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Abstract

These are some notes to accompany the beginning of a second-
semester algebraic topology course. The goal is to introduce homotopy
groups and their uses, and at the same time to prepare a bit for the
study of characteristic classes which will come next. These notes are
not intended to be a comprehensive reference (most of this material is
covered in much greater depth and generality in a number of standard
texts), but rather to give an elementary introduction to selected basic
ideas.
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0 Prerequisites

The prerequisites for this course are the fundamental group, covering spaces,
singular homology, cohomology, cup product, CW complexes, manifolds, and
Poincaré duality.

Regarding covering spaces, recall the Lifting Criterion: if X̃
p→ X is a

covering space, if f : (Y, y0) → (X, x0), and if p(x̃0) = x0, then f lifts to a

map f̃ : (Y, y0)→ (X̃, x̃0) with p ◦ f̃ = f if and only if

f∗π1(Y, y0) ⊂ p∗π1(X̃, x̃0).

Regarding homology, there are many ways to define it. All definitions of
homology that satisfy the Eilenberg-Steenrod axioms give the same answer
for any reasonable space, e.g. any space homotopy equivalent to a CW com-
plex. We will often use cubical singular homology, because this is convenient
for some technical arguments. To define the homology of a space X, we
consider “singular cubes”

σ : Ik → X

where I = [0, 1]. The cube Ik has 2k codimension 1 faces

F 0
i = {(t1, . . . , tk) | ti = 0},
F 1
i = {(t1, . . . , tk) | ti = 1},

for 1 ≤ i ≤ k, each of which is homeomorphic to Ik−1 in an obvious manner.
We now define a boundary operator on formal linear combinations of singular
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cubes by

∂σ :=
k∑
i=1

(−1)i
(
σ|F 0

i
− σ|F 1

i

)
. (0.1)

This satisfies ∂2 = 0. We could try to define Ck(X) to be the free Z-module
generated by singular k-cubes and Hk(X) = Ker(∂)/ Im(∂). However this is
not quite right because then the homology of a point would be Z in every
nonnegative degree. To fix the definition, we mod out by the subcomplex of
degenerate cubes that are independent of one of the coordinates on Ik, and
then it satisfies the Eilenberg-Steenrod axioms.

1 Higher homotopy groups

Let X be a topological space with a distinguished point x0. The fundamental
group π1(X, x0) has a generalization to homotopy groups πk(X, x0), defined
for each positive integer k.

The definition of πk is very simple. An element of πk(X, x0) is a homotopy
class of maps

f : (Ik, ∂Ik) −→ (X, x0).

Here I = [0, 1]. Equivalently, an element of πk(X, x0) is a homotopy class of
maps (Sk, p)→ (X, x0) for some distinguished point p ∈ Sk.

The group operation is to stack two cubes together and then shrink:

fg(t1, . . . , tk) :=

{
f(2t1, t2, . . . , tk), t1 ≤ 1/2,

g(2t1 − 1, t2, . . . , tk), t1 ≥ 1/2.

[Draw picture.] It is an exercise to check that πk(X, x0) is a group, with the
identity element given by the constant map sending Ik to x0.

A map φ : (X, x0)→ (Y, y0) defines an obvious map

φ∗ : πk(X, x0) −→ πk(Y, y0),

f 7−→ f ◦ φ.

This makes πk a functor from pointed topological spaces to groups. Moreover,
φ∗ is clearly invariant under based homotopy of φ, so if φ is a based homotopy
equivalence then φ∗ is an isomorphism. (We will see in §3 how to remove the
“based” condition.)
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We also define π0(X) to be the set of path components of X, although
this has no natural group structure.

Here are two nice properties of the higher homotopy groups.

Proposition 1.1. (a) πk(X × Y, (x0, y0)) = πk(X, x0)× πk(Y, y0).

(b) If k > 1, then πk(X, x0) is abelian.

Proof. (a) Exercise. (b) [Draw picture]

Example 1.2. If k > 1, then πk(S
1, p) = 0.

Proof. Recall that there is a covering space R→ S1. Any map f : Sk → S1

lifts to a map f̃ : Sk → R, by the Lifting Criterion, since Sk is simply con-
nected. Since R is contractible, f̃ is homotopic to a constant map. Projecting
this homotopy to S1 defines a homotopy of f to a constant map.

Example 1.3. More generally, the same argument shows that if the universal
cover of X is contractible, then πk(X, x0) = 0 for all k > 1. For example,
this holds if X is a Riemann surface of positive genus. This argument is a
special case of the long exact sequence in homotopy groups of a fibration,
which we will learn about later.

Example 1.4. We will prove shortly that1

πk(S
n, x0) '

{
0, 1 ≤ k < n,
Z, k = n.

(1.1)

The higher homotopy groups πk(S
n) for k > n are very complicated,

and despite extensive study are not completely understood, even for n = 2.
This is the bad news about higher homotopy groups: despite their simple
definition, they are generally hard to compute2. However, for any given

1This can also be seen using some differential topology. Choose a point x1 ∈ Sn with
x0 6= x1. Let f : (Sk, p) → (Sn, x0). By a homotopy we can arrange that f is smooth.
Moreover if k < n then we can arrange that x1 /∈ f(Sk). Then f maps to Sn \ {x1} ' Rn,
which is contractible, so f is homotopic to a constant map. If k = n then we can arrange
that f is transverse to x1 so that x1 has finitely many inverse images, to each of which is
associated a sign. It can then be shown that the signed count #f−1(x1) ∈ Z determines
the homotopy class of f in πk(Sk, x0). See e.g. Guillemin and Pollack.

2For example, recall that the Seifert-Van Kampen theorem gives an algorithm for com-
puting, or at least finding a presentation of, π1(X,x0) whenever X can be cut into simple
pieces. The idea is that a loop in X can be split into paths which live in the various pieces.
This fails for higher homotopy groups because if one attemps to cut a sphere into pieces,
then these pieces might be much more complicated objects.
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space we can usually compute at least the first few homotopy groups. And
homotopy groups have important applications, for example to obstruction
theory as we will see below.

2 The Hurewicz isomorphism theorem

To compute some higher homotopy groups, we begin by studying the relation
between higher homotopy groups and homology. The key ingredient is the
Hurewicz homomorphism

Φ : πk(X, x0) −→ Hk(X),

defined as follows. Recall that the standard orientation of Sk determines a
canonical isomorphism

Hk(S
k) ' Z.

The generator is the fundamental class [Sk] ∈ Hk(S
k). If f : (Sk, p) →

(X, x0) represents [f ] ∈ πk(X, x0), we define

Φ[f ] := f∗[Sk] ∈ Hk(X).

Alternatively, if we use cubical singular homology, then a map f : (Ik, ∂Ik)→
(X, x0), regarded as a singular cube, defines a cycle in the homology class
Φ[f ]. By the homotopy invariance of homology, Φ[f ] is well-defined, i.e.
depends only on the homotopy class of f . It is an exercise to check that Φ
is a homomorphism.

Also, it follows immediately from the definition that the Hurewicz map Φ
is natural, in the following sense: If ψ : (X, x0)→ (Y, y0), then the diagram

πk(X, x0)
Φ−−−→ Hk(X)yψ∗ yψ∗

πk(Y, y0)
Φ−−−→ Hk(Y )

(2.1)

commutes. That is, Φ is a natural transformation of functors from πk to Hk.
Recall now that if X is path connected, then Φ induces an isomorphism

π1(X, x0)ab ' H1(X).
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This fact has the following generalization, asserting that if X is also simply
connected, then the first nontrivial higher homotopy group is isomorphic to
the first nontrivial reduced homology group, and implying equation (1.1) for
the first nontrivial homotopy groups of spheres.

Theorem 2.1 (Hurewicz isomorphism theorem). Let k ≥ 2. Suppose that
X is path connected and that πi(X, x0) = 0 for all i < k. Then the Hurewicz
map induces an isomorphism

πk(X, x0) ' Hk(X).

To prove this theorem, we will need the following useful facts about ho-
motopy groups. Below, FjI

k denotes the set of j-dimensional faces of the
k-cube.

Lemma 2.2. Let (X, x0) be a pointed space.

(a) For any k ≥ 1, if f : (Sk, p)→ (X, x0) is homotopic, without fixing the
base points, to a constant map, then [f ] = 0 ∈ πk(X, x0).

(b) For any k ≥ 2, let f : ∂Ik+1 → X be a map sending every (k − 1)-
dimensional face to x0. Then

[f ] =
∑

σ∈Fk(Ik+1)

[f |σ] ∈ πk(X, x0).

Proof. We will just sketch the argument and leave the details as an exercise.
(a) Given a homotopy {ft} with f0 = f and f1 constant, one can use the

trajectory of p, namely the path γ : I → X sending t 7→ ft(p), to modify this
to a homotopy sending p to x0 at all times. The endpoint of the homotopy
will then be the composition of γ with a map (Sk, p) → (I, 0). Since I is
contractible, we can further homotope this rel basepoints to a constant map.
(Warning: More generally, if f, g : (Sk, p) → (X, x0) are homotopic without
fixing the base points, it does not follow that [f ] = [g] ∈ πk(X, x0). See §3.)

(b) We use a homotopy to shrink the restrictions of f to the k-dimensional
faces of Ik+1, so that most of ∂Ik+1 is mapped to x0. Identifying ∂Ik+1 ' Sk,
and using the fact that k ≥ 3, we can then move around these k-cubes until
they are lined up as in the definition of composition in πk.
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Proof of the Hurewicz isomorphism theorem.3 Using singular homology with
cubes, we define a map

Ψ : Ck(X) −→ πk(X, x0)

as follows. The idea is that a generator of Ck(X) is a cube whose boundary
may map anywhere in X, and we have to modify it, via a chain homotopy,
to obtain a cube whose boundary maps to x0. To do so, we define a map

K : Ci(X) −→ Ci+1(X) (2.2)

for 0 ≤ i ≤ k as follows.
Since X is path connected, for each 0-cube p ∈ X we can choose a path

K(p) from x0 to p. For each 1-cube σ : I → X, there is a map ∂I2 → X
sending the four faces to x0, σ, K(σ(0)), and K(σ(1)). Since X is simply
connected, this can be extended to a map K(σ) : I2 → X such that

∂K(σ) = σ −K(∂σ). (2.3)

Continuing by induction on i, if 1 ≤ i < k, then for each i-cube σ : I i → X,
we can choose4 an (i+ 1)-cube K(σ) : I i+1 → X which sends the faces to x0,
σ, and the faces of K(∂σ), and therefore satisfies equation (2.3). Finally, if
σ : Ik → X is a k-cube, then there is a map ∂Ik+1 → X sending the faces to
x0, σ, and the faces of K(∂σ). Let F denote the face sent to x0. Identifying
(∂Ik+1/F, F ) ' (Ik, ∂Ik), this gives an element Ψ(σ) ∈ πk(X, x0). Moreover,
it is easy to see that the sum of the faces other than F is homologous to
Ψ(σ) regarded as a cube, i.e. there is a cube K(σ) with

∂K(σ) = σ −K∂σ − Φ(Ψ(σ)). (2.4)

While Ψ may depend on the above choices, we claim that Ψ induces a map
on homology which is inverse to Φ. To start, we claim that if σ : Ik+1 → X
is a (k + 1)-cube, then

Ψ(∂σ) = 0. (2.5)

3Later in the course we will see a shorter and slicker proof using spectral sequences,
but which I think ultimately has the same underlying geometric content.

4It is not really necessary to make infinitely many choices in this proof, but the ar-
gument is less awkward this way. Incidentally, when σ is degenerate, we can and should
choose K(σ) to be degenerate as well, so that we have a well-defined map (2.2) on the
cubical singular chain complex.

7



To see this, first note that by Lemma 2.2(b), we have Ψ(∂σ) = [f ], where f :
∂Ik+1 → X sends each k-dimensional face of Ik+1 to Ψ of the corresponding
face of σ. By cancelling stuff along adjacent faces, f is homotopic, without
fixing base points, to σ|∂Ik+1 . This is homotopic to a constant map since it
extends over Ik+1. So by Lemma 2.2(a) we conclude that [f ] = 0. It follows
from (2.5) that Ψ induces a map Ψ∗ : Hk(X)→ πk(X, x0).

It follows immediately from (2.4) that Φ ◦Ψ = idHk(X).
Also, we can make the choices in the definition of K so that:

(*) If i < k and if σ : I i → X is a constant map to x0, then K(σ) is also a
constant map to x0.

It is then easy to see that Ψ∗ ◦ Φ = idπk(X,x0).

3 Dependence of πk on the base point

We will now show that if X is path connected, then the homotopy groups
of X for different choices of base point are isomorphic, although not always
equal. This is worth understanding properly, since analogous structures arise
later in the course and also are common elsewhere in mathematics.

If γ : [0, 1]→ X is a path from x0 to x1, we define a map

Φγ : πk(X, x1) −→ πk(X, x0)

as follows. Let us temporarily reparametrize the k-cube as Ik = [−1, 1]k. If
f : [−1, 1]k → X and t = (t1, . . . , tk) ∈ Ik, let m = max{|ti|} and define

Φγ(f)(t) :=

{
f(2t), m ≤ 1/2,

γ(2(1−m)), m ≥ 1/2.

[Draw picture.] Clearly this gives a well-defined function on homotopy groups.
It is an exercise to show that Φγ is a group homomorphism.

The following additional facts are easy to see:

(i) If γ is homotopic to γ′ (rel endpoints), then

Φγ = Φγ′ : πk(X, x1) −→ πk(X, x0).

(ii) Suppose that γ1 is a path from x0 to x1 and γ2 is a path from x1 to x2,
and let γ2γ1 denote the composite path. Then

Φγ2γ1 = Φγ2Φγ1 : πk(X, x2) −→ πk(X, x0).
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(iii) If γ is the constant path at x0, then

Φγ = idπk(X,x0) .

The above three properties5 imply:

Proposition 3.1. If X is path connected, then

πk(X, x0) ' πk(X, x1) (3.1)

for any two points x0, x1 ∈ X. Moreover, if X is simply connected, then this
isomorphism is canonical, and so πk(X) is a well-defined group without the
choice of a base point.

If X is not simply connected, then the isomorphism (3.1) might not be
canonical. In particular, for a noncontractible loop γ based at x0, the iso-
morphism Φγ of πk(X, x0) might not be the identity. In general, by (i)–(iii)
above, these isomorphisms define an action of π1(X, x0) on πk(X, x0). When
k = 1, this action is just conjugation in π1(X, x0), which of course is nontriv-
ial whenever π1(X, x0) is not abelian. If the action of π1(X, x0) on πk(X, x0)
is nontrivial, then πk(X) is not a well-defined group without the choice of
a base point. All one can say in this case is that πk(X) is a well-defined
isomorphism class of groups. See also Exercise 3.5 below.

We now construct, for arbitrary k > 1, examples of spaces in which the
action of π1 on πk is nontrivial. Let X be any space and let f : X → X be
a homeomorphism. The mapping torus of f is the quotient space

Yf :=
X × [0, 1]

(x, 1) ∼ (f(x), 0)
.

For example, if X = [−1, 1] and f is multiplication by −1, then Yf is the
Möbius band. If f is the identity, then Yf = X × S1.

There is a natural inclusion ı : X → Yf sending x 7→ (x, 0). Pick a base
point x0 ∈ X, and let y0 = ı(x0).

Lemma 3.2. For k ≥ 2, the inclusion induces an isomorphism

ı∗ : πk(X, x0)
'−→ πk(Yf , y0).

5A fancy way of describing these three properties is that πk(X, ·) is a functor from
the fundamental groupoid of X to groups. Alternatively, πk(X·) is a “twisted coefficient
system” on X, see §12.
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Proof. The mapping torus can equivalently be defined as

Yf =
X × R

(x, t+ 1) ∼ (f(x), t)
.

Hence X×R is a covering space of Yf . By the Lifting Criterion, since k ≥ 2,
a map (Sk, p) → (Yf , y0) lifts to a map (Sk, p) → (X × R, (x0, 0)). Since R
is contractible, we can find a homotopy from this map to a map (Sk, p) →
(X×{0}, (x0, 0). Projecting this homotopy back down to Yf shows that ı∗ is
surjective. Applying the same argument to homotopies Sk × I → Yf shows
that ı∗ is injective. (Compare Example 1.2, and the long exact sequence of
a fibration in §6.)

Now suppose that x0 is a fixed point of f . This defines a loop γ in Yf based
at x0, sending t 7→ (x0, t). It is an exercise to show that the corresponding
isomorphism of πk(Yf , y0) is given by (the inverse of) f∗, i.e.:

Proposition 3.3. The following diagram commutes:

πk(X, x0)
f−1
∗−−−→ πk(X, x0)

ı∗

y ı∗

y
πk(Y, y0)

Φγ−−−→ πk(Y, y0).

Example 3.4. To get an explicit example where Φγ is nontrivial, let X = Sk,
and let f : Sk → Sk be a degree −1 homomorphism with a fixed point x0. By
the naturality of the Hurewicz isomorphism (2.1), f∗ = −1 on πk(S

k) = Z.

Exercise 3.5. If X is path connected, then there is a canonical bijection

[Sk, X] = πk(X, x0)/π1(X, x0).

Here the left hand side denotes the space of free (no basepoints) homotopy
classes of maps from Sk to X, and the right hand side denotes the quotient
of πk(X, x0) by the action of π1(X, x0).

Exercise 3.6. Show that if φ : X → Y is a homotopy equivalence then
φ∗ : πk(X, x0) → πk(Y, φ(x0)) is an isomorphism. Hint: First show that if
{φt}t∈[0,1] is a homotopy of maps from X to Y , and if γ : [0, 1] → Y is the
path defined by γ(t) = φt(x0), then

(φ0)∗ = Φγ ◦ (φ1)∗ : πk(X, x0)→ πk(Y, φ0(x0)).
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4 Fiber bundles

A fiber bundle is a kind of “family” of topological spaces. These are impor-
tant objects of study in topology and in this course, and also will help us
compute homotopy groups.

Definition 4.1. A fiber bundle is a map of topological spaces π : E → B
such that there exists a topological space F with the following property:

(Local triviality) For all x ∈ B, there is a neighborhood U of x in B, and a
homeomorphism π−1(U) ' U × F , such that the diagram

π−1(U)
'−−−→ U × F

π

y y
U

=−−−→ U

commutes, where the map U × F → U is projection on to the first
factor.

In particular, for each x ∈ B, we have π−1(x) ' F . Thus the fiber bundle
can be thought of as a family of topological spaces, each homeomorphic to
F , and parametrized by B. One calls F the fiber , E the total space, and B
the base space. A fiber bundle with fiber F and base B is an “F -bundle over
B”. Also, π−1(x) is the fiber over x, denoted by Ex. We denote the fiber
bundle by the diagram

F −−−→ Ey
B,

or sometimes just by E.

Definition 4.2. If π1 : E1 → B and π2 : E2 → B are fiber bundles over the
same base space, then a morphism6 of fiber bundles from π1 to π2 is a map
f : E1 → E2 such that π2 ◦ f = π1.

Example 4.3. For any B and F , we have the trivial bundle E = B × F ,
with π(b, f) = b.

6Different definitions are possible. A less restrictive definition allows the base spaces
to be different. A more restrictive definition requires the map to be a homeomorphism on
each fiber.
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The local triviality condition says that any fiber is locally isomorphic
to a trivial bundle. Also, we will see in Corollary 5.8 below that any fiber
bundle over a contractible CW complex is trivial. However, when B has some
nontrivial topology, fiber bundles over B can have some global “twisting”.

Example 4.4. A covering space is a fiber bundle in which the fiber F has
the discrete topology. In this case an isomorphism of fiber bundles is the
same as an isomorphism of covering spaces.

Example 4.5. Let f : X → X be a homeomorphism. Then the mapping
torus Yf is the total space of a fiber bundle

X −−−→ Yfyπ
S1

where π(x, t) = t mod 1. Exercise: every fiber bundle over S1 arises in this
way.

The previous example has the following generalization, called the “clutch-
ing construction”. Let Homeo(F ) denote the space of homeomorphisms7 of
F , let k > 1, and let φ : Sk−1 → Homeo(F ). Identify

Sk = Dk ∪Sk−1 Dk,

and define a fiber bundle over Sk by

E = (Dk × F ) ∪Sk−1×F (Dk × F ),

where the two copies of Dk × F are glued together along Sk−1 × F by the
map

Sk−1 × F −→ Sk−1 × F,
(x, f) 7−→ (x, φ(x)(f)).

Note that the fiber bundle depends only on the homotopy class of φ.
Conversely, it follows from Corollary 5.8, applied to B = Dk, that every

fiber bundle over Sk arises this way.

7We topologize the space Maps(X,Y ) of continuous maps from X to Y using the
compact-open topology. For details on this see e.g. Hatcher. A key property of this
topology is that if Y is locally compact, then a map X → Maps(Y,Z) is continuous iff the
corresponding map X × Y → Z is continuous.
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Example 4.6. S1-bundles over S2 are classified by nonnegative integers8.
To see this, first observe that Homeo(S1) deformation retracts9onto O(2).
Now given an S1-bundle over S2, one can arrange that φ maps to SO(2), by
changing the identification of one of the halves π−1(D2) with D2 × S1, via
idD2 cross an orientation-reversing homeomorphism of S1. The nonnegative
integer associated to the bundle is then | deg(φ)|; we will temporarily call
this the “rotation number”10. Note that switching the identification of both
halves will change the sign of deg(φ).

Exercise 4.7. More generally, show that the clutching construction defines
a bijection

{F -bundles over Sk}
isomorphism

=
πk−1(Homeo(F ), idF )

Homeo(F )

where Homeo(F ) acts on πk−1(Homeo(F ), idF ) by conjugation in Homeo(F ).

Example 4.8. The Hopf fibration

S1 −−−→ S3y
S2

is given by the map

S3 → C2 \ {0} → CP 1 ' S2.

Exercise 4.9. The Hopf fibration has “rotation number” 1. The unit tangent
bundle of S2 has “rotation number” 2.

Definition 4.10. A section of a fiber bundle π : E → B is a map s : B → E
such that π ◦ s = idB.

Intuitively, a section is a continuous choice of a point in each fiber.

8It is more common to consider oriented S1-bundles over S2, which are classified by
integers. We will discuss these later.

9This is a good exercise. More generally, one can ask whether Homeo(Sk) deformation
retracts to O(k+ 1). This is known to be true for k = 2 and k = 3, the latter result being
a consequence of the “Smale conjecture” proved by Hatcher (asserting that the inclusion
SO(4)→ Diff(S3) is a homotopy equivalence) and a result of Cerf. It is false for all k ≥ 4.

10This is really the absolute value of the Euler class for a choice of orientation of the
bundle; we will discuss this later.
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Example 4.11. A section of a trivial bundle E = B × F is just a map
s : B → F .

Nontrivial bundles may or may not posess sections. We will study this
question systematically a little later. For now you can try to convince yourself
that an S1-bundle over S2 with nonzero rotation number does not have a
section.

5 Homotopy properties of fiber bundles

We will now show, roughly, that the fiber bundles over a CW complex B
depend only on the homotopy type of B. We will use the following termi-
nology: if E is a fiber bundle over B, and if U ⊂ B, then a “trivialization
of E over U” is a homeomorphism φ : π−1(U) ' U × F commuting with the
projections.

Lemma 5.1. Any fiber bundle E over B = Ik is trivial.

Proof. By the local triviality condition and compactness of Ik, we can sub-
divide Ik into Nk subcubes of size 1/N , such that E is trivial over each
subcube. We now construct a trivialization of E over the whole cube, one
subcube at a time. By an induction argument which we leave as an exercise,
it is enough to prove the following lemma.

Lemma 5.2. Let X = Ik and let A ⊂ Ik be the union of all but one of the
(k− 1)-dimensional faces of Ik. Suppose that E is a trivial fiber bundle over
X. Then a trivialization of E over A extends to a trivialization of E over
X.

Proof. We can regard E = X×F . The trivialization of E over A can then be
regarded as a map φ : A→ Homeo(F ), and we have to extend this to a map
φ : X → Homeo(F ). Such an extension exists because there is a retraction
r : X → A, so that we can define φ = φ ◦ r.

Before continuing, we need to introduce the notion of pullback of a fiber
bundle π : E → B by a map f : B′ → B. The pullback f ∗E is a fiber bundle
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over B′ defined by11

f ∗E := {(x, y) | x ∈ B′, y ∈ E, f(x) = π(y)} ⊂ B′ × E.

The map f ∗E → B′ is induced by the projection B′×E → B′. The definition
implies that the fiber of f ∗E over x ∈ B′ is equal to the fiber of E over
f(x) ∈ B.

Example 5.3. In the special case when B′ is a subset of B and f is the
inclusion map, f ∗E = π−1(B′) is called the restriction of E to B′ and is
denoted by E|B′ . In particular, if f = idB, then f ∗E = E.

Example 5.4. If f is a constant map to x ∈ B, then f ∗E is the trivial
bundle

f ∗E = B′ × Ex.

Example 5.5. If E is the mapping torus of φ : X → X, and if f : S1 → S1

has degree d, then f ∗E is the mapping torus of φd.
Similarly, we will see that if E is an S1-bundle over S2 with rotation

number r, and if f : S2 → S2 has degree d, then f ∗E is an S1-bundle over
S2 with rotation number |dr|.

Lemma 5.6. Let B be a CW complex and let E be a fiber bundle over
B × [0, 1]. Then

E|B×{0} ' E|B×{1},

where both sides are regarded as fiber bundles over B.

Proof. Let f : B × [0, 1] → B be the projection. We will construct an
isomorphism

f ∗(E|B×{0}) ' E. (5.1)

Restricting this isomorphism to B × {1} then implies the lemma.
We define the isomorphism (5.1) to be the identity over B × {0}. We

now extend this isomorphism over B × [0, 1], one cell (in B) at a time, by

11That is, f∗E is the fiber product of f and π over B′. There is a commutative diagram

f∗E −−−−→ Ey yπ
B′

f−−−−→ B.
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induction on the dimension. (This is legitimate because a map from a CW
complex is continuous if and only if it is continuous on each closed cell.) This
means that without loss of generality, B = Dk, and the isomorphism (5.1) has
already been defined over Dk × {0} and ∂Dk × [0, 1]. By Lemma 5.1, E and
f ∗(E|B×{0}) are trivial when B = Dk×[0, 1], so after choosing a trivialization,
the desired isomorphism (5.1) is equivalent to a map Dk×[0, 1]→ Homeo(F ).
As in the proof of Lemma 5.2, such a map from Dk × {0} ∪ ∂Dk × [0, 1] can
be extended over Dk × [0, 1].

Proposition 5.7. Let B′ be a CW complex, let E be a fiber bundle over B,
and let f0, f1 : B′ → B be homotopic maps. Then

f ∗0E ' f ∗1E

as fiber bundles over B′.

Proof. The homotopy can be described by map

f : B′ × [0, 1]→ B

with f |B×{i} = fi. Then

f ∗0E = (f ∗E)|B×{0} ' (f ∗E)|B×{1} = f ∗1E,

where the middle isomorphism holds by Lemma 5.6.

Corollary 5.8. Any fiber bundle over a contractible CW complex is trivial.

Proof. Let B be a contractible CW complex. Contractibility means that
there is a point x ∈ B and a homotopy between idB and the constant map
f : B → {x}. So by Proposition 5.7, if E is a fiber bundle over B, then

E = id∗B E ' f ∗E = B × Ex,

which is a trivial bundle.

More generally, a homotopy equivalence between B1 and B2 induces a
bijection between isomorphism classes of F -bundles over B1 and B2. (We
will see a nicer way to understand this when we discuss classifying spaces
later in the course.)
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Remark 5.9. Usually one considers fiber bundles with some additional
structure. For example, a vector bundle is a fiber bundle in which each
fiber has the structure of a vector space (and the local trivializations can be
chosen to be fiberwise vector space isomorphisms). A key example is the tan-
gent bundle of a smooth n-dimensional manifold M ; this is a vector bundle
over M whose fiber over each point is an n-dimensional real vector space.
Vector bundles will be a major object of study later in the course.

6 The long exact sequence of a fibration

The following is a useful tool for computing some homotopy groups.

Theorem 6.1. Let F → E → B be a fiber bundle. Pick y0 ∈ E, let x0 =
π(y0) ∈ B, and identify F = π−1(x0). Then there is a long exact sequence

· · · → πk+1(B, x0)→ πk(F, y0)→ πk(E, y0)→ πk(B, x0)→ πk−1(F, y0)→ · · ·
(6.1)

The exact sequence terminates12 at π1(B, x0). The arrows πk(F, y0) →
πk(E, y0) and πk(E, y0) → πk(B, x0) are induced by the maps F → E and
E → B in the fiber bundle. The definition of the connecting homomorphism
πk(B, x0) → πk−1(F, y0) and the proof of exactness will be given later. Let
us first do some computations with this exact sequence.

Example 6.2. If E → B is a covering space, then it follows from the exact
sequence that πk(E, y0) ' πk(B, x0) for all k ≥ 2. This generalizes Exam-
ple 1.3.

Example 6.3. Applying the exact sequence to the Hopf fibration S1 →
S3 → S2, we get an exact sequence

π3(S1)→ π3(S3)→ π3(S2)→ π2(S1).

We know that this is 0→ Z→ π3(S2)→ 0, and therefore

π3(S2) ' Z. (6.2)

Furthermore, the Hopf fibration S3 → S2 is a generator of this group.

12One can also continue the sequence with maps of sets π1(B, x0) → π0(F ) → π0(E)
such that the “kernel” of each map, interpreted as the inverse image of the component
containing y0, is the image of the previous map.
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Remark 6.4. There is a nice explicit description of the isomorphism (6.2).
Any homotopy class in π3(S2) can be represented by a smooth map f : S3 →
S2. By Sard’s theorem, for a generic point p ∈ S2, the map f is transverse to
p, so that the inverse image f−1(p) is a smooth link in S2. This link inherits
an orientation from the orientations of S3 and S2. Let q be another generic
point in S2, and define the Hopf invariant of f to be the linking number13

of f−1(p) and f−1(q):

H(f) := `(f−1(p), f−1(q)) ∈ Z.

The integer H is a homotopy invariant of f and defines the isomorphism
(6.2). This is a special case of the Thom-Pontrjagin construction, which we
may discuss later in the course.

The long exact sequence can be used to compute a few homotopy groups
of Lie groups, by the use of suitable fiber bundles. For example, let us try
to compute some homotopy groups of U(n). There is a map U(n) → S2n−1

which sends A 7→ Av, where v is some fixed unit vector.

Exercise 6.5. This gives a fiber bundle U(n− 1)→ U(n)→ S2n−1.

We know that U(1) ' S1. The n = 2 case is then a fiber bundle

S1 → U(2)→ S3.

So by the long exact sequence, π1U(2) = Z, π2U(2) = 0, and π3U(2) = Z. In
general, while the long exact sequence of this fiber bundle does not allow us
to compute πk(U(n)) in all cases (since we do not know all of the homotopy
groups of spheres), it does show that πk(U(n)) is independent of n when n
is sufficiently large with respect to k. This group is denoted by πk(U). In
fact, Bott Periodicity, which we may discuss later in the course, asserts that
πk(U) is isomorphic to Z when k is odd and 0 when k is even.

We now construct the long exact sequence. It works in a more general
context than that of fiber bundles, which we now define.

13Recall that the linking number of two disjoint oriented links L1 and L2 in S3 is
the intersection number of L1 with a Seifert surface for L2. Equivalently, if L1 has k
components, then H1(S3\L1) ' Zk, with a natural basis given by little circles around each
of the components of L1 with appropriate orientations; and the linking number is obtained
by expressing [L2] ∈ H1(S3 \L1) in this basis and taking the sum of the coefficients. The
linking number is symmetric, and can be computed from a link diagram by counting the
crossings of L1 with L2 with appropriate signs and dividing by 2.
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Definition 6.6. A map π : E → B (not necessarily a fiber bundle) has
the homotopy lifting property with respect to a pair (X,A) if given maps
f : X × I → B and g : X ×{0}∪A× I → E with π ◦ g = f |X×{0}∪A×I , there
exists h : X × I → E extending g such that π ◦ h = f .

Example 6.7. Recall that if π : E → B is a covering space, then any path
in B lifts to a path in E, given a lift of its initial endpoint. This means that
π : E → B has the homotopy lifting property with respect to the pair (pt, ∅).

Definition 6.8. A map π : E → B is a Serre fibration if it has the homotopy
lifting property with respect to the pair (Ik, ∂Ik) for all k.

Lemma 6.9. Every fiber bundle is a Serre fibration.

Proof. Let (X,A) = (Ik × I, Ik × {0} ∪ ∂Ik × I), let π : E → B be a fiber
bundle, and let f : X → B. We are given a lift g to E of the restriction
of f to A, and we must extend this to a lift of f over all of X. Now g is
equivalent to a section of f ∗E|A, and the problem is to extend this section
over X. We know that f ∗E is trivial, so after choosing a trivialization, a
section is equivalent to a map to F . But a map A → F extends over X
because there is a retraction r : X → A.

Exercise 6.10. Let E = {(x, y) ∈ R2 | 0 ≤ y ≤ x ≤ 1}, let B = I, and
let π : E → B send (x, y) 7→ x. Then π is a Serre fibration, but not a fiber
bundle.

Exercise 6.11. A map π : E → B is a fibration if it has the homotopy
lifting property with respect to (X,φ) for all spaces X.

(a) Show that a fibration is a Serre fibration. Hint: The key fact is that
(Ik × I, Ik × {0} ∪ ∂Ik × I) is homeomorphic to (Ik × I, Ik × {0}).

(b) Show that all the fibers of a fibration over a path connected space B are
homotopy equivalent. Hint: Use the homotopy lifting property where
X is a fiber.

(c) Show that all the fibers of a Serre fibration over a path connected space
B have isomorphic homotopy and homology groups.

By Lemma 6.9, Theorem 6.1 follows from:
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Theorem 6.12. If π : E → B is a Serre fibration, then there is a long exact
sequence in homotopy groups (6.1).

Proof. For k ≥ 1 we need to define a connecting homorphism

δ : πk+1(B, x0) −→ πk(F, y0).

Consider an element of πk+1(B, x0) represented by a map f : Ik+1 → B
sending ∂Ik+1 to x0. We can lift f to E over Ik×{0}∪ ∂Ik× I, by mapping
that set to y0. By the homotopy lifting property, this lift extends to a lift h :
Ik × I → E of f . Then h|Ik×{1}, regarded as a map on Ik, sends (Ik, ∂Ik)→
(F, y0). We now define

δ[f ] := [h|Ik×{1}].
One can check that this is well-defined on homotopy classes, and that this is
a homomorphism. With this definition, the proof of exactness is a more or
less straightforward exercise.

Exercise 6.13. Let E be an S1-bundle over S2 with rotation number r.
Then the connecting homomorphism

δ : Z ' π2(S2)→ π1(S1) ' Z

is multiplication by ±r.

Example 6.14. Let X be a topological space and x0 ∈ X. The based loop
space ΩX = {γ : [0, 1] → X | γ(0) = γ(1) = x0}. Define the space of paths
starting at x0 to be PX = {γ : [0, 1] → X | γ(0) = x0}. This fits into the
path fibration

ΩX −−−→ PXyπ
X

where π(f) = f(1). It is an easy exercise to check that this is a fibration.
Now PX is contractible, so the long exact sequence gives

πk(ΩX, x0) ' πk+1(X, x0)

for k ≥ 1. This can also be seen directly from the definition of homotopy
groups. But one can get a lot more information out of the path fibration as
we will see later.

Although we have only taken some very first steps in computing homotopy
groups, let us now turn to some of their applications.
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7 First example of obstruction theory

The rough idea of obstruction theory is simple. Suppose we want to construct
some kind of function on a CW complex X. We do this by induction: if the
function is defined on the k-skeleton Xk, we try to extend it over the (k+1)-
skeleton Xk+1. The obstruction to extending over a (k+1)-cell is an element
of πk of something. These obstructions fit together to give a cellular cochain o

on X with coefficients in this πk. In fact this cochain is a cocycle, so it defines
an “obstruction class” in Hk+1(X; πk(something)). If this cohomology class
is zero, i.e. if there is a cellular k-cochain η with o = δη, then η prescribes a
way to modify our map over the k-skeleton so that it can be extended over
the (k + 1)-skeleton.

Let us now make this idea more precise by proving some theorems. For
now, if X is a CW complex, C∗(X) will denote the cellular chain complex.
To simplify notation, we assume that each cell has an orientation chosen, so
that Ck(Z) is the free Z-module generated by the k-cells. If e is a k-cell and
if e′ is a (k − 1)-cell, we let 〈∂e, e′〉 ∈ Z denote the coefficient of e′ in ∂e.

Theorem 7.1. Let X be a CW complex. Then

[X,S1] = H1(X; Z).

Proof. Let α be the preferred generator of H1(S1; Z) = Z. Define a map

Φ : [X,S1] −→ H1(X; Z),

[f : X → S1] 7−→ f ∗α.

We want to show that Φ is a bijection.
Proof that Φ is surjective: let ξ ∈ C1(X; Z) with δξ = 0. We need to find

f : X → S1 with f ∗α = [ξ]. We construct f on the k skeleton by induction
on k. First, we send the 0-skeleton to a base point p ∈ S1. Next, if σ is a
one-cell, we extend f over σ so that f |σ has winding number ξ(σ) around S1.

If e : D2 → X is a 2-cell, then since ξ is a cocycle,∑
σ

〈∂e, σ〉ξ(σ) = 0.

It is not hard to see (and we will prove a more general statement in Lemma 8.3(a)
below) that the left hand side of the above equation is the winding number
of f ◦ e|∂D2 around S1. Hence, we can extend f over the 2-cell.
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Now assume that f has been defined over the k-skeleton Xk for some k ≥
2. We can then extend f over the (k + 1)-skeleton, because the obstruction
to extending over any (k + 1)-cell lives in πk(S

1) = 0.
Proof that Φ is injective: Let f0, f1 : X → S1, and suppose that f ∗0α =

f ∗1α. We can homotope14 f0 and f1 so that they send the 0-skeleton of X to
the base point p ∈ S1. Then f ∗i α is represented by the cellular cochain βi that
sends each 1-cell σ to the winding number of fi|σ around S1. The assumption
f ∗0α = f ∗1α then means that there is a cellular 0-cochain η ∈ C0(X; Z) with
β0 − β1 = δη. That is, if σ is a 1-cell with vertices σ(0) and σ(1), then

β0(σ)− β1(σ) = η(σ(1))− η(σ(0)). (7.1)

We now regard f0 and f1 as defining a map X×{0, 1} → S1, and we want
to extend this to a homotopy X×[0, 1]→ S1. We extend over X0×[0, 1] such
that if x is a 0-cell, then the restriction to {x} × [0, 1] has winding number
−η(x) around S1. Then equation (7.1) implies that there is no obstruction to
extending the homotopy over X1× [0, 1]. Finally, for k ≥ 2, if the homotopy
has been extended over Xk−1×[0, 1], then there is no obstruction to extending
the homotopy over Xk × [0, 1], since πk(S

1) = 0.

Remark 7.2. The group structure on S1 induces a group structure on
[X,S1], and it is easy to see that this agrees with the group structure on
H1(X; Z) under the above bijection.

8 Eilenberg-MacLane spaces

Theorem 7.1 can be regarded as giving a homotopy-theoretic interpretation
of H1(·; Z) for CW complexes. We now introduce an analogous interpretation
of more general cohomology groups.

Consider a path connected space Y with only one nontrivial homotopy
group, i.e.

πk(Y ) '
{
G, k = n,
0, k 6= n.

(8.1)

14We can do this because in general, any CW pair (X,A) has the homotopy extension
property. That is, any map (X × {0} ∪ (A× I)→ Y extends to a map X × I → Y . One
constructs the extension cell-by-cell, similarly to the proof of Lemma 5.6. In the present
case, A is the 0-skeleton of X. A related argument proves the cellular approximation
theorem, which asserts that any continuous map between CW complexes is homotopic to
a cellular map.
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Such a space is called an Eilenberg-MacLane space. We also say that “Y is
a K(G, n)”.

For example, S1 is a K(Z, 1). Another example is that CP∞ is a K(Z, 2).
Here one defines CP∞ = limk→∞CP k with the direct limit topology, where
the inclusion CP k → CP k+1 is induced by the inclusion Ck+1 \ {0} →
Ck+2 \ {0}. This is a CW complex with one cell in each even dimen-
sion. One can prove that CP∞ is a K(Z, 2) by using the cellular approx-
imation theorem, as in the proof of Proposition 8.1 below, to show that
πn(CP∞) = πn(CP k) whenever 2k ≥ n+ 1. One can then use the long exact
sequence in homotopy groups associated to the fibration S1 → S2k−1 → CP k

to show that πn(CP k) = 0 if n 6= 2 and k > 1 and 2k − 1 > n. Similarly,
RP∞ is a K(Z/2, 1).

Explicit constructions of K(G, n)’s can be difficult in general, but there
is still the following general existence result:

Proposition 8.1. For any positive integer n and any group G (abelian if
n > 1):

(a) There exists a CW complex Y satisfying (8.1).

(b) The CW complex Y in (a) is unique up to homotopy equivalence.

Proof. (a) Consider a presentation of G by generators and relations. Let Y n

be a wedge of n-spheres, one for each generator. For each relation, attach
an (n + 1)-cell whose boundary is the sum of the n-spheres in the relation.
Now we have a CW complex Y n+1 with πn(Y n+1) ' G, and πi(Y

n+1) = 0 for
i < n. (When n = 1 this follows from the Seifert-Van Kampen theorem, and
when n > 1 this follows from the Hurewicz theorem.) However πn+1(Y n+1)
might not be zero. One can attach (n+2)-cells to kill πn+1(Y n+1), i.e. one can
represent each element of πn+1(Y n+1) by a map Sn+1 → Y n+1 and use this as
the attaching map for an (n+2)-cell. Let Y n+2 denote the resulting complex.
Then πn+1(Y n+2) = 0, because the cellular approximation theorem implies
that an element of πn+1(Y n+2) can be represented by a map Sn+1 → Y n+1.
The cellular approximation similarly implies that attaching (n+2)-cells does
not affect πi for i ≤ n. One then attaches (n + 3)-cells to kill πn+2, and so
on. (The resulting CW complex might be very complicated.)

(b) When G is abelian, this will be proved in Corollary 8.4 below. The
case when n = 1 and G is nonabelian follows from a related argument which
we omit.
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Theorem 8.2. If G is abelian, and if Y is a K(G, n), then an identification
of πk(Y ) with G determines, for any CW complex X, an isomorphism

Hn(X;G) ' [X, Y ].

Proof. This is similar to the proof of Theorem 7.1. We begin by defining a
map

Φ : [X, Y ] −→ Hn(X;G)

as follows. Fix an identification of πn(Y ) with G. (Note that our assumptions
imply that πn(Y ) does not depend on the choice of base point.) By the
Hurewicz theorem and the universal coefficient theorem, we then obtain an
identification

Hn(Y,G) = Hom(G,G).

So there is a canonical element idG ∈ Hn(Y,G). Now given f : X → Y , we
define

Φ[f ] := f ∗(idG) ∈ Hn(X;G).

We will prove that Φ is a bijection.
To do so, we need the following lemma. Part (a) of the lemma is a useful

“homotopy addition lemma” which generalizes Lemma 2.2(b). Part (b) of
the lemma gives a more concrete description of the map Φ when f sends the
(n − 1)-skeleton Xn−1 to a base point y0 ∈ Y . (There is no obstruction to
homotoping f to have this property.)

Lemma 8.3. Suppose f : X → Y sends Xn−1 to y0. Then:

(a) For any (n+ 1)-cell e : Dn+1 → X,∑
σ

〈∂e, σ〉[f ◦ σ] = [f ◦ e|Sn ] ∈ πn(Y, y0).

(b) Φ[f ] ∈ Hn(X;G) is represented by a cellular cocycle β ∈ Cn
cell(X;G)

which sends an n-cell σ : Dn → X to

β(σ) = [f ◦ σ] ∈ πn(Y, y0) = G. (8.2)

Proof. Since f factors through the projection X → X/Xn−1, for both (a)
and (b) we may assume without loss of generality that Xn−1 is a point x0.
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Proof of (a): By the Hurewicz theorem,

πn(Xn, x0) = Hn(Xn) = Ccell
n (X). (8.3)

By equation (8.3) and the naturality of the Hurewicz isomorphism under the
map e|Sn : Sn → Xn, we have

[e|Sn ] =
∑
σ

〈∂e, σ〉[σ] ∈ πn(Xn, x0).

Applying f∗ to this equation completes the proof.
Proof of (b): Note that β is a cellular cocycle by part (a), and so it

determines a cohomology class in Hn(X;G). To show that this cohomology
class is f ∗(idG) as desired, since the pullback on Hn(·;G) by the inclusion
Xn → X is injective, we may assume without loss of generality that X = Xn

(in addition to Xn−1 = {x0}). Then Hn(X;G) = Cn
cell(X;G), so we just have

to check that Φ(f)(σ) = [f ◦ σ] for σ : Dn → X an n-cell. This follows from
naturality of the Hurewicz isomorphism under the map f ◦ σ : Sn → Y .

This completes the proof of Lemma 8.3.

Continuing the proof of Theorem 8.2, we now show that Φ is a bijection.
To prove that Φ is surjective, let α ∈ Hn(X;G), and let β ∈ Cn

cell(X;G) be
a cellular cocycle representing α. Define f : X → Y cell-by-cell as follows.
First define f |Xn−1 = y0. Extend f over Xn so that (8.2) holds. Since
β is a cocycle, it follows from Lemma 8.3(a) that there is no obstruction
to extending f over Xn+1. There is then no obstruction to extending over
higher skeleta since πi(Y ) = 0 for i > n. By Lemma 8.3(b), Φ(f) = α.

The proof that Φ is injective is completely analogous to the proof for the
case n = 1, G = Z that we have already seen.

Corollary 8.4. If G is abelian, then a K(G, n) that is a CW complex is
unique up to homotopy equivalence.

Proof. Suppose that Y and Y ′ are both CW complexes and K(G, n)’s. Fix
identifications πn(Y ) = πn(Y ′) = G. By Theorem 8.2,

[Y, Y ] = [Y, Y ′] = [Y ′, Y ] = [Y ′, Y ′] = Hom(G,G).

Furthermore, it follows from the definition of this correspondence that the
composition of two maps between Y and/or Y ′ corresponds to the compo-
sition of the corresponding homomorphisms from G to G, and idY and idY ′
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correspond to idG. Now let f : Y → Y ′ and g : Y ′ → Y correspond to idG.
Then g ◦ f also corresponds to idG, so g ◦ f is homotopic to idY . Likewise
f ◦ g is homotopic to idY ′ .

9 Whitehead’s theorem

We now use another, simpler cell-by-cell construction to prove the following
theorem, which shows that homotopy groups give a criterion for a map to be
a homotopy equivalence.

Theorem 9.1 (Whitehead’s theorem). Let X and Y be path connected CW
complexes and let f : X → Y be a continuous map. Suppose that f induces
isomorphisms on all homotopy groups. Then f is a homotopy equivalence.

Proof. We first reduce to a special case. Define the mapping cylinder

Cf :=
(X × I) ∪ Y
(x, 1) ∼ f(x)

.

Then f is the composition of two maps X → Cf → Y , where the first map
is an inclusion sending x 7→ (x, 0), and the second map sends (x, t) 7→ f(x)
and y 7→ y. Furthermore, the map Cf → Y is a homotopy equivalence since
it comes from a deformation retraction of Cf onto Y . So it is enough to
show that the inclusion X → Cf is a homotopy equivalence. By the cellular
approximation theorem, to prove Whitehead’s theorem we may assume that
f is cellular. Then Cf is a CW complex and X × {0} is a subcomplex.
In conclusion, to prove Whitehead’s theorem, we may assume that X is a
subcomplex of Y and f is the inclusion.

So assume that X is a subcomplex of Y and that the inclusion induces
isomorphisms on all homotopy groups. We now construct a (strong) defor-
mation retraction of Y onto X. This consists of a homotopy F : Y × I → Y
such that F (y, 0) = y for all y ∈ Y ; F (x, t) = x for all x ∈ X and t ∈ I; and
F (y, 1) ∈ X for all y ∈ Y . We construct F one cell at a time. This reduces
to the following problem: given

F : (Dk × {0}) ∪ (∂Dk × I) −→ Y, (9.1)

∂Dk × {1} 7−→ X,

extend F to a map Dk × I → Y sending Dk × {1} → X.
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The restriction of F to ∂Dk × {1} defines an element α ∈ πk−1(X) (mod
the action of π1(X)). Since F extends to a map (9.1), it follows that α
maps to 0 in πk−1(Y ). Since the inclusion induces an injection on πk−1, it
follows that we can extend α to a map Dk × {1} → X. Now F is defined
on ∂(Dk × I) ' Sk, and we need to extend F over all of Dk × I. This may
not be possible. The map we have so far represents an element β ∈ πk(Y )
(mod the action of π1(Y )), and we need this element to be zero. If β 6= 0,
then since the map πk(X) → πk(Y ) is surjective, we can change our choice
of extension of F over Dk × {1} to arrange that β = 0. (Note that these
choices can be made for all k-cells independently, so there is no homological
issue as in our previous obstruction theory arguments.)

Remark 9.2. If all we know is that X and Y have isomorphic homotopy
groups, then X and Y need not be homotopy equivalent (which by White-
head’s theorem means that the isomorphisms on homotopy groups might not
be induced by a map f : X → Y ).

In general, Whitehead’s theorem can be hard to apply, because it may
be hard to check that a map induces isomorphisms on all homotopy groups.
Fortunately, there is an alternate version of Whitehead’s theorem which can
be more practical:

Theorem 9.3. Let X and Y be simply connected CW complexes and let
f : X → Y be a continuous map. Suppose that f induces isomorphisms on
all homology groups. Then f is a homotopy equivalence.

This can be proved using a relative version of the Hurewicz theorem, see
e.g. Hatcher.

Corollary 9.4. Let X be a closed, oriented, simply connected n-dimensional
manifold with Hi(X) = 0 for 0 < i < n. Then X is homotopy equivalent to
Sn.

Proof. We can find an embedding of the closed ball Dn into X. Define a
map f : X → Sn by sending the interior of Dn homeomorphically to the
complement of the north pole, and the rest of X to the north pole. Then
Theorem 9.3 applies to show that f is a homotopy equivalence.
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10 Orientations of sphere bundles

We now use the ideas of obstruction theory to begin to analyze fiber bundles.

Definition 10.1. Let E be an Sk-bundle over B with k ≥ 0. An orientation
of E is a choice of generator of the reduced15 homology H̃k(Ex) ' Z for each
x ∈ B. This should depend continuously on x in the following sense. If E is
trivial over a subset U ⊂ B, then a trivialization E|U ' U × Sk determines

identifications Ex ' Sk, and hence isomorphisms H̃k(E|x) ' H̃k(S
k), for

each x ∈ U . We require that if U is connected, then the chosen generators
of H̃k(E|x) all correspond to the same generator of H̃k(S

k). Note that this
continuity condition does not depend on the choice of trivialization over U .

The bundle E is orientable if it possesses an orientation. It is oriented if
moreover an orientation has been chosen.

Example 10.2. If B is a smooth n-dimensional manifold, then choosing
a metric on B gives rise to an Sn−1-bundle STB → B consisting of unit
vectors in the tangent bundle, and an orientation of STB is equivalent to an
orientation of B in the usual sense.

Example 10.3. The mapping torus of a homeomorphism f : Sk → Sk,
regarded as an Sk-bundle over S1, is orientable if and only if f is orientation-
preserving.

Exercise 10.4. Oriented S1-bundles over S2, up to orientation-preserving
isomorphism, are classified by Z. (We will prove a generalization of this in
Theorem 11.8 below.)

An orientation is equivalent to a section of the orientation bundle O(E),
a double cover of B defined as follows. An element of O(E) is a pair (x, ox)

where x ∈ B and ox is a generator of H̃k(Ek). We topologize this as follows.
If U is an open subset of B and o is an orientation of E|U , let V (U, o) ⊂ O(E)

denote the set of pairs (x, ox) where x ∈ B and ox is the generator of H̃k(Ex)
determined by o. The sets V (U, o) are a basis for a topology on O(E). With
this topology, O(E)→ B is a 2:1 covering space, and an orientation of E is
equivalent to a section of O(E).

We now want to give a criterion for orientability of a sphere bundle. By
covering space theory, a path γ : [0, 1]→ B induces a bijection

Φγ : O(E)γ(0) −→ O(E)γ(1).

15Of course the word “reduced” here only makes a difference when k = 0.
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Moreover, if γ is homotopic to γ′ rel endpoints, then Φγ = Φγ′ . So if x0 ∈ B
is a base point, we obtain a “monodromy” homomorphism

Φ : π1(B, x0)→ Aut(O(E)x0) = Z/2. (10.1)

Since Z/2 is abelian, this homomorphism descends to the abelianization of
π1(B, x0), so combining these homomorphisms for all path components of
B gives a map H1(B) → Z/2. By the universal coefficient theorem, this is
equivalent to an element of H1(B; Z/2), which we denote by

w1(E) ∈ H1(B; Z/2).

Proposition 10.5. Let E → B be an Sk-bundle with k ≥ 1. Assume that
the path components of B are connected (e.g. B is a CW complex). Then:

(a) E is orientable if and only if w1(E) = 0 ∈ H1(B; Z/2).

(b) If E is orientable, then the set of orientations of E is an affine space16

over H0(B; Z/2).

Proof. (a) Without loss of generality, B is path connected. Since O(E)→ B
is a 2:1 covering space, it has a section if and only if it is trivial. And the
covering space is trivial if and only if the monodromy (10.1) is trivial.

(b) H0(B; Z/2), regarded as the set of maps B → Z/2 that are con-
stant on each path component, acts on the set of orientations of E in an
obvious manner. This action is clearly free, and the continuity condition for
orientations implies that it is transitive.

When B is a CW complex, we can understand (a) in terms of obstruc-
tion theory as follows. We can arbitrarily choose an orientation over the
0-skeleton. The obstruction to extending this over the 1-skeleton is a 1-
cocycle α ∈ C1(B; Z/2). This 1-cycle represents the class w1(E). If α = dβ,
then β tells us how to switch the orientations over the 0-skeleton so that they
extend over the 1-skeleton. There is then no further obstruction to extending
over the higher skeleta.

16An affine space over an abelian group G is a set X with a free and transitive G-action.
For x, y ∈ X, we can define the difference x − y ∈ G to be the unique g ∈ G such that
g · y = x. The choice of an “origin” x0 ∈ X determines a bijection G→ X via g 7→ g · x0.
However this identification depends on the choice of x0. For example, if A is an m × n
real matrix and b ∈ Rm, then the set {x ∈ Rn | Ax = b}, if nonempty, is naturally an
affine space over Ker(A).
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Exercise 10.6. w1 is natural, in that if f : B′ → B, then

w1(f ∗E) = f ∗w1(E) ∈ H1(B; Z/2). (10.2)

Equation (10.2) implies that w1 is a “characteristic class” of sphere bun-
dles. Specifically, it is equivalent to the first Stiefel-Whitney class (usually
defined for real vector bundles rather than sphere bundles). We will study
characteristic classes more systematically later in the course. Our next ex-
ample of a characteristic class is the Euler class.

11 The Euler class of an oriented sphere bun-

dle

Let E → B be an oriented Sk bundle with k ≥ 1. Assume temporarily that
B is a CW complex. We now define the Euler class

e(E) ∈ Hk+1(B; Z). (11.1)

This is the “primary obstruction” to the existence of a section of E, in the
sense of Proposition 11.4 below.

First, we choose a section s0 of E over the 0-skeleton B0 (just pick any
point in the fiber over each 0-cell). Now if we have a section si−1 over the
(i− 1)-skeleton, and if i ≤ k, then we can extend to a section si over the i-
skeleton. The reason is that if e : Di → B is an i-cell, then we know that the
pullback17 bundle e∗E over Di is trivial, so we can identify e∗E ' Di × Sk.
The section si−1 induces a map ∂Di = Si−1 → Sk, and this extends over
Di because πi−1(Sk) = 0. By induction we obtain a section sk over the
k-skeleton.

Now let us try to extend sk over the (k + 1)-skeleton. Let e : Dk+1 → B
be a (k + 1)-cell. We choose an orientation-preserving trivialization e∗E '
Dk+1 × Sk. Then sk defines a map ∂Dk+1 → Sk, which we can identify with
an element of πk(S

k) = Z. This assignment of an integer to each (k+ 1)-cell
defines a cochain

o(sk) ∈ Ck+1(B; Z).

Lemma 11.1. o(sk) is a cocycle: δo(sk) = 0.

17The reason that we use pullback bundles here instead of restriction is that the map e
might not be injective on ∂Di.
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Proof. Consider a (k + 2)-cell ξ : Dk+2 → B. We need to show that∑
σ

〈∂ξ, σ〉o(sk)(σ) = 0. (11.2)

To understand the following proof of (11.2), it helps to draw pictures in the
case k = 1.

For each (k+ 1)-cell σ, let pσ denote the center point of σ. Let P denote
the set of points pσ. Using smooth approximation and Sard’s theorem, we
can homotope18 the attaching map ξ|Sk+1 so that:

(i) The inverse image of pσ is a finite set of points x ∈ Sk+1, to each of
which is associated a sign ε(x).

(ii) The inverse image of a small (k + 1)-disk Dσ around pσ consists of one
(k+1)-disk Dx ⊂ Sk+1 for each x ∈ ξ−1(pσ), such that the restriction of
ξ to Dx is a homeomorphism which is orientation-preserving iff ε(x) =
+1.

Given (i) and (ii), it follows from the definition of the cellular boundary map
that

〈∂ξ, σ〉 =
∑

x∈ξ−1(pσ)

ε(x). (11.3)

Next, we can extend the section sk over Bk+1 \ P . Also, choose a triv-
ialization ξ∗E ' Dk+2 × Sk. The extended section sk then defines a map
f : Sk+1 \ ξ−1(P )→ Sk. By (ii) above, for each x ∈ ξ−1(pσ), we have

[f |∂Dx ] = ε(x)o(sk)(σ) ∈ πk(Sk).

Combining this with (11.3) gives∑
σ

〈∂ξ, σ〉o(sk)(σ) =
∑

x∈ξ−1(P )

[f |∂Dx ] ∈ πk(Sk).

Now let X denote the complement in Sk+1 of the interiors of the balls Dx; this
is a compact manifold with boundary. By naturality of the Hurewicz isomor-
phism, the right hand side of the above equation corresponds to −f∗[∂X] ∈
Hk(S

k). But this is zero, since f extends over X.

18This homotopy may change B, but it does not change the left side of the equation
(11.2) that we want to prove.
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Definition 11.2. The Euler class (11.1) is the cohomology class of the co-
cycle o(sk).

Lemma 11.3. The cohomology class e(E) is well-defined.

Proof. Let sk and tk be two sections over the k-skeleton. We will construct
a cellular cochain η ∈ Ck(B; Z) with

δη = o(sk)− o(tk). (11.4)

The idea is to try to find a homotopy from sk to tk. Consider the pullback
of E to B × I with the product CW structure; we can then regard sk and
tk as sections defined over Bk × {0} and Bk × {1} respectively. There is no
obstruction to extending this section over Bk−1 × I, so that we now have a
section uk over the k-skeleton of B × I. By Lemma 11.1,

δo(uk) = 0 ∈ Ck+2(B × I; Z). (11.5)

Now define the required cellular cochain η ∈ Ck(B; Z) as follows: If ρ is
a k-cell in B, then

η(ρ) := o(uk)(ρ× I) ∈ Z.

(That is, η(ρ) is the obstruction to obstruction to extending the homotopy
over ρ.) Then equation (11.4), evaluated on a (k + 1)-cell σ in B, follows
from equation (11.5) evaluated on the (k + 2)-cell σ × I in B × I.

To put this all together, we have:

Proposition 11.4. Let E be an oriented Sk-bundle over a CW complex B.
Then there exists a section of E over the (k + 1)-skeleton Bk if and only if
e(E) = 0 ∈ Hk(B; Z).

Proof. (⇒) If there exists a section sk over the k-skeleton that extends over
the (k + 1)-skeleton, then by construction the cocycle o(sk) = 0.

(⇐) Suppose that e(E) = 0. Let sk be a section over the k-skeleton; then
we know that o(sk) = δη for some η ∈ Ck(B; Z). Keeping sk fixed over the
(k− 1)-skeleton, we can modify it to a new section tk over the k-skeleton, so
that over each k-cell, sk and tk differ by η; see Exercise 11.5 below. That is,
equation (11.4) holds. Then o(tk) = 0, which means that tk extends over the
(k + 1)-skeleton.
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Exercise 11.5. Let X be a path connected space such that πk(X) is abelian
and the action of π1 on πk is trivial (so that πk(X) is just the set of homotopy
classes of maps Sk → X with no base point). Let f : Sk−1 → X. Then
the set of homotopy classes of extensions of f to a map Dk → X is an
affine space over πk(X). The difference between two extensions g+ and g−
is obtained by regarding g+ and g− as maps defined on the northern and
southern hemispheres respectively of Sk, and gluing them together along the
equator (where they are both equal to f) to obtain a map Sk → X.

One can show, using the cellular approximation theorem, that the Euler
class as defined above is natural and does not depend on the CW structure
on B. We omit the details. In fact, later in the course we will see alternate
definitions of the Euler class which do not use a CW structure at all.

Example 11.6. For an oriented S1-bundle over S2, the Euler class agrees
with the rotation number. This follows from the definitions if we use a
cell decomposition of S2 with two 2-cells corresponding to the northern and
southern hemispheres.

Remark 11.7. The Euler class is called the “primary obstruction” to the
existence of a section. There can also be “secondary obstructions” and higher
obstructions, involving higher homotopy groups of spheres. That is, when
k > 1 and dim(B) > k + 1, it is possible that e(E) = 0 and yet no section
over all of B exists. An example of this (which requires a bit of proof) is
given by an S2-bundle over S4 in which a nonzero element of π3(SO(3)) = Z
is used in the clutching construction.

On the other hand, when k = 1 the Euler class is the only obstruction to
the existence of a section, because the higher homotopy groups of S1 vanish.
More generally, we have the following very satisfying result, which can be
regarded as a higher-dimensional analogue of Theorem 7.1.

Theorem 11.8. Let B be a CW complex. Then the Euler class defines
a bijection from the set of oriented S1 bundles over B, up to orientation-
preserving isomorphism, to H2(B; Z).

Proof. To prove that the Euler class is injective, we use the fact that the
space of orientation-preserving homeomorphisms of S1 deformation retracts
onto S1. Given two oriented S1 bundles over B, there is then no obstruction
to finding an isomorphism between them over the 1-skeleton. It is an exercise
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to show that the obstruction to finding an isomorphism over the 2-skeleton
is the difference between the Euler classes. If this obstruction vanishes, then
there is no obstruction to extending the isomorphism over higher skeleta since
the higher homotopy groups of S1 are trivial.

Now let us prove that the Euler class is surjective. Let o ∈ C2(B; Z) be
a cellular cocycle. We will construct an oriented S1 bundle E → B and a
section s1 of E over the 1-skeleton such that o is the obstruction to extending
s1 over the 2-skeleton.

Over the 1-skeleton, we define E|B1 = B1 × S1, and let s1 be a constant
section.

We now inductively extend E over the k-skeleton by gluing in one copy
of Dk × S1 for each k-cell σ : Dk → E. To do so we need a gluing map
Sk−1 × S1 → E|Bk−1 which projects to the attaching map σ|Sk−1 : Sk−1 →
Bk−1 and which restricts to an orientation-preserving homeomorphism on
each fiber. That is, we need to specify an orientation-preserving bundle
isomorphism

Sk−1 × S1 −→ (σ|Sk−1)∗(E|Bk−1). (11.6)

When k = 2, the map (11.6) is an orientation-preserving bundle iso-
morphism S1 × S1 → S1 × S1, i.e. a map S1 → Homeo+(S1), where the
superscript ‘+’ indicates orientation-preserving. We choose this to be a map
S1 → S1 with degree −o(σ) ∈ Z. This ensures that o is the obstruction to
extending s1 over the 2-skeleton.

When k ≥ 3, we can choose any bundle isomorphism (11.6); we just need
to show check that such an isomorphism exists, i.e. that (σ|Sk−1)∗(E|Bk−1) is
trivial. By the injectivity of the Euler class, it is enough to check that

e((σ|Sk−1)∗(E|Bk−1)) = 0 ∈ H2(Sk−1; Z).

When k = 3, this follows from the cocycle condition δo = 0, similarly to the
proof of Lemma 11.1. When k > 3, this is automatic.

Remark 11.9. In §8 we saw another geometric interpretation of H2(B; Z),
namely as [B; CP∞]. The resulting bijection from [B; CP∞] to the set of
isomorphism classes of oriented S1-bundles over B can be described directly
as follows. There is a “universal” oriented S1-bundle E → CP∞, namely the
direct limit of the bundles S1 → S2k+1 → CP k (which are defined as in the
Hopf fibration). One then associates, to f : B → CP∞, the pullback bundle
f ∗E → B.
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To describe the situation that oriented S1 bundles are classified by homo-
topy classes of maps to CP∞, one says that CP∞ is a “classifying space” for
oriented S1-bundles. We will discuss the more general theory of classifying
spaces later in the course.

12 Homology with twisted coefficients

A natural context in which to generalize some of the previous discussion is
provided by homology with “twisted” or “local” coefficients.

Definition 12.1. A local coefficient system on a space X consists of the
following:

(a) For each x ∈ X, an abelian group Gx,

(b) for each path γ : [0, 1] → X, a homomorphism Φγ : Gγ(0) −→ Gγ(1),
such that:

(i) Φγ depends only on the homotopy class of γ rel endpoints,

(ii) If γ1 and γ2 are composable paths then Φγ1γ2 = Φγ1Φγ2 ,

(iii) If γ is a constant path then Φγ is the identity.

Note that properties (i)–(iii) imply that Φγ is in fact an isomorphism.

We sometimes denote a local coefficient system by G or by {Gx}, leaving the
isomorphisms Φγ implicit.

Example 12.2. A constant local coefficient system is obtained by setting
Gx = G for some fixed group G, and Φγ = idG for all γ.

Example 12.3. If n > 1, or n = 1 and π1(X, x0) is abelian for all x0 ∈ X,
then {πn(X, x)} is a local coefficient system on X.

Example 12.4. If E → B is a Serre fibration, then {H∗(Ex)} is a local
coefficient system on B.

Example 12.5. A bundle of groups is a covering space X̃ → X such that
each fiber has the structure of an abelian group, which depends continuously
on x ∈ X (in the sense that there are local trivializations which are group
isomorphisms on each fiber). Any bundle of groups gives rise to a local
coefficient system on X. If X is a “reasonable” space, then the converse is
true.
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Remark 12.6. If X is path connected and x0 ∈ X is a base point, then a
local coefficient system on X determines a monodromy homomorphism

π1(X, x0) −→ Aut(Gx0).

Conversely, if G is any abelian group, then any homomorphism π1(X, x0)→
Aut(G) is the monodromy of a local coefficient system on X with Gx = G.

Now let G = {Gx} be a local coefficient system on X. We want to define
the homology with local coefficients H∗(X,G ), as well as the cohomology
H∗(X,G ). When G is a constant local coefficient system with Gx = G, this
will agree with the usual singular (co)homology with coefficients in G.

Let σ : Ik → X be a singular cube. For every path γ : I → Ik, the
isomorphism Φσ◦γ defines an isomorphism Gσ(γ(0)) ' Gσ(γ(1)). Since Ik is
contractible, these isomorphisms are canonical, so that the groups Gσ(t) for
t ∈ Ik are all isomorphic to a single group, which we denote by Gσ. Also, if
σ′ is a face of σ, then Gσ′ = Gσ.

Now define C∗(X, {Gx}) to be the free Z-module generated by pairs (σ, g)
where g ∈ Gσ, modulo degenerate cubes as usual, and modulo the relation

(σ, g1) + (σ, g2) = (σ, g1 + g2).

(One can also describe this as finite linear combinations of distinct nonde-
generate cubes, where the coefficient of each cube σ is an element of Gσ.)
Define the differential ∂(σ, g) by the usual formula (0.1), with g inserted in
each term. We have ∂2 = 0 as usual. The homology of this complex is
then H∗(X, {Gx}). The cohomology H∗(X, {Gx}) is the homology of the
chain complex consisting of functions that assign to each singular cube σ an
element of the group Gσ, with the differential given by the dual of (0.1).

If X is a CW complex, then we can analogously define cellular homology
and cohomology with local coefficients.

Example 12.7. A local coefficient system G on S1 is specified by a group
G and a monodromy map Φ : G → G. If we choose a cell structure with
one 0-cell e0 and one 1-cell e1, then under appropriate identifications, the
differential in the cellular chain complex C∗(S

1; G ) is given by

∂(e1, g) = (e0, g − Φg).

Hence H0(S1; G ) = G/ Im(1 − Φ) and H1(S1; G ) = Ker(1 − Φ). Also
Hk(S1; G ) = H1−k(S

1; G ).
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Example 12.8. Let B be a CW complex, let k ≥ 1, and let E → B be
an Sk-bundle without an orientation (and possibly nonorientable). Then our
previous construction of the Euler class generalizes to give a cohomology
class

e(E) ∈ Hk+1(B; {Hk(Ex)}),

which vanishes if and only if E has a section over the (k + 1)-skeleton. Note
here that the local coefficient system {Hk(Ex)} is isomorphic to the constant
local coefficient system Z exactly when E is orientable.

Example 12.9. Let E be a fiber bundle over a CW-complex B with fiber F .
Suppose that F is path connected. Let k be the smallest positive integer such
that πk(F ) 6= 0; suppose that πk(F ) is abelian and that π1(F ) acts trivially
on πk(F ). Then the previous example generalizes to give a cohomology class

α ∈ Hk+1(B; {πk(Ex)})

which vanishes if and only if E has a section over the (k + 1)-skeleton.

Example 12.10. One can use local coefficients to generalize Poincaré duality
to manifolds which are not necessarily oriented or even orientable. Any n-
dimensional manifold X has a local coefficient system O, such that Ox =
Hn(X,X\{x}) ' Z. An orientation of X, if one exists, is a section of O which
restricts to a generator of each fiber. In any case, regardless of whether or
not an orientation exists, if X is a compact n-dimensional manifold without
boundary, and if G is any local coefficient system on X, then there is a
canonical isomorphism

Hk(X; G ) = Hn−k(X; G ⊗ O). (12.1)

This isomorphism is given by cap product with a canonical fundamental class
[X] ∈ Hn(X; O). (If X has a triangulation, e.g. if X is smooth, then this
fundamental class is represented in the cellular chain complex by the sum of
all the n-simplices. This sum is well-defined without any orientation choices
if one uses coefficients in O.) To prove this, take your favorite proof of
Poincaré duality19 and insert local coefficients everywhere.

An instructive example is X = CP 2. Consider the usual CW structure
which has one i-cell ei for i = 0, 1, 2. The usual cellular chain complex

19My favorite proof, for smooth manifolds, is the one using Morse homology. We will
see this later in the course.
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Ccell
∗ (CP 2) is then by ∂e2 = ±2e1 and ∂e1 = 0, where the sign depends on

choices of orientations of the cells. Now fix an orientation of CP 2 at the
center point of each of the cells. This allows us to also regard Ccell

∗ (CP 2; O)
as generated by e0, e1, e2. However since the orientation of CP 2 gets reversed
if one goes from one end of e1 to the other or from one side of e2 to the
other, one now has ∂e2 = 0 and ∂e1 = ±2e0, where the sign depends on
the orientation choices. It is then easy to check that Poincaré duality (12.1)
holds in this example.
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