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Abstract

We give a detailed presentation of the first example of hyperbolization of a
knot complement, due to Riley [Ril].

Chapter 1 is dedicated to theoretical background. In particular, we intro-
duce the concepts of knot theory, Kleinian groups, fundamental domains,
Poincaré’s Polyhedron Theorem, and hyperbolic 3-manifold theory.

In Chapter 2, we give an isomorphism between the fundamental group of the
figure-eight complement R3\ 41 and a certain subgroup I' < PSL(2,C). We
then make use of Poincaré’s Polyhedron Theorem to produce a fundamental
domain D for the action of I' on the hyperbolic 3-space U3. As an outcome,
we obtain that I' is discrete and torsion-free, so that the quotient space
D* = U3/T is a complete oriented hyperbolic 3-manifold of finite volume.
We finally use topological arguments to show that R3\ 4; is homeomorphic
to U3/T.

In Chapter 3, we outline two related results: Mostow-Prasad rigidity, and
the Hyperbolization Theorem of Thurston in the case of knots.

Finally, we give as an appendix an unpublished article by Riley, accounting
his discovery.
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Introduction

Around 1978, William Thurston held the famous lectures entitled “The Ge-
ometry and Topology of 3-Manifolds” at Princeton. The related lecture
notes [Thl] are so rich and so deep that it is one of the main references
in the study of low-dimensional geometry and topology. Thurston’s genius
and geometric intuitions, crowned by a Fields Medal in 1982, still feed and
stimulate many geometers and topologists worldwide.

Chapter 3 of [Thl] is devoted to geometric structures on manifolds, and
begins with a section entitled “A Hyperbolic Structure on the Figure-Eight
Knot Complement”. There, Thurston states -in one page- that it is possible
to “see” the complement of the figure-eight knot “co” or “4;” in R? as a
complete hyperbolic 3-manifold of finite volume constructed by gluing two
ideal regular tetrahedra together in a certain way. He also mentions that
Robert Riley produced a compatible hyperbolic structure on the figure-eight
complement.

In fact, already in 1975, Riley gave in [Ril] the first proof of this result.
Today, we know that most knot and link complements are hyperbolic. This
statement was at that moment only conjectured, and is now known as a
special case of Thurston’s Hyperbolization Theorem.

The aim of this work is to give a detailed presentation of the original proof
following Riley [Ril] and to describe the explicit hyperbolic structure on the
figure-eight complement.

Since such a study involves different fields of mathematics, we give in Chap-
ter 1 the necessary theoretical background. In particular, we introduce the
concepts of knot theory, Kleinian groups, fundamental domains, Poincaré’s
Polyhedron Theorem, and hyperbolic 3-manifold theory. This should make
this work self-contained and accessible to non-specialists.

In Chapter 2, we make use of these tools to work out Riley’s approach.
More precisely, we give an isomorphism between the fundamental group of
the figure-eight complement R3\ 4; and a certain subgroup I' < PSL(2, C).
We then make use of Poincaré’s Polyhedron Theorem to produce a funda-
mental domain D for the action of I on the hyperbolic 3-space U3. As an
outcome, we obtain that I' is discrete and torsion-free, so that the quotient
space D* = U3/T" is a complete oriented hyperbolic 3-manifold of finite vol-
ume. Finally, we use topological arguments based on Waldhausen [Wa] to
show that R?\ 4; is homeomorphic to U3 /T.

In Chapter 3, we give some remarks on two important related results:
Mostow-Prasad rigidity, which implies that R3 \ 4; is isometric to U3/’
and to Thurston’s glued tetrahedra, and Thurston’s Hyperbolization Theo-
rem applied on knot complements, which gives a criterion to decide whether
a knot complement can be hyperbolized or not.



Finally, we give as an appendix an unpublished paper by Riley, in which
he describes the context and stages before and after his discovery, and his
encounter with Thurston.

Notice that the formal definition of “hyperbolic structure” is the implemen-
tation of a Riemannian metric of constant negative sectionnal curvature
(which can be normalized to —1). However, we will follow Riley’s initial
approach, which did not deal with Riemannian geometry.

Good introductions and surveys of hyperbolization of knot complements can
be found in [Ad2], [CR], or [Mi2].



Chapter 1

Toolbox

Preliminary remark. The goal of this chapter is to provide all necessary
tools to understand how the hyperbolization of a knot complement can be
performed. In particular, we have tried to provide a sufficient mathematical
background to make the article of Riley [Ril] accessible.

An experienced reader can easily omit one, several or all sections, and a less
experienced (or more interested) reader will find the important definitions
and results, and at the begining of each section references to the books and
articles which have been used to ellaborate it. Proofs, details and additional
material can be found there.

1.1 Fundamental Group

First of all, let us recall some important definitions and facts concerning
fundamental groups and topological manifolds. More informations can be
found e.g. in [Le].

Given a topological space X, we can consider closed continuous curves in
X:

Definition. Let zp € X be a basepoint and I:=[0,1] the unit interval of
R. A loop in X based at xg is a continuous map « : I — X such that
a(0) = a(l) = zp.

The product of two loops o and «y : I — X based at x( is written ag o aq,
ap(2s) ,for0 < s < %

a1(2s —1) ,for%ﬁsgll

For a loop o : I — X based at zg, the loop o' : I — X such that
a~1(s) := a(l —s), Vs € I, is based at x¢ and called the inverse of a.

and defined by (g o aq)(s) := {

In order to introduce the concept of fundamental group of a manifold, a first
notion to mention is the notion of homotopy:

Definition. Let X, Y be topological spaces, and f,g : X — Y continuous
maps.



A homotopy from f to g is a continuous map H : X x I — Y such that
H(z,0) = f(z) and H(z,1) = g(x), Vz € X.

If there exists a homotopy from f to g, then f and g are said to be homotopic,
written f ~ g.

Proposition 1.1. Loop homotopy is an equivalence relation.

So, given a topological space X and a basepoint zg € X, we can sort the
loops based at xg in homotopy classes:

Definition. The fundamental group of X based at z( is defined to be the
set of all homotopy classes of loops based at ¢, and denoted 1 (X, x¢).

Proposition 1.2. w1 (X, x), together with the product of classes defined by

[ag] * [a1] := [ 0 1], is a group, with neutral element cy, := [cy,], where
Czo : I — X such that cg,(s) ==z Vs € 1.
The inverse of [a] is [a] 7! := [a71].

In spite of its quite simple definition, the fundamental group is a powerful
tool to study topological and geometric properties of manifolds.

As an example and a preparation for the following, here is a result that
shows how the fundamental group can be used to work with topological
spaces (and especially with manifolds):

Definition. Two topological spaces X, Y are homotopic equivalent < there
exists continuous maps f: X — Y and g : Y — X such that fog ~ Idy
and go f ~ Idx.

Proposition 1.3. If X,Y are homotopic equivalent spaces, and if f : X —
Y is continuous, then (X, xo) = m (Y, f(xo)) V2o € X.

Remark. Tt is important to notice that the converse doesn’t hold: an isomor-
phism between fundamental groups does not imply a homotopy equivalence
between the space. The importance of this fact will be clarified in section
2.4.

The objects we will mainly study are topological spaces that “locally look
like” a certain “standard space”, e.g. R? or H®. We now introduce the (more
accessible) notion of topological n-manifold, and will deal with hyperbolic
3-manifolds in Section 1.7.

Definition. A (topological) n-manifold is a second-countable, Hausdorff
topological space M such that each point of M has a neighborhood homeo-
morphic to R™.

As the manifolds we will work with are all path connected, let us finally
recall the

Proposition 1.4. If X is path connected, then m (X, xg) = m (X, x1) for
all xg,x1 € X, and so we simply write 71 (X).



1.2 Group presentation

Topological groups (in particular, certain finitely presented groups) will be
an important part of the following discussions. For example, we have al-
ready encountered the notion of fundamental group, and the next section
will contain an important theorem about the fundamental group of a knot,
producing a presentation of this group.

Let us recall what a group presentation is, beginning from a very abstract
and general point:

Definition. Let S := {a,b,¢, ...} be a set of elements, and S := {@,b,¢, ...},
the set of all barred symbols of S.
A word in S is a finite string of elements from S U S.

Definition. Let W (.S) be the set of all words in S.

() denotes the empty word in W(5S).

The concatenation (composition) of two words wy,we € W(S) is the word
wiwg € W(S )

For w € W (S) the word w is the word w written backwards, with all bars
and unbars exchanged.

Let R C W (S). We define the following relation on W(.S):
For w,w' € W(S), w ~ w' :< there exists a finite sequence of words w =:
WO, W1, .., Wp—1, Wy, := w’ such that each pair w;, w;y1 is related by one of
the following operations (stated for elements v,v" € W (S))

e Cancellation: vaav’ <> vaav’' <+ vv', Ya € W(S)

e Relation: vrv' < v’ Vr € R
This relation is an equivalence relation on W (S).

Definition. The set of all equivalence classes is written II := W(S)/ ~.
Elements of IT are written [w].

Proposition 1.5. II, together with the multiplication [w] * [w'] := [ww'] is

a group, with neutral element 1 := [(}] and inverse [w]~! := [w].

Remark. w € W(S) is often written w~!. Furthermore, one usually write w
instead of [w] for elements of I when the context is clear enough.

Definition. A presentation for II is given by (S : R). S is called the set of
the generators of I, and R the set of relators of II.

Examples. 1. (), the cyclic group of order n, has the presentation C,, =
(a]a").

2. D, = <r, s |, s? (rs)”> is a presentation of the dihedral group of
order 2n.

Remark. A group may have many (equivalent) presentations.



1.3 Knots, Knot Complements

Now that we have some minimal background of topology and group presen-
tation, we can start with knots.

The concept of knot is quite intuitive, but recent theory, related e.g. to
quantum physics and low-dimensional topology. We will see that the in-
vestigations on knot invariants can provide information about objects that
seem to have no relation at first sight, e.g. hyperbolic manifolds.

The following section will give a short introduction to knot theory, following
the books of Adams [Ad1], Lickorish [Li] and Prasolov & Sossinsky [PS], and
the lecture notes of Roberts [Ro]. The main goal will be to state a theorem
about the Wirtinger presentation of a knot group.

Let us begin with basic definitions.

Definition. A knot K is a subset of R? or S> homeomorphic to the circle
St.

Remark. Thinking of knots in R? or S3 = R3 U {co} doesn’t make any
fundamental difference in knot theory, because knots and sequences of de-
formations of knots may always be assumed not to hit oo.

From now on, knots will be considered as lying in R?, only for “imagination
comfort”.

Definition. An oriented knot is a knot with an orientation specified.

In a similar way that any closed knotted elastic can always be twisted and
stretched without changing its “structure”, knots are topological objects
that are invariant under such operations. This motivates the following defi-
nition.

Definition. Let K be a knot and A a planar triangle in R3 that intersects
K in exactly one edge of A. A A-mowve is the operation of replacing K by a
new knot K’ consisting in K with the intersecting edge of A removed, and
the two other edges of A added.

Figure 1.1: A A-move



Definition. Two knots K and K are said to be isotopic if there exists a
finite sequence of knots K =: Ky, ..., K, := K such that each pair K;, K;11
is related by a A-move.

Proposition 1.6. Isotopy is an equivalence relation.

Remarks. 1. Topologically, two knots K and K are isotopic if and only if
there exists an orientation preserving piecewise linear homeomorphism

f:R3 — R3 such that f(K) = K.

2. From now on, "a knot K” will refer to the isotopy class represented
by K, which will be written K instead of [K].

In order to visualise knots, a natural idea is to produce a projection of the
knot onto a drawing plane. This idea works, and in fact we will see that if
the knot is “well placed” (or if we choose a convenient projection plane), one
can have a one-to-one correspondance between a knot and a knot diagram.

Definition. Let p : R? — R? denote the standard vertical projection. K is
in general position if the preimage of each point of p(K') consists of either
one or two points of K, in the latter case neither of the two points being a
vertex of K.

regular: irregular:

-\

e\L

N

Figure 1.2: Regular and irregular projections (Picture: [Ro|, p.9)

Definition. Let K be in general position. A (knot) diagram D(K) of K
is the projection p(K) together with the “over-under” information at each
crossing.

The projection of an oriented knot gives an oriented diagram.

An arc of D(K) is any finite segment between two consecutive under-passes
of D(K).

The following proposition motivates the usual identification between a knot
and one of his diagrams and is not hard to prove (see e.g. [Ro], p.10).
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Figure 1.3: Knots diagrams (all of the same knot (!))

Proposition 1.7. 1. Any knot has a diagram.
2. From any diagram one can reconstruct the knot up to isotopy.

Now that we have sorted the knots in isotopy classes and provided a way to
represent them in diagrams, the next “natural” problem is to find a way to
combine knots with each other. This can be done quite easily.

Definition. A knot K is said to be the unknot if K bounds an embedded
piecewise linear disc in R3.

Definition. The sum K; + K3 of two oriented knots K1 and K> is defined
as follows:

Consider knots diagrams D(K;) and D(K3), and regard them as being in
distincts copies of R2. Remove from each R? a small disc that meets the
given knot in an arc and no crossing, and then identify together the resulting
boundary circles, and their intersections with the knots, so that all orien-
tations match up. The unknot is the neutral element of the knot addition.

DASUS D

Figure 1.4: The sum K; + Ko

As in the case of Z, the operation “+” defined above leads to the concept
of prime knots.

Definition. A knot K is a prime knot if is not the unknot, and

K =K+ Ky = Kj or K is the unknot.

10



We now come to one of the main objects of the present work, the knot
complement and its fundamental group.

Definition. A knot invariant is an assignment to each knot of some al-
gebraic or topological object (e.g. number, polynomial, group, etc.) that
depends only on the isotopy class of the knot.

Definition. Let K C R? be a knot. The complement of K is defined to be
R3\ K.

Theorem 1.1. R?\ K is a (non-compact) path-connected 3-manifold.

Definition. Let K be a knot. The group of K, written m1(K), is the
fundamental group 7 (R3 \ K).

Remarks. 1. Considering K as lying in S* and considering the comple-
ment S? \ Tk, where Tk is a tubular non-self-intersecting neighbor-
hood of K (homeomorphic to a torus), gives a compact version of the
knot complement: in this case S* \ Tk is a compact path-connected
3-manifold with boundary a torus.

2. m(S*\Tk) and 1 (R3\ K) are isomorphic, so the choice of the compact
or non-compact case is not very important in our context.

Theorem 1.2. 1. The knot determines the complement as follows: if
K1 and Ky are isotopic, then w1 (K1) = m (K2).

~

2. Knots are determined by their complement as follows: if m(K;j) =
m1(Ka), then Ki and Ko are isotopic.

3. The knot group is an tnvariant of knots.

4. The group determines the knot.

The two theorems stated above seem elementary, but certain assertions,
in particular the third and fourth of the latter theorem, are quite difficult
to prove (for references see e.g. [Ro], p.62). They have many interesting
consequences. For example we can now try to find connections between
knots and manifolds. The natural hope is to get information about manifolds
directly by looking at knots, and vice-versa. A famous conjecture, the so-
called Volume Conjecture of Kashaev, states that the volumes of certain
manifolds can be obtained as values related to a given invariant on the
suitable knot (see e.g. [Sch] for more details).

We now come to the main goal of this section.

Definition. Let K be a knot and D(K) an oriented diagram for K.
To each crossing, assign a sign +1 or —1, according to the following figure:

If the crossing has sign 41, then it is called a positive crossing, and a negative
crossing otherwise.

11
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Figure 1.5: Positive and negative crossings

Theorem 1.3 (Wirtinger Presentation). Let K be a knot with corresponding
oriented diagram D(K) with n crossings.

Let g1, ..., gn, be the arcs of D(K) and denote S :={qg1, ..., gn }-

At each signed crossing, one has three incident arcs, labelled as follows:

g] gk gk gl

Figure 1.6: Labelled incident arcs at positive and negative crossings

To each positive crossing, associate the relation g;lgigk = gj, and to each
negative crossing, the relation gkgigk_l = g;. Denote by R the set of all n
relations obtained in this way.

Then the fundamental group m1(K) has presentation (S : R).

This presentation is called the Wirtinger Presentation of m(K).

So, given a knot K, we have a very elementary way to obtain a presentation
of ™1 (K) .

In short, we now begin to see that there are connections between knots and
manifolds, and that groups play an important role in both settings.

1.4 Kleinian Groups of Hyperbolic Isometries
We now study another tool and investigate isometry groups, more precisely

direct isometries of the hyperbolic space H?. References for this sections
are the books of Ford [Fo|, Katok [Kt], Matsuzaki & Taniguchi [MaTa], and

12



Ratcliffe [Ral], and the articles of Riley [Ril] and [Ri3].
First of all, we introduce the

Definition. Let H? := {(z1,72,23) € R3 | 23 > 0} the upper half-space,
2 2 2
equipped with the metric dsg_[ = W%
3
Then, (H3, ds%{) is called POINCARE’s upper half-space model of the hyper-
bolic space H?.

For the metric dy/(z,y), =,y € H>, one deduces cosh(dy(z,y)) = 1+ %
The geodesics of H? are the vertical lines of %3 and the half-circles centered

in points of R? x {0} and orthogonal to R2.

Remark. In fact, the hyperbolic space H?, as defined as the simply connected
complete Riemannian manifold of constant sectional curvature —1, admits
other models. All are equivalent, but each one has its own advantages. For
example, the half-space model is a conformal model, and the boundary oi/>
can be visualized as R? U {oo}.

In the following, our prefered model for the hyperbolic space H? will be the
“complex” version U3 C C x R of H3.

We will see that the isometries of U3 can be expressed in a very simple,
tractable way.

1.4.1 Hyperbolic Isometries and Mobius Transformations

We first give some definitions and notations.

For each point (x1,z2,x3) € H?, identify the couple (z1,x2) € R? with the
point z := 1 +ixg € C, so that H> = {(2,t) e CxR |t > 0} = Cx Rs¢ =:
Uus.

From now on, we will use &2 as model for the hyperbolic 3-space H?3.
Remark. The reason of introducing U3 instead of H? is that we will con-
sider transformations that act on the complex plane, in order to make the
discussion more comfortable.

The metric ds%_,5 on H3 is easily identified with the metric dsa =
Uus.

Definition. Let ¢t € Ry, and set C; := Cx {t} C Cx R, such that CoU{o0o}
is the boundary of U3, and P*(C) = Cy U {oc} the Riemannian sphere.
Often we do not distinguish between Co and C. Let C := C U {oo0} and
identify P1(C) with C.

Definition. Let R3 := R3 U {oo} and Mob(]l/@) denote the group of all
orientation-preserving homeomorphisms of R3. An element of Mob(R3) is

dz|?+dt?
et o,

called a Mébius transformation of R3.
For a subset E C R3, we define Mob(E) := {T € Mob(R3) | T(E) = E},
the group of all Mobius transformations of R3 which preserve E.

13



Definition. Let Isom™ (U?) be the group of all orientation-preserving isome-
tries of the hyperbolic 3-space U3.

The following proposition is not difficult to prove (see e.g. [MaTa] p. 19).
Proposition 1.8. I'som™(U3) =2 Mob(U?).

Now set Mob:={T:C — C | T(z) = ZZZIS, a,b,c,d € C, ad — bc = 1}, the
set of all linear fractional transformations on C.
It is not difficult to prove that Mob is a group, which can be identified with

a very particular matrix group as follows.

Proposition 1.9. Mob = PSL(2,C) := SL(2,C)/{£l.}, Iy the identity
matriz of Mat(2 x 2,C).

Remark. In the sequel, we do not distinguish between a class [T'] € PSL(2,C)
and its representative T € SL(2,C) mod + I5.
The action of Mob = PSL(2,C) on the boundary C of U3 is the following:

Definition. For a z € C and an clement <Z Z) € PSL(2,C), let T'(z) :=

az+b
cz+d

o forc=0: T(c0) =00

with the following special cases.

) forc#O:T(—%):oo, and T'(c0) = £.

We state and prove a theorem that links up hyperbolic isometries and frac-
tional linear transformations, and makes the notation Mob clear:

Theorem 1.4. Isom™ (U>) = Mob.

Proof. One can see (see e.g. [Fo]) that any element A of Mob can
be expressed as a finite composition of (an even number of) reflections of C
with respect to circles or lines K; C C.

For each K, one can find a unique sphere or plane K j in R3 = (6\0 which is
perpendicular to C = R? along K j. One can show that the reflection of R3
with respect to K ;j is conjugate to the fundamental inversion z % by an
element in Mob(]l/%\?’). N R

Hence, the composition A of all these reflections of R? with respect to the
spheres or planes K ; is an element of Mob(@3).

Moreover, Ae Mob(U?), because a reflection with respect to any K; pre-
serves U3. So j‘@ = A, which shows that one can embed Mob into Mob(U?),
and Mob C Isom™ (U3).

We now consider an element T € Tsom™ (U3) =2 Mob(U?).

Let p := T(o0) € C, and A be the Mébius transformation A(z) = Zip,

14



1 ~
corresponding to the matrix <? _p). Furthermore, let A be the element

of Mob(U?3) which corresponds to A under the embedding described above.

Then, AoT € Mob(U?) fixes oo, and is therefore a similarity of C x R = R?.

Hence, (Ao T)|@ =Ao TI@ € Mob, and so is T‘@ an element of Mob, which

proves that any element of Isom™ (U?) can be seen as an element of Mob. B

Definition. The extension of an element A € Mob acting on C to an
element A € Mob(U3) described in the proof of the Theorem above is called
the Poincaré extension of A.

Summarising, we have several equivalent ways to think of orientation-preser-
ving hyperbolic isometries: either as homeomorphisms that preserve the
hyperbolic metric of U3, or as fractional linear transformations over C, or as
particular 222 matrices. In the following, we will use one or the other point
of view, depending on the context. Furthermore, the following proposition
provides a classification of Mobius transformations.

Proposition 1.10. Let z € C. Any element v # id of Mob can be trans-
formed by conjugation into either

| ‘ (11
1. v1 € Mob given by v1(z) := z + 1 with matriz (0 1>7 or

2. v9 € Mob given by v2(z) := Az, for a A € C\ {0,1}, with matriz
Az 0
0 A2
Having this characterization, we can now classify Mobius transformations.
Definition. Let v € Mob, v # id. Then,
e 7 is called parabolic :<=>  is conjugate to v1;
e v is called elliptic :<=> y is conjugate to yo with || = 1;
e v is called lozodromic :<=> -~y is conjugate to vy, with || # 1.

In fact, the type of a M6bius transformation can be read off from the trace
of its matrix representative.

Proposition 1.11. Let A, € PSL(2,C) corresponding to v € Mob.
Then,

o tr?(A,) =4 < v is parabolic ;

o 0 <tr’(A,) <4 < v is elliptic ;

15



o tr’(A,) € C\ [0,4] <= v is lozodromic.
A is also called parabolic, elliptic, or lozodromic.

In particular, parabolic transformations will play an important role in our
further discussion.

1.4.2 Kleinian Groups

Remember that the hyperbolic space H? is a topological space. We will
consider only groups of isometries that act on H? in a certain discretized
nice way.

Definition. A group G of homeomorphisms acts on a topological space X
properly discontinuously if for each compact subset K C X, there exists only
finitely many elements g € G which satisfy the condition g(K) N K # (.

Definition. A subgroup I' of Isom™(H?) is called Kleinian :<= T acts

properly discontinuously on H?.
Under the identification of Isom™ (H3) with Mob(U?), Mob, or PSL(2,C),
the corresponding (sub)groups are also called Kleinian groups.

From now on, I' will be the prefered notation for a Kleinian group.
In the sequel, we will be able to characterize every Mébius transformation
by looking at its fixed points. We first give following

Definition. Let S := OH? denote the sphere at infinity of the hyperbolic
space H3, i.e. the set of the points whose distance to the origin is infinite.
Especially, when H? is realized by (U3, dy), Seo = C.

Now we can state the following

Proposition 1.12. Let vy € Isom™ (H?), v # id.

parabolic a unique
Then ~ is § loxodromic » <= 7 has two distinct fized point(s)
elliptic infinitely many

in H3 U Ss.
Moreover, if v has any fized point in H?, then v is elliptic.

Finally, we give following proposition, which will be useful in section 1.7
(more details can be found in [MaTal, chapter 1.2).

Proposition 1.13. An element v of a Kleinian group has finite order <
v has a fized point in H3.
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1.4.3 Geometric Action of Mobius Transformations on U3

Our next aim is to understand how a Mobius transformation acts on U3.
We look more precisely at the action of a Mobius transformation T =

(Z Z) € PSL(2,C). From previous discussions, we know that 7' provides

a hyperbolic isometry on U3. We study now the effect of 7' on euclidean
lengths.

We distinguish the two cases T'(0c0) # oo and T'(c0) = oo, which is equiva-
lent to distinguish the two cases ¢ # 0 and ¢ = 0.

First case: ¢ # O‘

We first look at the action of 7' on 9U3 \ {0} = Co = C.

Let z € C. The function T'(z) = Zzzj_'s has the derivative T'(z) = m,

which means that euclidean lengths are multiplied by |T7(2)| = |cz + d| 2.
In particular, if |cz + d| = 1, T acts as a euclidean isometry. This consider-
ation leads to the

Proposition 1.14. The set of all points z € U3\ {oo} such that |T(z)| = |z|
is equal to the set {z € C| |cz +d| = 1}.

Since ¢ # 0, {z€ C||ez+d| =1} = {z€ C||z+ ¢ =%}, and is a eu-
clidean circle in C with center —% and radius ﬁ
This result motivates the following

Definition. The isometric circle of the transformation T = (CCL Z) €
PSL(2,C) is the set In(T) :={z € C | |T(z)| = |z|}.

Remark. Since T—1(z) = =2£b the isometric circle of T~ is In(T~') =

cz—a ’
{z € C| |cz — a| = 1}, with center ¢ and radius ﬁ

Proposition 1.15. There ezists a euclidean line Ro(T) C C which is the
euclidean bisector of Io(T), i.e. Ro(T) contains the point —g and separates
Iy(T) into two half-circles with the same euclidean area, such that the action
of T on C is the product of the following three operations

1. Euclidean reflection of C in Ry(T),

2. Euclidean inversion of C in In(T), and

3. Buclidean translation of C carrying Io(T) on Io(T~1),
in the given order.

There is a natural extension of these considerations to U3.
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Definition. The isometric sphere of T is the hyperbolic plane I(T) C U>
whose euclidean boundary is the isometric circle Ip(7'). Similarly, the hyper-
bolic plane R(T) is defined to be the plane in U3 having Ro(T) as euclidean
boundary.

Proposition 1.16. T acts on U3 by reflection in R(T), then by inversion
in I(T), and finally by translation carrying I(T) on I(T71).

Thus, T is entirely determined by I(T), I(T~!) and R(T).

Proposition 1.17. Let Jac(T) denote the euclidean Jacobian of T'.

Then Jac(T) is either < 1, = 1 or > 1 in a point p € U3, according to p
being outside I(T'), on I(T'), or inside I(T') with respect to Co = C.

In other words, T acts as euclidean expansion in the interior of I(T), as
euclidean isometry carrying I(T) on I(T~1), and as euclidean contraction
outside I(T).

‘Second case: ¢ = 0‘

a b

0 a!

From the previous case, one deduces that T has no isometric sphere and
that the Jacobian Jac(T) is constant on U3. We suppose without loss of
generality that Jac(T) = 1. Then we obtain the following

Here, d =a~ !, and so T =

Proposition 1.18. T is either

1 b

e parabolic of the form T = (0 1

), and corresponds to the euclidean

translation z — z + b, or

a b
0 a!
euclidean rotation of U about the axis whose euclidean endpoint is
the finite fixed point of T in C, followed by a translation.

o clliptic of the form T = ( >, a # +£1, and corresponds to a

Since the characteristic property of transformations 7" with ¢ = 0 is that T
fixes 0o, we now define

Definition. Let PSL(2,C)o = {T € PSL(2,C) | T(c0) = 0o} be the set
of Mobius transformations fixing oc.
For a subgroup G < PSL(2,C), one defines Go, := GN PSL(2,C)x.

Proposition 1.19. IfT' is a Kleinian group, then 'ss acts properly discon-
tinuously on C.

In summary, we have seen that a Mobius transformation 7" not fixing oo acts
onU? as a product of a reflection, an inversion and a translation. In this case,
we have identified 3 geometric objects characterizing the transformation T,
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the two isometric spheres I(T) and I(7~!) and the hyperplane R(T).
Furthermore, we have seen that a Mdbius transformation T fixing co acts
on each horosphere Cy,t > 0, in U> as combination of a translation with as
a euclidean rotation.

1.5 Discrete Groups and Fundamental Domains

We will now refine our knowledge of Mébius transformations and examine
particular geometric objects that can been attached to Kleinian groups.
This section deals with a further topological characterization of Kleinian
groups, and the concept of fundamental domain and fundamental polyhe-
dron. In a first time, we will present definitions and basic facts, and in a
second time we will state a theorem of Poincaré about a way to produce
such a polyhedron.

References for the first part can be found in the books of Ford [Fo|, Kapovich
[Ka], and Matsuzaki & Taniguchi [MaTa]. The second part is based on the
article of Maskit [Mal] which was used by Riley, and of the more recent
books of Maskit [Ma2], and Ratcliffe [Ra].

1.5.1 Discrete Groups, Ford Domains

Let G be a topological group, i.e. a topological space and a group such that
for all g, h € G the operations (g, h) — gh and g — g~ ! are continuous.
We begin with a topological definition.

Definition. A subgroup H < G is called discrete subgroup <= Vh €
H, {h} is open in H.

The following theorem gives us another way to think of Kleinian groups.

Theorem 1.5. A Kleinian group is a discrete subgroup of PSL(2,C), and
vice versa.

Now, to each discrete subgroup I' of Isom™ (H?) one can assign a geometric-
combinatorial object.

Definition. Let G < Isom™(H3). A set F C H? is a fundamental domain
for G <=

1. F C H3 is a domain (i.e. an open and connected subset),
2.Vq1, 2€G, g1 # g2 1 F NgoF =1, and
3. UgeGgT = H3.

If F' is a polyhedron, then F is called fundamental polyhedron.
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A fundamental domain F' can be seen as a pattern in H? that will be copied,
modified, and moved into H? under the action of G, and finally -by passing
to its closure- cover the entire space H?, without having any intersection
with another “transformed copy” of itself. In fact, if F' satisfies certain
matching properties, the orbit space H?/G can be identified with the image
of F' by a gluing of its faces, and be seen as a smoothy hyperbolic manifold.
That motivates the study of fundamental domains.

The existence of a fundamental domain for a group acting on H? is not
assured. But if the group is discrete, then one has following result.

Proposition 1.20. Every discrete subgroup I' < Isom™ (H?) admits a fun-
damental domain.

There are several ways to construct particular fundamental domains in such
situations. We will be concerned with so-called Ford domains.

Definition. Let I" be a discrete subgroup of PSL(2,C). Let Dy, C Cy be
a fundamental domain for I'o, whose boundary is either empty or a finite
union of euclidean polygons.

The Ford domain Dr corresponding to D, is the intersection of the portion
of U3 outside all isometric spheres of I' \ I's, with the euclidean cylinder

{(z,t) eU?| z € Dso }.

In other words, Dr is the portion of U3 outside all isometric spheres of T’
which projects orthogonally onto Do, in Cy.

Before giving further properties of a Ford domain, we give another way to
see it, mentioned in [Bo| as a definition, but given here as a proposition.
First, we have to give following

Definition. The point (21,t1) € U? is said to lie above the point (29,t3) €
U = t) > to.

With this definition, we can state the following result.

Proposition 1.21. A Ford domain Dr of a Kleinian group I' < PSL(2,C)
can be identified as the set {p € U3| p lies above v(p), Vv € T'}.

Now we give some important properties of the Ford domain Dr. For a formal
definition of a polyhedron, we refer to the next section.

Theorem 1.6. Let I' a Kleinian group and Dr the Ford domain of I'. Then:
1. Dr is a hyperbolic polyhedron.

2. For the vertical projection U — C, every face of Dr projects to a
euclidean polygon in Cy.

3. Dr is invariant under I' .

4. The boundary of Dr is the union of polygons with finitely many edges.
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1.5.2 Poincaré’s Polyhedron Theorem

There is a very nice result due to Poincaré about sufficiently nice polyhe-
dra D C H3, providing a group I' that operates freely discontinuously by
isometries on H? with fundamental polyhedron D. We will also get from
this construction a complete presentation of I'.

However, D needs to satisfy several non-trivial conditions we are going to
enumerate now.

Let us first recall the notion of a polyhedron.

Definition. A polyhedron D C H? is an open connected subset of H? as
follows:

1. 0D = ;s Sis I a finite set, and for all ¢ € I, S; is a subset of a
hyperbolic plane H; and the closure of a polygon in H;, called side of
D.

2. The sides of the polygons S; are called edges of D, denoted e; ; the
endpoints of the e; are called the vertices of D.

3. For each edge e;j, there are only 2 sides S; and S}, such that 5;NS, = e;.
Any two sides are either disjoint, intersect in a common edge, or in-
tersect in a common vertex.

An edge is either a subset of a side, meets the side in a common vertex,
or is disjoint from a side.
Two edges are either disjoint or meet in one common vertex.

4. For all x € 9D, and all § > 0 sufficiently small, the ball of radius ¢
centered in = has a connected intersection with D (i.e. the set Bs(z)ND
is connected).

We will now describe three conditions that will constitute the hypothesis of
the Theorem of Poincaré.

Definition. An identification on a polyhedron D is defined as follows. To
each side S of D, one assigns another side S’ of D and an isometry T'(S, S"),
under the following conditions:

(I1) 7(S,8") : H® — H3, S +— S’, sometimes indicated (S)" := 5, is an
isometry,

(I2) (8" = S, and T(5', S) = (T(S,5") ",

(I3) S=S8"= T(S,5)s = id,

(I4) For all sides S of D, there exists a neighborhood Vs C H? of S such
that for T:=T(S,5"), T(VsnD)ND = .

Consider the group G :=< {T'(S,S5") | S side of D} > generated by the
isometries T'(S, S"). Each isometry T'(S,S’) is called a generators of G.

It follows by (I3) that 7°(S,S) has order 2, i.e. T'(S,S) is a reflection with
respect to the side S. The corresponding relations (T'(S, S))? = 1 are called
reflection relations.
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Definition. Let D be a polyhedron with identification.

We identify the points of D modulo the action of G. In other words, if x € D,
then z is equivalent only to itself, and if x € 9D, then z is equivalent to all
other points 2/ € D such that there exists an element T := T'(S,S’) of G
with T'(x) = 2/. This relation is clearly an equivalence relation.

One can then form the identified polyhedron D* := D/G, with the usual
quotient topology.

Let p : D — D* the canonical projection of D onto D/G. Since our aim
is obtain a geometric object, it is natural to ask D* to be a metric space.
In other words, the action of G on D has to satisfy a certain properness
condition, defined as follows.

Definition. A polyhedron D with identification is said to satisfy the proper-
ness condition <=
(P) Yz € D*, p~Y(x) is a finite set (and then D* is a metric space).

Considering the identification above, we can produce a list of edges which
are identified in a successive order, the pairs of sides which are glued, and
the isometries which are involved in the process.

Let D be a complete polyhedron with identification. Consider some edge e;
of D, 51 one of the two sides of D containing e;.

Then one can produce the side S} corresponding to S; under the identifica-
tion, and the corresponding generator 7'(S1,S7) =: Th.

Set ea := Ti(e1). One can then obtain S, the unique other side of D
containing es, the corresponding side S} and the corresponding isometry
T(S2,5%) =: Ts.

Repetition of the process gives a sequence {e;} of edges of D, a sequence
{(Si, Si)} of pairs of sides, and a sequence {T;} of generators.

Notice that the 3 sequences need not to have the same period.

Definition. The period of the identification is the least common multiple
m of the periods me, mg and mp of the sequences described above.
The set £ := {e1,...,em } is called an edge cycle.

Remark. The edges in a cycle need not be pairwise distinct. In fact, there
are repetitions if at least two out of the set of generators {T1,...,T,,} are
reflections (and in this case each edge shows up twice in the cycle).

Repeating the procedure for all edges of D, we can produce j edge cycles
&= {e{, vy e{nj} of identified edges, each one related to a sequence of pairs
of sides and a sequence of isometries.

In the following discussion, we sometimes omit the index j in the nota-
tions, and just consider any edge cycle £ and the corresponding sequences
{(S;,S])} of pairs of sides, and {T;} of generators.

Let us now consider the product of all isometries in a period.
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Definition. The isometry C' :=T,, o ... o T}, which satisfies C'(e;) = ¢; (i =
1,...,m), is called cycle transformation at the edge cycle €& = {eq, ..., em }.

The next condition we want the polyhedron D to satisfy is related with the
total angle made by glued sides in a cycle of fixed orientation.

Let a(e;) be the interior angle formed by the two sides meeting at e; in D.

Definition. A polyhedron D with identification is said to satisfy the cycle
conditions <= ‘ '

(CC1) For all edge cycles &9 ={e], ..., el }, there exists an integer v; € N,
such that Y 17 a(el) = 3—?
(CC2) For each edge cycle &, the cycle transformation C' at € preserves the
natural orientation of D C H?.

(CC3) If the edge e; has no finite endpoint, then the cycle transformation
C at & is the identity on e;.

As a consequence of this condition, we have the following result.

Proposition 1.22. The cycle conditions (CC1), (CC2), and (CC3) im-
ply that each C is orientation preserving, and that C¥ = 1.

Definition. For each cycle, the relation C¥ =1 is called cycle relation.

The last condition that has to be verified by the polyhedron D to serve
as model for a complete manifold is obviously a condition of completeness.
This condition is technical, but helps to avoid “pathological” situations.

Definition. A polyhedron D with identification is called complete <=
(CP) D* is complete.

The case of a finite-sided polyhedron of finite volume with some ideal vertices
(i.e. vertices on the sphere at infinity) is of special interest. There, the
condition (CP) can be hard to check directly. However, there are several
ways to check it indirectly (see e.g. [Ma2] p. 79, [Vi] p. 164). Here we
follow Ratcliffe ([Ral, p. 440).

Notice that the finite-sided polyhedron D might be decomposed as disjoint
union of simpler polyhedra.

Definition. Denote P, C D the polyhedron in D which contains the ideal
vertex .

The link of the ideal vertex x is the set L(z) := P, N Ci(z), where Cg,
denotes the horosphere C; with ¢t > 0 sufficiently large such that C; intersects
no other polyhedron of D than P,.

It is clear that L(z) is a compact euclidean polygon in Ci(z).

23



The side-pairing on D induces a pairing of its ideal vertices, and consequently
an equivalence relation over them. Let us call the equivalence classes of this
relation cusp points of D*. For each cusp point [z]|, one can form the set
{L(y) | y € [z]} of euclidean polygons related to [z].

For an element T of G, we consider elements y, 3y’ € [z] such that T'(y") = v.
Then, for sides S > y and S” 5 ¢ of D, the intersections C;, NS and C, ns’
are sides of L(y), resp. L(y').

Thus the restriction of T on Cty/ is an isometry sending Cty/ toT ((Cty/) and
preserving the euclidean metric on the horospheres. Up to a change of scale,
T sends the side C; , N S’ of L(y') to the side C;, N S of L(y). It is clear
that the set 7 of all such (possibly rescaled) transformations 7" induces a
side-pairing of the polygons of {L(y) | y € [z]}.

Definition. Let [z] be a cusp point of D*. We define L[z| as the space
obtained by identifying the edges of the polygons of {L(y) | y € [x]} under
the action of 7.

At this point, we are able to state the following propositions, which will
allow us to prove completeness indirectly.

Proposition 1.23. Let x be an ideal vertex of D.
Then, L[x] is complete if and only if the set {L(y) | y € [x]} can be chosen
such that the action of G restricts to a side-pairing on {L(y) | y € [z]}.

Notice that the “right-left” direction is obivous from previous discussion.

Proposition 1.24. The metric space D* is complete if and only if L]z] is
complete for each cusp point [x] of D*.

Remark. One can see that in the oriented case, L[x] is a torus for all cusp
points [x].

We now consider polyhedra verifying all conditions mentionned above.

Definition. A complete polyhedron with identification satisfying the proper-
ness condition (P) and the cycle conditions (CC1), (CC2), and (CC3) is
called Poincaré polyhedron.

We finally come to the main theorem this section.

Theorem 1.7 (The Poincaré Polyhedron Theorem). Let D be a Poincaré
polyhedron, and let I' = I'p be the group generated by the identifications T
of its sides.

Then,

1. T acts properly discontinuously on H?,

2. D is a fundamental polyhedron for ', and
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3. the cycle relations together with the reflection relations form a complete
set of relations for I'.

In summary, we have a tool that will allow us to find a Kleinian group di-
rectly from an identification constructed from a certain polyhedron.

An application of the present material is the following. If we find an identi-
fied polyhedron D* = (D) such that D is a Poincaré polyhedron, then we
have an explicit Kleinian group I'p, given by a geometric presentation, and
acting on H? with fundamental polyhedron D, such that M = H?/Tp is a
hyperbolic manifold.

This connection will be explained in the next section.

Remark. There are several versions of Poincaré’s Polyhedron Theorem, de-
pending on the ambiant space and the configuration we are looking for. The
difficulties encountered in the hyperbolic case with ideal vertices don’t ap-
pear in the euclidean or spherical cases.

Epstein and Petronio have given in [EP] a (consequent) survey of the theo-
rem, compatible with an algorithmic approach.

1.6 Hyperbolic 3-Manifolds

It is now time to give a formal definition of oriented hyperbolic 3-manifolds,
and to explain why Kleinian groups are so important in their study. Refer-
ences for this section are the books of Benedetti & Petronio [BP], Matsuzaki
& Taniguchi [MaTa] and Ratcliffe [Ral.

Definition. A connected Hausdorff space M is called an oriented hyperbolic
3-manifold if there exists a family (or atlas) {(Uj,;)}jes, J an index set
for M, such that:

1. each Uj is an open subset of M, and {U,};es is a covering of M,
2. each ¢; is a homeomorphism of U; onto H?3, and

3. each non-empty intersection Uy N U; is connected, and ¢y, o apj_l :
(U NU;) — (Ui NU;) is an orientation-preserving diffeomor-
phism which preserves the hyperbolic metric.

In other words, we ask a hyperbolic manifold to “locally look like” the hy-
perbolic space H3.

Proposition 1.25. An orientation-preserving isometric homeomorphism
from a domain D of H? into H? is necessarily the restriction of an element
of Isom™ (H?) to D.
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As a consequence, the chart changes in the definition of a hyperbolic mani-
folds turn out to be nothing else than the restriction of Mébius transforma-
tions on M.

Now we come to the relations with Kleinian groups.

Definition. Let X be a locally compact Hausdorff space, and G a group of
homeomorphisms of X.
G operates freely on X <= Vz e X,g€ G : g(x) =x = g =id).

Remark. Observe that H? is a locally compact Hausdorff space.

In order to give nice properties of groups acting freely and properly discon-
tinuously on geometric spaces, we need the following definition.

Definition. A group G is said to be torsion-free :<—=> there are no elements
of finite order in G \ {e}.

Proposition 1.26. Let X € {E3 H?,S3}, and let G be a group of orientation-
preserving isometries of X.
Then the following conditions are equivalent:

1. G operates freely and properly discontinuously on X.
2. G is a torsion-free discrete subgroup of Isom™(X).

The importance of Kleinian groups becomes now clearer. But we have even
more, as the following theorem states.

Theorem 1.8. Let X be either E3 or H3.
Then, M is a complete connected euclidean or hyperbolic oriented 3-manifold

<= the fundamental group w1 (M) is a discrete torsion-free subgroup of
Isom™(X), and M = X/m(M).

Let us now concentrate on X = H? with a fixed orientation.

Theorem 1.9. For any complete oriented hyperbolic 3-manifold M, there
exists a torsion-free Kleinian group T such that M = H3/T'. The group T is
unique up to conjugation by elements of Isom™ (H?).

Conversely, for any torsion-free Kleinian group T';, M = H3/T is a complete
oriented hyperbolic 3-manifold.

Let us use the notations of section 1.5.2. The theorem we have just stated
is very helpful in our context: the completeness condition will be clearly
verified if we apply the theorem of Poincaré to a complete polyhedron D
leading to D* = H3/T for a certain Kleinian group I'. We have even more.
Because of uniqueness up to conjugation, I' can in fact be identified with
the fundamental group m(D*).
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The strategy we will follow to realize an explicit hyperbolic structure on a
knot complement is now clear: given a knot K, we compute the fundamental
group 71 (R3\ K) of the complement, and represent 71 (R3\ K) in PSL(2,C).
If this group I' < PSL(2,C) is discrete and torsion-free, then we produce a
hyperbolic 3-manifold H? /T’ with fundamental group 71 (H?/T") = 71 (R3\ K).
For this, we make use of Poincaré’s Polyhedron Theorem by considering a
polyhedron D adapted to 71 (K).

1.7 Waldhausen’s Theorem

We have seen in section 1.1 that an isomorphism of fundamental groups of
manifolds does not imply the existence of a homeomorphism between the
manifolds. At the very end of the proof, we will need some topological ar-
guments related to a result of Waldhausen giving sufficient conditions for
this statement to hold. References for this section are [Hal, [Ja] (especially
Chapters I, III, VII), [Mn], [Thl] (especially section 4.10 p. 71), and [Wa].

We begin with some definitions. In the sequel M will denote an orientable,
connected, compact 3-manifold (non necessarily hyperbolic).

Definition. A surface is a connected 2-manifold. In the sequel, a surface
F in the manifold M is supposed to be compact and properly embedded,
ie. FNOM = OF.

A surface in OM is a surface in OM.

A system of surfaces in M or OM consists of finitely many, mutually disjoint
surfaces in M or in OM.

Definition. A system F of surfaces in M or OM is compressible (in M) if
F satisfies at least one of the following conditions.

e There exists a non-contractible simple closed curve -~ in F , F e F,
and a disc D C M such that D C M and DNF = 0D = .

e There exists a ball B C M such that BNF = 0B.
If F' is not compressible (in M), then F' is called incompressible (in M)

Definition. The manifold M is called irreducible if every 2-sphere in M is
compressible.
The manifold M is called boundary-irreducible if OM is incompressible.

Definition. Let M be irreducible and not a ball. If M contains an incom-
pressible surface, then M is called sufficiently large.

Remark. It is hard to find explicit examples of irreducible 3-manifolds which
are not sufficiently large. Observe that if M is a compact oriented 3-manifold
which is not a ball and which has non-trivial boundary, then M is sufficiently
large (CF. [Thl], p. 71-72)
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A further condition deals with fundamental groups. We introduce the fol-
lowing definition.

Definition. Let M and N be 3-manifolds, and ¢ : m(N) — m (M) a
homomorphism.

1 is said to respect the peripheral structure if for each boundary surface F
of N, there exists a boundary surface G of M such that (il (m1(F))) is
contained in some subgroup A < (M), with A conjugate to i (m1(G))
in m (M). Here, il : 7 (F) — 71 (N) and i : 71(G) — m (M) are the
inclusions.

In the case of knots k, the situation is simplified by the fact that the only
boundary surface of S? \ T}, is a knotted torus.

We now come to the result of Waldhausen. For a proof, see [Wal, p.80.

Theorem 1.10. (Waldhausen) Suppose M and N are oriented 3-manifolds
which are irreducible and boundary-irreducible such that M is sufficiently
large.

If there exists an isomorphism v : w1 (N) — w1 (M) which respects the
peripheral structure, then there exists a homeomorphism f: N — M which
mduces 1.

Remark. A compact 3-manifold M which is irreducible, boundary-irreducible
and sufficiently large is called a Haken manifold.

The following result (which admits several formulations) is related to our
context.

Theorem 1.11. (Dehn’s Lemma) Let M be a 3-manifold with boundary and
let v be a closed curve in OM.

If there exists an immersed disc D in M such that 0D = -y, then there exists
an embedded disc D' C M with the same boundary OD' = ~.

Finally, we add two statements which will be useful later. For the formula-
tion of the first one, we need additional definitions.

Definition. Let X be a (path-connected) topological space, and i € N*.
The i—th homotopy group of X, denoted m;(X), is the set of homotopy
equivalence classes of continuous maps S* — X.

Remark. This general definition is compatible with the definition of 7 (X)
given in section 1.1.

Definition. Let X be a (path-connected) topological space. If for 7 > 1 one
has m;(X) = 0, then X is called aspherical.

The following proposition can be found in [Ha] (p.342).
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Proposition 1.27. Let X a topological space and X the universal cover of
X.
Then, 7:(X) = m(X) for all i > 1.

Aspherical manifolds have the following nice property (CF. [Lu]).

Proposition 1.28. Let M be a closed oriented 3-manifold.
Then, M is aspherical if and only if M is irreducible and w1 (M) is torsion
free.

These definitions and results are complicated, but as we will see in Section
2.4, in our concrete situation there will be some simplifications.
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Chapter 2

The Hyperbolization of the
Figure-Eight Complement

We now have enough material to deal with the main subject of this work.
As said in the Introduction, Riley’s work [Ril] is the first example of the
computation of an explicit hyperbolic structure on a knot complement. In
this chapter, we will give a detailed explanation of the process in [Ril], us-
ing only material that has been developed in Chapter 1, except for the very
end of the proof. There, we only give the outlines of the topological argu-
mentation of Riley, based on the work of Waldhausen [Wa] and Armstrong
[Ar].

2.1 The Figure-Eight Knot Group

The particular knot complement studied by Riley is the complement of the
so-called “figure-eight” knot, defined as follows.

Definition. Consider the knot depicts in following figure.

Figure 2.1: The Figure-Eight
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This knot is called “figure-eight”, sometimes denoted by 4;.
In the following, we will denote it simply by K.

Remark. The watchful reader has probably noticed that the Figure 1.1 in
Section 1.3 depicts the figure-eight.

Using Wirtinger’s Theorem 1.4, we now compute the fundamental group
m1(K).
We first orient K and label the arcs and the crossings of K as follows.

94

Figure 2.2: Labelled arcs and crossings of K

The relation 7 at crossing 1 is g2g3gy L' — ¢, and the relation 79 at crossing
2is 1949, L — g, since both crossings are negative crossings.

The relation rs at crossing 3 is g4_1 g2g4 = g3 and the relation ry at crossing
4is gq L9193 = ga since both crossings are positive crossings.

Then, Theorem 1.4 implies that

T (K) =< 91,92, 93,94 | 71,172,783, 74 > .

We set g1 =: a, g0 =: b, g3 =: ¢, g4 =: d and rewrite the relations 7,
i =1,...,4, in order to make the reading easier. Then,

beb ' =a d'bd=c
m (K) = <a, b.c,d ' ada=t=b clac=d >

We now reduce the redundant generators and relations, in order to have a
reduced presentation.

The relation r; is equivalent to the relation 77 : ¢ = b~ 'ab, and from relation
ro one gets the relation r5 : d = a 'ba.

31



We can use 71 and 73 in relations r3 and 74 to get 73 : (a"'ba) " 'b(a"'ba) =
b~lab and 7y : (b~'ab) la(b~lab) = a'ba.

Furthermore, r3 reduces to
a v aba " ba = b~ lab,

and 74 to
b ra tbab tab = a lba.

Isolating the underlined a in 75 and 74, we get r5 : a = ba~'b~Laba~tbab™*

and 74 : a = ba"'b~taba"'bab~!, and observe that r} is the same relation
/

as ry.

Thus, eliminating the redundant generators ¢ and d and the redundant re-
lations, we get that a and b suffice to generate 71 (K), and that the single
relation is

0 a=ba b aba " bab™ .

We now make the following change, which will be helpful in the sequel. In
the relation r4, isolate the underlined a~'. Then % becomes

b laba o tab ta b = a7t
which is equivalent to
a=b"taba"tbab"ta b,
Finally, we have the following presentation for 7 (K):

m(K) =< a,b|a=(b"taba™ ) b(ab" a"'b) > (%)

=lw w1

2.2 The Polyhedron D

As we have said at the end of Chapter 1, the goal now is to find a hyperbolic
manifold whose fundamental group is isomorphic to 71 (k). The main tool
that will be used is Poincaré’s Theorem 1.7.

First of all, we are going to construct a polyhedron D which will be our
candidate to apply Poincaré’s Theorem.

The only piece of information we have is that the fundamental group I'p
we are supposed to get from Poincaré’s Theorem has to be isomorphic to
m1(K).

Thus, we are going to produce a representation 6 of 71 (K) in PSL(2,C),
and construct the Ford domain associated to the image 6(m(K)), which
will be our polyhedron D. Then, we will show that the image 0(71(K)) is
isomorphic to 7 (K).
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2.2.1 Representation of m(K) in PSL(2,C)

Let w := —% + ?z It is not hard to check that w is a primitive cube root
1 2 3
of the unity, i.e. w is such that |w| (e 1, w3 @) 1 and w? +w+1 @,

We define the homomorphism 6 : 7 (K) — PSL(2,C) as follows: for the
generators a and b of m (K), we define

B(a) = A — (_1w 2) Cand 6(b) == B — ((1) 1) ,

and extend 6 to 71 (K) in the natural way. Notice that both A and B are
parabolic (CF. Proposition 1.11). Put

o3 ) (L0 )Y

according to (). A short computation using property (ol) shows that

_ 0 w 1 (1w —w
W_<—w2 1—w) and that W _<w2 0>.

Another computation using property (02) shows that WBW ! = A.

Thus, §(wbw™1) = §(a), from which we deduce that
0: m(K)—><AB|WBW™=A4>

is a surjective homomorphism (the injectivity will only be proved at the end
of chapter 2).

Notation. Let K :=< A,B| WBW ™! = A > < PSL(2,C).

2.2.2 Related Geometry

The transformation B corresponds to the translation z — z+1, which yields
a hyperbolic isometry of 43 fixing oo, and has therefore no isometric circle.

Furthermore, we know from section 1.4.3 that X = A, A=Y, W, and W—!
have isometric circles Ip(X) in C.

By the properties (0l), (02) and (03), we compute their centers and radii in
C as follows.

e [y(A) has center cq = % =w=-1-w-= —% — ?i, and radius
1
|—wl '

o Io(A™') hascenter cy-1 == —1 =14+w=1+ @i, and radius ﬁ = 1.
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e Iy(W) has center cyy := % = —%—l—é =—w+w=1+2w=13i,
and radius ﬁ =1 lw| =

— TR0 T
e Io(W~1) has center c—1 := 0, and radius ﬁ =1.

Hence, the isometric spheres I(A), [(A~Y), I(W) and I(W~!) are the half-
spheres of respective centers (c4,0), (c4-1,0), (cw,0) and (cy-1,0), and
have all radius 1 in Cy C U3.

iR

Io(W)

Lo(A)

Figure 2.3: The isometric spheres of A, A=Y, W and W1

In order to describe the isometric spheres of all elements of K, we first
introduce the following notation and state the following proposition.

Notation. Let a,b,z,y € Zjw]. We write a = b mod (z,y) if there exists
m,n € Z such that a = b+ mx + ny.

Proposition 2.1. Let a € Z[w].
Then, « is congruent to either ca, cq—1, cw or cyy—1 mod (1,2 + 4w).

Proof. Let o, = ag + a1w + asw? + azw® + ... + a,w™ € Zw] C C, with
a; € Z,1 € N, and n € N fixed. We suppose without loss of generality that
7 €N

Then property (02) implies that «,, = (ap+ag+... +an—3+a,) + (a1 +aq+
i an o) w+ (ag +as+ ...+ an_1) W

From property (03) one deduces w? = —1—w, and setting a©) := ag+...4ay,
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aV) :=ag + ... + an_9, and a? = a; + ... + an_1, one gets

an = (a% — aM) 4 (@@ — W),

V3

Since w = —% + ¥4, one can write o, = Re(a) + i Im(ay,) as follows.

with

Re(ay,) = a® — o) — %(a@) —a), and I'm(o,) =

= a® ) _ %(a@) —a®) 4 \f (a® — 0y,

(a® — aM).

ol%

We now distinguish 2 cases, depending on Re(ca,) being an integer or not.

First case: Re(ay,) € Z : Then —3(aV) + a®) € Z, and obviously
a® +a® =0 (mod 2).

Furthermore, since a(!) € Z, Im(ay,) = \/g(%a(l) - %a@)) =3 (aM -
(@M + a?)) implies Im(ay,) € ZV/3.

As a consequence, we deduce that either Im(ay,) = 0 (mod 2v/3), or
Im(ay) = /3 (mod 2v/3), depending on %a(l) — %a@) being even or
not.

Thus, if Re(ay,) € Z, then ay, is congruent to either cy or cy—1 mod
(1,2 + 4w).

Second case: Re(ay,) ¢ Z : Then Re(a,) + 3

(mod 1) (which is equivalent to Re(a,) = —3 (mod 1)).
From Re(ay,) + 3 € Z one deduces that al) +

this fact, we write 2a(V) — 1a® = 1(a®) +al
for X := %(a(l) +a® —1)—a® ez

With this notation, —Im(a) = v3 (3aV) — 1a®)) becomes v/3 X + @,
A€ L.

We now distinguish the cases A even and A odd:

— if X is even, then v3\ = 0 (mod 2V/3) & \/?;)\—i—@ = 2 (mod
2v/3).

— if X\ is odd, then V3 = —/3 (mod 2\/§) o 3+ 73 = —@
(mod 2+/3).

Thus, if Re(ay,) ¢ Z, then «, is congruent to either c4 or ¢4-1 mod
(1,2 + 4w).

In summary, we have seen that o, = ag+aiw+asw?+asw?+...+a,w”, with
a; € Z, i € N is congruent to either c4, cq-1, ey or cy—1 mod (1,2 + 4w)
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for all n € N fixed, which achieves the proof. |

As a consequence, each o € Z[w] is the center of an isometric sphere of an
element of K with radius 1.

Definition. For ¢ € C fixed, we define the transformation [B(t)] € PSL(2,C)
1 ¢

by its representative B(t) := <O 1

). B(t) corresponds to the translation

z+—z+tin C.

In particular, B(2 + 4w) depicts the translation z — z 4 2+/34 in the per-
pendicular direction of the translation induced by B(1) = B.

Using these notations, we can state following proposition which is in fact a
corollary of the proof of Proposition 2.1.

Proposition 2.2. Let £ := {half-spheres Sy (a) in U3, with center o € Z[w]
and radius 1}.

Then, L is a lattice of half-spheres in U which is stable under the action of
the 2-generator group < B, B(2 + 4w) >.

We now look at the geometric situation of a half-sphere of L.

Proposition 2.3. Fach half-sphere of L meets 6 other half-spheres of L
along the edges of a regqular hyperbolic hexagon, with intersection angle %’T

Proof. Let a € Z[w] be the center of a half-sphere S;(a) € L.

Then a+1,a—1, a4+w,a—w,a+w?’ =a—w—landa—w? =a+w+1
are on the circle C;(a)) C C of radius 1 centered at «.

Because of the definition of w and Proposition 2.1, there is no other element
of Z[w] on C; (), and no element of Z[w] \ {a} inside the disc of C bounded
by Cl (a)

Thus, each half-sphere of £ meets exactly 6 other half-spheres of L.

Figure 2.4: Intersecting half-spheres of £
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For the following, we suppose without loss of generality that a = 0.

We first observe that the centers 1, —1, w, w + 1, —w and —w — 1 of the
half-spheres intersecting the half-sphere S1(0) centered at 0 and with radius
1 are the vertices of a regular euclidean hexagon in C.

Each intersecting half-sphere can be obtained as the rotation of the half-
sphere S1(1) of radius 1 centered in 1 of an angle k- %, for k = 1,...,5,
and because all spheres have the same radius as S1(0) and S;(1), their in-
tersection with S1(0) is the image of the intersection S1(0) N Si(1) under a
rotation of the same angle, as indicated above.

Since the intersection S1(0) NS1(1) consists of a vertical half-circle centered
at % and with radius @ (short computation), one deduces that the boundary
of the region S1(0)\ (S1(1)US1 (w+1)US1 (w)US1 (—1)US 1 (—w—1)USi(—w))
is a union of circle arcs projecting onto a regular euclidean hexagon in C.
We remind that geodesics of 2 are vertical lines and vertical half-circles cen-
tered in C in order to deduce that the intersection S1(0) N .S1(1) N Si(w) N
Si(w+1)NS1(—=1)NSi1(—w—1)NSi(—w) is a regular hyperbolic hexagon.

R-o

Figure 2.5: The hyperbolic hexagon on S1(0)

Recall that the upper half-space model (U3, dy) is conformal. In particular,
one gets that the interior angles of the hyperbolic hexagon are all %’r
Now, we compute the intersection angles between intersecting half-spheres.
This time, we only look at the intersection S1(0)N{(z,t) € U3 | Re(z) = 3},
and compute the half angle.

For the point ¢ := (3,0, @) € 51(0)N{z € C| Re(z) = 1}, we have the fol-
lowing situation by considering U3 as R? x R+ with its euclidean structure:
the unitary vector vg = (—@,0, %) is tangent to the half-sphere in ¢, and
the unitary vector vp := (0,0, 1) is a unitary vertical vector in R? x Rsy.
Then, the intersection angle between S1(0) and S1(1) is twice the angle ¢
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between the vectors vg and vp (remember that the intersection S1(0)N.S1(1)
is a half-circle in the vertical plane {(z,t) € U®| Re(z) = 3}).

s {(2,1) €U Re(z) = 1} Roo {(:/.r) € UP|Re(z) = $}

AP

g q 51(1)
5{02 // // \\ /
/ / \

/ \' “ >R

Figure 2.6: The angle ¢

We know that ¢ € [0, 7] is given by the formula ¢ = arccos (ngﬁ&) =

[[vpl]
arccos (%) = %, with respect to the standard scalar product.
Thus, the intersection angles between intersecting half-spheres are all equal

to 2{, and we have proved the last part of the assertion. |

2.2.3 Definition of D,

We construct now a polyhedron D which will be the candidate for a funda-
mental domain of K < PSL(2,C) to apply Poincaré’s Polyhedron Theorem
1.7.

Observe that K contains the matrix B fixing co. Therefore, it is natural to
study first a horospherical neighbourhood of oo, and to begin by defining a
certain euclidean polygon D.

Definition. Let Do, C C be the interior of the closure of the union of the
euclidean projections on C of the regular hexagons on the isometric spheres
I(A), I(A=Y), I(W) and I(W~1!) described in Proposition 2.3. (CF. Figure
2.7, left)

Proposition 2.4. The region Dy is a fundamental polygon for the group
< B, B(2 + 4w) > < Isom™(C).

Proof. First of all, < B, B(2 + 4w) > is a subgroup of Isom™(C), since it
is generated by two translations of C (CF. Section 1.5.1).
We now check the three points of the definition of a fundamental domain.
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Figure 2.7: The polygon D, and distances on Dy

1. Obviously D is an open polygon and a domain in C.

2. We notice that Do, can be constructed from the regular euclidean

hexagon centered in 0 with inradius % and 2 vertices on iR. A short
computation shows that the radius of the circumscribed circle to this
hexagon is ?

Hence, the configuration is such that BDo, NDy, = B (because B is the
horizontal translation of length 1), and B(2+4w)DsNDs = B(because
B(2 + 4w) is the vertical translation of length 2/3 ; CF. Figure 2.7,
right).

Thus, for all distinct By, By €< B, B(2 + 4w) >, the intersection
EleﬂégDm is empty, because B and B(2+4w) generate < B, B(2+
dw) >.

. From point 2. above and the configuration, we deduce that BDs, NDso
consists in the consecutive edges hi, ..., h7, and that B(2 + 4w)Ds N
Do consists in the single edge v of Figure 2.7.

Here again, a careful look at the picture and the fact that B and
B(2+4w) are translations of respective length 1 and 21/3 in orthogonal
directions and generate < B, B(2 + 4w) > allow us to conclude that

U§E<B,B(2+4w)> BDy =C.
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Hence, Dy is a fundamental domain for the group < B, B(2+4w) > acting
on C. |

We come finally to the definition of D.

Definition. Let D be the set of the points of U3 lying above all half-spheres
of £ and whose orthogonal projection on C is D,.

Figure 2.8: The polyhedron D and its projection Dy,

From our construction, the necessary conditions 2. and 3. of Theorem 1.7
are satisfied. It remains to prove that D is compatible with the conditions
1. and 4. of the same theorem. In other words, we have to show that D is a
hyperbolic polyhedron which is bounded by polygons having finitely many
edges.

It is clear from the construction that D is an open connected subset of U3.
We check that D matches the definition of section 1.5.2.

e We notice that D has 22 sides. 18 sides of D are triangles with one
ideal vertex (00), which project onto the sides of Do,. The 4 remaining
sides are the hexagons projecting onto the interior of Dy,.

Each side is a subset of either a vertical half-plane or a half-sphere
centered in C, and are all hyperbolic planes. Furthermore, the edges
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of D are either vertical half-lines or arcs of half-circles centered in C
and orthogonal to C, and therefore geodesics of &3. Hence, each side
of D is a (geodesic) hyperbolic polygon.

e [t is clear by construction that each edge of D is the intersection of
exactly two sides of D, the vertical edges being the intersection of
two triangular sides, and the “circle” edges the intersection of either
a triangular and a hexagonal side, or two hexagonal sides.
Furthermore, the relative position of two sides, a side and an edge, or
two edges, as described in point 3. of the definition of a polygon, are
correctly realized in D.

e Finally, it is clear that the intersection of D with any open ball Bs(x)
of radius § > 0 and centered in z € 0D is a connected subset of D.

Thus, D is a hyperbolic polyhedron bounded by polygons having finitely
many edges, and is therefore admissible in our context. Furthermore, D is
non-compact, but of finite volume (short computation). Indeed, D is the
hyperbolic convex hull of finitely many points in ¢3.

2.3 Application of Poincaré’s Theorem

We now come to the central point of the proof, where we make use of
Poincaré’s Theorem for D.

We are going to define an identification on D using elements of K. That
is why we first have to look more in details at the geometric effect of A,
A=Y W and W1 on U3. The effect of B(t), t € C, is well-know, as it is a
translation.

2.3.1 Geometric Action of A, A=, W and W~! on U*

In the following, we will think without distinction at an element in PSL(2, C)
as a matrix representative (modulo +1I3) or as an isometry of 3. Further-
more, we won’t distinguish them from their Poincaré extensions, in order to
make the discussion more easily accessible.

Action of A and A’l‘

We remember that A = (—1w (1)> has the isometric sphere I(A) C U3
centered in ¢4 = —1 — w and with radius 1.

According to Proposition 1.16, A can be seen as the composition
A=Tp01a0p4

where p4 is the euclidean reflection in R(A), t4 is the euclidean inversion in
I(A), and 74 is the translation carrying I(A) on I(A™1).
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Let us now discuss these three transformations.

e From the previous section, we now that I(A) has center cy = —1 —w
and that I(A™!) has center c4—1 = 1 + w. Thus, the translation 74 is
given by 74(2) = z + 2 + 2w, Vz € U3.

e 14 is the euclidean inversion in I(A). In particular, ¢4 fixes all points
of I(A) (this fact is the only property of ¢4 we will need, so we don’t
go any further into the analysis of ¢4).

e To characterize pa, we have to find R(A). First, notice that A(0) = 0.
This is leads to (14 0 pa)(0) = 7,7(0) = —2 — 2, ie. pa(0) =
111 (—2—2w). Since —2— 2w = 2w? and since |w?| = 1, we deduce that
2w? is on the circle of radius 1 centered in w?, i.e. 2w? € I(A). Since ¢4
fixes the points of I(A) pointwise, one concludes that p4(0) = —2—2w.
Thus, R(A) is the vertical half-plane in &2 bounded by the line Rg(A) C
C through —1 — w bissecting the segment between 0 and —2 — 2w, and
pa is the reflection in R(A) (CF. Figure 2.9).

We furthermore recall that A=! = (3} (1)> has isometric sphere I(A~!) C

U3 with center c4—1 = 1+ w and radius 1.

As for A, one gets that we have the decomposition A~ = 74-1014-10p4-1,
where 741 is the translation z > z —2—2w, 141 is the inversion in I(A™1),
and p4-1 is the reflection in the plane R(A™1) = 74(R(A)).

Action of W and W1 ‘

—w® 1—-w
with isometric sphere I(W) centered in ¢y = 1 4 2w and with radius 1.

We proceed in a similar way as above, first recalling that W = < 0 9 “ )

As above, we have the decomposition W = 7y o i o pw, given by the
following transformations:

e Since cyy = 142w and ¢y -1 = 0, we deduce that Ty (z) = 2 — 1 — 2w,
Vz e Us.

e 1y is the inversion at I(WW). In particular, the points of I(W) are
fixed pointwise by tyy.

e We notice that W(w) = —1, and consider (1w o pw)(w) = 73/ (w) =

2w <= pa(w) = 1, (2w). Since 2w = 1 +w is in I(W), 13" (2w) = 2w,
and we obtain py (w) = 2w.
As a consequence, R(W) is the hyperbolic half-plane in &3 bounded
by the line Ro(W) C C through 1 + 2w and bissecting the segment
between 2w and 1 + w, and py is the reflexion in R(W') (CF. Figure
2.9).
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1— —
Finally, remember that W1 = w;} Ow
centered in cyy—-1 = 0 and radius 1.
As for W, we have the decomposition W~ = 7y—1 0 ty—1 © pyy—1, where
Tyy—1 is the translation z — 2z + 1 4 2w, ty—1 is the inversion in I(W 1),

and pyy—1 is the reflection in the plane R(W 1) = 7 (R(W)).

) , with isometric sphere I(W 1)

AR

R(W)

Figure 2.9: The reflection planes

2.3.2 Definition of an Identification on D

Now we have all necessary tools and information to define an identification
on the polyhedron D, using only the generators A and B of K € PSL(2,C),
and the elements W, B(2 + 4w) and B(3 + 4w) of PSL(2,C). '

Let us label the sides and edges of D as follows (the edges of the form e for
7 =1,...,8, are the vertical edges, and the remaining edges are the “hexag-
onal” edges). The edge labelling will be made clear in the next paragraphs.
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Figure 2.10: Labelled sides and edges

We identify the following pairs of sides:

e Using B(3 + 4w)*!: (S1;S10).

Using B(2 + 4w)*!: (So;S11).

Using BE!: (S5;51s), (S43517), (S55516), (S65515), (S7;S14), (Ss 3 513),
and (S9; S12).

Using A*!: (S19;S21)

Using Wili (520 N 522)

Looking at the successive “moves” of the edges induced by the sides identi-
fication, one can deduce that the edges are identified within the 12 following
classes, using the fact that any edge is contained in two different sides (CF.
Figure 2.10, right):

. . 1 .
o) B, e 5, el, for j =1,...,6 (vertical edges).

B(24+4w) - B(3+4w)~!
; el 7

B .
el —e 5 —  ef (vertical edges).

B(2+4w B B(3+4w)~1! .
o 8 2+4 )eg 5 €f (5149) e§ (vertical edges).
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A9319W19A19

o cf N e) — ) = e — e = e (“hexagonal edges”).

A71

w- A B!
30 el 5 el = elY = el (“hexagonal

o 0 2 el L
edges ).

B(24+4w) ™!
éo ( )

A w-— B~ w
o e}l S ell % esl! —> ei! — el (“hexagonal edges”).

B(3+4w) w B! w-l B, 12 A7l
o cl? y el = el T el T el2 2 el S el? (“hexagonal
edges”).

As an example, we give the detailed procedure for the set {el}, i =1,...,5.

We begin with e?. The identification Sig i S3 sends egf on eg.

The identification Sig i) S91 identifies eg with eg (remember the decom-
position of A as composition of a reflection, an inversion, and a translation
and notice that all “hexagonal edges” are on the isometric spheres).

Furthermore, e i 1s sent on e} by the identification Sg 5, S15, and the iden-

. . w-—
tification Sog —) S99 sends 64 on eg.

—1
Finally, eg is identified with e? by the side identification So; A—> S1g.

The procedure described above is unique (up to the choice of the starting
edge in a class) because any edge is contained in exactly two different sides.

2.3.3 The Poincaré’s Theorem D

We now show that D is a Poincaré polyhedron. In other words, we check the
identification conditions (I1), (I2), (I3) and (I4), the completeness con-
ditions (CP1) and (CP2), and the cycle conditions (CC1), (CC2) and
(CC3) of section 1.5.2.

‘ The identification conditions‘

Since the identification defined above is explicitly given, the verification of
these conditions is easy.

e Ad (I1) : Since the transformations A, B, W, B(2+4w) and B(3+4w)
and their inverses are elements of PSL(2,C), they are isometries of
U3 (CF. section 1.4). Since no other transformation is used to define
the identification, the condition is satisfied.

e Ad (I2) : From the construction described in the previous section,
it is clear that each side is assigned to a unique other side, and that
T(S',8) = (T(S,8")~! for each isometry T(S, S’) sending S on 5.
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e Ad (I3) : Since there is no side S such that S = S’, the condition is
trivially true.

e Ad (I4) : The situation induced by the identification is such that each
side is sent to a “non-adjacent” side which is at a euclidean distance
at least 1. Therefore, for all side S of D, one can find a neighbourhood
Vs C U3 of S such that for T = T'(S, "), the intersection T'(VsND)ND
is empty.

As a consequence, we have now that D is a polyhedron with identification.
Furthermore, the group induced by the identification is generated by A, B,
W, B(2 4+ 4w) and B(3 4 4w), with no reflections (empty condition (I3)).

‘ The properness condition‘

Since D has finitely many vertices, edges and sides, and refering to the ex-
plicit side-pairing described above, it is obvious that all for all x € D*, the
set p~1(z) is finite.

Therefore, the properness condition (P) is satisfied.

‘ The cycle conditions

We refer to the identification described in section 2.3.2. As we have seen,
the side pairing induces 12 edge sequences of different lengths.

Let us give the explicit corresponding edge cycles £/ and generator sequences
T7, 5 =1,..,12. We don’t give the related sequences of pairs of sides,
because we don’t need them in the discussion. They are easy to find out,
however.

o &1 = {e{, eé}, j =1,...,6. The related generators sequences are all the
same: 7/ = {B, B!}, j=1,..,6.

o &7 ={el el el}, with T7 = {B, B(2 + 4w), B(3 + 4w)~1}.
o E8 ={ef, €8, €8}, with T8 = {B(2 + 4w), B, B(3 + 4w)"1}.
o &9 ={el,e),e3,e3,e2}, TP ={B, A, B~ W1 A~1}.

o £10 — {el ,e%o,eéo,e}lo,eéo,eﬁo} with 710 = {B,W~! B(2+4w)~ !, A,
B~1 A1}

L] —{61 ,62 ,63 7641} Wlth Tll_{A W 1 B 1 W}

® 512 = {612 6%2,6%2,6}1278%23662} Wlth le == {B(3+4w) WB 1 W 1
B, A7}
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We directly deduce for the corresponding periods m;, j =1,...,12:
m =..=mg=2; mr=mg=3; mg=25; myg=mie2=06; my =4.

Furthermore, the sequences above induce following cycle transformations.

e Ci=..=Cs=DB"'B,

e C7 = B(3+4w) 'B(2+ 4w)B,

e Oy = B(3+4w) 'BB(2 + 4w),

o Cg=A"'"W-1B14B,

o Cio=A"'B7'AB(2 + 4w)"'W1B,

e C;1 =WB W14,

o C1o=A"'BW B 1WB(3 + 4w).
We now check the cycle conditions:

e Ad (CC1) : We refer to the proof of Proposition 2.3 in section 2.2.2.

We deduce that the interior angle between two vertical sides is either
%’T or %’r, depending on the situation. Furthermore, we have seen that
the interior angle between a vertical side and a “spherical” side (one of
the sides S1g, Sa0, So1 or Sa9) is 7 and that the interior angle between
two “spherical” sides is 2F.

3
Thus, we have

— For j =1,..6, mj = 2: a(e{) + a(eé) =244 = 27?, with

v; =1.
— For j =7,8, mj =3: a(e{)+a(e§)+a(e§) =242y 2r %,
with v; = 1.
—Forj=9,mg=5:3,  a(ed)=4-5+% =2 with vy = 1.
— For j =10, myp =6 : Z?Zla(ello) =6-5= 3—17:), with 119 = 1.

— For j =11, my1 = 4 : Z?:l ale;!)
V11 = 1.

— For j =12, m3 =6: Z?Zla(ezm) =6-5= 377;, with v19 = 1.

2.2 +2.7 =20 with

vi1’

Thus, the condition is satisfied, and we deduce that v; = 1 for j =
1,...,12.

e Ad (CC2) : All cycle transformations Cj, j = 1,..., 12 are orientation
preserving, because they are the composition of the orientation pre-
serving transformations A*!, B W+l B(2+4+4w)*! and B(3+4w)*!
(A and W are orientation preserving because they both have a matrix
representative with positive determinant).
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Y

Figure 2.11: Interior angles in D

e Ad (CC3) : In our situation, all edges have at least one finite end-
point. Thus, the condition is trivially true.

‘The completeness condition

D is a finite-sided polyhedron constructed from 4 pyramids with hexagonal
base and ideal apex. Thus, we apply the related propositions stated in sec-
tion 1.5.2.

The intersection of D with any horosphere C; for ¢ > 1 is the union of 4
copies of the same euclidean regular hexagon. Furthermore, the side-pairing
on D is such that one has only one cusp point, formed by the 4 ideal apices
of the pyramids.

The restriction of the action of the generators on the hexagons provides ob-
viously a side-pairing of the hexagons sides (we don’t even need to rescale).
Therefore, the situation here is so nice that we can apply the Propositions
1.23 and 1.24 directly, and deduce that the metric space D* is complete, i.e.
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the completeness condition (CP) is satisfied.

As an outcome, we have that D is a Poincaré polyhedron.

Furthermore, since v; = 1 for all j = 1, ..., 12, the cycle relations induced by
the cycle transformations listed above are C; = I, for j = 1,...,12 (for I the
identity matrix of PSL(2,C)).

Poincaré’s Theorem on D‘

Now that we have seen that D is a Poincaré polyhedron, we can apply
Poincaré’s Theorem 1.18 on D.

First, we define the group I'p < PSL(2,C) as follows.
B
B(3+4w) 'B2+40)B @ 1

A B W B(3 4 4w) "' BB(2 + 4w) ®
= N @
I'p: B(2 + 4w), B(3 + 4w) Cw )

A~'w—iBTlaB =
A"1B1AB(2 + 4w) w1 D

wr—tw-14 9
ATIBWTIBTIWB(3 + 4w) D

Before stating the conclusions of Poincaré’s Theorem, we give a reduced
presentation of I'p.
Let us rewrite the relations (2) — (7) as follows:

e (2) & B3 +4w) Y B2+ 4w)B,

e (3) & B3+ 4w) Y

@)

BB(2 + 4w),

B~'ABA,

4) W

o (5) B(24+4w)"! = A\ BAB-'W & B(24+4w) L w-1BA 1B 4,

e 6) A Y wBw,

o ()& BB +40) 2 w-1BwB'4.

Now we eliminate the redundant relations and generators.

e The relation (1) holds in all groups and is therefore trivial.

e Since
W = A" A wW=A"'wWBWlw
~~
use (6/)
= A' W B=A'B'ABA !B,
(4)
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one gets

WB'AB ' = A~ 'B71A.

Multiplying each side to the left by W~!'B and to the right by B, one
gets
W 'BWB'AB'B=W"'BA'B"'AB.

The left term reduces in W-!BWB~!A. Using relation (5') on the
right term, one gets B(2 + 4w)B, which is B(3 + 4w) according to
relation (2).

Finally, this leads to the relation W~ 'BW B~'A = B(3 + 4w), which
is relation (7). Therefore, the relation (7') is redundant.

e The definition of B(t) implies that the relations (2’) and (3) already
holds in PSL(2,C), and are therefore trivial. This implies that the
generator B(3 + 4w) is redundant.

e A short computation shows that the relation (5’) is redundant, and
therefore that the generator B(2 + 4w) is redundant.

e The relation (4') can be integrated into relation (6") to get a relation
(6”) involving only A and B.

In summary, I' has only 2 generators and the relation (6”), and we get
following presentation:

I'p= <A,B | A=B'ABA™! BAB—lA—lB> . ()
—W w1

Then, the consequences of Poincaré’s Polyhedron Theorem are the following;:

1. T'p acts on U3 properly discontinuously (and is therefore a Kleinian
group). By Theorem 1.6, I'p is discrete.

2. D is a fundamental polyhedron for I'p.

A further consequence is that (I'p)ee = (B, B(2 + 4w)) with fundamental
polygon D, as mentioned in section 2.2.3.

2.4 R3\ K is a hyperbolic 3-manifold

We now come to the central result of this work. We will use the consequences
of Poincaré’s Polyhedron Theorem 1.7 stated in the previous section, Wald-
hausen Theorem 1.10 and other results mentioned in the first chapter of this
work.

Theorem. R?\ K is a complete oriented hyperbolic 3-manifold, which is
non-compact (but of finite volume, CF. Section 3.1).
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Proof. The proof consists in an algebraic-geometric part, followed by a
topological part.

e At the end of section 2.3, we saw that I'p is a discrete group.

e From Proposition 1.11, one deduces that the generators of I'p are
parabolic, since tr(A) = tr(B) = 2. Since A and B are triangular
matrices, the transformations A™ and B" have the same trace as A
and B, for all n € Z.

Furthermore, a short computation shows that the elements AB, A~ B,
AB~ ! and A~!B~! of I'p have all non-real trace and are loxodromic
by Proposition 1.11.

Since every element of I'p can be expressed as product of A and B,
we deduce that the elements of I'p are either parabolic or loxodromic.
In particular, I'p doesn’t contain any elliptic element.

Then, Proposition 1.12 shows that I'p operates freely on U3, and
Proposition 1.26 shows that I'p is torsion-free.

e Theorem 1.9 hence implies that D* = U3 /I'p is a complete oriented
hyperbolic 3-manifold. Furthermore, it is clear from construction that
D* is path-connected, and therefore connected.

e The Theorems 1.8 and 1.9 imply that I'p = 71 (D*).

e On the other side, it is clear from the presentation (x) of 71 (K), repre-
sented in PSL(2,C) by K, and the presentation (xx) of I'p in previous
section that all groups are isomorphic.

e Finally I'p & 71(K), and Theorem 1.9 implies that &3/ and U3 /Tp
are homeomorphic.

We now come to the topological part of the proof.

e For t > 0, let D(t) be the portion of D which doesn’t lie above the
horosphere C;, and D*(t) be the portion of D whose pre-image in D
lies in D(t). From section 1.5, we know that for ¢ > 1, the boundary
0D*(t) of D*(t) is a torus.

e It is clear that for all ¢ > 1, D*(¢) is homeomorphic to D*. Since D*(2)
is a compact set, one has to find a homeomorphism between D*(2) and
S3\ Tk

e From the first part of the proof, one has 71 (D*(2)) = 71 (D*) 2 I'p =
m1(K).

We apply Waldhausen Theorem 1.10 for M = §3\ T and N = D*(2).
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e Observe that Tk is a knotted torus. S? is known to be irreducible.
Then Dehn’s Lemma 1.11 implies that S3\ Tk is irreducible, boundary
irreducible (because its boundary is a torus), and sufficiently large (CF.
first remark in Section 1.7).

e Furthermore, D*(2) has U? as universal cover. Since obviously 7;(U?) =
0 for all ¢ > 1, we deduce from Proposition 1.27 that m;(D*(2)) = 0 for
all i > 1, i.e. D*(2) is aspherical. Proposition 1.28 implies then that
D*(2) is irreducible.

e Since the boundary of D*(2) is a (knotted) torus, D*(2) is boundary
irreducible.

e From section 2.3, we deduce that 0! : 71(D*(2)) — m1(S®\ Tk) is
an isomorphism. Furthermore, 71(D*(2)) =< A,B|[WBW 1 = A >
and m1(0D*(2)) =< B, B(2+4w) >. A short computation shows that
B(2+4w) =W 'BA'B A
Set b := 071 (B(2 + 4w)) = wtba b ra € i (S? \ Tk). The group
0=1(< B, B(2+4w) >) =< b,b > is isomorphic to Z x Z and therefore
conjugate to w1 (9(S?\ Tk)) in 71 (S*\ Tk), since 9(S? \ Tk ) is a torus.
Hence, the isomorphism ! respects the peripheral structure.

e Then, we apply Waldhausen’s Theorem 1.11 and deduce that D*(2)
and S? \ T are homeomorphic.

Thus, one concludes that S* \ K ~ D*(t) for all ¢ > 1.

Switching to the non-compact case, one deduces that R\ Tk is homeomor-
phic to D*, and is therefore a complete non-compact oriented hyperbolic
3-manifold as required. |

Remark. As a consequence of the Theorem, we deduce by Mostow-Prasad
rigidity that R3\ K is even isometric to U /T'p (CF. section 3.1).
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Chapter 3

Some Remarks on Important
Related Results

3.1 Mostow-Prasad Rigidity

In this section, we give a short introduction to the computation of the volume
of D* and give an illustration of Mostow-Prasad rigidity applied on D*, in
relation with Thurston’s approach of R3 \ K. References for this section are
[Mil], [Thl] and [Vi].

3.1.1 Volume of Hyperbolic Orthoschemes and Ideal Tetra-
hedra

In order to compute the volume of D*, we are going to split D into polyhe-
dra -called orthoschemes- whose volume can be easily computed. For such
polyhedra (and other), the usual volume formula vol(T) = [ dvol?; can be
simplified, using the so-called Lobatchevsky function defined as follows.

Definition. The Lobatchevsky function is the function JI: R — R given by

Mz) = — /0 " log|2sin(t)|dt.

From the definition and small computations, one can deduce that JI satisfies
the following properties.

Properties. 1. JI is continuous.
2. Jlis an odd function, i.e. JI(—x) = —JI(x) for all z € R.
3. Jlis periodic of period 7, i.e. JI(x + ) =JI(x), for all x € R.
4. J(x)=0<+= v=k3, ke

5. J(nz) = nzy;&ﬂ(x + ET) for alln € N*.
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In particular, for n = 2, Property 5 becomes JI(2z) = 2JI(z) + 2JI (z + §).

Figure 3.1: The Lobatchevsky function

We now give the definition of an orthoscheme in H?.

Definition. Let P, P, P3, P, C H? be four hyperbolic half-spaces bounded
by hyperplanes Hy, Ho, H3, Hy.
If Hi L H for |i — k| > 1, i,k = 1,...,4, we call the tetrahedron O =
N, P C H? a (3-)orthoscheme.

Denote «;; the dihedral angle of O formed by the hyperplanes H; and Hj.

A consequence of the definition is that one has a13 = a14 = agq = 3.

In the sequel, we use the following notation for the other dihedral angles.
Let a9 =: @, a3z =: 5, and agq =: 7.

Figure 3.2: An orthoscheme

Proposition 3.1. «, 8, v < 3.

Definition. Let O be an orthoscheme with non-right dihedral angles «,
and 7.
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The principal parameter of O is the (unique) angle 6 € [0, 5] such that

cos’f3 — sin®

)
« sin
tan’s = 5 3 7.
cos?a cos?y

We furthermore introduce the notion of ideal polyhedron.

Definition. A polyhedron P C H? is called n-ideal if n of its vertices are in
OHB3. If all vertices of P are in OH?, we call P an ideal polyhedron.

One can see that in an ideal tetrahedron, the dihedral angles split in three
pairwise equal angles sitting at opposite edges.

The following theorems give useful formulae for the volume of orthoschemes
and ideal tetrahedra.

Theorem 3.1. Let O C H? be an orthoscheme with dihedral angles o, B and
~ and principal parameter §.
Then, the volume of O is given by

1 s T
vol(0) = 1l +8) = Jia = 8) = J1(5 = B+38) +71(5 = 8- 5)
Iy + 8) — JI(y — 6) +2JI(% —5)}.
Theorem 3.2. Let T be an ideal tetrahedron with dihedral angles oV, a(?)

and o3,
Then, the volume of T is given by

vol(T) = JI(a™M) 4+ JI(a?)) + JI(a?).

3.1.2 Mostow-Prasad Rigidity on R?\ K

The so-called Rigidity Theorem is a result due to George Mostow (compact
case), and extended by Gopal Prasad (non-compact case). There are several
formulations of the theorem. We give here a geometric version adapted to
our situation (CF. [Thl|, Chapter 5.7).

Theorem. (Mostow-Prasad Rigidity) Let M and N be complete oriented
hyperbolic 3-manifolds of finite volume.
If 1 (M) = w1 (N), then M and N are isometric.

It is a very deep and important result, showing the hard link between the
topology and the geometry of 3-manifolds. There are several proofs of the
theorem. [Th1] for example gives two different proofs.

We have mentioned in the Introduction that one can also see R3 \ K, for
K = 44 the figure-eight knot, as the manifold 7 obtained by gluing two
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regular ideal hyperbolic tetrahedra. The following picture gives a glimpse of
the construction.

Figure 3.3: The construction of 7o (Picture: [MaTa], p.34)

Then, since 7 ~ S\ Tx and U3/T'p ~ R3\ K, Mostow-Prasad rigidity
implies that the volume of 75 must be the same as U3 /T'p.

As an illustration, we give the explicit computation of the volume of 75 and
U3 /T'p, and check the equality.

We first define the volume of a quotient manifold.

Definition. Let I' < I'som™(H?) a torsion-free discrete group which acts
properly discontinuously on H? with fundamental domain Dr. Then, the
volume of the manifold H3 /T is defined by vol(H3/I") := vol(Dr).

Thus, in our situation we have to compute the volume of D.

e We call H the pyramid with hexagonal base on S7(0) and ideal apex.
By symmetry, one has that vol(D) = 4vol(H).

e H can be decomposed into 6 isometric 1-ideal tetrahedra, all having
the point (0,1) € U? as vertex. Let T be one of these tetrahedra. Then
vol(D) = 24 vol(T).

o6



e Finally, taking a suitable vertical hyperplane bissecting S1(0), one can
see that a tetrahedron splits into two isometric orthoschemes.
Calling O one of theses two orthoschemes, we deduce that vol(D) =
48 vol(O).

>

T O

Figure 3.4: The polyhedra H, T and O

In particular, the dihedral angles «, 8 and v of O are immediately obtained
from the angle computation in D in section 2.2. We obtain

™

52%, and’yzg.

7T
Oé:g,

Visualizing O only as a combinatorial object, we obtain the following situa-
tion.

Figure 3.5: The orthoscheme O
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Furthermore, the principal parameter ¢§ is given by

\/—sin2 (%) sin®(3) + cos? (%)

60 = arctan
cos (5) cos (3)
1 3,1
R V3 w
= arctan | ——— | =...=arctan | — | = —.
V3.1 3 6
)

Using the formula of Theorem 3.1, the properties of the function JI and the
values of «, 3, v and § above, we obtain

1

wl(© = 4 (1(5) 1O =a(5) +2 @ +1(3) =2 (5) +22(5))
T 7T W)

[

Finally, we deduce for the volume of D:
T
vol (D) = 48 vol(O) = 6.J1 (5) .

On the other side, 79 is the gluing of two copies of an ideal regular hyperbolic
tetrahedron 7. The regularity of 7 implies for its dihedral angles that

3) _ T

NG R

oD = of
Thus, the volume of 7 is given by Theorem 3.2 as follows.

vol(1e) = 2vol(T) = 2 (JI (g) +JI (g) +JI (g)) =6JI <%) .

Finally, one observes that
vol(D) =61 <%) = vol(12),

which proves that vol (U3 /T'p) = vol(72) as required.

3.2 The Hyperbolization Theorem for Knots

In this section, we give the general criterion to decide whether a knot com-
plement is hyperbolizable or not. This is a corollary of Thurston’s Hyper-
bolization Theorem (giving conditions for the interior of Haken manifolds
to be hyperbolic). References for this sections are [CR| and [Th2].

We begin with some definitions.
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Definition. A torus knot is a knot that can be embedded as a simple closed
curve in an unknotted torus in R3.

More precisely, the torus knot ¢, , of type p, ¢ is the knot which wraps around
the standard solid torus p times in the longitudinal direction, and ¢ times
in the meridian direction.

Figure 3.6: The torus knot ¢3g (Picture: [Th2], p.358)

Definition. Let 7} be an unknotted solid torus in R?, and k; C T} a knot.
Let ko be a non-trivial knot, and 75 a tubular neighbourhood of k3 in R3.
Let h : Th — T3 be a homeomorphism of 77 onto T5. The image k := h(k;)
is called satellite knot of pattern ki and companion kso.

Figure 3.7: A satellite knot and its companion (Picture: [Th2], p.358)

Furthermore, we recall the definition of a hyperbolic structure on a knot
complement.

Definition. Let & C R? be a knot. A hyperbolic structure on the manifold
R3 \ k is a Riemannian metric on it such that every point of R?\ k has a
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neighbourhood isometric to an open subset of H3.
Knots admitting a hyperbolic structure on their complement are called hy-
perbolic knots.

We now are able to state the criterion.

Theorem. (Thurston’s Hyperbolization Theorem for Knots) A knot k C R3
1s hyperbolic if and only if k is neither a torus knot nor a satellite knot.

The difficulty which arises now is to decide which knots are torus knots or
satellite knots. For knot diagrams with many crossings, this problem is non-
trivial. However, several classes of knots are known to be hyperbolic. Some
of them can be found in [Ad2].
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Conclusion

We have seen in details the path taken by Riley to find the first explicit hy-
perbolic structure on a knot complement. We have made use of Poincaré’s
Polyhedron Theorem to produce a discrete torsion-free group I'p such that
R3\ K, K = 41, is homeomorphic to the complete non-compact oriented
hyperbolic 3-manifold 23 /T'p. We have even produced a glued polyhedron
D* which can help to vizualise the combinatorial structure of the manifold.

Thurston’s method doesn’t lead to such an explicit structure, but is easier
to deal with for different reasons. For example, his approach gives a trian-
gulation of the knot complement with ideal regular tetrahedra. This can be
translated into algorithms in order to produce a computer program which
is able to give directly several informations about the manifold. Jeffrey
Weeks, one of Thurston’s students, made use of this idea to write the pro-
gram SnapPea (http://www.geometrygames.org/SnapPea/) which is still
used nowadays to work with knots, links and their complements.
Furthermore, by Mostow-Prasad rigidity, we know that Thurston’s manifold
obtained by gluing two ideal regular tetrahedra has to be isometric to D*.
We have computed as an illustration the explicit volume of D* and showed
that it equals the volume of two ideal regular tetrahedra.

The difficulty which arises with Riley’s approach is that there doesn’t seem
to be any generalization of the process. Given any knot k, how can we ob-
tain an explicit discrete torsion-free group I' < Isom(H?) such that H?/T is
homeomorphic to R?\ &k ?

However, working out [Ril] shows how various mathematical concepts such
as knots, hyperbolic isometries, discrete groups and fundamental polyhedra
can be used to investigate the world of hyperbolic 3-manifolds.

Finally, we have mentioned that hyperbolic knots (i.e. knots whose comple-
ment can be hyperbolized) turn out to represent the huge majority of knots.
Riley’s first intuition was that the figure-eight was a particular knot, which
could be seen as counter-example. It is only after meeting Thurston that he
realized that his construction was in fact the first explicit example.
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Appendix: An unpublished article by Riley

A personal account of the discovery of hyperbolic
structure on some knot complements

Robert Riley

I discovered, quite unexpeetedly, the phenomenon of hyperbolic structure on three knot
complements early in 1974, and managed to get two papers on the topic published in 1975,
At some moment between the dates of publication of these papers, Wilham Thurston
independently discovered the phenomenon and ran away with the idea. In late June or
early July 1976 he learned of my work, and so when we met later in July he immediately
told me that he had been trying for about o year to prove the hyperbolization conjecture
for Haken 3-manifolds.

Colin Adams published a semipopular account of knot theory in “The Knot Book” i1},
and a copy of this carae into my hands recently. On page 119 he gives an account of the
hyperbelic structure discovery which is just plain wrong. He does get the names of the two
people concerned and the priority right, but nothing else. The present paper is an attempt
to set the record straight. I shall relate what 1 did, why, and when. There will he too
much detail about small matters, but this will convey the spirit of my projects. Indeed, I
think my old papers were very open about my project, and a close look at them and their
dates of submission should have made the present history unnecessary. Furthermore, Bill
Thurston’s account of my work in [13] is entirely fair, except for being too generous abont
my influence on his thinking,

5o below I give the history of my project from its beginning to the moment [ met Pro-
fessor Thurston. The story is told as I saw it, and the emphasis is on motivation and dates.
Many dates are only approximate because most entrics in my notebooks are undated, but
the uncertainties are never more than about & month. I include an intermediate example,
worked out between the diseoveries of the hyperbolic structures for the figure—eight knot
{4:) and for 5;. This example ought not be on the main line of development, but in fact

it was, and it served to undermine my initial expectation that the figure—eight is the only
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knot which could possibly be hyperbolic. T elose with some comments on the early work

of H. Gieseking & Max Dehn, and on the article {15] of W. Thurston.
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1. The early years

On settling in Amsterdam in October 1966 [ wrote off to virtually everyone publishing
in knot theory for their reprints and preprints. I recall with gratitude that R.H. Fox and H.
Seifert were especially generous, An unassuming little paper by Fox [2], written in Utrecht
some 20 miles away, took my fancy. Here Fox advertised the notion of longitude in a knot
group by using it, together with representations on the alternating group 4; | to distinguish
the square and granny knots. I was intrigued by the success of Ay, and took the first steps
toward writing out explicit procedures to find al] A ~representations of a knot group in
1967-68. When I got my first temporary appointment at Southampton {England) in 1068
this became my main project, with results summarized in [6, 7]. So by 1970 I was after
the parabolic representations (p-reps) of a knot group, initially because they were eagier
to manage than the general non-abelian representations (nab-reps). The 2-bridge case
is especially tractable, because the representations are governed by a simple polynomial
whose rule of formation is easily programmed in Fortran. This tractability extends to
all r—bridge knots which are symmetric about an r—fold axis of rotation that eyclically
permutes the bridges, but most knots of bridge number > 2 are not so symmetric. The
explicit algebraic description of the equivalence classes of p-teps of an unsymmetric knot
is so difficult that only a few examples have been worked explicitly, and I have found the
full curve of all nab-representations of only one unsymmetric 3-bridge knot, 8,. Around
1971 I wrote some primitive Fortran programs to find the p-reps of a few 3-bridge knots
and used the output to discover the commuting trick of [7II], but at the time this topic
was mainly pure frustration.

In 1971 & plea for help from me was passed on to Professor G.E. Collins, the instigator of
the SAC-1 file of Fortran routines for doing the kind of algebraic calculations [ needed. He
sent me a pile of very poorly printed manuals containing the program listings, lots of errata
slips, and the advice that the 24 bit word size of the Southampton university computer

would require some doubly recursive programming in assembly language. (The reference

65



count field in a SAC atom would be too small without this recursion, and hence impose
a strict limit on the allowed complexity of ealeulations). He also mentioned that T would
need to get someone to punch up the 6000 or so cards of the 1971 SAC. Well, that someone
had to be me, but fortunately only some 4000 cards, plus the assembly language parts,
were needed for my application. It took about eight months to do all this, and 1 never did
get the double recursion for the reference count right. So my more ambitious caleulations
were killed as soon as the reference count tried to'reach 128, but 1 still managed to do
most of what I wanted. By 1 October 1972, the day my fourth temporary appointment
at Southampton ceased, | had done the elimination—of—variables part of the solving for an
algebraie description of the set of p-reps for several 3-bridge knots, including 935. Each
SAC run required several hours of CPU time, and could not have been attempted during
term time. Perhaps some distorted memory of this story is the source of the “immense
computer program that was designed to attempt to show that some knots are hyperbolic”
bit in Adams’ account. In fact, the PNCRE package which does just this was developed
from 1976, and it was always fast enough for term time, even during the dey on a grossly

overloaded 1960's compuier.
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2. The preparation

In October 1972 [ had a large pile of SAC output which needed more computer analysis
to become meaningful, and no prospect of further employment. So I spent the next three
months walking the Pennine Way and walking in Wales until the prospect of a six month
appointment in Strasbourg opened up. While I was walking in the Vosges this materialized,
and I was able to complete the algebraic description of the equivalence classes of p-reps
for several knots, including 935, f. [11]. (I recall a puzzling difficulty with 055 that was
explained a decade later as the consequence of dropping the deck of data cards, perhaps
in 1971, and reassembling it almost exactly right).

The knot 935 has a large symmetry group (dihedral of order 12, [11]), and also an
urusually large number of algebraic equivalence classes of p-reps, facts which I believe
are related. The SAC calculations had given me a polynomial p(r) € Elz] of degree 25
which I had to factor as the first step. When one has no symbolic manipulation package
available this is done by finding the roots of p(z) = 0 and examining them for clues.
The polynomial p(z) (and its relative for 945 which was even worse) defeated several
commercially produced root—finding routines, but a final resort routine succeeded, sort of,

and I was able to infer factors
pr=14z pp=1+2c 47" +52% +z*, py=--.,
and soon

plz) = (1 +2)p(z)--- .

Only the cubic factor remained unguessed, and of course it turned out to be the one giving
the hyperbolic structure four years later. Each factor py(z) of p(z) had to be tested to
see if it gave an equivalence class of p-reps or was spurious, and [ expected 1+ = to be

spurious. To my surprise it gave p-reps on

o 1) [4 8wl aresnam a-; 1]
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where ¢ = /1. This was in June 1973, and I probably did not understand what a Kleinian
group is at the time, but [ could see G; is discrete and wondered what its presentation
was. Also, as [ watched the printout emerge from the line printer I guessed that these
p-reps must be an instance of an undiscovered theorem, and the same evening stated and
proved the theorem, (Writing it up for publication is taking longer. In December 1991 I
used Maple to extend the theorem to algebraic varieties of nab-reps and add some new
material. In 1893 I told Tomotada Ohtsuki about this, giving no detail, and he promptly
found a better proof and more new material. I hope to proceed to a joint paper socon.)

After the summer vacation of 1973 when I returned to Southampton, the professors
of the mathematics department granted me the use of an office and all university facili-
ties, except the computer which was heavily overloaded. By then I had learned by some
osmosis what a Kleinian group is and read Maskit’s paper [4] on Poincaré’s Theorem on
Fundamental Polyhedra. This made progress on G; above possible, and I soon had its
presentation. (I also found that Fricke and Klein had considered Gy, or something very
like it, cf. Fig. 151 on page 452 of [3]). Success with G; led to success with the image =K ¥
of a p-rep of the figure—eight knot group in November 1973. Recall that

s 1 3 oo

so the group is obviously discrete and only its presentation was in doubt. I remember
my surprise at finding this p-rep is faithful. The first version of my account [8] of this
was received by the Editors on 30 November 1973, and it didn’t mention the orbit space
H? fx K8 because I had not even thought of it,

Why not?! Well, the result was perhaps a fortnight old, and I didn"t have a premonition
of hyperbolic structure on knot complements. Years later T learned that it had not only
been thought of, but attempted and discussed privately by the Kleinian groupies since 1968.
Nothing had been written and none of this had reached me. The key to seeing that the orbit
space of mK# had to be the figure—eight complement was seeing the peripheral torus in the
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orbit space. This torus occurs as the image of Buelidian plane 1(#) = {(z,t) : z € C} ¢ H?
for any t = 1. Inmy diagram TI{t) mceis the fundamental domain not in a parallelogram
but in a zigzag shape {four hexagonal dises), and perhaps the zigzag temporadly prevented
me from seeing the torus. This is silly, because the stabilizer of the torus is the free abelian
group (mK#).. generated by z 5 241, 2 5 24+ 2¢/=3, and (#K#)s has to be considered
explicitly during the verification that Poincaré's theorem applies to my supposed Ford
fundamental domain. But silly or not, it took perhaps seven weeks, till Janmary 1974,
for me to see the torus. Verification that H?/x K8 = 5° — fig—eight took perhaps a day,
and consisted of looking at my reprint of Waldhausen’s paper [16]. It seems unfortunate
that this was too easy, and that 1 should have been forced to develop a direct geometrical
argument, but once the pressure was off [ didn't want to do it. I expect that a direct
geometrical construction works for all non—tarus two bridge knots, and that it would prove
the conjectures of {12 §4], so the matter will not be a waste of effort.

The figure-eight discovery was not decisive for me as it was for Thurston, 1 expected

that Shimizu's lemma, viz.

<[; i].[? :}]) is not discrete when ad —bc=1, 0 < |¢| < 1,

would preclude the discreteness of the images # K8 of the potentially faithful p-reps # for
all other knots. {In particular, 1 predicted Alan Reid's theorem [3] that the figure—eight is
the only arithmetic hyperbolic knot). However, by the time I mailed off the revised version
of 8] that was actually accepted I had recognized the true situation, but, I suppose out of
laziness, I didn't revise [8] again to make an announcement.

RLH. Fox died within a few days of the figure—eight discovery.
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3. The intermediate example

I now had a beautiful discovery, and a certain fear of testing whether something similar
was irue for the obvious next case, the knot 5, of two-bridge types (7,3}, (7,5). Instead
of going for 5y direetly I temporized by taking up a different kind of example, the groups
7K # associated to a cubic factor f(u) of the p-rep pelynomial for the knot &, of two
bridge types (27,17}, (27,19). To give an account of this we need to recall the hasics of
two bridge knot groups and their p-reps.

A two bridge knot normal form corresponds to a pair {cx, #) of integers, where o > 1 s
odd, # is odd, ged(er,d) =1, and —& < § < . The knot group 7K for (a,f) depends

not on § itself but on |f], so we may as well assume 0 < @ < a. Then

rhH o= ry, e wry = muw|, w= LY T (3.1

L]

where €; = €q_; = 1, and the exponent sequence €= (€1, ,€a_1} is determined by a
simple rule, ef [7, 12]. A longitude v, in the peripheral subgroup {z1,71) of #; is a certain
word @~ wrl” on z;,#7. A normalized p-rep 8 = 6(w) of vK is a homomorphism such

that

11 . [1 0
xlﬂ:A:[U ].J‘ I?E:B—Bw—[ lj[: (3.2)

—w
where w € C. Indeed, w is a root of the p-rep polynomial Afe] € Z[u] which may be
reducible but which has no repeated roots. Then the longitude entry a(d) or g{w) for
#w) is found by

~1
o[ a@),

and is readily computable once w is known. To factor A{u) without a system like SAC,
Macsyma, or Maple but when a polynomial root finding package is avajlable find the roots
and list the pairs (w, g{w)). Factors stand out as having pairs where g{w) evidently belongs

to a proper subfield of Q(w). In the case of 8;; we found the factor

Flu) = ~14+ull +u)?
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by gl#) = —6 for its roots. The roots of flu) are
wy = — 123278 + 0.792551, we = wy, wy = (.46557, (3.3)

{rounded to § decimal accuracy). Today this factor is explained as an instance of Theorem
B of [12], and it clearly had something to do with the discovery of the theorem. I had f({u)
by 1971.

By February 1974 my worries about the figure—eight knot brought me to consider the
group I' = (A4, B}, B = B,,, where w is the wy of {3.3). I simply went for a Ford domain
D of I' using graph paper, compass and ruler, and the first programmable calculator
available at Southampton. (That would have cost about two months gross salary if [
had still been employed), It didn't take long to get the diagram of Fig. 1, and when
the time came to think about proof the closing trick and angle sum trick of [10] came to
mind automatically. As far as I know this group [' is the first group proved discrete by
Poincaré’s theorem where these tricks are necessary. Perhaps the first people to wonder
about using Poincaré’s theorem for computation with potentially discrete groups didn’t
see these simple tricks in advance, didn't have a specific example they really needed, and
shied away from getting too invelved.

We give a little more detail on T and its Ford domain D illustrated in Fig. 1. This
is taken from an unpublished paper CPQ, written in late 1974 and early 1975, doing all
the discrete non Fuchsian cases where the group wK# corresponds to a root of a cubic
polynomial, viz. 5z, 7s, and 8;;. The case 55 is worked in [11], and 74 is similar to but
easier than 77 also worked in [11]. Our group I' is somewhat like the modest example of
[10] but much easier.

Let nK be the group of (27,17) presented as in (3.1}, so [' = nK# as in (3.2). We

have words

—1 -1 ~1 . =1, =2_-—1 —1
UI= Iy TpT1, Uy i= UEy ITy , Wy = Ul Uy T Uy
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The word w of (3.1) is wnzy, so wyz; = zuy holds in 7K. These words U, U] were
found by straightforward search of subsegments of w to correspond to spheres carrying
sides of tentative Ford domains. The scarch for the sides of a fundamental domain has to
be guided by some principle, since a Cantorian exhaustion is too slow, and segments of w
worked well, both here and later for all two bridge knots.

We found easily that the elements
A=nl, U=ub, Vi=uv0 W, =wd, V,=U""'W,

seem to be the side paiting transformations of the tentative Ford domain D of F ig. 1.
Thus we read off from Fig. 1 a proposed presentation for [': generators 4, U, Vi, Va,
Wy . relations

Wi =V =17 =(A""V)! = (47 W)? = E,

Vi=W U, V=U"'W,, =AW, 4W, AL
To use the closing trick and angle sum tricks of [10] it is necessary to verify directly that

these relations hold in ['. For this it helps to see copies of the modular group SL,(Z) in

L. Let
1 i 4 u?
et ]
then
V= A" [? ‘11] A, V=4, [i —01] AT (mod f(u)).

So (A, V1) and {A,V5) are conjugate to SLy(Z) in SLy(Z[w]). All the proposed relations
now can be verified by straightforward computation in SLy{Z[u]) modulo f{u). Then the
arguments of [10] show that [' is discrete, D is a fundamental domain for it, and that
these relations present the group. This made a good confidence-building exercise for me,
and might do the same for other people. Note that this T is simpler than the Ford domain

for 5y discussed in [11], so T really is an intermediate cxample.
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4. Completion of the discovery

This procrastination had now given me a bigger worry which can be put thus: Why
should the Great Lord have performed a unique miracle to make I' discrete, for no visible
reason at all?! The answer is compelling: He didn't! If T is discrete then many other
groups have to be discrete, in direct defiance of Shimizu’s lemma, and, since each case
of discreteness requires a good reason, there must be general theorems explaining this
discreteness. It is a little ironic that this prediction was amply vindicated for (suitable)
3-manifold groups, but, at this writing, the peneral theorem explaining the discreteness of
' has not been stated, let alone proved.

During a few weeks further procrastination the above considerations compelled me to
predict that a knot in S® is hyperbolic unless it clearly was not. Early in March 1074, I
think, I finally went to work on 5, and in a few hours had eonfirmed my prediction. This
completed the essential part of my discovery, and all later cases, such as 74 and several
links, were just routine examples at most illustrating matters of secondary importance,
such as the symmetries of a knot. In fact, for a while I was confused by the symmetries
and thought that a too-rich symmetry group would preclude the hyperbolic structure, but
I eventually found my mistake. So by late 1974 I had gotten it right: a knot is hyperbolic
unless its group containg a noncyclic abelian subgroup which is not peripheral. Making
bold sweeping conjectures is unnatural for me, and I didn’t venture to predict anything
about arbitrary 3-manifolds. I suppose that [ might have predicted which 3-manifolds were
hyperbolic had someone pressed me on the issue in conversation, but I was too isolated
and unknown for that to happen. The locals at Southampton were rather cool about the
whole project, except for David Singerman. He liked it enough to propose that we try
to get the Science Research Council {of Great Britain) to support me on a hyperbolic
project at Southampton University while [ got my Ph.D. and locked for a permanent
Job. Hie plan was to time the submission of the proposal so that the referee would be

at the sununer 1975 conference on Klelnian groups at Cambridge where [ would publicize

74



hyperbolic structure. Whether or not the plan worked, the Kleinian groupies fiked my
examples, especially because these exainples pointed up the importance of their own work.
The SRC did fund the project generously, ultimately for four vears 1976-1979,

The first two years of the project were devoted to the development of the systern PNCRE
(10}, a file of Fortran subroutines to compute with explicit subgroups of §L,(C). PNCRE
was not easy to develop and its first output came early in 1977. Meanwhile, about March
1976, a colleague gave me a preprint of Thurston’s lecture [13] on folliatious of surfaces,
This was the first | heard of him, and [ recall that on reading it 1 became certain that
he and 1 would never sharc any common mathematical interest. In late June 1976 a
friend drove me up to the University of Warwick to hear a lecture by J. Milnor on topics
like Sarkovskii’s theorem. Directly he was finished I very nervously (read: scared stiff}
introduced myself to him and told him about examples of hyperbolic knots/links. He was
interested, and asked a number of direct questions, so that in a minute he understood the
status of my project {examples only). T did not guess that he already knew something
about the matter. 1 was so scared that when he asked me to repeat my name I simply
ran away. But perhaps even before we got back to Southampton that evening, Milnor had
asked the locals who in Britain was interested in hyperholic structure on knot complements,
and directly afterwards Thurston had his hands on my two papers. If not, he did when I
sent my papers to Milnor the next week {early July 1976).

Later that month T was invited, to put it mildly, to spend a week in David Fowler’s
home in Warwick. His wife is French, and she felt that that year she simply had to bring
the children to France to meet their relatives. She naturally had the house and garden
filled with beautiful plants which need constant watering. The summer of '76 was a famous
drought in which the water shortage was so severe that the only legal water for plants was
used bath water. Hence the urgent need to have the Fowler’s home occupied every night,
and David Rand, who had been a student at Southampton and was taking up a lectureship

at Warwick, put me down for one week.
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On my arrival in the common room of the Warwick Mathematics Department, David
Epstein sprang up and asked me who [ was. He had seen my face on uumerous oceasions
over the years, most recently when I sat directly behind him in Milnor’s lecture, and wanted
to know. On hearing my name, 2 tall man sprawled over three chairs sprang up. He said
Le was Bill Thurston, that he wanted Lo meet me, and that for about a year he had been
working ou a general conjecture which included everything [ was doing. The shock was
immense. I am afraid that I react badly to surpriscs, and [ became quite unpleasant for
the rest of the week. Fortunately Bill didn't hold it against me later. His later statement
(page 177 of [15]),

“--+; and | have not actively or effectively promoted the field or the careers of the
excellent people in it.”
was either not written with me in mind or he judges me not to satisfy the qualification.
He certainly did advance my career actively: strong letters of recommendation, several
thousands of dollars from his Waterman Fellowship, inclusion in the 1980-81 Thurston-—
Sullivan NSF project at Boulder, and a trip to Binghamton at my request. | owe everything
to the people who have so generously supported me over the years when I needed help most:

H.B. Griffiths, David Singerman, and Bill Thurston, and T am deeply grateful to them all.
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5. Hindsight

The question is: Why did the explicit discovery of hyperbolic structure on at least some
knot complements wait uniil 19747 Wilhelm Magnus told us that H. Gieseking, in a thesjs
written in 1912 under the direction of Max Dehn, considered a group G, of hyperbolic
isometries of a ball model B* of H* and certain of its subgroups. The fundamental
domain for Gy is a regular ideal tetrahedron T, and Gy contains orientation reversing
elements. Gieseking considered the orientation preserving subgroup G of index two whose
fundamental domain is two tetrahedra glued together along a face, without recognizing
that G is isomorphic to the figure-eight knot group and its orbit space is the figure~
eight complement. Magnus told me that Dehn considered these groups only as exercises
in geometric symmetry: the geometric description of Gy, T} is so simple that Poincaré's
theorem simply has to apply directly. If Dehn had known that the figure—eight knot was
involved he certainly would have had Gieseking publish, he would have given the matter
the greatest publicity, and the development of 3-manifold theory would have gone very
differently. So why did they not recoguize the figure-eight complement?

I propose an answer to this question analogous to my own experience: I didn't see the
peripheral torus for several weeks but when I did I knew what I had to have, I bagan with
the figure—eight and had it in mind. They began with an exercise in symmetry and had
nothing further in mind. Furthermore they would have to ask the question: for ¢ > 0 let
5S¢ be the 2-sphere in B® with centre 0 and radiss 1 — ¢. Then G, maps 5, to itself,
so what is the orbit space 5./G,7 With hindsight the answer is obvious: a Klein bottle.
Dehn would have answered this question easily once it had been raised, and I feel certain
the Klein bottle would have disturbed him deeply. The result would have burned within
him until he was driven to get to the bottom of the matter, and somehow he would have
found the figure—eight. They had about two years to do this before the Great War of
1914-18 swept Gieseking to his doom. Dehn's good students were probably all destroyed,

and most likely Dehn was so distraught at their loss that he couldn’t bear to think about
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his joint projects with them any longer.

As far as [ know, the next time critical cxamples of hyperbolic structure on 3-manifolds
should have been found was in the late 1950', during the period of euphoria cansed by
Papakyrikopoules’ breakthrough with his proofs of Dehn's lemma ete.  The topic was
definitely thought of, but nothing happened, perhaps because the man concerned did not
have anything specific to work on, and he certainly had a lot of other important pmjt;cl;s
to pursue. In 1968 a Kleiman groupie wondered whether a knot complement could be
hyperbolic, and chose as example to test this idea the trefoil knot. He soon found it
didn’t work and was discouraged. [Actually, the trefoil complement does earry hyperbolie
orbifold structures of infinite volume, but nobody wanted that). In the early 1970's he
actually visited Southampton University and met me, but somehow the crucial topic didn't
come up in the discussion, If it had I would have put him onto the figure-eight and even
given him the exact matrices to use. I could not have done the caleulation with Poincaré’s
theorem at the time (he could}, but { did have Waldhausen's paper to help with identifying
the orbii space.

I would like to close by quoting a paragraph from page 175 of Thurston's essay [15].
“Neither the geometrization conjecture nor its proof for Haken manifolds was in
the path of any group of mathematicians at the time — it went against the trends
in topology for the preceding 30 years, and it took people by surprise. To most
topologists at the time, hyperbolic geometry was an arcane side branch of math-
ematies, although there were other groups of mathematicians such as differential
geometers who did understand it from certain points of view. It took topologists
& while just to understand what the geometrization conjecture meant, what it was
good for, and why it was relevant.”

Well, this is not quite right. For one thing, it is too strongly put. When I meet them in
1975 the Kleinian groupies had been knowledgeable about the hyperbolization conjecture

for Haken manifolds for at least = couple of years, but they saw it as too much for them-
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selves. For another, what really took people aback was the speed with which the task was
completed (excepting the write-up). Thurston simply didn’t give anyone starting from
my examples the time to get involved. And few serious mathematicians would look at one
modest example of something pretty and immediately formulate the most SWeeping cottjec-
fure for 3-manifolds which could possibly be true, and then plunge in. Thurston’s suceess
at doing this is his own personal triumph, and not a closing out of a golden opportunity
that the rest of us were fool enongh to lose,

I had thought of saying something about the history of Bill Thurston's thinking about
hyperbolic structure in the two years before we met, but 1 am afraid to repeat Colin
Adam’s mistake. There are rumours that he initially thought the hyperbolic structure
for the figure-eight was impossible, because of difficulties with the lift of a Seifert surface
to H®, and that he discussed these matters with William Jaco at a conference. The
story continues that when Bill got back to Princeton he found his supposed contradiction
disappear (the lift of the Seifert surface meets the sphere at infinity in a Peano curve),
that this completely reversed his expectations, and that he first got the figure—eight out of

an example of Troels Jgrgensen. 1 cannot vouch for any of this.
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