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IMMERSIONS AND MOD-2 QUADRATIC FORMS

LOUIS H. KAUFFMAN anp THOMAS F. BANCHOFF

1. Introduction. We are going to consider an easily visualizable classification problem in topology
and its close relationship with a corresponding classification problem in algebra. It is standard practice
in topology to begin with the geometry and then mirror part of its structure in algebra. Usually it
requires care to find a mirror which captures just enough geometry so that the corresponding algebra
problems are both accessible and relevant.

It occasionally happens that this process illuminates both the algebra and the geometry. This is the
case with our topic. Hence we obtain a particularly nice way to learn about two things simultaneously
— immersions of surfaces and mod-2 quadratic forms.

It is difficult to talk about two things at once. We shall therefore begin with the topology, show how
it leads to quadratic forms, and then discuss quadratic forms in more detail. By doing this, we obtain
geometric proofs and interpretations for the basic algebraic identities which underlie the theory of
mod-2 quadratic forms.

This paper is relatively self-contained except for a few facts about surfaces that are summarized in
sections 3 and 4 and some facts about homology in section 6. In such cases, we have tried to make the
facts geometrically plausible.

A word about quadratic forms: Consider a polynomial function f(x, y) = ax”+ bxy + cy® with a, b,
and ¢ real numbers. The locus f(x, y) = constant represents a conic section in the plane and it is a
standard exercise to determine the geometric form of this conic by changing variables to eliminate the
xy term in the expression. A modern approach is to consider the plane as the vector space R* of
ordered pairs v = (x, y) of real numbers, and to think of f: R?— R as a function on R We then can
define a bilinear form on R? by setting (v, w) = f(v+ w)— f(v) — f(w). Conversely, given a bilinear
form on R?, we may obtain a quadratic form q : R?— R by setting q(v) =3(v, v). Similarly in any
field where 1+1#0, there is a one-to-one correspondence between bilinear forms and quadratic
forms. But our geometric study will lead us to quadratic forms on a vector space V over the field Z,
with two elements, where 1+ 1= 0. Although for any such form q: V— Z, we get a bilinear form
(v, w)=q(v+w)+q(v)+q(w), the quadratic form is no longer completely determined by the
bilinear form. Thus the study of mod-2 quadratic forms involves a particular subtlety. We shall see
corresponding phenomena mirrored in the study of immersions, and this correspondence is the main
point of this paper.

The paper is organized as follows. Section 2 discusses immersions of circles into R? and the two
sphere, S*, and shows how consideration of the two sphere leads to mod-2 phenomena. Sections 3 and
4 discuss surfaces and their immersions. Letting € (M) denote the set of embedded curves on a surface
M, we obtain, for each immersion f: M — S?, a function N(f): €(M)— Z,. This function measures
how eurves on M are immersed into S. Section 4 introduces an invariant, B(f), for immersions of
surfaces by examining N(f) on the boundary curves. We study immersions of punctured disks up to an
equivalence relation called image homotopy. This section introduces some basic homotopies (handle
sliding and permutation) which will be used later. In section 6 we show how N(f): €(M)— Z, leads to
a quadratic form q(f) : #(M)— Z, where # (M) is the mod-2 homology group of M. In section 7 we
discuss certain homotopies of immersions and show how they correspond to isomorphisms of
quadratic forms. It is then easy to explain the classification of mod-2 forms. Section 8 completes the
classification of immersions of surfaces up to image homotopy.

A concise exposition of mod-2 quadratic forms may be found in [1, pp. 52-56]. For more
information about topology and quadratic forms, the reader may enjoy looking at [3] and [5]. We
remark that our results are related to the research article by Rourke and Sullivan [6].

2. Regular closed curves in the plane and the sphere. In order to approach the study of surfaces we
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have to understand closed curves. A closed curve may be thought of as the path traced out by a point
moving continuously in the plane R?, so that the point ends where it began. We may describe such a
path a by writing «(6) to indicate the position of the point that corresponds to the angle 6 on the
circle S', so that (0) = a(27). We will restrict ourselves to regular curves a : $' — R*. These curves
are also called immersions of the circle. They are defined by the condition that the velocity vector
a'(0) varies continuously and is non-zero for all values of § and a'(0) = a'(27). As a point traces out a
regular curve, there is a well-defined continuously turning direction vector a'(8)/| a’(8)|| for each 6,
and as 6 goes from 0 to 2, this unit vector goes a certain number of times around the unit circle in a
counterclockwise direction. We define this integer to be the degree D (a) of the regular closed curve.
Figure 1 indicates the degrees of a number of regular closed curves with arrows indicating which way
each curve is to be traversed.

vlelelelolv

FiG. 1

The degree of a curve does not change if we deform the curve slightly so that the tangent directions
move in a continuous manner. We call a one-parameter family a,:S'— R? 0=t=1, of regular
curves a regular homotopy if the tangent vectors a{(8) to these curves vary continuously as 6 and ¢
change, and we say that « and & are regularly homotopic if there is such a deformation beginning with
a = ao and ending with @ = a;. In this case we write @ = a. The definition of regular homotopy is set
up so that if @ and @ are regularly homotopic, then D(a)= D(a).

Our story really begins with a theorem of Hassler Whitney ([7], p. 279) which establishes the
converse of this last statement. His main result shows that the integer D («) completely characterizes
the curves that are regularly homotopic to a.

OO0 =0

FiG. 2

TheoreM 2.1 (Whitney-Graustein). If « and @ are two regular curves in R* with D(a) = D(a) then
a and & are regularly homotopic.

The condition a'(8) # 0 for all 9 indicates that for any 6y, the curve is approximated by the tangent
line, at least for a small interval about the value 6y, so that as  moves through this interval the regular
curve a is one-to-one, with no double points. It is possible however for the whole regular curve to
have double points. A double point is a point in R? that is the image of two distinct points on the
circle. That is, the point p satisfies the condition: p = a(6y) = a(6:) for some 0= 6, = 6, <27 and
a”'(p) = {60, 6:}. Similarly, we may speak of points whose pre-image consists of a finite number of
points on the circle (triple points, etc.). We call a double point a normal crossing if the tangent lines to
the curve at the two points are different. We say that a regular curve is normal if all of its
self-intersections are double points with normal crossings. Any regular curve may be deformed by a
regular homotopy into a normal curve. During a regular homotopy, the number of normal crossings
may change, but the parity will remain the same. (See Figure 3 for an example of a regular homotopy
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FiG. 3

which introduces two new normal crossings.) Thus if @ and @ are normal curves with a = @, then the
number of normal crossings of @ and the number of normal crossings of & are either both even or
both odd. (Regularity fails at the last instant in the parity-changing deformation illustrated in Figure
2.) If a is normal, we define the crossing number N(a) of a to be the number of normal crossings
reduced modulo two.

Whitney [7] established a relation between the degree of a normal curve and the number of normal
crossings:

TueoreM 2.2. If a is a normal curve on R?, then D(a) and the number of normal crossings of a
have opposite parity. That is, D(a)+ 1 reduced modulo 2 equals N(a).

We now wish to consider closed curves not in the plane but in S, the unit sphere in R®. The
notions of regular curve, regular homotopy, and normal curve carry over to the case where we map to
S? rather than R?, but now there is an additional kind of deformation available, in which we swing a
loop over the back of the sphere. This is illustrated in Figure 3. The first part of the figure shows how
to create or destroy two normal crossings. Note that when this occurs in the plane the two tiny loops so
created contribute oppositely to the degree since the tangent vector turns in opposite directions on the
two loops. In the plane it is not possible to change a + 1 loop to a — 1 loop by a regular homotopy.
However, this can be done in S The second part of Figure 3 shows how to switch such a loop on a
curve without disturbing the rest of the curve. For this figure we ask the reader to imagine that he or
she is looking down towards the surface of a transparent sphere. As the curve on the sphere is
deformed, part of it swings over the back of the sphere (dotted lines). In the intermediate stages of the
regular homotopy we have not drawn the entire curve. What is not drawn remains stationary. A
deformation such as this obliterates the difference between curves 3 and 1 of Figure 1, or between
curves 2 and 0.
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Although the notion of degree as we have defined it does not apply to a normal curve on the
sphere, we can still speak about the normal crossing number, N(a). The number N(a) is an invariant
of the regular homotopy class of a. Whitney’s result shows that the crossing number completely
classifies normal curves on the sphere up to regular homotopy:

THeEOREM 2.3. For normal curves a and & on S?, @ = & if and only if N(a)= N(&).

3. Immersions of the annulus in the sphere. In this paper we want to use the properties of regular
curves to study immersions of surfaces with boundary into S Perhaps the simplest such surface from
our point of view is the annulus, which we may think of as an interval of concentric circles in the plane,
with radii varying from r, to r,. By an immersion of the annulus into R* or $?, we mean a mapping
a(6,r),0= 0 =2m, ro=r = ry, such that the partial derivative vectors da/36, da/dr are non-collinear
vectors at each point which vary continuously as r and 8 change. This definition guarantees that the
annulus is mapped in a locally one-to-one way. Note that it follows that, for each fixed r, the curve
a (6, r) is an immersion of the circle. For example, a small strip neighborhood of a regular curve in the
plane is the image of an immersion of the annulus. If we would deform this center curve by a regular
homotopy a.(6, r), then we could obtain a similar one-parameter family a,(6, r) of immersions of the
entire annulus. We say that such a family of immersions is a regular homotopy of the annulus if for
every r, the family , (6, r) is a regular homotopy of curves and if the partial derivative vectors de, /36
and da,/dr vary continuously as 6, r and ¢ change.

As in the case of curves, we are interested in classifying regular homotopy classes of immersions of
the annulus into the sphere, and we may use our results on curves to give a complete classification.

No A
FiG. 4

THEOREM 3.1. Any immersion of the annulus in S* is regularly homotopic to an immersion whose
image is a strip neighborhood of either a circle or of a figure eight. (See Figure 4.)

Proof. Any immersion of the annulus may be shrunk down to a strip neighborhood of the center
curve. (This involves the tubular neighborhood theorem of differential topology. See Milnor, Topology
from the Differentiable Viewpoint, The University Press of Virginia, (1965) p. 46.) We may then use the
results of the previous section to find a regular homotopy of this curve to a circle or a figure eight
carrying along the strip neighborhood of the curve.

There is one additional subtlety that makes the theory of immersions of the annulus different from
that of curves and that has to do with orientation. The partial derivative vectors da/36 and da/dr are
tangent vectors to the sphere that are assumed to be non-collinear, so their cross-product either points
out of the ball or into the ball at every point of the annulus. In the first case we say that « preserves
orientation and in the second we say that a reverses orientation. The property of preserving or
reversing orientation does not change during a regular homotopy, so our classification theorem may
be stated more precisely as follows:

THEOREM 3.2. Two immersions of the annulus into the sphere are regularly homotopic if and only if
their center curves are regularly homotopic and both immersions either preserve or reverse orientation.

Henceforth we shall assume that all of our immersions of surfaces are orientation preserving.
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4. Immersions of surfaces with boundary into the sphere. An orientable surface with boundary is
obtained by removing a finite number of non-overlapping discs from an orientable surface such as a
sphere, a torus, or more generally, a sphere with handles. An annulus, for example, may be described
as a sphere with two discs removed. The disc itself is a sphere with a disc removed. A basic theorem in
the study of orientable surfaces states that any such surface may be obtained by starting with a
polygonal region in the plane and identifying certain pairs of boundary edges (see for example [4],
Chapter 1). A torus may be described in this way as a square with opposite sides identified, and if we
remove a quarter disc about each corner of the square before identifying the opposite sides, we obtain
a torus with a disc removed, which we shall refer to as a punctured torus (see Figure 5).

Aq
By By ¢— @
Aq
Aq
B Bl «&— h
A

FiG. 5

Although it is not péssible to find a locally one-to-one mapping of the entire torus into the plane, it
is possible to produce several different immersions of the punctured torus into the plane. To do this we
attach bands to the square without corners by finding immersions of half of an annulus (6, r),
0=0=m, ro=r=r, so that the ends match up with the sides that are to be identified. In a region
about any point of the punctured torus we may then find parameters so that the partial derivative
vectors are non-collinear and so that they vary continuously as the parameters change. We call such a
mapping an immersion of the punctured torus into the plane (or into S?).

ay—a; ap

—

FiGc. 6

We obtain the center curve of a band by taking the center curve of the half annulus and connecting
its endpoints to the center of the square by a one-to-one arc to form an immersion of the circle. These
remarks apply equally well to an arbitrary surface. In the general case the procedure described above
leads to a surface with boundary curves as illustrated in Figure 6. In Figure 6 the collection of center
curves to the bands is given by the set

{a,ai,az as,...,a,ab,..., b}

A band is said to be untwisted if its center curve is regularly homotopic to an embedded curve (that
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is, a curve with no self-crossings) and to be twisted if it is regularly homotopic to a normal curve with
just one crossing. In Figure 7 we indicate four immersions of the punctured torus: Too with both bands
untwisted, To; and Ty, with one band twisted and one band untwisted, and Ty, with both bands
twisted. :

As in the case of the annulus, we define a regular homotopy of immersions of a surface M with
boundary to be a one-parameter family of immersions f, : M — S so that for some region about any
point we may find a parametrization so that the partial derivative vectors change continuously as ¢

varies.
@ TOO (TO)

@Tm "

T11 (T9)

FiG. 7
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The regular homotopy classification of surface immersions is not hard. Our next theorem is a
generalization of Theorems 3.1 and 3.2. Since the proof is similar to the proofs of 3.1 and 3.2, we shall
omit it.

THEOREM 4.1. Let f: M — S be an orientation preserving immersion of a surface M with band
curves {a, ..., a.}. Another immersion, g:M— S? is regularly homotopic to f if and only if
N(fea;)= N(goa;) foreach i=1,2,... k.

Thus an immersion is determined up to regular homotopy by the crossing numbers of its band
curves. There are four regular homotopy classes of immersions of the punctured torus. An example of
an immersion in each class is given in Figure 7. The images in the figure are denoted Too, To1, Tio, and
Tll- .
The immersions Ty, and T\, differ very little in appearance. In fact, the distinction we are making
between them depends upon more than their images. We are assuming that maps f: M — §? and
g : M — S? are given so that f(M) = To,, g(M) = Ti. Furthermore, if @ and B are the band curves on
M then we also assume that N(fea)=0, N(foB)=1while N(goa)=1, N(g °B)=0. By changing a
map without changing its image one can produce non-regularly homotopic immersions with the same
image. For example, let h : M — M be a homeomorphism (that is, a one-to-one, onto, continuous
mapping with continuous inverse) of the punctured torus that switches the two bands. If h satisfies the
same differentiability criteria that we imposed upon an immersion, then so will the composition f  h.
Hence foh : M — S?is also an immersion. We assumed that h interchanged the bands and therefore
N((foh)oa)=1and N((foh)°B)=0. Thus, while Ty, = f(M)= foh(M), we see that f and foh are
not regularly homotopic. In fact, by Theorem 4.1, f o h is regularly homotopic to g. Thus, depending
upon the maps representing them, the images To, and Ty, may represent distinct or equivalent
immersions.

We wish to concentrate on the images of immersions. For this purpose it is useful to say that an
orientation preserving homeomorphism h : M — M (M any orientable surface) is a diffeomorphism if
h satisfies the local derivative conditions for an immersion. It then follows that if f: M — $? is an
immersion and h : M — M is a diffeomorphism, then fo h : M — S? is also an immersion. Note that f
and foh have identical images. )

We are going to study an equivalence relation on immersions called image homotopy. Intuitively,
two immersions are image homotopic if there is a regular homotopy between their images. For
example, consider the bottom line of Figure 8; it illustrates an image homotopy between Ty and To,.
Thus image homotopy is weaker than regular homotopy. Since our rigorous definition of image
homotopy is a bit technical, we defer it to the end of this section. The reader may wish to look forward
into the rest of the paper before examining the exact concept of image homotopy.

In setting up algebraic invariants of image homotopy it will be useful to consider curves embedded
in a given surface. Let €(M) denote the collection of curves a : §'— M with & an embedding. Given
an immersion f : M — S and & € € (M) we obtain a regular curve foa : S'— S Thus we may define

N({f): €(M)—>Z, by N(f)(a)=N(foa).
In the next section N(f) will be applied to the boundary curves of M. We then turn to arbitrary

curves and see how this leads to a connection between image homotopy and mod-2 quadratic forms.

Notation. Since Too, Toy, and T are image homotopic, we shall use the notation T; for Too and T
for T, in all later sections.
Here is the promised definition:

DEerINITION 4.2, Two immersions f, g: M — S* are image homotopic (f=~g) if there is a
diffeomorphism h : M — M so that foh is regularly homotopic to g.
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Fic. 8

While this definition may seem hard to visualize, in practice this is not the case. A diffeomorphism
of a surface may often be viewed as the result of a deformation. View Figure 8. It illustrates (middle
row) an embedding of the punctured torus in R* and a deformation through embeddings to a new
punctured torus in R®. More precisely, we are given a time-parameter family of diffeomorphisms
h.:R*-> R® so that h,=identity, and an embedding j: M — R> Then j(M) represents the
embedded torus at time ¢ = 0 and h,(j(M)) represents the torus at time ¢ = 1. There is an obvious map
j':M— R? so that j'(M)= h,(j(M)) and so that ;' embeds the disk and maps each band to the
corresponding embedded band. Define h : M — M by the formula h(x)=(j""oh;oj)(x). As the
picture suggests, k(a)= a while h(B) is a sort of combination of @ and B, where « and B are the
band curves on M. The bottom part of the figure illustrates a sequence of projections
p R (j(M))— R? (or $?). In each case, p,oh,oj(M) is an immersed surface. Let f=p,oj’ and
g = pooj. Then f and g are immersions with N(g)(a)= N(g)(B) =0 while N(f)(«) =0, N(f)(8)=1.
However, by our construction we see that N(fo h)(a) = 0= N(foh)(B). Hence, by Theorem 4.1, fo h
is regularly homotopic to g.

We put this in a nutshell by saying that Ty and To, are image homotopic. Intuitively, the image
homotopy is pictured in the bottom line of Figure 8. Any such picture may be unfolded as we have
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done, to produce a diffeomorphism k. We shall use this convention from now on, drawing image
homotopies as in the bottom of Figure 8 and leaving the unfolding to the reader.

5. The boundary invariant. Recall that our surfaces have boundary. Each boundary component
of a surface M may be viewed as a curve on M. If C is a boundary component of M, then we may
choose an embedding ¢ : S' — M so that ¢(S') = C. In this way we regard each boundary curve as an
element of C(M). Given an immersion f: M — S? we may compute the crossing number,
N(f)(C) = N(f > ¢), for each boundary component C. For a given component C, this number does not
depend upon the choice of embedding ¢ : S'— M.

DeriNiTioN 5.1. The boundary invariant, B(f) € Z, of an immersion f : M — S? is the total number
of boundary curves C CM such that N(f)(C)=1.

Lemma 5.2. Iff and g are image homotopic immersions of a surface M into S°, then B(f) = B(g).

Proof. First suppose f = g oh where h : M — M is a diffeomorphism. Since h only permutes the
boundary components, B(f) = B(g). If f is regularly homotopic to g then f|c is regularly homotopic
to g | for each boundary curve C. Hence N(f)(C)= N(g)(C) and therefore B(f) = B(g). Since it is
sufficient to check these two cases, we conclude that if f is image homotopic to g, then B(f) = B(g).

Lemma 5.3. For any surface immersion f : M — S°, the boundary invariant is even. In particular, if
M has only one boundary component, then B(f)=0.

Proof. Given an immersion f: M — S? we may assume that each boundary curve is immersed with
normal crossings, and that the immersions of distinct boundary curves cross each other normally. Let
the total crossing number, T(f) € Z, be the total number of crossings (self and mutual) among the
immersed boundary curves. Since any two curves in S? intersect in an even number of points, it is clear
that B(f) = T(f) (modulo 2).

We shall prove that T(f)=0 (modulo 2) by induction on the number of bands necessary to
represent M. If there are no bands, then M is a disk and so there is a regular homotopy of the
boundary curve to a small circle about a point. Such a circle has crossing number zero, and so the
original crossing number was even. For a surface with one or more bands, we may eliminate a band by
cutting across it as in Figure 9. The total crossing number is unaffected by this operation. Hence the
lemma follows by induction.

Fic. 9

The boundary invariant easily distinguishes certain immersions. For example, let X and Y denote
the immersions in Figure 10. Then B(X) = 2 while B(Y) = 4. Hence X is not image homotopic to Y.
In fact, immersions of punctured disks are classified by the boundary invariant:

PrOPOSITION 5.4. Let M be a punctured disk with k holes, represented as a disk with k attached
bands. Two immersions f, g : M — S* are image homotopic if and only if B(f)= B(g).
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Br+1 Br+2 Bk

OO BB
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Proof. We may assume (by using a regular homotopy) that f embeds the disk part of M in standard
fashion and that the bands are immersed disjointly, with either one twist or no twist. If M is
represented as in Figure 11 with bands By, B, .. ., By, then we may assume that By, ..., B, have no
twist, while B,.1,..., B. each have a single twist. This is accomplished by using a sequence of
permutations as in Figuré 12A. There are (k + 1) boundary curves Co, Ci, ..., . The curve Gy is the
outer boundary. Hence B(f) = (k —r)+ N(Cy). Since N(Co) =0 or 1, this presentation is not quite
canonical. However, if k —r =0 (mod 2) then N(Co) =0, and if k —r =1 (mod 2) then N(Co) =1
(since B(f) is even). If k is odd and B(f) = k + 1, there is no ambiguity. Otherwise, there are two
immersions of this form corresponding to each value of B(f), one with N(C,)=0 and one with
N(Co) = 1. They are image homotopic via the “handle-sliding” operation illustrated in Figure 12 for
k=2and k =4.

NSO\ = O\=SOLD
OVO\ =

handle—sliding
Fic. 12A

In the general case we slide the right hand end of B; across all other bands, cancel some twists
using the mod-2 character of immersions in 2, and proceed as in Figure 12. This completes the proof.

6. Curves, homology, and quadratic forms. If M is an arbitrary surface and f: M — S* an
immersion, then the boundary invariant is insufficient to determine the image homotopy class of f. We
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FiG. 12C

shall see that N(f): €(M)— Z, contains all of the extra information that is needed. However, (M)
is a very large collection of curves; some simplification is called for.

Suppose a, B € €(M). It may happen that « is regularly homotopic to 8. That is, there may be a
map F:S'X[0,1]—> M such that each F, 0=t =1, is an immersion and F, = @, F; = 8. Under these
circumstances f°a and fo B8 are regularly homotopic immersions of S* to S°. (The regular homotopy
is foF:8'x[0,1]— S%.) Thus N(f)(a) = N(f)(B).

DEFINITION 6.1. Let (M) denote the collection of regular homotopy classes of elements of €(M).
Given a € (M), let & denote its regular homotopy class in €(M). Then we may define
N(f): €(M)— Z, by N(f)(@)= N(f)(«). The remarks above assure us that this definition makes
sense.

Now € (M) has extra structure which can be exploited. Given a and 8 € €(M), we can deform
each of them by a regular homotopy so that a(S') and B(S") intersect normally. Assuming that « and
B intersect normally, let a - B € Z, denote the mod-2 residue class of their number of mutual
intersections. This intersection number in Z, depends only on the regular homotopy classes of the
curves. We obtain a pairing -: €(M) X €(M)— Z, by setting @ - 8 = « - B where a and 8 are chosen
to intersect normally.
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It is also possible to add elements of € (M). This involves removing intersection points. Suppose
two arcs intersect normally as in Figure 13. There are two ways to remove the intersection point and
reassemble the remainder into two non-intersecting arcs (see Figure 13). Given curves a, B € €(M)
intersecting normally, we may systematically remove all the intersection points and then reassemble to
obtain a connected closed curve with no self-intersections. There are many ways to do this. Call the set
of curves obtained in this way a @ B.

Thus we have a procedure for addition:

(1) Choose a, B € €(M).

(2) Find o', B’ € (M) so that o’ and B’ intersect normally, and a'= e, B'= .

(3) Remove all intersection points of a' and B'.

(4) Reassemble to form an embedded curve y.

(5) Then yEa DB

There is an important relationship between this addition process and N(f).

LemMmA 6.2. Let f: M — S? be an immersion. Let a, B € € (M) be two normally intersecting curves.
Then, for any choice of v in a @ B,

N(f)(y)=N(f)a)+ N(f)B)+a B

Proof. We may assume that (S') N B(S') # J since this can be arranged by a regular homotopy.
By the same reasoning, we may assume that fea(S') and foB(S') have normal self and mutual
intersections. Now N(f)(y) equals the total mod-2 number of intersections of foa(S') and foB(S")
(self and mutual) minus those mutual intersections which already occur on M. Since the total mutual
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intersection of two curves on S? is even, we conclude that

N(f)(y)=N(f)a)+ N({)B)+a "B

This lemma suggests that it would be advantageous to place an equivalence relation on €(M) so
that both sums and the mod-2 intersection number are well-defined on the equivalence classes. Such
an equivalence relation must include regular homotopys; it should also make all elements of the set
71D 72 equivalent when y, and v, are normally intersecting curves on the surface. Thus we make the
following definition:

DerINITION 6.3. We say that two curves a, B € 6(M) are homologous (a ~ B) if one may be
obtained from the other by a finite sequence of elementary homologies. An elementary homology
may be of two types:

(1) @ ~ B if & and B are regularly homotopic on M (@ = B € €(M)).

(2) a ~ B if there are curves 7y, y. € (M), intersecting normally, so that a and B are each
members of v, y,.

Let #(M) denote the set of homology classes of curves in €(M). If & € €(M), let{a) € ¥ (M) be
its homology class.

Given (a), {8) € #(M), we may assume that the representatives & and 8 have non-empty, normal
intersection. (Since the surface is connected, it is always possible to change two curves by a regular
homotopy so that they have non-empty intersection.) We therefore define the sum by the equation
(a)+(B)=(y) for any y in a @ B. The intersection pairing is defined by the equation (a)-(B) =
a + B. In fact # (M) becomes a group. The identity element, 0, is represented by any small curve about
a point on M. Note that it follows from Lemma 6.2 that N(f) is well-defined on (M) and that

N()(e)+(B) = N(f)(a) + N()(B) +a) - (B)
(We set N(f)(a))= N(foa).

It is not hard to verify the next lemma:

Lemma 6.4. If M is any surface, then % (M) is an abelian group such that every element has order 2.
Thus we may regard #(M) as a Z,-vector space. If M has normal form as in Figure 6 then 3(M) has
Z,-basis B ={a,, ai, -, a,a,, by, -+, b} where each of these classes represents a curve which traverses
a single band on M.

The intersection pairing - : (M) x ¥ (M)— Z. is bilinear and symmetric, and x - x =0 for all
x € ¥(M). In the basis %,
a-ai=1
a-a=a-a;=0, i#j
a-b=ai-b=0, any i, j.
(Compare with Figure 6.)
In fact, #¥(M) = H\(M ; Z,), the usual first homology group of M with Z, coefficients. (See [2], pp.
92-94.)
We are now in a position to reformulate Lemma 5.2.

DeriNITION 6.5. Let V be a finite dimensional Z; vector space and -: V X V— Z, a symmetric,
bilinear form such that x - x = 0 for all x € V. We say that a function q : V— Z; is a mod-2 quadratic
form associated with the pairing - if

qlx+y)=q(x)+q(y)+x-y
for all x,y € V.
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COROLLARY 6.6. Let f: M — S? be an immersion. Define q(f) : #(M)— Z, by q(f)(a) = N(f)(a).
Then q(f) is a mod-2 quadratic form associated with the intersection pairing on #(M).

Note that, by 6.4, we can actually compute q(f) by finding the mod-2 degrees of each band-curve
on M. How does ¢q(f) behave under an image homotopy of f? Obviously it remains unchanged under
regular homotopy of f. The next lemma shows what happens when the image homotopy involves a
diffeomorphism:

Lemma 6.7. If h:M— M is a diffeomorphism, then h induces a vector space isomorphism
h,: #¥M)—> ¥ (M) and (h,a)-(h,b)=a-b forall a,b € H(M).

Proof. Define h,(a)= (hoa). The rest is easy to check.
Now suppose that g = foh where h is a diffeomorphism of M. Then q(gXa)=N(fehca)=
q(f)Xhoa)=q(f)oh(a). Thus q(g)=q(f)°h..

DEeriNITION 6.8. Let ¢,q': V— Z, be two quadratic forms. One says that q is isomorphic to q'
(g = q') if there is a vector space isomorphism T:V— V such that g'=¢q°T.

CoroLLARY 6.9. Iffand g : M — S* are image homotopic immersions, then the quadratic forms q(f)
and q(g) are isomorphic.

We can now prove that the punctured torus immersions T, and T are not image homotopic. Let
o= q(To) and ¢, = q(T,). Then V = ¥ (M) = Z,P Z, with basis {a, b} so that ¢o(a)= ¢o(b) =0,
¢di(a)=¢i(b)=1. Hence ¢o(a+b)=a-b=1and ¢i(a+b)=1+1+1=1. Therefore ¢, takes a
majority of elements of V to 1 while ¢, takes a majority of elements of V to 0. If ¢, = ¢o° f where
f: V— Vis an isomorphism, then ¢, would also take a majority to 0. Therefore ¢o and ¢, are not .
isomorphic, and hence T, and T, are not image homotopic.

On the other hand, our pictures of homotopies give rise to specific isomorphisms. Consider the
handle-sliding operation of Figure 12. If b denotes the curve (dotted) on the band being moved, while
a is the curve on the stationary band, then our picture shows that a » a while b » a + b under the
image homotopy.

For example, Figure 8 shows an image homotopy of T, to To;. We know that q(To) = ¢o; let
¢ = q(Ty). Then the isomorphism h,: V— V is given by the equations h,(a)=a and h(b)=
a+b

The association of immersions and quadratic forms is a double-edged tool. It will let us determine
the structure of both immersions and quadratic forms.

7. Basic homotopies and isomorphisms. Immersions may be combined. The beginning of Figure 14
illustrates the result of joining two copies of T, together by an untwisted band. This is called the
connected sum. Given any two immersions A and B, their connected sum, A # B, is formed in the
same way. If one of the surfaces has more than one boundary component, then it is possible to form
different immersions by joining along different boundary components. For example, Figure 10
illustrates two ways of taking the connected sum of A;, A, and Ao. Nevertheless, the symbol A # B
will denote any one of the possible connected sums of A and B.

The algebraic analogue of connected sum is the direct sum of quadratic forms.

DeriniTiON 7.1, Let q: V— Z,and q': V'— Z; be mod-2 quadratic forms. Define the direct sum,
qDq': VB V' > Z, by the formula g P q'(r,r')=q(r)+q'(r') for rE V and r' € V'. It is easy to
see that ¢ P q' is a quadratic form.

If A and B are immersions of surfaces M and N, then A # B is an immersion of M # N and
H(M # N)=H(M)D ¥(N). It is clear that q(A # B)=q(A)P q(B).

For example, let Ao and A, be the untwisted and single-twist annulus immersions. Let 1o and 0, be
the mod-2 quadratic forms on V = Z, defined by setting 1o(1) = 0 and #,(1) = 1. Then q(Ao) = 1o and
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q(Ay) = m,. Figure 12B may be interpreted as Ao # A=A, # A,. Hence 1o 11 = 1, .. Since
direct sum of forms is well-defined, commutative, and associative, this implies that 1, @ 7, n, =
10 P 10D m1. This type of reduction occurs for forms but not for immersions (the boundary invariant

gets in the way).
Certain basic homotopies lead to fundamental isomorphisms of quadratic forms:

THEOREM 7.2. (a) T() # Toz T) # T\, (b) A) # T] ’“‘A] # To, (C) A] # Aleo # A].

Hence, (2') ¢o® do=¢:D o1, (recall that ¢o=q(To), é1=q(T1)); (') 7D d:1=nD d;
€) mDn=nDn.
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Proof. The proof involves handle sliding as illustrated in Figure 14. For (a) the bands are labelled 1,
2, 3, 4. The first step involves sliding the 1 -2 group over 3. Then 3 is slid around 1, 2 and 4; and 2 is
slid around 1. Note that in sliding 3 past the 1—2 group one slides 3 along 1, then around 2, then
around 1, and finally across 2. This adds two twists to band 3. Sliding around 4 adds another twist.
Thus in the second step, band 3 acquires 3 twists. Since twists cancel in pairs on S (by the global
swing-around of Figure 3) we have illustrated band 3 with the single resulting twist. This mod-2 twist
arithmetic goes on throughout most of the rest of the deformation.

In the third step , 4 slides over 2, and acquires a twist. Then 1 slides over 3 acquiring a twist. Finally
the 3 —4 group slides out across 2 and we have T, # T;.

For (b) the procedure is similar. Slide 1 across 2. Slide the left end of 2 around 1. Slide 2 out. Slide 3
around 1.

We have discussed (c) in the remarks prior to the theorem. This completes the proof.

The algebra isomorphisms ('), (b"), (c') deserve algebraic proofs. It is not hard to ferret out proofs
from our homotopies by following a homology basis throughout the deformations. For example, let
¢ =q(To # To)and ¢’ = q(T, # T,). Let V have basis a,, a,, as, as where q; is the curve correspond-
ing to the band labelled i. Then ¢¥(a,) = ¥(a) = ¥(as) = ¢(as) =0 while ¢'(a;)=--- = ¢'(as)=1.
Here are the transformations corresponding to each step in the deformation for part (a) (refer to
Figure 14).

(1) identity @) ara i=123
2 ara asP a+a,
aP a,t+a; 4) aratas
asP as+ as a» a, i=234
asP a, (5) identity.

These are obtained by repeatedly using the handle sliding basis-change discussed at the end of the
last section. Note that sliding across a torus-group (like 1-2) induces the identity transformation since
one must slide past each band in the group twice.

The mapping h,: V— V is the composite of these five maps. We find

h(a)=a,+a;
h(a)=a,+a+as
h . (as)=a,+as+ as
h(as)= a,+ as.

It is easy to check that ¢'oh, = . This gives an algebraic proof that ¢oP do= ¢, P ..
~ The isomorphisms of Theorem 7.2 are the key to the classification of mod-2 quadratic forms! Here
is the algebra in its own right:

Let q: V— Z, be an arbitrary mod-2 quadratic form with associated pairing -: VX V— Z,.
When g = q(f) for an immersion f : M — S* we know that V has a basis @ as in 5.4. In fact one can
always find a basis with these intersection properties for any symmetric bilinear pairing on V such that
x - x =0 for all x € V. The proof (algebraic proof) is a standard exercise in linear algebra. It then
follows, just as in the geometric case, that any form ¢ : V— Z, is a direct sum involving the forms
¢o, d1, No and 7,. Such a direct sum reduces to one of the following types by using (a'), (b’), and (¢').

(i) &1 DidoD(s+1)no

(ii) (I+1)doD (s + )mo

(iii) (I+1)oD 510D M.

Here ip = P d DD ¢ (I-factors).

These types are distinct. To see this, first characterize the subspace of V which supports the 5, and
. factors. This is the radical of V, denoted Rad V. It is the subspace

RadV={xE€V|x-y=0, forall y in V}
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Thus, forms of type (i) or (i) have q/Rad V=0. If this is the case, then we obtain
G:V/RadV—>Z, and § is non-degenerate. That is, the matrix of the bilinear form for § is
non-singular. The form § is isomorphic to ¢, @ I or to (I + 1)¢o. In the first case; a majority of the
elements of V/Rad V go to 1, while in the second case a majority go to 0. We may therefore define the
Arf invariant c(q)=1 or 0 according to this majority vote by 4.

In case (iii) g [Rad V# 0. But forms of this type are characterized by dim (V) and dim (Rad V).

This completes the classification of mod-2 quadratic forms. In the next section we apply our results
and classify immersions.

ReMARK. It is useful at this point to survey the correspondence that we have obtained. If V is a
vector space over afield Fand( , ). VX V— F is a symmetric bilinear form then, if 1+1#0in F,
we may define a quadratic form g : V— F by g(x) =3(x, x). Note that we now have

gx+y)=3x+yx+y)=3(xx)+{y,y)+2x y) = q(x)+q(y) +{x y).

Thus g is a quadratic form associated with ( , ). Conversely, if q is quadratic form then we obtain a
corresponding bilinear form. This correspondence breaks down when 1+1=0 and there may be
many quadratic forms associated with a given bilinear form. Just so in our geometry we take one
surface (and its homology intersection form) and we find many immersions of this surface into $* (and
their quadratic forms). For a given surface, each quadratic form is associated with one given bilinear
form (the intersection form). Since image homotopy of immersions implies isomorphism of the
corresponding mod-2 quadratic forms, it has been possible to give a geometric version of the theory of
mod-2 forms.

8. Classification of immersions. We are now prepared to complete the classification of immersed
surfaces.

TueoreM 8.1. Let f and g be orientation preserving immersions of a surface with boundary M into the
two-sphere, S*. Then fis image homotopic to g if and only if the boundary invariants of f and g agree
and the quadratic forms are isomorphic. That is,

(@) B(f)=B(g) and (b) q(f)=4q(g).

Remark. If B(f)= B(g) =0, then ¢(f) and q(g) have Arf invariants (see section 7) and we may
replace (b) by

) clg(f))=clq(g))-

¥ B(f)=B(g)#0, then the quadratic forms are of type (iii) and hence are classified by the
dimensions of their radicals.

Proof. As in the proof of 5.3, we may assume that M is in normal form as in Figure 6 (a disk with
attached bands), that f embeds the disk, and that the bands corresponding to different pairs {a;, a'} or
singlets {b;} do not intersect in the image. In other words, f is a connected sum involving T, T1, Ao and
A, with all the copies of T, and T, appearing on a single boundary component. Hence, by using 7.2 we
may write, f is image homotopic to one of the following forms:

(i) f=kTo # IAo

(iii) f=kT, # IAo # sA,, s#0.

Here the connected sum is the specific one arising from the normal form for M. Immersions of type (i)
and (ii) have B(f) = 0 and are distinguished by the quadratic form, as we have seen. An immersion of
type (iii) is clearly distinguished by B(f) (which tells how many A,’s appear) and q(f) (which tells how
many Ao’s and A,’s appear). This completes the proof.

Note the close parallel with the classification of quadratic forms. Boundary difficulties, as in section
5, prevent the correspondence from being perfect. This was to be expected since there are no
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distinguished elements in V for an arbitrary form q : V— Z,, while % (M) contains the homology
classes of the boundary curves.

If M has a single boundary component then the quadratic form has no radical. Such forms are
sums of ¢ and ¢,. Theorem 8.1 implies that isomorphism classes of non-degenerate (Rad = 0) forms
are in 1-1 correspondence with image homotopy classes of immersions with a single boundary
component.

FiG. 15

Here is an exercise. Let Ni be the immersion pictured in Figure 15. It has k-bands. Reduce it to
normal form by handle-sliding. What does this say about the corresponding quadratic forms as a
function of k =1,2,3,4,...7
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THE FIFTH U.S.A. MATHEMATICAL OLYMPIAD

S.L. GREITZER

The Fifth U.S.A. Mathematical Olympiad was held on May 4, 1976. As before, it consisted of five
power questions requiring mathematical ingenuity as well as competence and knowledge of subject
matter. The problems will be found at the end of this article.

As in previous years, most students were selected on the basis of their performance on the Annual
High School Mathematics Examination. Several students from Michigan and Wisconsin were invited
to participate. These states do not, as a rule, participate in the Annual High School Mathematics
Examination, but have their own contests. In all, 96 students were asked to participate, and 94 finally
took part. One student did not reply to the invitation, and one student withdrew suddenly.
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