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Bi-oriented Quantum Algebras, and a Generalized
Alexander Polynomial for Virtual Links

Louis H. Kauffman and David Radford

Abstract. This paper discusses the construction of a generalized Alexander
polynomial for virtual knots and links, and the reformulation of this invariant

as a quantum link invariant. We then introduce the concept of a bi-oriented
quantum algebra, which provides an algebraic context for this structure.

1. Introduction

In this paper we discuss the construction of a generalized Alexander polynomial
GK(s, t) via the concept of a biquandle. Our approach leads directly to a gener-
alization of the Burau representation upon which this invariant is based. We then
reformulate the invariant as a quantum link invariant and as a state summation.
In this context we show that the normalized quantum invariant ZK(σ, τ) satisfies a
Conway skein identity and reproduces GK(s, t). These invariants are useful for the
theory of virtual knots and links, for they vanish on classical knots and links. Hence
the invariants studied here can be used to show that many virtual knots and links
are not classical. We give such examples in Section 2. We also give an example of
a virtual knot that cannot be detected by the generalized Alexander polynomial.
This knot is detected by the structure of the corresponding generalized Alexander
module. We conclude with a diagram due to Kishino that is knotted, but is not
detected by any representation of the biquandle at the time of this writing. We
conjecture that the biquandle of the Kishino diagram does detect its knottedness.

In the final section of the paper, we formulate the concept of a bi-oriented
quantum algebra. This generalizes our previous concept of oriented quantum alge-
bra [6, 7] to include the necessary structures to create invariants of virtual links.
The invariant ZK(σ, τ) studied in this paper fits non-trivially into this framework.
Subsequent papers will study the structure and applications of bi-oriented quantum
algebras.
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In relation to the theme of diagrammatics for this proceedings, we should men-
tion that the crossings and R-matrices for the quantum knot invariant models are,
respectively, topological and algebraic realizations of the categorical concept of
braiding. Similarly, virtual crossings and the operator γ of section 5 realize sym-
metries (which are braidings satisfying Condition 1 of the definition of a bioriented
quantum algebra in section 5), and the cups and caps, and Mab of section 4 real-
ize the rigidities of duality. All these devices arise naturally in the context of the
generalization of quantum link invariants to virtual knot theory.

2. Virtual Links and a Generalized Alexander Polynomial

In this section we will construct a generalization of the Alexander module and
Alexander polynomial that is defined for virtual knots and links [9, 10, 11]. We
then show how this generalized Alexander polynomial can be seen as state sum-
mation model using a solution to the Quantum Yang-Baxter equation. This state
model will form the basis for the rest of the paper.

Recall that classical knot theory can be described in terms of knot and link
diagrams. A diagram is a 4-regular plane graph (with extra structure at its nodes
representing the crossings in the link) represented on the surface of a plane and
implicitly on the surface of a two-dimensional sphere S2. One says that two such
diagrams are equivalent if there is a sequence of moves of the types indicated in part
(A) of Figure 1 (The Reidemeister Moves) taking one diagram to the other. These
moves are performed locally on the 4-regular plane graph (with extra structure)
that constitutes the link diagram.

Virtual knot theory is an extension of classical knot theory. In this extension
one adds a virtual crossing (See Figure 1) that is neither an over-crossing nor an
under-crossing. We shall refer to the usual diagrammatic crossings, that is, those
without circles, as real crossings to distinguish them from the virtual crossings. A
virtual crossing is represented by two crossing arcs with a small circle placed around
the crossing point.

The allowed moves on virtual diagrams are a generalization of the Reidemeister
moves for classical knot and link diagrams. We show the classical Reidemeister
moves as part (A) of Figure 1. These classical moves are part of virtual equivalence
where no changes are made to the virtual crossings. Taken by themselves, the
virtual crossings behave as diagrammatic permutations. Specifically, we have the
flat Reidemeister moves (B) for virtual crossings as shown in Figure 1. In Figure
1 we also illustrate a basic move (C) that interrelates real and virtual crossings.
In this move an arc going through a consecutive sequence of two virtual crossings
can be moved across a single real crossing. In fact, it is consequence of moves (B)
and (C) for virtual crossings that an arc going through any consecutive sequence
of virtual crossings can be moved anywhere in the diagram keeping the endpoints
fixed and writing the places where the moved arc now crosses the diagram as new
virtual crossings. This is shown schematically in Figure 1.1. We call the move in
Figure 1.1 the detour, and note that the detour move is equivalent to having all
the moves of type (B) and (C) of Figure 1. This extended move set (Reidemeister
moves plus the detour move or the equivalent moves (B) and (C)) constitutes the
move set for virtual knots and links.
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There is a useful topological interpretation for this virtual theory in terms of
embeddings of links in thickened surfaces. See [9, 11]. Regard each virtual crossing
as a shorthand for a detour of one of the arcs in the crossing through a 1-handle
that has been attached to the 2-sphere of the original diagram. The two choices
for the 1-handle detour are homeomorphic to each other (as abstract surfaces with
boundary a circle) since there is no a priori difference between the meridian and the
longitude of a torus. By interpreting each virtual crossing in this way, we obtain
an embedding of a collection of circles into a thickened surface Sg × R where g is
the number of virtual crossings in the original diagram L, Sg is a compact oriented
surface of genus g and R denotes the real line. Thus to each virtual diagram L
we obtain an embedding s(L) −→ Sg(L) × R where g(L) is the number of virtual
crossings of L and s(L) is a disjoint union of circles. We say that two such surface
embeddings are stably equivalent if one can be obtained from another by isotopy
in the thickened surfaces, homeomorphisms of the surfaces and the addition or
subtraction of empty handles. Then we have the

Theorem [9, 12]. If two virtual link diagrams are equivalent then their corre-
spondent surface embeddings are stably equivalent. Any surface embedding is stably
equivalent to the image of a virtual diagram.

In [9] this result is sketched. A complete proof will appear in [12]. The surface
embedding interpretation of virtuals is useful since it maps their equivalence to a
topological question. However, the stabilization makes classification difficult since
one cannot rely on any single surface embedding. The diagrammatic version of
virtuals embodies the stabilization in the detour moves. We do not know at this
writing if the mapping from virtual knots and links to stabilized suface embedddings
is injective. The diagrammatic approach to virtual knot theory provides a setting
that must be taken seriously in its own right.

It is a fact that two classical knots that are equivalent in the virtual category are
equivalent classically [9]. Thus classical knot theory embeds in virtual knot theory.
We say that a virtual knot is trivial if it is equivalent to the classical unknotted
circle. We say that a virtual knot or link is classical it is equivalent to a classical
knot or link. Certainly a virtual knot can be classical without being trivial.
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Figure 1 - Generalized Reidemeister Moves for Virtuals



        

BI-ORIENTED QUANTUM ALGEBRAS, AND A GENERALIZED ALEXANDER POLYNOMIAL FOR VIRTUAL LINKS5

�������� �
�

��@
@

@
@

������������ @
@

@
@�

�
�

�

� -

Figure 1.1 - Schema for the Detour Move

3. Biquandles and a Generalized Alexander Polynomial GK(s, t)

The biquandle [11, 1, 16] is an algebraic structure associated with a virtual link
diagram that is invariant (up to isomorphism) under the generalized Reidemeister
moves for virtual knots and links. We shall refer to the biquandle structure as
an algebra. This is meant to denote an algebraic structure satisfying the axioms
delineated below. The biquandle is not generically a linear algebra described over
some ring, but examples can take this structure. The operations in the biquandle
algebra are motivated by the formation of labels for the edges of the diagram and
the intended invariance under the moves. We will give the abstract definition of
the biquandle after a discussion of these knot theoretic issues. View Figure 2.
In this Figure we have shown the format for the operations in a biquandle. The
overcrossing arc has two labels, one on each side of the crossing.

Each classical crossing in a virtual link diagram K is regarded as extra structure
on a vertex for a 4-regular graph (four edges incident to each vertex) G(K) obtained
by projecting the diagram to the plane (if you think of each classical crossing as
rising above the plane along one arc). In speaking of graphs we allow a multiplicity
of edges between two nodes of the graph, and we allow edges with single endpoints
(loops). Each virtual crossing is regarded as the intersection of two edges of the
graph G(K) in the planar immersion of that graph that is obtained by projection.
The virtual crossings are not nodes of the associated graph. In this way we obtain
an immersed 4-regular graph G(K) associated with each virtual link diagram K.
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We define an edge of K to be an edge of G(K) lifted to the diagram K. That is,
an edge of K extends along arcs of the diagram K from one classical crossing to
another. In a virtual diagram D with no classical crossings the graph G(D) is
a collection of immersed circles in the plane, whose intersections are the virtual
crossings of the diagram D.

In a biquandle there is an algebra element labeling each edge of the diagram. As
described above, an edge of the diagram corresponds to an edge of the underlying
graph of that diagram. Let the edges oriented toward a crossing in a diagram
be called the input edges for the crossing, and the edges oriented away from the
crossing be called the output edges for the crossing. Let a and b be the input edges
for a positive crossing (illustrated in the left half of Figure 2), with a the label of
the undercrossing input and b the label on the overcrossing input. Then in the
biquandle, we label the undercrossing output by

c = ab

just as in the case of the quandle, but the overcrossing output is labeled

d = ba.

We usually read ab as “the undercrossing line a is acted upon by the overcrossing
line b to produce the output c = ab.” In the same way, we can read ba as “the
overcossing line b is operated on by the undercrossing line a to produce the output
d = ba”. The biquandle labels for a negative crossing (illustrated in the right half
of Figure 2) are similar but with an overline (denoting an operation of order two)
placed on the letters. Thus in the case of the negative crossing, we would write

c = ab and d = ba.

To form the biquandle, BQ(K), we take one generator for each edge of the diagram
and two relations at each crossing (as described above). This system of generators
and relations is then regarded as encoding an algebra that is generated solely by
the biquandle operations as concatenations of these symbols and subject to the
biquandle algebra axioms. These axioms (which we will describe below) are a
transcription in the biquandle language of the requirement that this algebra be
invariant under Reidemeister moves on the diagram.

ab = a b

ba = b a b

a

ab = a b

ba = b a

b

a

6

6

�

6

6
-

Figure 2 - Biquandle Relations at a Crossing
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Another way to write this formalism for the biquandle is as follows

ab = a b

ab = a b

ab = a b

ab = a b .

We call this the operator formalism for the biquandle. The operator formalism has
advantages when one is performing calculations, since it it possible to maintain the
formulas on a line rather than extending them up and down the page as in the
exponential notation. On the other hand the exponential notation has intuitive
familiarity and is good for displaying certain results. The axioms for the biquandle,
are exactly the rules needed for invariance of this structure under the Reidemeister
moves. Note that in analyzing invariance under Reidemeister moves, we visualize
representative parts of link diagrams with biquandle labels on their edges. The
labels throughout each diagrammatic arc will be identified later, providing the
equations that the biquandle has to satisfy by definition. Ultimately, the link
components will provide, through the structure of the arcs in the diagram, a set of
generators for the biquandle, just as cells in CW complexes become the generators
of celluar homology. The primary labeling occurs at a crossing. At a positive

crossing with over input b and under input a, the under output is labeled a b
and the over output is labeled b a . At a negative crossing with over input b and

under input a, the under output is labeled a b and the over output is labeled b a .
At a virtual crossing there is no change in the labeling of the lines that cross one
another.

Remark. A remark is in order about the relationship of the operator notations with

the usual conventions for binary algebraic operations. Let a∗b = ab = a b . We are
asserting that the biquandle comes equipped with four binary operations of which
one is a ∗ b. Here is how these notations are related to the usual parenthesizations:

1. (a ∗ b) ∗ c = (ab)c = abc = a b c

2. a ∗ (b ∗ c) = ab
c

= a b c

From this the reader should see that the exponential and operator notations allow
us to express biquandle equation with a minimum of parentheses.

In Figure 3 we illustrate the effect of these conventions and how it leads to the
following algebraic transcription of the directly oriented second Reidemeister move:

a = a b b a or a = abba ,

b = b a a b or b = b
aab

.

Note that reversing both arrows in Figure 3 has the effect on the equations of
reversing all operations right to left:

a = a b b a ,

b = b a a b .
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The reverse oriented second Reidemeister move gives a different sort of identity,
as shown in Figure 4. For the reverse oriented move, we must assert that given
elements a and b in the biquandle, then there exists an element x such that

x = a b x , a = x b and b = b x a .

By reversing the arrows in Figure 4 we obtain a second statement for invariance
under the type two move, saying the same thing with the operations reversed: Given
elements a and b in the biquandle, then there exists an element x such that

x = a b x , a = x b and b = b x a .

There is no neccessary relation between the x in the first statement and the x in
the second statement.

a = a b b a

a b b a

ab

b = b a a b
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∃x 3 x = a b x , a = x b and b = b x a

b x a

x b x

x bb
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Figure 4 — Reverse Two Move

These assertions about the existence of x can be viewed as asserting the existence
of fixed points for a certain operators. In this case such an operator is F (x) =

a b x . It is characteristic of certain axioms in the biquandle that they demand

the existence of such fixed points. Another example is the axiom corresponding to
the first Reidemeister move (one of them) as illustrated in Figure 5. This axiom
states that given an element a in the biquandle, then there exists an x in the
biquandle such that x = a x and that a = x a . In this case the operator is
G(x) = a x .
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∃x 3 x = a x and a = x a
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Figure 5 — First Move

It is unusual that an algebra would have axioms asserting the existence of fixed
points with respect to operations involving its own elements. We plan to take up
the study of this aspect of biquandles in a separate publication.

The biquandle relations for invariance under the third Reidemeister move are
shown in Figure 6. The version of the third Reidemeister move shown in this figure
yields the algebraic relations:

a b c = a c b b c or abc = acbb
c

,

c b a = c a b b a or cba = cabba ,

b a c a b = b c a c b or (ba)
c
ab = (bc)acb .
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b c a c ba c bc b a

b cc b
a c b b c

cb

a

b a c a bc a b b a

a b cb a

c
a bb

a

Figure 6 — Third Move

The reader will note that if we replace the diagrams of Figure 6 with diagrams with
all negative crossings then we will get a second triple of equations identical to the
above equations but with all right operator symbols replaced by the corresponding
left operator symbols (equivalently – with all exponent literals replaced by their
barred versions). Here are the operator versions of these equations. We refrain
from writing the exponential versions because of the prolixity of barred variables.

a b c = a c b b c ,

c b a = c a b b a ,

b a c a b = b c a c b .

We now have a complete set of axioms, for it is a fact [5] that the third Reide-
meister move with the orientation shown in Figure 6 and either all positive crossings
(as shown in that Figure) or all negative crossings, is sufficient to generate all the
other cases of third Reidemeister move just so long as we have both oriented forms
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of the second Reidemeister move. Consequently, we can now give the full definition
of the biquandle.

Definition. A biquandle B is a set with four binary operations indicated by the

conventions we have explained above: ab , ab , ab , ab. We shall refer to the operations
with barred variables as the left operations and the operations without barred
variables as the right operations. The biquandle is closed under these operations
and the following axioms are satisfied:

1. For any elements a and b in B we have

a = abba and b = b
aab

and

a = abba and b = baab .

2. Given elements a and b in B, then there exists an element x such that

x = abx , a = xb and b = bxa.

Given elements a and b in B, then there exists an element x such that

x = abx , a = xb and b = bxa.

3. For any a , b , c in B the following equations hold and the same equa-
tions hold when all right operations are replaced in these equations by left
operations.

abc = acbb
c

, cba = cabba , (ba)
c
ab = (bc)acb .

4. Given an element a in B, then there exists an x in the biquandle such that
x = ax and a = xa. Given an element a in B, then there exists an x in the
biquandle such that x = ax and a = xa.

These axioms are transcriptions of the Reidemeister moves. The first axiom
transcribes the directly oriented second Reidemeister move. The second axiom
transcribes the reverse oriented Reidemeister move. The third axiom transcribes
the third Reidemeister move as we have described it in Figure 6. The fourth axiom
transcribes the first Reidemeister move. Much more work is needed in exploring
these algebras and their applications to knot theory.

3.1. The Alexander Biquandle. In order to realize a specific example of a
biquandle structure, suppose that

a b = ta + vb

a b = sa + ub

where a,b,c are elements of a module M over a commutative ring R (recall that the
additive group structure of a module is given to be commutative) and t,s,v and u
are in R. We use invariance under the Reidemeister moves to determine relations
among these coefficients.

Taking the equation for the third Reidemeister move discussed above, we have

a b c = t(ta + vb) + vc = t2a + tvb + vc
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a c b b c = t(ta + v(sc + ub)) + v(tb + vc)

= t2a + tv(u + 1)b + v(ts + v)c.

From this we see that we have a solution to the equation for the third Reidemeister
move if u = 0 and v = 1− st. Assuming that t and s are invertible, it is not hard
to see that the following equations not only solve this single Reideimeister move,
but they give a biquandle structure, satisfying all the moves.

a b = ta + (1− st)b , a b = sa

a b = t−1a + (1− s−1t−1)b , a b = s−1a.

Thus we have a simple generalization of the Alexander quandle and we shall refer
to this structure, with the equations given above, as the Alexander Biquandle.

Just as one can define the Alexander Module of a classical knot, we have the
Alexander Biquandle of a virtual knot or link, obtained by taking one generator for
each edge of the knot diagram and taking the module relations in the above linear
form. Let ABQ(K) denote this module structure for an oriented link K. That
is, ABQ(K) is the module generated by the edges of the diagram, modulo the
submodule generated by the relations. This module then has a biquandle structure
specified by the operations defined above for an Alexnder Biquandle. We first
construct the module and then note that it has a biquandle structure. See Figures
7,8 and 9 for an illustration of the Alexander Biquandle labelings at a crossing.
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Figure 7 - Alexander Biquandle Labeling at a Crossing
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Figure 8 - A Virtual Knot Fully Labeled
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Figure 9 - A Virtual Knot with Lower Operations Labeled

For example, consider the virtual knot in Figure 8. This knot gives rise to a
biquandle with generators a,b,c,d and relations

a = d b , c = b d , d = c a , b = a c .

writing these out in ABQ(K), we have

a = td + (1− st)b , c = sb , d = tc + (1− st)a , b = sa.

eliminating c and b and rewriting, we find

a = td + (1− st)sa

d = ts2a + (1− st)a

Note that these relations can be written directly from the diagram as indicated
in Figure 9 if we perform the lower biquandle operations directly on the diagram.
This is the most convenient algorithm for producing the relations.

We can write these as a list of relations

(s− s2t− 1)a + td = 0

(s2t + 1− st)a− d = 0
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determining the Alexander Biquandle as a module over Z[s, s−1, t, t−1]. The rela-
tions can be expressed concisely with the matrix of coefficients of this system of
equations:

M =

[
s− s2t− 1 t

(s2t + 1− st) −1

]
.

The determinant of M is, up to multiples of ±sitj for integers i and j, an invariant of
the virtual knot or link K. (The elements ±sitj are units in the ring Z[s, s−1, t, t−1].
The relations used for the determinant are determined up to multiplication by units
in this ring.) We shall denote this determinant by GK(s, t) and call it the generalized
Alexander polynomial for K. A key fact about GK(s, t) is that GK(s, t) = 0 if K is
equivalent to a classical diagram. This is seen by noting that in a classical diagram
one of the relations will be a consequence of the others.

In this case we have

GK = (1− s) + (s2 − 1)t + (s− s2)t2,

which shows that the knot in question is non-trivial and non-classical.

Here is another example of the use of this polynomial. Let D denote the di-
agram in Figure 10. It is not hard to see that this virtual knot has unit Jones
polynomial, and that the combinatorial fundamental group (defined from the di-
agram by the Wirtinger presentation) is isomorphic to the integers. (A classical
knot with the fundamental group of its complement isomorphic to the integers is
unknotted by well known results in three dimensional topology. Virtual knots do
not have complements, but they do have well-defined combinatorial fundamental
groups. See [9]. The biquandle is a generalization of this conbinatorial fundamental
group for virtual knots and links.) The biquandle does detect the knottedness of
D. The relations are

a d = b, d a = e , c e = d, e c = f , f b = a, b f = c

from which we obtain the relations (eliminating c, e and f)

b = ta + (1− tv)d , d = ts−1b + (1− ts)sd , a = t−1s2d + (1− t−1s−1)b .

The determinant of this system is the generalized Alexander polynomial for D:

t2(s2 − 1) + t(s−1 + 1− s− s2) + (s− s2).

This proves that D is a non-trivial virtual knot.
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Figure 10 – Unit Jones, Integer Fundamental Group

In fact the polynomial that we have computed is the same as the polynomial
invariant of virtuals of Sawollek [14] and defined by an alternative method by Silver
and Williams [15]. Sawollek defines a module structure essentially the same as our
Alexander Biquandle. Silver and Williams first define a group. The Alexander
Biquandle proceeds from taking the abelianization of the Silver-Williams group.

We end this discussion of the Alexander Biquandle with two examples that show
clearly its limitations. View Figure 11. In this Figure we illustrate two diagrams
labeled K and KI. It is not hard to calculate that both GK(s, t) and GKI(s, t)
are equal to zero. The Alexander Biquandle of K is non-trivial: Calculation shows
that it is isomorphic to the module over Z[s, s−1, t, t−1] generated by elements a
and b subject solely to the relation (s−1 − t − 1)(a − b) = 0. Thus K represents
a non-trivial virtual knot. This shows that it is possible for a non-trivial virtual
diagram to be a connected sum of two trivial virtual diagrams, and it shows that
the Alexander Biquandle can sometimes be more powerful than the polynomial
invariant G. However, the diagram KI also has trivial Alexander Biquandle and
it is not detected by the Silver - Williams group. The diagram KI, discovered
by Kishino [8] is in fact seen to be a knotted virtual by showhing that it has a
non-trivial three strand Jones polynomial [13]. We conjecture that the general
biquandle of the Kishino diagram is non-trivial.
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Figure 11 – The Knot K and the Kishino Diagram KI

4. A Quantum Model for GK(s, t)

It is our intent in this paper to analyse the structure of the invariant GK(s, t)
by rewriting it as a quantum invariant and then analysing its state summation.
We shall show how the quantum invariant and state sum fit into the context of
oriented quantum algebras. The quantum model for this invariant is obtained in a
fashion analogous to the construction of a quantum model of the Alexander poly-
nomial in [3] and [2]. The strategy in those papers was to take the basic two
dimensional matrix of the Burau representation, view it as a linear transformation
T : V −→ V on a two dimensional module V over a ring of Laurent polynomials
in one variable with integer coefficients, and them take the induced linear transfor-
mation T̂ : Λ∗V −→ Λ∗V on the exterior algebra of V . This gives a transformation
on a four dimensional module that is a solution to the Yang-Baxter equation. This
solution of the Yang-Baxter equation then becomes the building block for the cor-
responding quantum invariant. In the present instance, we have a generalization of
the Burau representation, and this same procedure can be applied to it.

The generalized Burau matrix is given by the formula
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B =

[
1− st s

t 0

]

with the inverse matrix

B−1 =

[
0 t−1

s−1 1− s−1t−1

]
.

The formulas for B and B−1 are easily seen by reference to Figure 7.

We may regard B as acting on a module V with basis {e1, e2} over Z[s, s−1, t, t−1]
via the equations

Be1 = (1− st)e1 + te2,

Be2 = se1.

Letting B̂ denote the extension of B to the exterior algebra on V , we have

B̂1 = 1,

B̂e1 = (1− st)e1 + te2,

B̂e2 = se1,

B̂e1 ∧ e2 = Det(B)e1 ∧ e2 = −ste1 ∧ e2.

Let R denote the matrix of B̂ with respect to the basis {1, e1, e2, e1 ∧ e2} of the
exterior algebra Λ∗V. The matrix R is the matrix of the transformation on the
exterior algebra that is induced from the generalized Burau matrix.

R =




1 0 0 0
0 1− st s 0
0 t 0 0
0 0 0 −st




R is a 4 × 4 matrix solution to the Yang-Baxter equation. Its inverse R̄ is shown
below.

R̄ =




1 0 0 0
0 0 t−1 0
0 s−1 1− s−1t−1 0
0 0 0 −s−1t−1




In our case, we also need the induced transformation for the virtual crossing. At
the level of the generalized Burau representation, the matrix for the virtual crossing
is the 2× 2 matrix for a transposition:

η =

[
0 1
1 0

]
.

The corresponding matrix induced on the exterior algebra is

η̂ =




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 −1


 .
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This matrix η̂ is a solution to the Yang-Baxter equation whose square is equal to
the identity. It is this operator that will correspond to the virtual crossings in our
quantum invariant for virtuals.

Now it is convenient to make some changes of variables for this model. We
replace s by σ2 and t by τ−2. We then replace R by σ−1τR and R̄ by στ−1R̄. The
result is the new matrices shown below, where:

z = σ−1τ − στ−1

R =




σ−1τ 0 0 0
0 z στ 0
0 σ−1τ−1 0 0
0 0 0 −στ−1


 .

R̄ =




στ−1 0 0 0
0 0 στ 0
0 σ−1τ−1 −z 0
0 0 0 −σ−1τ


 .

These matrices plus a choice of cup and cap matrices will define the matrix
model for this quantum invariant. See [7] for a description of the matrix models.
See [5] for a related discussion of a state summation for the Alexander polynomial.
Here the cup and cap matrices are given by the formula:

Mab = (
√

i)aδab

where i2 = −1 and the matrix M is associated with the clockwise-turning cap
and with the clockwise-turning cup, while the matrix M−1 is associated with the
counterclockwise-turning cap and with the counterclockwise-turning cup. Here the
matrix indices are −1 and +1 so that an isolated clockwise loop evaluates as i+1 +
i−1 = 0. (Remember that this invariant vanishes on classical links.) It is easy
to verify that this model is invariant under all but the first Reidemeister moves
(classical and flat). Let W (K) denote this evaluation. It is then not hard to see
that the following normalization Z(K) creates a function on virtual knots that is
invariant under all of the (generalized) Reidemeister moves:

Z(K) = (σ−1τi)rot(K)−v(K) iv(K) W (K)

where rot(K) denotes the sum of the Whitney degrees of the underlying plane
curves of K (where rot(K) = 1 when K is a simple clockwise circle in the plane),
and v(K) denotes the number of virtual crossings in the diagram K.

We can formulate this invariant as a state summation by using the formulas in
Figure 12 to expand a given diagram into a sum of evaluations of labeled signed
loops in the plane. Each loop has only virtual crossings and the rule for expanding
the virtual tells us that only the ++ signing receives a minus one as vertex weight.
Note the distinction between the vertex weights (the matrix entries) and the signs
(the matrix indices). In all other cases the virtual crossing contributes one as a
vertex weight. Once there is such a labeled collection of signed loops, it can be tested
for compatibility. A collection of loops is compatible if there is no contradiction in
the signs (each curve is uniquely labeled plus or minus). An incompatible labeling
corresponds to zero in the state sum. Then each compatible labeled signed collection
is evaluated by taking the product of the vertex weights multiplied by the product



        

22 LOUIS H. KAUFFMAN AND DAVID RADFORD

of the evaluations of the signed loops. The evaluation of a given signed loop λ is
equal to iε(λ)rot(λ) where ε(λ) is the sign of the loop and rot(λ) is the Whitney
degree of the loop. Note that because of the presence of the virtual crossings, the
Whitney degree of a loop can be any integer. The state summation evaluates the
unnormalized invariant W (K).

Both W (K) and Z(K) satisfy a skein relation that is just like that of the Conway
polynomial:

W (K+)−W (K−) = zW (K0)

Z(K+)− Z(K−) = zZ(K0)

where K+, K− and K0 denote three diagrams that differ at one site, with a positive
crossing, a negative crossing and a smoothing respectively. This skein relation,
illustrated in Figure 12, is useful in relative computations, but there are infinitely
many virtual links whose evaluation cannot be decided by the skein relation alone.
The simplest example is the “virtual Hopf link” H of Figure 13. In H there is one
crossing and one virtual crossing. Switching this crossing does not simplify the link.
In Figure 13 we illustrate the state sum calculation of W (H). The Figure shows
the four contributing states. It is clear from the Figure that

W (H) = τσ−1 + τ−1σ − στ − σ−1τ−1 = (τ − τ−1)(σ−1 − σ)

This calculation is obtained by evaluating the signed loops according to the de-
scription given above. In particular, the case of the single loop with plus sign has
a rotation number of zero and a multiplicative vertex weight of minus one con-
tributed from the virtual crossing. In all the other cases the vertex weight of the
virtual crossing is plus one. The first two states have rotation number zero, while
the second two contribute i−2 = −1 and i2 = −1 respectively. This explains the
signs in the formula for W (H). To obtain Z(H), we note that rot(H) = 0 and that
H has a single virtual crossing. So

Z(H) = (σ−1τi)rot(H)−v(H) iv(H) W (H) = (σ−1τi)0−1 i1 W (H)

= στ−1 W (H) = στ−1(τ − τ−1)(σ−1 − σ) = (1− τ−2)(1− σ2) = (1− t)(1− s).

It is easy to see that this corresponds to the calculation of GH(s, t) by the deter-
minant function. The state summation Z(H) provides a normalized value for the
invariant that can be used for skein calculations.

The basic result behind the correspondence of GK(s, t) and Z(K) is the

Theorem. For a (virtual) link K, the invariants Z(K)(σ =
√

s, τ = 1/
√

t) and
GK(s, t) are equal up to a multiple of ±sntm for integers n and m (this being the
well-definedness criterion for G).

We omit the proof of this result. The argument is the same as that for the
relation between the classical Alexander polynomial and its quantum counterpart.
See [3] and [5].
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Figure 12 - Expansion Formulas for the State Summation

Remark. It should be remarked that there is a natural multivariable version of
the polynomial invariant GK(s, t) to a polynomial invariant GK(s, t1, ..., tµ) where
µ denotes the number of components in the link K. Each link component receives a
separate variable, and the biquandle relations at a crossing are determined by the
label for the undercrossing segment at that crossing. The procedure of extending
through the exterior algebra still goes through to produce a quantum model for this
many-variable polynomial. We will study this generalized invariant in a separate
paper.
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5. Bi-oriented Quantum Algebras

It is the purpose of this section to place our work with the generalized Alexander
polynonmial in a context of bi-oriented quantum algebras. To do this (and to
define the concept of a bi-oriented quantum algebra) we need to first recall the
notion of an oriented quantum algebra. An oriented quantum algebra (A, ρ, D, U)
is an abstract model for an oriented quantum invariant of classical links [6], [7].
This model is based on a solution to the Yang-Baxter equation and some extra
structure that serves to make an invariant possible to construct. The definition
of an oriented quantum algebra is as follows: We are given an algebra A over a
base ring k, an invertible solution ρ in A ⊗ A of the Yang-Baxter equation (in
the algebra formulation of this equation – see the Remark below), and commuting
automorphisms U, D : A −→ A of the algebra, such that

(U ⊗ U)ρ = ρ,

(D ⊗D)ρ = ρ,

[(1A ⊗ U)ρ)][(D ⊗ 1Aop)ρ
−1] = 1A⊗Aop ,

and

[(D ⊗ 1Aop)ρ
−1][(1A ⊗ U)ρ)] = 1A⊗Aop .

The last two equations say that [(1A ⊗ U)ρ)] and [(D ⊗ 1Aop)ρ
−1] are inverses in

the algebra A⊗Aop where Aop denotes the opposite algebra.

When U = D = T , then A is said to be balanced. In this case

(T ⊗ T )ρ = ρ,

[(1A ⊗ T )ρ)][(T ⊗ 1Aop)ρ
−1] = 1A⊗Aop

and

[(T ⊗ 1Aop)ρ
−1][(1A ⊗ T )ρ)] = 1A⊗Aop .

In the case where D is the identity mapping, we call the oriented quantum
algebra standard. As we saw in [7], the invariants defined by Reshetikhin and Tu-
raev (associated with a quasi-triangular Hopf algebra) arise from standard oriented
quantum algebras. It is an interesting structural feature of algebras that we have
elsewhere [4] called quantum algebras (generalizations of quasi-triangular Hopf al-
gebras) that they give rise to standard oriented quantum algebras. Note that the
term quantum algebra as used here is more specific than the QA (quantum algebra)
designation that is used in archived papers related to Hopf algebras and quantum
groups.

Appropriate matrix representations of oriented quantum algebras or the exis-
tence of certain traces on these algebras allow the construction of oriented invariants
of knots and links. These invariants include all the known quantum link invariants
at the time of this writing.
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Remark. Note that we have the Yang-Baxter elements ρ and ρ−1 in A ⊗ A. We
assume that ρ and ρ−1 satisfy the algebraic Yang-Baxter equation. This equation
(for ρ) states

ρ12ρ13ρ23 = ρ23ρ13ρ12

where ρij denotes the placement of the tensor factors of ρ in the i-th and j-th tensor
factors of the triple tensor product A⊗A⊗A with the unit element of A placed in
the remaining factor.

We write ρ = Σe ⊗ e′ and ρ−1 = ΣE ⊗ E′ to indicate that these elements are
sums of tensor products of elements of A. The expression e ⊗ e′ is thus a generic
element of the tensor product. However, we often abbreviate and write ρ = e ⊗ e′

and ρ−1 = E ⊗ E′ where the summation is implicit. We refer to e and e′ as the
signifiers of ρ, and E and E′ as the signifiers of ρ−1. For example, ρ13 = e⊗ 1⊗ e′

in A⊗A⊗A.

Braiding operators, as they appear in knot theory, differ from the algebraic Yang-
Baxter elements by a permutation of tensor factors. This point is crucial to the
relationship of oriented quantum algebras and invariants of knots and links.

We extend the concept of oriented quantum algebra by adding a second solution to
the Yang-Baxter equation γ that will take the role of the virtual crossing.

Definition. A bi-oriented quantum algebra is a quintuple (A, ρ, γ, D, U) such that
(A, ρ, D, U) and (A, γ, D, U) are oriented quantum algebras and γ satisfies the fol-
lowing properties:

1. γ12γ21 = 1A⊗A. (This is the equivalent to the statement that the braiding
operator corresponding to γ is its own inverse.)

2. The following mixed identities involving ρ and γ are satisfied. These corre-
spond to the braiding versions of the virtual detour move of type three that
involves two virtual crossings and one real crossing.

γ12ρ13γ23 = γ23ρ13γ12

γ12γ13ρ23 = ρ23γ13γ12

ρ12γ13γ23 = γ23γ13ρ12.

By extending the methods of [7], it is not hard to see that a bi-oriented quantum
algebra will always give rise to invariants of virtual links up to the type one moves
(framing and virtual framing).

Any oriented quantum algebra (A, ρ, D, U) gives rise to a bi-oriented quantum alge-
bra by taking γ to be the identity element in A⊗A. This corresponds to associating
a simple permutation (transposition) to the virtual crossing. The resulting invari-
ants of virtuals are worth investigating. In [9] the corresponding generalization of
the Jones polynomial is studied. The bi-oriented quantum algebras form a context
for these invariants.
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In the case of the generalized Alexander polynomial studied in this paper, the
matrix model and state model for Z(K) translate directly into a specific example
of a bi-oriented balanced quantum algebra (A, ρ, γ, T ) (It is a balanced bi-oriented
quantum algebra.) with the underlying algebra A the algebra of elementary matri-
ces as in [7]. In making this translation to the algebra, one must take the matrices
of the matrix model and compose with a permutation. In our case the matrix γ
is a diagonal 4 × 4 matrix with three ones and one minus one in that order on
the diagonal. This is the matrix obtained from the matrix η that we used for the
virtual crossing.

γ =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1


 .

The matrix ρ is obtained from the braiding matrix R by permuting the two middle
columns (because ρabcd = Rba

cd).

ρ =




σ−1τ 0 0 0
0 στ z 0
0 0 σ−1τ−1 0
0 0 0 −στ−1


 .

On elementary matrices Ea
b the transformation T is given by the formula T (Ea

b ) =
ib−a where i2 = −1. (See Section 4.2 of [7].) This completes the description of
the bi-oriented quantum algebra that corresponds to the generalized Alexander
polynomial of this paper.

The main algebraic point about the bi-oriented quantum algebra for the gen-
eralized Alexander polynomial is that the operator γ for the virtual crossing is not
the identity operator, and that this non-triviality is crucial to the structure of the
invariant. We will investigate bi-oriented quantum algebras and other examples of
virtual invariants derived from them in a subsequent paper.
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