉TaTa dx+ ∧ dt + 〈Aa

0(xi)A
a
+(x

′
i)〉TaTa dx+ ∧ dt

=(dz − dz′)=(z − z′)[i=i′] ;

where [i=i′] denotes the insertion of the Lie algebra elements TaTa into the Wilson
loop.
As a result, for each partition of the loop and choice of pairings P = {xi ¡ x′i | i =

1; : : : ; m} we get an evaluation DP of the trace of these insertions into the loop. This
is the value of the corresponding chord diagram in the weight systems for Vassiliev
invariants. These chord diagram evaluations then �gure in our formula as shown below:

〈K〉=
∑
m

(1=km)
∑
P

DP

∮
K1¡···¡Kn

m∧
i=1

(dzi − dz′i)=(zi − z′i) :
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Fig. 14. Applying the Kontsevich integral.

This is a Wilson loop ordering version of the Kontsevich integral. To see the usual form
of the integral appear, we change from the time variable (parametrization) associated
with the loop itself to time variables associated with a speci�c global direction of time
in three-dimensional space that is perpendicular to the complex plane de�ned by the
axial gauge coordinates. It is easy to see that this results in one change of sign for
each segment of the knot diagram supporting a pair correlation where the segment is
oriented (Wilson loop parameter) downward with respect to the global time direction.
This results in the rewrite of our formula to

〈K〉=
∑
m

(1=km)
∑
P

(−1)|P↓|DP

∫
t1¡···¡tn

m∧
i=1

(dzi − dz′i)=(zi − z′i) ;

where |P ↓ | denotes the number of points (zi; ti) or (z′i ; ti) in the pairings where the
knot diagram is oriented downward with respect to global time. The integration around
the Wilson loop has been replaced by integration in the vertical time direction and is
so indicated by the replacement of {K1¡ · · ·¡Kn} with {t1¡ · · ·¡tn}.
The coe�cients of 1=km in this expansion are exactly the Kontsevich integrals for

the weight systems DP; see Fig. 14.
It was Kontsevich’s insight to see (by di�erent means) that these integrals could

be used to construct Vassiliev invariants from arbitrary weight systems satisfying the
four-term relations. Here we have seen how these integrals arise naturally in the axial
gauge �xing of the Witten functional integral.

Remark. The careful reader will note that we have not made a discussion of the role
of the maxima and minima of the space curve of the knot with respect to the height
direction (t). In fact, one has to take these maxima and minima very carefully into
account and to divide by the corresponding evaluated loop pattern (with these maxima
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and minima) to make the Kontsevich integral well-de�ned and actually invariant under
ambient isotopy (with appropriate framing correction as well). The corresponding dif-
�culty appears here in the fact that because of the gauge choice the Wilson lines are
actually only de�ned in the complement of the maxima and minima and one needs to
analyse a limiting procedure to take care of the inclusion of these points in the Wilson
line. This points to one of the places where this correspondence with the Kontsevich
integrals as Feynman integrals for Witten’s functional integral could stand closer math-
ematical scrutiny. One purpose of this paper has been to outline the correspondences
that exist and to put enough light on the situation to allow a full story to eventually
appear.

6. Formal integration

In light of the fact that many beautiful and rigorous results come forth from the for-
mal manipulation of functional integrals, it is of interest to attempt to see whether one
can create a formal (essentially combinatorial) category in which these manipulations
can exist. This section is devoted to some very elementary remarks along this line.
Suppose that we start with an extended real line in the sense of Robinson’s non-

standard analysis [32,33]. (For a delightful introduction to a similar construction of
an extended real line see also Conway’s work on Surreal numbers [34].) In this line
there are in�nitesimals � each less than any standard real and the extended line is still
a �eld. Can we make formal integrals that make sense of Leibniz’s

∫ b
a f(x) dx as a

“sum” over in�nitely many small quantities?
The yoga for the usual Robinson approach is to de�ne a Riemann sum S(�x) =∑n
i=0 f(xi)�x where {x0; : : : ; xn} is a partition of the interval [a; b] and n�x= b− a.

The Riemann sum is regarded as a function of �x, and then by the Robinson logic
of transfering statements about reals to statements about hyperreals, one can let �x be
in�nitesimal to de�ne the integral.
Here, I want to note that there is a very formal counterpart to this process that lets

one de�ne an inde�nite “micro-integral” by a straightforward formula where � is an
in�nitesimal:

F(x) = f(x)�+ f(x − �)�+ f(x − 2�)�+ · · · :

I claim that F(x) is a formal representative for
∫ x f(t) dt. In particular, let us compute

the derivative of F :

F(x + �) = f(x + �)�+ f(x)�+ f(x − �)�+ f(x − 2�)�+ · · · :

Thus

(F(x + �)− F(x))=�= f(x + �) :

Every �nite hyperreal is a unique sum of a real and an in�nitesimal. The derivative of
a function is de�ned to the real part of the di�erence quotient using �. It follows that

F ′(x) = f(x) :
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In this sense, we can directly write down a formal antiderivative for a real-valued
function f(x).
How far are we on the road towards writing down a formal version of a functional

integral in gauge �eld theory? Is there a combinatorial formula for

Z(M;K) =
∫

DAe(ik=4�)S(M;A) tr(Pe
∮

K
A)

utilizing an orchestration of countable sums of in�nitesimals from the hyperreals? If we
do make such a construction it may, like our toy example F(x), be itself in�nitesimal,
or even in�nite. The problem is to make it well-de�ned in the hyperreals and so that the
typical results about integrating Gaussians are logical consequences of its construction.
That is the question!
Since I do not have an answer to this question at this writing, let me add a few

more ideas. There is another approach to the in�nitesimal calculus due to Lawvere
and Bell [35] that uses square zero in�nitesimals. These are in�nitesimals � such that
�2 = 0. Of course, the extension of the reals to these new hyperreals is no longer
a �eld. Furthermore, these structures are usually wrapped in a cloak of intuitionistic
mathematics and category theory (topos theory – see Refs. [35,36]). The intuitionism
comes from the desire that � be indistinguishable from zero and yet not zero. Such
subtlety is possible in a world where the double negative is distinct from an a�rmation.
The square zero in�nitesimals are charming. In this system, the formula

f(x + �) = f(x) + f′(x)�

de�nes the derivative of f(x), and all the familiar properties of derivatives follow
easily.
Now square zero in�nitesimals remind the di�erential geometer immediately of

Grassmann algebra and exterior di�erential forms. Actually, there are two signi�cant
choices that one can make at this fundamental level. One can choose to assume that
distinct square zero in�nitesimals commute with one another, and do not necessarily
annihilate each other when multiplied. Or one can assume that they do not necessarily
commute, but that the squares of any �nite sum of them is itself of square zero. Let
us consider these two choices one at a time.
In the case of commuting square zero in�nitesimals � and �, we have

(�+ �)2 = �2 + 2�� + �2

= 2�� ;

while

(�+ �)3 = 0 :

In general, the commutative situation forces higher and higher orders of nilpotencey
for sums of independent in�nitesimals. An in�nite sum of square zero in�nitesimals
can stand for a standard Robinson in�nitesimal. This indicates that the Robinson theory
should be seen as the limit of square zero theories. This is the analog of thinking of
a Taylor series in terms of its truncations.
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In the case of all sums having square zero and non-commutation, we recover an
in�nitesimal version of Grassmann algebra:

0 = (�+ �)2 = �2 + �� + ��+ �2

= �� + �� :

Thus

0 = �� + �� :

I take these elementary observations as hints that the correct version of calculus for
our purposes will contain in�nitesimals that partake of all these options, and that we
should press ahead and create the theory that contains them.

7. Background

For the reader interested in pursuing the background of this paper related to link
invariants and topological quantum �eld theory, we have included references [37–54].
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