KNOT AUTOMATA

Louis H. Kauffman

Reprinted from THE TWENTY-FOURTH INTERNATIONAL SYMPOSIUM
ON MULTIPLE-VALUED LOGIC
Boston, Massachusetts, May 25 - 27, 1994




Knot Automata

Louis H. Kauffman
Dept. of Math., Stat. and Comp. Sci. (M/C 249)
' 851 South Morgan
The University of Illinois at Chicago
Chicago, [llinois 60607-7045

FAX: (312) 996-1491
) e-mail: U10451QUICVM.BITNET

Abstract

This paper studies a mathematical model for au-
tomata as direct abstractions of digital circuitry. We
give a rigorous model for distributed delays in terms
of a precedence order of operations. The model is ap-
plied to automata that arise in the study of topological
invariants of knots in three dimensional space and to
digital design.

1 Introduction

In this paper we consider a class of automata that
are direct abstractions of digital circuitry. A real dig-
ital circuit instantiates this structure into hardware.
The circuits that are described here are a well defined
class of abstract automata that include standard mod-
els for digital circuits and other examples such as the
knot automata discussed herein.

The paper is organized as follows. Section 2 dis-
cusses the general concept of a circuit automaton with
distributed delays. A rigorous model for states and
transitions is formulated and the concept of a cir-
cuit that is determinate (behaviour independent of the
value distribution of delays) is discussed. In section 3
we discuss a class of circuit automata that arise from
the formal structure of the theory of knots and links
in three dimensional space. We show how these au-
tomata and their properties can be used to find topo-
logical information, and we raise questions about the
structure of these circuits as automata in their own
right.

In section 4, we apply the concept of circuit au-
tomaton to those automata that are built from the
abstract analogues of NOR gates. These automata
contain important examples of digital circuit design,
and we discuss one new design for a reductor (our term
for the basic one-input one-output device that builds a
flip flop and concatenates to build counting circuits).
In the well formulated framework of the model we con-
jecture that a reductor requires at least six NOR gates.
The proof of this conjecture appears to be a deep com-
binatorial question.
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2 Automata With Distributed Delays

The automata considered in this paper are com-
posed of building blocks with specified structure. Each
block will have a specified set of input lines and a
specified set of output lines, and a behaviour with re-
spect to these inputs and outputs so that the outputs
may be regarded as a well defined function of the in-
puts. The interconnection of such blocks in forms that
include closed circuits produces automata whose be-
haviour can be interpreted. We shall give a model
that defines states and transitions for such intercon-
nections.

The purpose of this section is to give a general pre-
sentation of the point of view used in the rest of the
paper. To this end, let f: R = R be a function de-

" fined on a set R. Diagram f as a black box with input
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line labelled z and output line labelled f(z).

¥ (%)

Now form the automaton obtained by connecting
the output line of this box to its input line.




We say that this automat-on has the equation r =
f(z), meaning that the input is taken to be the out-
put. The equation z = f z) is taken to be a symbol
or shorthand for the automaton that is obtained by
taking the indicated feedback with a given delay. The
symbolism does not contain the temporal behaviour,
but that behaviour can be unfolded from this sym-
bolism. Assume that there is a delay time At asso-
ciated with the box so that a change in z results in
a corresponding change in f (z) only after time At.
The temporal behaviour is then given by the equation
(t + At) = f(z(t)) so that z(t + nAt) = f( (z())
where f(™) denotes the composition of f with itself n
times.

Consider the following example: y = f(z), £ =
g(y). We indicate the corresponding circuit by an in-
terconnection of two boxes, one for f and one for g.
The output of the f-box goes to the input of the g-box;
the output of the g-box goes to the input of the f-box.
Each box has its own delay time so that the structure
of the transition may depend upon which time is the
shorter.

The general model that sits behind these ideas is
the following. Let the circuit automaton be defined
by a system of a n equations.

1. $1=fi(xly---7xn7 ah-")am)
2. Iz=f2($1,...,l‘n, al,...,am)
n. $n=fn(1'1,---,zm al:'-'vam)

An instantiation of this automaton consists in a
choice of permutation 7 of the numbers 12---n with
1\1;6:') denoting the ith element of the permutation.
ith ths choice of permutation in hand, we de-
fine the action of the automaton on initial values
(z1(0),...,2a(0), a1,... ,8m ) as follows:

1. If (X(i),A) = (z1(i),...,Za(i), a1,...,am) sat-
isfies the system of equations then
(X(i+1),4) = (X(3), 4)-

2. If (X(i), A) does not satisfy the system of equa-
tions, then choose the least k such that the m,-th
equation is not satisfied. Define

Xme(i+1) = f,,,‘(Xl(i),...,X,.(i), al,...,am)

and
X,(i+ 1) = X,(i) for s not equal to m.

In other words, the automation resets the output value
of the “Arst” unbalanced equation in the order chosen
by the permutation.

In this instantiation, the choice of permutation de-
termines the relative values of the delays in the differ-
ent parts of the circuit. In many cases we are particu-
larly interested in those circuit automata that have the
same behaviour (with respect to given inputs and out-
puts) independent of the choice of permutation. Such
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a circuit is one that will behave the same way inde-
pendent of the choice of distributed delay times.

The program outlined above is used for examining
the behaviour of a given automaton. In a computer
simulation, one way to see the independence of delay
choices is to have the computer change the permuta-
tion at random. If this has no apparent effect on the
output behaviour of the automaton over a long run, it
is good evidence that the automaton has the desired
independence property. We have done such testing
on the digital designs in section 4, and on other more
complex designs that will be reported on elsewhere.

3 Knot Automata

This section considers a class of circuit automata
that are based on the theory of knots and links in
three dimensional space. The basic circuit element for
these automata has an equation of the form z = TRy
or z = z Ly with box depictions as shown below. Note
the orientations on the lines.

4 #
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Here R and L denote the two types of operations,
dependeing upon left and right orientations in the
plane. The circuit box for z = rRy is a box with
inputs y and z and outputs y and z. The box is re-
garded as passing without processing it, the value of
y, while it transforms z to z = zRy by some, as yet
unspecified, rule. In this way, the action of the box is
dependent upon the y value, but its action does not
affect this value. It is part of the rules of the game,
that the circuit diagram for such an automaton must
be drawn in the plane, and that it must satisfy the fol-
lowing diagrammatic exchanges without affecting the
balanced states of the automaton.

l.‘g '*La,*ibf—y

X
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This means that if a given automaton has a bal-
anced state, then all the automata obtained from it
by transformations as shown will also have balanced
states. By examining properties of the states of two
given automata it is often possible to show that there
is no sequence of transformations from one of them to
the other, due to differences in particularities of the
states. '

A sequence of transformations from one of these
structures to another has a topological interpretation:
It is possible to associate a diagram for a knot or a
link to each automaton, as shown below.

“_;i &
<< 77
& L@/ AP

In this way the transformations that we have in-
dicated become topological transformations of the dj-
agrams, and these three types of transformation are
known to generate all possible topological transfor-
mations of knots and links in three dimensional space
(See [16], [8], [11]).

Returning to the automata, the three moves trans-
late into the demands

1. aRa=a,ala=a
2. (aRb)Lb=a, (aLb)Rb = a
3. (aRb)Rc = (aRc)R(bRc), (aLb)Lc = (aLe)L(bLe)

J2Rb /‘.“’ Lb
AP e

%"%.Rcb <, z” LI
b

b SLIEN
zk’“f@ou‘é’z‘) [7.]
b

eV >@R)Re
a’,\\q\ aRIR(bRS) [3.]
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The second and the third are the most significant
demands, asking that the operations R.: and L: are
invertible and inverses of each other for any b, and
that the operations R and L are self-distributive. The
resulting algebraic structure is called a quandle (See
81, 12, 3.

For our purposes, the simplest example of a quandle
is the structure aRb = aLb = 2p — a wherev and b are
elements of an additive abelian group. Consider the
trefoil knot automata with this local structure:

2b-% 4p—22~-b
: =3bqa

N 3 b

& =3 b-2a
= 3(b—a) =o0.

We see that the feedback loop in this automaton
forces the conclusion that 3(b—a) = 0 for any a and
b in the group. Hence 3 must divide the order of this
group in order for the trefoil automaton to have an
balanced states. If we take the grouptobe G = Z/3Z,
then we can analyze the resulting balanced states and
show that there is no possible sequence of transforma-
tions of the trefoil automaton to the unknot automa-
ton shown below. Thus the knottedness of the trefoil
can be seen to be a consequence of using a three valued
logic in the signals of an automaton associated with
the diagram of the knot.

It remains to be seen how the transition behaviour
of these automata is related to the topology.

In general, each such automaton has a well-defined
modulus, so that its states can be described in terms of
values in the modular arithmetic Z[NZ. For this rea-
son, this class of automata is interesting for multiple
valued logic since each automaton has its own natu-
rally associated set of values, and this set is invariant
under the transformations that we have indicated.

There are further aspects of this situation that are
of particular interest to topologists and algebraists.
For example, if the values for the knot automaton lie
in a module over the ring Z [t,£71], then the following
algebraic rules satisfy the axioms given above for a
quandle: aRb = ta+ (1—t)b, aLb = sa+ (1— 8)b with
8 =t~!. We have discussed the case with  — -1. In
the general case, the modulusis a Laurent polynomial
in ¢, and is known as the Alexander polynomial [11] of
the knot and link. Stronger invariants of the structural
transformations of these circuits arise through the use
of such algebras and moduli.




4 The Digital Circuit Model

The basic digital element discussed here is an in-
verter, diagrammed as shown below.

Pa ¥oc/=<oc>

We use two valued logic with values 0 and 1. We
take 0’ =1and 1 =0,00=0,01=10=0,11=1.
This operation of juxtaposition (a,b — ab) can be
interpreted as logical “or” for the interpretation of 0
as the value True. With more than one input the
inverter becomes a NOR gate: a,b,c,... = (abc---)".

All models in this section can be generalized to
multiple-valued logic, but we concentrate here on the
special case of two values. See example 4.2 for a circuit
that requires multiple values.

Notation

Let {abc---) denote (abc---)".

b %zz =<abcy
“ Z

In a circuit diagram, a state is a coloring of the arcs
that start from one inverter’s output and terminate at
another inverter’s input. The colors are chosen from
the set {0,1}. All arcs emanating from a given in-
verter are colored identically in a given state. (In this
model an inverter has only one output value in any
given state.)

As a consequence of this stipulation we can write a
single equation that describes the action of a given in-
verter in the circuit. Let z denote the label for the out-
going lines of the inverter. Let a, b,c, ... denote the la-
bels of its ingoing lines. Then z = (abc:--)’ = (abe: -)
(see the notational remark above) is the equation de-
scribing the action of the inverter. In a given state
these equations may not be satisfied at some places in
the circuit.

A state is said to be balanced if the equation z =
gbc- .-} is satisfied at every inverter in the diagram.
ere z = (abc---) denotes the equation that defines
the operation of the given inverter. Thus in the circuit
below the balanced states are choices of values for a
and b such that b = {a) and a = (b).

P —b
¢\
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This drcuit has exactly two balanced states: a =0,
b=1landa=1,b=0.

If S is an unbalanced state of a circuit C, then there
will be one or more equations of the form z = (abc- - -)
that are not satisfied by the coloring. A transition
consists in reassigning the value of z for the outgoing
arcs z of one inverter at which there is an imbalance.
The new state achieved by the transition may or may
not itself be balanced. Transitions are formalized ac-
cording to the schema of section 2.

4.1 Example

In the circuit below there are two possible transi-
tions: a=1,b=1-—)a=1,b=0a.nda=1,b=1—)
a = 0,b = 1. The states that result from this transi-

tion are both balanced. Call this circuit a memory. It
has the equations a = {b), b= (a).

S

(unb::.\aw,r.eé)

4.2 Example

In the circuit below there is one possible transition
a =1 = a =0, but the resulting state is not balanced,
and its transition @ = 0 = a = 1 returns the circuit
to its original state.

This circuit has the equation z = (2}, for which
there are no Boolean solutions.

=

Zz=<%>-

The circuit z = (2) embodies the Liar paradox. If
z=0then z=1. = 1, then z = 0. Its behaviour
is an oscillation between 0 and 1. :

Circuits of this type are analogous to the knot au-
tomata of section 1 in that they demand a multiple
valued logic in order to achieve stable states.

We are interested in designing circuits with spec-
ified behaviours. The behaviour of a circuit consists
in a summary of its circuit action - what balanced
states it can achieve from a given set of unbalanced
states that are relevant to the design problem. In this
regard we say that a circuit action is determinate if
it has only one possible end state independent of the
possible sequences of transitions that may lead to this
end state. Thus we can ask of a given unbalanced state
whether the resulting circuit action is determinate. In
the first example above the action is not determinate.
In the second example the action is determinate, but
the set of possible balanced end-states is empty.




4.3 Example
The equations for this automaton, M, are

(biz)
{ajz)
(bd)
{ac)
(ad)
= (b

S. e A0 R
Il

Here we regard z as an input to the system. For.

each value of z there are two balanced states of M.
If 2 =0, then V = (a,b,c,d,i,j) = A or C where
A= 9,1,0,1,0,1) and C' = (1,1,1,0,1,0). ¥z =1,
then V = B or D where and B = (1,0,1,0,1,1) and
D = (0,1,0,1,1,1). One can then verify that for a
given value of 2z and balanced state S, the transition
that ensues upon changing 2 (from 0 to 1 or from 1 to
zero) is determinate. The result is that the sequence
of values 2 = 0,1,0,1,0,1,... results in the sequence
of states A, B,C, D, A, B,C,D,... (Assuming that we
start with z = 0 in state A.S.

We assume that each change in z is held fixed long
enough for the automaton to accomplish its transition
to the next state. Transitions are accomplished ac-
cording to the algorithm explained in section 2. This
means that the model assumes delays associated with
each inverter. There are no delays associated with
the connecting lines in the graph. This method of
distributing the delays is a mathematical abstraction,
but it is sufficiently realistic so that these circuits can
actually work at the hardware level. If the automaton
is mathematically determinate (as in this example),
then it will behave in the same way for any choice of
actual delays - so long as the input varies more slowly
than the time needed for internal transition.

The circuit in this example converts an input os-
cillation z : 010101 -- - to internal oscillations of twice
the period. For example we have in the above state
sequence d : 100110011001100--- . By taking d as
an output, we therefore obtain a black box B with
input line z and output line d with this behaviour.
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This is exactly the behaviour needed to make cir-
cuits that count in binary. A series connection of n
such black boxes produces an automaton that cycles
through 2"*! distinct states as the input z oscillates
between 0 and 1.

Discussion

Note the basic behaviour of the black box B. If
z changes from 0 to 1 then the output d changes its
value. If z changes from 1 to 0, then the output d does
not change its value. Call a determinate automaton
with this behaviour (or the corresponding behaviour
with 0 and 1 interchanged, and also the possibility of
starting with z and d the same value) a reductor.

Note that the number of leads in the automaton
M can be read from its equations by making a chart
of the inverters (labelled a,b,c¢,d, 1, j) to which each
inverter or input is connected. For our automaton M
this chart takes the form

z ab
a bdi
b acj
c dj
d ct

) a

j b.

Here each line in the chart is of the form
R: List of inverters to which R is connected

where R is either an inverter or an input (z). The
number of leads (14) is the number of letters occurring
after the colons in this chart.

Thus we have a notion of the complexity of a reduc-

- tor in terms of the number of inverters and the number

of leads. We shall say that M is of type g, 14), mean-
ing that it has 6 inverters and 14 leads. Until recently
I had thought that this design, which I discovered in
1978, was the reductor of minimal complexity. How-
ever, G. Spencer-Brown informed me in the Fall of
1992 that he has found a reductor of type (6, 13) [18].
It may be that (6, 13) is the true minimum for this
design. I conjecture this to be the case.

A more general conjecture is the following.
Conjecture

It is not possible to make a determinate (asyn-
chronous) reductor with less than siz inverters.

The designs in common use such as the asyn-
chronous JK flip flop tend to use more inverters (NOR
gates or NAND gates) and more leads. The least num-
ber of inverters in a published asynchronous flip flop
design that I have encountered is nine (See [6]). It is
quite possible that the combinatorics underlying this
conjecture will be illuminated by considering its gener-
alizations in asynchronous multiple valued logic design
(Compare [4]).
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chronous J K flip flop tend to use more inverters (NOR
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Summary

This paper has consisted in a rigorous formulation
of the concept of a circuit automaton with examples
from the theory of digital circuits and from the theory
of knots and links in three dimensional space. In the
case of knot theory we have reformulated the structure
of the quandle [5] as a circuit automaton, and this
leads to new and as-yet-unexplored questions about
the behaviour of this class of automata. The knot
theoretic automata are an example of a class of au-
tomata where each given automaton has an optimal
multiple valued logic associated with its operation.
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