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I. Introduction

This paper introduces the use of knot and link diagrams for
representing nonstandard sets and also for representing the
formalism of combinatory logic (lambda calculus). These
diagrammatics create a two-way street between the topology of
knots and links in three dimensional space and key considerations in
the foundations of mathematics. The paper explores the relationship
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of this foundational study with the structure of quantum link
invariants and with applications of knot theory to biological
structure.

Section II reviews concepts of set theory from an original point of
view, emphasizing the relative consistency of sets that do not satisfy
the axiom of foundation - by constructing modeis in terms of
notations, graphs and subsets of the plane. Section II also introduces
ideas from knot theory and shows how to prove that you cannot
cancel knots , just skirting paradox in the process. Section II
includes a discussion of reentry and recursive forms in relation to
knots, wild embeddings and fractals. An example is given of a
sequence of graph embeddings whose complexity increases linearly,
while an associated wvnlinking number is conjectured to increase
exponentially. The section ends with a discussion of indicational
calculi, non-standard logic, quantum logic and boundary logic.

Section III introduces knot set theory, a set theory whose
membership relation is represented by one arc underpassing
another.  Knot set theory accomodates sets that are members of
themselves and sets whose members are defined mutually. The
diagrammatic representation of knot sets is so constructed that
topologically equivalent diagrams represent the same set. One of the
consequences in involving :he topology in this way is that knot sets
use a "fermionic" convention for the treatment of lists of identicals.
The fermionic convention is that identicals cancel in pairs. Thus in
the fermionic convention the set {a,a} is equivalent to the empty set.
Ordinary set theory uses the "bosonic® convention that identicals
conderse in pairs (so that {a,a} = {a} in standard sets).

Section IV, discusses concepts of reference in relation to knot set
theory.

Section V gives a construction that translates between knot diagrams
and combinatory logic. In this formalism the broken arcs of the
diagram are used to represent different elements in a lambda
calculus, and the diagrams themselves naturally represent non-
associative compositions of these elements. We show how to write
key constructions in the lambda calculus such as the Church-Curry
fixed point theorem in terms on these diagrams. We then investigate
the relationship of this formalism with the topology and show how it
is intimately related to the algebraic concepts of quandle, crystal and
rack (See [J], [K6], [RF]) as used by knot theorists. The quandle,



crystal and rack are non-associative algebras that derive from a
diagram of the knot and are topological invariants of it. In section VI
we take this correspondence further by defining an extension of the
crystal, the interlock algebra of a knot.

The interlock algebra is an algebra of lambda operators associated
with the knot diagram. It is a topological invariant of the diagram
and it contains complete information about the topology of the knot.
Two knots are isotopic in three space if and only if their interlock
algebras are isomorphic. The interlock algebra of a knot contains
two types of lambda elements - those with no free variable and
those with one free variable (multiple variables will occur in the
case of a link). This presence of operators with free variabies in the
interlock algebra allows an intrinsic identification of subalgebras that
are needed for the topology. The construction of the interlock
algebra is an application of combinatory logic to topology. Section VI
ends with a brief discussion of the classical Alexander polynomial.

Section VII discusses a problem in universal algebra - the structure
of non-associative systems with a single non-commutative binary
operation that admits a left-distributive law over itself: a(bc) =
(ab)(ac). These algebras are called LD-magmas. We have already
met this condition in studying quandles in section 4. Here the left-
distributive law is studied for its own sake. The word problem for
free magmas was solved by Patrick DeHornoy in a beautiful and
startling application of the Artin braid group. We sketch his
method.

Section VIII sketches how the fixed point theorem for the lambda
calculus is related to recursive forms, self-reference and Godel's
incompleteness theorem. This section contains a digression on forms
of self-replication, including DNA, the Building Machine, the Mighty
Simple Self-Rep and the Knot Logical Self-Rep (which turns out to be
a picture of the syntax of the Building Machine). The self-replication
of a knot is accomplished by a slide equivalence more drastic than
the handle-sliding of Kirby calculus. The section ends with a
description of Kirby calculus in this context.

Section IX is an introduction to the logic of Dirac brackets in the
context of topological invariants. Section X discusses relations
between knot theory, electricity and switching circuit theory.
Section X1, on asynchronous automata, is a description of a domain in
circuit design that has analogies with knot theory. In this context we
see that quandles, crystals and racks (Sections 5 and 6) implicate a
concept of knot automata.



Section XII explores pregeometry in the sense of John Wheeler. We make
the case that knot and link diagrammatics are central to an appropriate
conception of pregeometry. An appendix discusses the bracket model for
the Jones polynomial.

The author would like to express his thanks to Louis Crane, Lee Smolin,
Carlo Rovelli, Julian Barbour and John Wheeler for helpful conversations.
Research for this paper was partially supported by the Program for
Mathematics and Molecular Biology, University of California at Berkeley
and by NSF Grant No. DMS 9205277.

II. Sets, Knots, Recursions

It is customary either to build the theory of sets axiomatically, or to
construct it from the intuitive concepts of membership and collection. It
is well-known that a naive approach leads to paradoxes.

For example, the Russell set R is defined to be the set of all sets that are
not members of themselves. X is a member of R exactly when X is not a
member of X. On substitution of R for X, we find that R is a member of R
exactly when R is not a member of R.

Initially, it is not clear whethor the d: culty with the Russell set is in the
notion of set formation, the idea of self-membership, the use of the word
"not" , the use of the word "all” or elsewhere. The Theory of Types [WhR]
due to Russell and Whitehead placed the difficulty in the use of self-
membership, and solved the paradox by prohibiting this and other ways
of mixing different levels of discourse.

The Goédel-Bernays set theory (See {K], Appendix on Elementary Set
Theory.) creates a different solution to the Russell paradox by making one
large distinction between set and class . Of two sets A and B it can be said
without ambiguity that A is a member of B, or B is a member of A, or
neither is a member of the other. A class is a ser if it is a member of
another class. Classes are determined by their members, and classes can
be defined in terms of properties: Given a property P, there exists a class
C(P) equal to the class of all x such that P(x) is true and x is a set.

In this system, the Russell class is
R = {x | x is not a member of x and x is a set}.
Thus R is a class, but R is not a set.



In a system of the GOdel-Bernays type, there is nothing inherently
wrong with self-membership. In fact, self-membership and other
forms of contradiction of the "axiom of foundation™ (which disallows
infinite descending chains of membership.) are very interesting to
explore using geometry, topology and diagrams. To this end, let us
start from the beginning and construct some sets.

The empty set is commonly denoted by empty brackets: { }
Notationally, sets indicated only through brackets are a subcollection
of all the ways of making well-formed brackets:

A finite expression E in brackets is well-formed if
i. E is empty.

or

2. E={F}G where Fand G are well-formed.

These two rules give a complete characterization of the well-formed
bracket expressions. A finite ordered multi-set S  is an expression
in the form

S = {T} where T is any well-formed expression. It follows that

T = Al A2 ... An where n is a positive integer, and each Aj is a
finite ordered multi-set.  The Aj's are the members of S.

We write the members of S without commas between them.

For example, if S={{ } {{ }}} then the members of S are

{ } and {{ }}.

A muiti-set may have a multiplicity of identical members as in

Xx={{}{3}{}}

Ordered multi-sets are equal exactly when they have identical
sequences of brackets, To emphasize this point, let L. denote a left
bracket , { , and R denote a right bracket , } . Then the set X
above is encoded by the sequence LLRLRLRR.

To obtain the usual category of finite sets, factor the ordered multi-
sets by the equivalence relation generated by XY = YX and XX = X
where X and Y are well-formed expressions. It then follows from
our definitions that two finite sets are equal exactly when they have
the same members.



It is easy to see that the class of ordered finite multi-sets is
isomorphic to the class of rooted planar trees - by graphical duality
as indicated below.
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Another way to think of these sets is to replace each pair of brackets
by a rectangle in the plane. Then any set is a collection of disjoint
rectangles, with a single outermost rectangle - the set boundary. The
members of the set are delineated by the rectangles inside this
outermost rectangle that are outermost or at the same level as all
other rectangles in the pattern. The tree is still obtained by
graphical duality as shown below.

In both cases there is a natural notion of depth obtained by counting
crossings inward from the outermost rectangle, or by counting nodes
from the root of the tree. The equivalence relation on rectangles that
generates finite sets is: take the collections of rectangles up to
homeomorphisms of the plane. Here we use a sophisticated concept
to define an clementary one. The use of this will become apparent at



once when we enlarge the category and obtain a model of non-
standard sets.

Let FIST (First Infinite Sets) denote the class of (not necessarily
finite) disjoint collections of rectangles in the plane such that each
collection S has a single outermost rectangle, and the collection of
rectangles inside that outermost rectangle is a disjoint union of
clements of FIST (These are the members of S.) If A and B are in
FIST, then we shail say that A=B if there is a homeomorphism of the
plane that carries A to B.

Call a collection of rectangles in the plane, taken up to
homeomorphism of the plane, a form. Thus, finite (and some
infinite) sets can be interpreted as forms, but not all forms arc sets.
In any form we can say unambiguously of two rectangles whether
one is inside or outside of the other.

Forms can be framed and juxtaposed.

Let {X} denote the result of putting a rectangle around the form X.
Call this operation the framing of the form X. Let XY denote the
juxtaposition of the forms X and Y. To get multi-sets from forms,
consider forms that are framed.

For example,

0. { }

L{{}}

2.{{} {}}

3.{{y {1} {}}

can be regarded as a list of multisets, with 0,1,2,3,... members.

No commas are needed in the internal list of a set represented in this
fashion. One simply searches for the different frames at depth 1, to
get the list of members. (The depth counts the number of crossings
made inward from the outermost region in the form.)

In FIST the simplest element that is a member of itself is shown

below and denoted by the letter J. J is an infinite nest of rectangles,
or an infinite linear tree.

- -
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Note that J = { J } where we interpret the brackets as the addition of
the outer rectangle. There is nothing inherently infinite about the
description J= { J }, but its recursive unfolding leads to an infinite
construction corresponding to an infinity of nested brackets:

=0 L 00y 3 ) 3

With this rectangle model in mind, consider elements of FIST that
are defined by systems of equations. For example, A = {{} B}, B = {A}
yields

A={{; B}={{} {A}}
= 3 {{}{A} }}}
LB BY L

A and B  cormrespond to non-homeomorphic systems of rectangles,
and so give a pair of distinct but entangled sets in FIST.

P—
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Reentry Notation, Recursive Forms and Infinite Regress.

A set that is a member of itself can be diagrammed as a set witt n
arrow pointing into the inside of the set where the self inclusic.
occurs (Compare [K16].)



M={M}={ o

In this form, one tends to take a model of infinite regress or
recursion as in

-

Similarly, in the case of interlock ( a={b}, b={a} ) we have a= {{a}}
and the reentry description

2 = {@
@=§t§(ff}=b

The reentry concept goes beyond set formation to a domain of
recursive forms. To indicate recursive forms that are not necessarily

interpreted as sets it is convenient to use a rectangular box notation.
Thus we write



and
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The second recursive form, F, can be called the Fibonacci Form since
the number of divisions of this form at depth n is the nth Fibonacci
number. (The form divides the plane into disjoint connected regions.
These are the divisions of the form. A division is said to have deprh
n if it requires n inward crossings of rectangle boundaries to reach
that region from the outermost region in the plane. Each rectangle
divides the plane into a bounded region and an unbounded region. A
crossing of the boundary of a given rectangle is said to be an inward
crossing if it goes from the unbounded region to the bounded
region.)

To see this and other facts about the divisions of a form, let Fjy
denote the number of divisions of an arbitrary form F at depth n.

Then, for any forms X and Y,

1. (XY)n =Xn+ Yn
2. {X}n = Xn-1.



In the case of the Fibonnaci form, we have F={{F}F}. Hence
Fn = Fn2 + Fp-1. Since FQ = F] = 1, this proves our assertion about the
Fibonacci series as the depth counts of the Fibonacci form.

From here it is quite natural to define the growth rate, u(F), of a form F
as the limit of Fp+1/Fn as n goes to infinity.

w(F) = lim p..>c0 (Fn+1/Fn),

The growth rate of the Fibonacci form is the golden ratio, (1+ V5)/12.

Recursive forms and their growth rates are intimately related to fractals.
For example, the Koch fractal reenters its own indicational space in four
major places as shown below.



We schematically indicate the structure of the Koch fractal by the
recursive form K = {K {KK} K} . Extra brackets have been placed
inside this form to indicate the specia! grouping of the middle two
copies of the Koch fractal. These copies are the triangular pushout in
the fractal itself. This recursive form can be regarded as the
pregeometry of the fractal. It contains skeletal information about
the fractal, but does not describe the geometry of its actual
construction. The fractal dimension of the Koch fractal is encoded in
its recursive form. The fractal dimension of the Koch is
Log(4)/Log(3). Four (4) is the growth rate of the form A={AAAA}
and three (3) is the growth rate of the form B={BBB}. K itself can be
viewed as an A by seeing it as a repetition of 4 copies (this is the
duplication rate). K can also be viewed as a B by seeing it as an
internal group of three (this is the shrink rate in the geometry). The
fractal dimension is the ratio of the logarithms of these two growth
rates related to the recursive form.



Alexander's Horned Sphere
Now we go to topology and look at the reentry form associated with
the famous Alexander Horned Sphere [HY]. The schematic for this
construction is illustrated below.

A

This infinite graph can be described as a reentry form as shown
below.
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The limit of this construction produces a wildly embedded tree in
three-space that is self-linked (i.e. the fundamental group of the
complement of this tree is non-trivial). Any finite stage of the
construction produces an unlinked embedding of a tree. The
Alexander Horned Sphere is obtained by taking a limit of the
boundaries of tubular neighborhoods of the finite trees in this
construction. It is an embedding of a two dimensional sphere into
three dimensional space such that the inside of the sphere is simply
connected, but the outside is not simply connected.



The most remarkable thing about the horned sphere is that it is a
sphere. The limit construction does not touch itself anywhere. There
is a Cantor's set worth of wild points on this embedded sphere such

that any neighborhood of a wild point contains infinitely many
branches of the structure.

An example of recursive unlinking.
Consider the graph embedding shown below.
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This is a special case of the graph embedding Gpn where n is equal to
5. In Gp there is a series of n hoops, each one successively slipped
through the previous one, all tied together at their bases, and so that
the arc B is attached from the last hoop to its own base.  Suppose
that it is desired to unlink the circle labelied A from this graph
under the stipulation that A is allowed to make crossing exchanges
only with the arc labelled B. One can perform any isotopy of the
embedding coupled with these allowed crossing changes. Then [
conjecture that Gp requires at least an-1 crossing exchanges with B
in order to become unlinked. 1f this conjecture is true, then we have
an unlinking problem whose complexity goes up exponentially, while
the complexity of the underlying graph embeddings that support it
goes up linearly. This example shows how the sort of recursive
construction associated with an object like the horned sphere can
pose an actual complexity problem in topology for the finite stages
of the recursion.

The isotopy shown below of G5 to a graph G' with the hoops
unentangled, should give the reader a glimpse of evidence for this
conjecture. It is clear that A can be unlinked from G' by 24
exchanges. Hence, up to isotopy, A can be unlinked in G5 by 24
exchanges. A similar construction shows that A can be unlinked in
Gn with 20-1 exchanges. We conjecture that this procedure is
minimal.

—d




The Method of Infinite Repetition
There is a technique in topology called the method of infinite
repetition . It begins with the paradox:

= (1-D+ (1-D+ (1-D+ 1-D+ ...
1-1+1-1+1-1+1-1+... (

1+ (1+1) + (-1+1) + (-1 +1) + ...

1+0

1.

HHH IS

Theorem. Let it be assumed that infinite sums make sense and that
a+b = bt+a and x+(y+z) = (x+y)+z , 0+x =0 for all a,bx,y,z.
Then a+b = 0 implies that a=0 and b=0.

Proof:

0=0+0+0+0+ ..

= (a+b) + (a+b) + (a+b) + ...

=a+b+a+bta+b+. .

=a + (b+a) + (b+a) + (b+a) + ...

=a+0+0+0+ ..,

=3,

Similarly, b=0. This completes the proof.//

Of course, for numbers, infinite sums do not necessarily make sense,
and so we have not proved that zero equals one. There are, however,
topological applications to this formalism. Here is an example: Let
M and M' be (compact orientable) surfaces. The connected sum of
M and M', M#M', is obtained by excising a disk from each surface
and connecting them to each other by a tube whose ends are glued to
the circular boundaries of the two regions left by the excision in each
surface.

O U . N
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We shall prove, by infinite repetition, the
Theorem. M#M' = S2 implies that M = 82 and M' = S2 .

Here S2 denotes the surface of a two dimensional sphere

(the boundary of a three dimensional ball.) and =  denotes
homeomorphism of surfaces. It is easy to check that M#S2= M for
any surface M and that the connected sum operation is well-defined
for finite sums, and that it is commutative and associative. Can we
make sense of an infinite sum? The answer is yes, but one leaves
the category of compact surfaces: Put the surfaces Mj, M2, M3, ... in
a row extending to the (viewer's) right. Form Moo = M1#M2#M3#...
by connecting them together by straight tubes between adjacent
surfaces. The resulting surface Moo is well-defined but no longer
compact. For example Seo = S2#S2#S2# ... is homeomorphic to the

plane RZ,

In this case an infinite sum of "zeroes” is not zero! However, for any
surface M, M#Soco = M-{pt}, since removing a point is equivalent to
the connected sum with R2. Thus:

If M#M' = SZ, then

= (MEM)EMAM# ...
= MAMEMFMEM)A...

Now form the one-point compactification of both sides and conclude
that S2 = M.

Because Soo is not the 2-sphere, we cannot use¢ this argument to
conclude that if M#M' is smoothly homeomorphic to the 2-sphere,
then M is smoothly homeomorphic to the 2-sphere. Differentiability
may fail in the neighborhood of the missing point. In fact, for
surfaces the theorem still holds in the smooth category, but the
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same argument transposed to higher dimensions has this limitation.
For example in dimension 7, there are manifolds M and M’
homeomorphic to spheres but not diffeomorphic to spheres such that
M#M' is ciffeomorphic to the standard 7 sphere (See [KM]).

You Can't Cancel Knots

Tie a knot in a piece of rope and then tie another knot adjacent to it.
(In this picture of knots, on¢ is not allowed to move any rope past
the end po:sts. Think of the end-points as attached to opposite walls
of a room. With the ends attached to the wall, the rope can be
moved so long as it is not removed from the wall or torn apart.)

o=

Is it possible that the two knots taken together can undo one another
even though they are individually knotted? The answer is NO. The
proof is by infinite repetition [F]: Let O denote the unknot. Let K#K'
denote the connected sum of knots obtained by adjacent tying.
Instantiate Koo = K#K'#K#K'#K#... as an infinite weave in a compact
space by introducing a limit point as shown below.

PO R oo %g#

Then Koo is, by the method of infinite repetition, equal to both K
and to O. Hence K must be unknotted,.

This argument goes into the larger category  knots with infinite
amounis of weave t0 make its conclusions. In order to show that the



conclusion holds in the usual category of finite weaves, a topological
theorem is needed stating that if finitely woven knots are equivalent
in the larger category of infinite weaves then they are equivalent in
the category of finite weaves. The result that supports this
conclusion is found in [MO].

The Conway Proof

There is a very beautiful proof of the impossibility of knot
cancellation due to John Conway (See [G].). His proof does not go off
into infinite weave. Here is a sketch of Conway's proof

Figure 1

Put a tube T around K#K' (as shown in Figure 1 above) so that
the tube is a tubular neighborhood of K and so that the tube engulfs
K'. If K#K' = O, then there is a homeomorphism of the room to whose
walls K#K' is attached that leaves the walls of the room fixed, and
straightens K#K' to a straight line L extending from the left wall to
the right wall. The tube T will be deformed by this homeomorphism
to a new tube T' that does not intersect the line L. Let P be piane in
the room containing L. Then P intersects the left and right walls of
the room in the endpoints of L and in four points of the tube T (two
on each wall). Let a and b denote the intersection of P with T on the
jeft wall and let ¢ and d denote the intersection of P with the right
wall. Then P intersects T' in arcs that emanate from ab,c,d and
some closed curves in P. The arc from a cannot reach either b or d
because it is separated from these points by the line L in the plane P.
Therefore the arc from a must extend to ¢. This arc AC from a {0 ¢ is
necessarily unknotted in the room, since it is a non-self-intersecting
arc in the plane P. However the arc AC is the image under the
homeomorphism of an arc extending from one end of the tube T to



the other, and by construction, this means that the-arc AC must be
equivalent to the knot K (since the tube is knotted in the pattern of
K). Therefore we have shown that in the course of unknotting K#K'
we have necessarily unknotted K itselfl Therefore you cannot cancel
knots.//

Figure 2

Graphs that Encapsulate Infinity

There is a very elegant way to represent sets in FIST that are
described by systems of equations: Any  directed graph represents
such a set.

Each node in the graph represents a set. An edge directed from node
A to node B encodes the relation that B is @ member of A.

/8 B €A
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(This method of representation is used by Aczel [AC].)

A single finite set is a rooted tree where all the edges are directed
away from the root as in the examples preceding this discussion.
Nevertheless, any directed graph yields a set, or sets. For example,



C

Here A={B}, B={D},C={B},D={ }. (A node withno
outwardly directed edges connotes the empty set.) In this case, we
seethat A={{{ }}}, B={{ }},C=A,D={ }. The symmetry of the
graph with respect to the nodes A and C corresponds to the
equality of the corresponding sets.

The set J = {J} is represented as a node with a self-directed edge.

T

The category of sets in FIST that are represented by finite directed
graphs is pleasant to contemplate, but it only scratches the surface of
FIST. For example, the following infinite tree has no finite graph
description:

¢
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Here are a few more examples:

1.A={B} and B={A}.

A

B

Here the corresponding sets in FIST are identical since we obtain
A= {{{{...}}}} and B = {{{{..}}}}. We may wish that thi: graph
represented two distinct sets A and B that mutually create one
another. This end can be achieved by taking the graphs at face
value, rather than accepting the model involving these recursive
limits as the end of the story. In the next section we shall do just
this in the context of knot sets. In the FIST context, one can obtain
the effect of distinguishing A and B by giving one a different
membership structure from the other via a "labei” as in

A={B, { }} and B={A}.
A

2. F={{F} F}.

The solution in FISTis F= { {{{...}.. }} {{..}..}}. Thisisthe
Fibonacci form (considered earlier in this section).

4. Consider the set in FIST specified by the graph shown below




The corresponding system of equations is

A={BD}

B={AC}

C={A}

D={A}

The last two equations force C=D, and these then force A=B. Thus the
system is equivalent to the system A={A,D} and D= {A} or to the

graph A D

This example shows how different graphs can lead to the same
clements of FIST. It is an interesting question to determine the
minimal graphs that represent a given system of mutually defined
sets in FIST. The nodes of such a directed graph are mutually
distinguished from one another in terms of the mutual membership
relations. An analogy to this situation for undirected graphs is found
in the extremal variety graphs of Barbour and Smolin [BaS]. In an
extremal variety graph, all points are distinct due to the presence of
distinguishing neighborhood structures in the unoriented graph.
Thus, the extremal variety graph represents a space in which the
points are distinguished from one another due entirely to their
mutual relationships. Minimal directed graphs for sets in FIST are an
oriented analog of the extremal varieties.

Pregeometry

These remarks look forward to the discussion of pregeometry in
section 10. A minimal directed graph or a maximal variety graph
can be regarded as a miniature world in which the nodes are the
observers. FEach observer obtains its identity from its relations with
the other observers. In the case of directed graphs, each observer's
immediate perception is of its members (the nodes that are one
directed edge away). Further reports yield the members of members
and eventually the full system of relationships that constitute this
world. The problem of pregeometry is how it can come to pass that
such worlds acquire geometry and topology that is natural with
respect to the structure of relations, and giving rise to known
physical law. It is our contention (see Section 10) that knot theory
gives a new way to consider the question of pregeometry.



In the next section, we discuss a representation of sets that
interfaces with knots and links in three dimensional space. We
conclude the present section with two general remarks about the
models witih which this section began,

Remarkl. Indicational Calculus, Boolean logic and the
Calculus of Indications. .

We have seen that the full set of well-formed parenthesis structures
is a background of the theory of finite sets. Let us denote these
structures modulo the relations XY=YX and XX=X by parentheses
written in angle-bracket form. Thus < <> <<>> <> >

=< <> <> K33 > = < <> <L>> > denotes the set whose members are
an empty set and a set consisting of an empty set. The expression
<<>><>  is a form but not a set in the terminology used earlier in
this section. Now consider the quotient of the class of forms
generated by the extra relation <<>> = e where e denotes the
empty word. Let = continue to denote this equivalence relation.
Then <<>><> =<> and <<>> =

where the blank space is the empty word.  All finite forms fall into
the two distinct equivalence classes corresponding to the empty
word and the mark <> . We represent these classes by <<>>

and <>,

The collection of forms up to this new equivalence satisfy many
equations, For example, <<X>> =X forany X and <X>X = <> for
any X. By interpreting

<X> as the negation of X,

XY a Xory,

<<X><Y>> as Xand Y,

<<>> as False, <> as True,

one recovers the full structure of Boolean algebra. This is the
calculus of indications of G. Spencer-Brown [S-B} expressed in
parenthesis notation. Boolean algebra arises from the boundary
structure of finite set theory. The calculus of indications begins with
well-formed parenthetical expressions moduio the equivalence

generated by
<><> = <> and <<>> =,

These equivalences can be performed within otherwise identical
larger expressions.



Imaginary Boolean Values

Infinite expressions in the context of the calculus of indications, give
non-Boolean values. For example, if P = <<<,,.>>>, then P = <P>,
Infinite expressions are not necessarily reducible to one of the two
states <<>> or <>, Itis an interesting problem to enlarge the
context of Boolean algebra to handle such values. See [KI13], [K16],
[K17]), [KV] for a discussion of solutions to this problem. Spencer-
Brown [S-B] makes the perspicuous observation that there is a direct
analogy between the imaginary Boolean value P = <P> and i the

square root of minus one: i is the solution to 1 = -lii If we
ask to solve x = F(x) with F(x) = -1/x , then x=I implies x = -1
and x=-1 implies that x = 1, The problem of finding a square root of

minus one is analogous to the liar paradox. Complex numbers
provide a solution to this paradox in the numerical domain. Just so
one can consider imaginary values in logical domains.

The solution P=<<<...>>> to P = <P> is the analog of the solution
x = a + b/(a +b/(a + b/(a + ..))) for x = a + b/x. In the case where
a= 0, b= -1 there is no real numerical value for this continued
fraction. When x2 = ax +b has a real root, then the continued
fraction converges and gives a real answer. When x2 = ax +b does
not have a real root then the continued fraction does not converge,
but the recursion x ----> a + b/x is quite interesting to study in its
own right, producing an intriguing class of oscillations of the form
xp+] = a + b/xg. (Exercise: show that these oscillations all take the
form xp = tan(n® +®d) for appropriate choice of theta and phi
depending upon a and b.)  In Figure 3 we show a typical plot of xn
(vertical axis) against n (horizontal axis) in the case where x2 = ax +b
has no real root. (Here the starting value for x is 1 and a=l, b=-6.)

x=[at b
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Figure 3

Paradox can be studied through the recursive process inherent in
its syntactic form. (See [K16], [K17], [KV], [H1], [H2].) In the case of
the complex numbers it is interesting to point out that the view of
the square roots of minus one as oscillations between 1 and -1 is
mirrored in the matrix representation of these roots by the matrices
whose squares are minus the identity.

(s = (1)

In thinking about the square root of minus one, one must ask which
one (i or -i)? Similarly, in r~carding the imaginary value

P = <P>, one encounters two os ‘lations. There are two
corresponding sequences, depending on whether the starting value
is 0 or 1. These solutions can be formalized as ordered pairs of
Boolean values [a,b] with [a,b]' = [b',a'], and [a,b][c,d] = [ac,bd]. Let
I=[0,1] and J=[1,0]. Then I and J are the two views of the alternation
...0101010101... with I'=I, J'=J and DJ=[0,0]=0. This construction
gives a DeMorgan Algebra [K15],[K16], [KV]. As we shall see later in



this essay (section 10) an entirely different world opens up if we
ask for the same conditions, but 1J=0.

Remark2. Quantum Logic

Recall the simplest form of quantum logic (See [F1} JF21.[F31, {OD
based on a vector space V with a notion of orthogonal complement
for subspaces (W' is the orthocomplement of W). Elements in the
algebra of this logic are subspaces of V. The negation of W is its
orthocomplement W'. The sum of subspaces A and B (A+B) is the
subspace spanned by A and B in V. The product of A and B (A*B) is
their set theoretic intersection. Let 1 denote V and 0 denote the
zero subspace.

In this logic, we have A+A' =1, A*A' =0 for any A, The law of the
excluded middle stili hoids, and there is no element J in the logic
such that J'=]. On the other hand, if V is two dimensional, and P and
Q represent perpendicular lines in V, while R represents a line
independent from both P and Q then we have

1= 1*R = (P + Q)*R while P*R+ Q*R=0+0=0.

The distributive law does not hold in the quantum logic.

Such a non-Boolean logic is called a quantum logic because it models
the operations of states and projections in a quantum mechanical
system. Addition of vectors corresponds to the superposition of
states. Here we are concerned not with the naturality of this
structure with respect to quantum mechanics, but rather with its
naturality in respect to mathematical foundational ideas. Vector
spaces are a rather late development in the hierarchy of
mathematical constructions. Can one encounter quantum logic nearer
to the bottom? One answer is an appeal to geometry. If we describe
in notation this move to quantum logic it becomes: Let (for three
dimensions) the whole space, a plane, a line or a point indicate a
given proposition. Let the negation of this proposition be indicated
by a linear space that is perpendicular to the indicator for a given
proposition. Thus, in a plane, if we diagram P by a line

P,
then P' is a line perpendicular to P.



rerenR) || R
FxP+ReP'=0

At once there arises the infinite multiplicity of lines in between P
and P'. If the plane itself is all (1) and a point the void (0), then we
can only save the law of the excluded middle by letting P+P' indicate
the plane spanned by these two lines. It is nevertheless this very
existence of intermediates that makes the logic non-distributive. For
we take R to be a line going straight between P and P, and we find
that R*(P+P") is not equal to R*P + R*P'. The quantum logic is the
logic of the first movement of notation into geometry,

Quantum logic is the pre-geometry of notation. Boolean logic is
obtained in notation by ignoring the existence of intermediate
states.

This discussion makes no claim that its remarks about notation and
quantum logic have a direct bearing on quantum mechanics. Such
issues deserve more exploration.

Remark3. Ordered Parentheses, Boundary Logic and the
Temperley Lieb Algebra

In this section we have taken the point of view that ordered
parenthetical expressions in brackets (finite ordered multi-sets)
are precursors to finite set theory. In examining the structure of
such expressions it is useful to tie left and right ends of the
parenthesis into a single form that shall be called a cap. This
notational device is indicated below.

< > «» <> > m

Call parenthetical expressions written in this notation capforms.
The capforms are intimately related to a number of topological
problems. One way to see this is to draw a simple closed curve (i.e. a
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curve with no self-intersections) in the plane and slice it with a

straight line. the line cuts the curve into two capforms such that the
feet of each cap are on the line.

M‘JD
The interaction of these two capforms produces the single simple
closed curve. In fact, we formalize the interaction of the two

capforms as a cancellation (or comnection) of nearby boundaries. We
indicate nearby interacting boundaries by an arrow.

(N (AN = AN @)
o =T7F

AGA = AT =ArAN
i




This gives rise to the following rules in a calculus of capform
boundaries that we call boundary logic (See [BRI] for a distinct but
related use of this term.).

@1 (B) = (arb)  «» >N=1
@ ~rafd) «» <M =TS

(b @R =Bat «» <D =T
o _1r0=t0 <> <H=10=0"

To determine whether two capforms interact to produce a single
simple closed curve, one can either calculate in boundary logic or
draw geometric connections and trace the resulting plane curves:

AN = ONTAY = MrTON
=AM =NIN = (A =0.

Remark. By using the boundary logic in parenthetical form, we can
formalize it with rules for string replacements. Then the equivalent
of the above graphical calculations can be performed by a digital
computer. (See [K6], Appendix to Second Edition, pp. 605-608.)

If Cp denotes the capforms with n caps, define a binary operation
Cp x Cq - > Cqn by X#Y = X|8Y where |0 denotes the
n-fold iteration of the boundary joining operation. This product
operation can be described quite explicitly by regarding a capform in
Cn as having n left legs and n right legs. X#Y is the result of
joining the right legs of X to the left legs of Y as shown below.



X Y s XY

/!

The structure of this product on Cp is better understood by
rewriting the elements of Cp so that the left legs appear at the top of
a box, and the right legs appear at the bottom.

&>

Then one can verify that every capform is a product of the
elementary capforms shown below.  These forms are the generators
of the (diagrammatic) Temperley-Lieb algebra {K3], [K6].

I I |

"
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The following relations describe this algebra

Uili+1Ui = Uj,
UiUi-1Uj = Uj,
Uil = UjUj if [i-j]>2,
(Up? = dUi.



Here d denotes the value assigned to a single free loop (the 100?) is
taken to commute with other elements of the algebra.)

The last relation is illustrated below.

U
B =0Y sup=du
(

4

The Temperley-Lieb algebra originated in certain problems in
statistical mechanics (See [BX].), and it has a very strong influence on
many problems in the theory of knots and links.

The fundamentals of set theory are intimately connected, through
combinatorial structures and the theme of boundaries, with logic,
topology and mathematical physics.

All this from framing nothing!

IIl. Knet Set Theory
A diagrammatic alternative to Venn diagrams can model a non-
standard set theory.

This section describes such a diagrammatic model and explains its
relationship with the theory of knots and links in three dimensional
space.

We begin with undefined objects denoted by letters a,b,c,.. and a
notion of membership denoted a e b (a "belongs” to b). It will be
possible for a to belong to itself (a € a) or for a to belong to b while
b belongs to a. In the model there is no infinite regress and the
system, a formal diagrammatic theory, 1is consistent relative to
standard discrete mathematics.

Here is a description of the model. Objects will be indicated by non-
self intersecting arcs in the plane. A given object may correspond to
a multiplicity of arcs. This is indicated by labelling the arcs with the
label corresponding to the object. Thus the arc below corresponds to
the label a.
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Membership is indicated by the diagram shown below.

b m
/

Here we have shown a eb. The arc b is unbroken, while a labels
two arcs that meet on opposite sides of b. Following the pictorial
convention of illustrating one arc passing behind another by putting
a break in the arc that passes behind, one says that a passes under
b. The pictorial convention is important both for the logic and for
the deeper relationship with three dimensional space that we shall
elucidate shortly.

It is an easy matter to illustrate certain basic constructions in set
theory. For example, the von Neumann construction of sets of
arbitrary finite cardinality is traditionally done by starting with the
empty set ¢ = { }, and building a sequence of sets Xp with

xXo={}LXx1={{}} X2={{}, {{ B}

Here Xn+1 = Xn U { Xn } where U denotes the operation of union.
The diagrams below show how to implement this construction using
the overcrossing convention for membership.

—\{3
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With these same diagrams it is possible to indicate sets that are
members of themselves

% d):—-{cz)}

and sets that are members of each other
a =1 b}
()
b — %Cb}.

As they stand, these diagrams  indicate sets that may have a
multiplicity of identical members. Thus

b a

Here b={aa} and a={}.

The traditional way to condense multiplicities of identicals is to
regard them as all equivalent to one another. This amounts to the
condensation rule { ... aa ..} = { ..a..}. In the case of our diagrams
another solution is suggested. In this solution, identicals cancel in
pairs and we have { ...aa ..} = { .. .. }. Thus {a,a}= {} Thisis
diagrammed as shown below:

e Y



It is easy to remember this diagrammatic transformation, since it can
be interpreted as a drawing of one strand of rope being slipped out
from under another. We shall accordingly adopt the rule of
cancellation of identicals as fundamental to knot set theory.

IR

i(m,...} < 3.}

Digression on Knots.

The diagrams that we are drawing have a well-known interpretation
as diagrams of knots, links and tangles in three dimensional space.
By convention, a knot consists in a single closed curve, a link may
have many closed curves and a tangle has arcs with free ends. Also
by convention, topological changes in a tangle do not involve moving
the free ends or in passing strands over the free ends.

There is a direct relationship between the topology of these knots,
links and tangles and the properties of the knot set theory.

Reidemeister [R] proved that any knot or link in three dimensional
space can be represented by a diagram containing only crossings of
the type indicated below,

>

and that two knots or links (A knot is an embedding of a single
closed curve into three space. A link is an embedding of a collection
of curves into three space.) are isotopic in three space if and only if
their diagrams are equivalent to one another under a finite sequence
of transformations of the types I, II, and III as indicated below.
(Isotopy corresponds directly to the physical picture of transforming
one rope to another by pushing, pulling , stretching but no tearing.)
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The same theorems apply to tangles, with the caveat that the free
ends of the tangles remain fixed during the applications of the

moves, and that strands are not allowed to pass over the ends of the
tangles.

Here is a simple example of unknotting via the Reidemeister moves.
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Here is a subtler example, turning the figure eight knot into its
mirror image.

(= 2=&= §
2B P=)-C

It is a very tricky matter to extract topological data about knots and
links from their diagrams. We shail have more to say about this
later.

The Triangle Move. The Reidemeister moves derive from
properties of the projection of a curve from three-dimensional space
to a plane or to the surface of a sphere. In fact Reidemeister had a
single move for knots and links in three space. This single move, the
triangle move , generates the three Reidemeister moves. The
triangle move is defined for piecewise linear knots and links in
three-space. A piecewise linear link is made up from finitely many
straight line segments. Any link represented by a differentiable
embedding, or any link that can be drawn by hand in a finite amount
of time, can be approximated by a piecewise linear link. Given a pl
(short for piecewise linear) link, a triangle move is performed by the
following prescription:

Perform one of the following two types of operations.

1. Mark a straight segment A on the link K. Let r and s denote the
endpoints of A. This segment A can be a proper subsegment or an
entire segment of K. Let p be a point in the complement of the link
K such that the triangle with vertices r.s,p intersects K only along A,
Let B denote the segment rp and C the segment sp. Cut the segment
A from the link and replace it by the union of the segments B and C.
2 Let B and C be consecutive segments marked on the link K. (By
consecutive 1 mean that they share a single endpoint.) Let A be the
segment determined by the endpoints of B and C that are not shared
between them. Let ABC denote the triangle (surface) determined by



the segments A, B and C. Assume that ABC intersects K in exactly B
and C. Then cut A and B from K and paste in C.

The diagrams below illustrate how projectic s of triangle moves
generate the three Reidemeister moves. Two pl links in three
dimensional space are ambient isotopic if and only if they can be
related by a finite sequence of triangle moves. Careful consideration
of the projections shows that sequences of Reidemeister moves on
diagrams captures the content of an ambient isotopy.

S

IL

1.

It is worth considering how the first Reidemeister move is generated
by a simple triangle move.  This shows clearly the illusory nature of
self-membership from the point of view of three dimensional space
if we stick to pure topology.

On the other hand, if the loop is actually a physical loop in a rope,
then the cancellation of the loop shown in the the first move must
be paid for by a corresponding twist in the rope. This is most easily
illustrated by replacing the line drawing by a drawing of a twisted
band as shown below,



e

This band picture of the first Reidemeister move shows that we can
regard it as an exchange rather than an elimination or creation of the
loop.

The reason for dwelling on the first Reidemeister move in our
context is that this move allows the creation or cancellation of self-
membership in the corresponding knot set. If we take the point of
view that the diagrams represent twisted bands (called framed
knots and links), then the self-membership is not lost as we go to the
topology. A corresponding equivalence relation on links is called
regular isotopy. Regular isotopy is generated by the second and
third Reidemeister moves. We shall return to this idea later in the
discussion.

End of Digression.

Note that by the cancellation of identicals, diagrams related by the
second Reidemeister move represent the same knot set. The third
move does not change any membership relations. Finally,
invariance of a knot set under the first Reidemeister move would
entail quotienting the theory by self membership. As we have
remarked above, it is natural to consider only equivalence of knots
and links up to regular isotopy - the equivalence relation generated
by the second and third Reidemeister moves - or to regard the
diagrams as represeniative of embedded bands in space. In the
latter case, self membership is catalogued by the twists in a
thickened arc, as well as loops in that arc.

If we maintain the distinction of self-membership by using only
regular isotopy on the diagrams, then the Russell paradox becomes
meaningful in the knot set domain, but there is still a strange twist
about self-membership. By the convention of canceliation of
identicals we have the equivalence,
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X = {X,X, C} where X={C} is the reduced form of the knot set X, and
C denotes the contents of X. Any knot set has a representative that is
a member of itself. It is only of the reduced forms for the knot sets
that we can speak of a sci that is or is not a member of itself.

The most radical interpretation is: Use diagrams with free ends
(tangles) and allow the first Reidemeister move on knot sets. This
means that any knot set has representatives that are members of
themselves and it has representatives that are not members of
themselves. The states of self-membership and non-self '
membership are equivalent. Up to representation, a (radical) knot
set is a member of itself if and only if it is not a member of itself!

We have resolved the Russell paradox in this domain by having
every set a member of itself and not a member of itself. The
topological interpretation of knot sets shows that self-membership
can be quotiented from the set theory (so that a given set has
representatives that are members of themselves and representatives
that are not members of themselves). The quotient theory is as
consistent as the theory of knots and links in 3-space. Since this
theory can be expressed in terms of ordinary set theory, this
provides a relative consistency proof for radical knot sets.

Mutuality such as a = {b} , b={a} is another matter. Here there is no
reduction to awvything simpler, and topologically, mutuality
corresponds to nothing more paradoxical than the linking of two
space curves.

W)
I,

In this version of knot sets one can make a diagram of a given knot
set , and then use this diagram as a weaving pattern for a physical
weave. Throw that weave into three space. Flatten the weave back
onto a plane. The result is an equivalent knot set. The information
in a knot set is encoded into the topology.

o D



Knet Sets Avoid Infinite Regress

The knot set gives a way to conceptualize nonstandard sets without
recourse to infinite regress. Infinity has been transposed into
topology where inside and outside can equivocate through a twist in
the boundary. In knot sets we obtain the multiple levels of ordinary
set theory without the seemingly necessary hierarchy. This is
nowhere more evident than in the self membering set represented
by a curl.

Here an observer on the curl itself will go continuously from being
container to being member as he walks along the ramp. Membership
becomes topological relationship.

Remark. The reader may be familiar with other non-standard
models for set theory such as those in the book by Peter Aczel [AC].
The constructions given here are very close in spirit to those of Aczel.
There are two major differences. The first difference is in our choice
to handle identicals via cancellation rather than condensation. The
second is in the background use of reentering forms to indicate
recursively defined constructions. We do not utilize the same
demand for uniqueness of labelling as in [AC). This is a technical
matter and will be discussed elsewhere. The surprise in our
construction is that the theory has a topological interpretation.

The version of knot sets discussed herein has a precursor in the
work of the Swedish logician Stig Kanger in the early 1940's

({P}, pp. 13-14.). Kanger represented sets as cords - with a cord tied
around another cord representing a set with the other cord as a
member. A cord tied around itself becomes a set that is a member of
itself. Our knot sets, based on the diagrams for knots, turn out to
have a deeper relationship to the topology of knots than the Kanger
system. Kanger's idea is very significant, and it is interesting to
compare it to the earlier systems of numeration (Quipu) that are
based upon tying knots in a rope.



IV. Arrow Epistemology
An arrow points.

/7

The arrow accomplishes its pointing via the distinction between
inside and outside (convex side versus concave side) made by the
arrow head. The body of the arrow extends the domain of the
concave side into a flexible arm that can reach outward from the
base of the arrow.

~ SO

Once the body of the arrow becomes flexibie, then elementary
notational topology makes it possible for the arrow to point to itself.
At this point, two forms of self pointing arise - pointing to the base
(origin) of the body of the arrow and pointing to the interior of the
body of the arrow. The former is the simplest form of self-reference,
and leads via the unfolding shown below to a direct relationship with
fixed points and recursion. The unfolding corresponds to describing
all the trips that one can make around the circle formed by the self-

pointing arrow. Thus a = —--> denotes one trip while
aa = --->-wn> denotes two trips and
A = aaa.. = ----- DwameSeaea> denotes infinitely many trips.

Note that A = aA. In this way the unfolding A of the self-
pointing arrow is a a fixed point for the operation of Taffixing an
arrow on the left".
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In the second alternative, the arrow points to its own body.

We have seen that this alternative can be extended to a notation for
self-membership or reference of the body of the arrow to itself in
the form in which an undercrossing points to (is a member of) the
overcrossing line.

T
O

Self-pointing of an arrow or a line bifurcates into two interpretations
depending upon whether the end of segment is seen as a pointer or

whether an interior point of a segment is seen in relation to another
interior point. In projection these two points of view come together

through the convention of the cut segment at a crossing.

Any reference is a distinction. The notation adopted for a
fundamental distinction has a remarkable influence on the way we
think about it. In standard set theory a set is indicated by a pair of
curly brackets: { } (This is the empty set.).

A Story
The brackets themselves indicate bifurcation from a point.

<D



Each bracket instantiates the growth of a distinction from a state of
unity (the point of the cusp).

|
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A further operation beyond bifurcation is necessary for the

formation of a set. The bifurcation that is the (left) bracket is copied
and mirrored to form the (right) bracket. A left and right bracket
taken together become a container. ~ Once we have reached the level
of being able to make a distinction, and to make a copy of that
distinction intrinsically distinct (the mirror imaging) from the
original, then we are prepared to form a new distinction (the
container). The new distinction occurs at a different level from the
original distinctions. This allows the hierarchy that is set theory.

Knot Structure
The self-pointing arrow is not a knot. The circle diagram for an

unknot does not point to itself at all, but is simply a closed circular
form. Examine the trefoil.

The diagram consists in three arrows, each one pointing to the body
of the next.

The extra convention that the base of one arrow is always correlated
with the tip of another is special to the knot theory.



It allows the interpretation of the two arrows taken together as part
of an undercrossing line, and hence the set theoretic and geometric
interpretations that we have already discussed. If we contravene
this convention, then we obtain diagrams such as the one below,
where the base of an arrow simply begins from some point on an arc.

/__—Z

This gives us a set of planar diagrams that can be studied on their
own terms. Self-pointing can take the form shown below.

The triplet structure of the trefoil is still present in diagrams such as

this one. O

One reason for considering such a wider class of diagrams it that it
enables us to draw connections with the kind of diagrammatics that
occurs in artistic, linguistic, physical and philosophical contexts. For
example, the irreducible tripartite relation of sign, signifier and
signified occurs in the work of Charles Sanders Pierce [PI] and is
ubiquitous in semiotics and linguistics.

A symbol almost identical to the trefoil structure

v
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occurs in the stylized form shown above in the the work of Annetta
Pedretti [P] on language. Here the three parts represent the distinguishing
subject, the that which is distinguished and the background binding the
distinguished and the one who distinguishes.

A similar tripartite structure arises as soon as one includes the
boundary in any distinction. Two sides and the boundary joining
them form a tripartite structure where each part is determined by
the other two parts. No boundary exists without the two sides. No
side exists without the potential to cross the boundary from the
other side. Frederick Joseph Staley [STA] calls such triplets triadic
dualisms.

A triadic dualism need not have the appearance of cither a trefoil or
a distinction. The most striking topological example of a triadic
relation is the link shown below. This link, the Borommean rings, is
topologically linked, consisting of three unknotted circles. The rings
fall apart upon the removal of any one of the triplet,

V. Lambda Calculus 1 Topology

It is natural to enquire wnether the knot sets shed light on the
topological structure of knots and links themselves.

Consider a trefoil knot:

i 1\79«,



The set is just the self-membering a={a,a,a}, and hence equivalent to
the empty set in the radical theory and to one twist (a={a}) in the
regular theory (regular theory uses regular isotopy). Many
topologically distinct diagrams correspond to a given knot set.

It is tempting to consider the possibility that the knots and links can
be viewed in terms of a subtle kind of logic. This is in fact the case.

Non-Associative Formalism in Knot Diagrams
Label the arcs in a link diagram. Regard the label on the arc
obtained by underpassing b from a as a product of a and b : c= ab.

Here we abandon the notion of membership at a crossing and replace
it with an algebraic product. Think of the overcrossing line as acting
on the undercrossing line to produce the label for the continuation of
the undercrossing. This is an inherently non- associative formalism,
as the diagrams below demonstrate.

ab) c a(be)
/Zb—\c —-\?——i——\bi
D

b
2

&

In this mode we can diagram the constructions of the lambda
calculus of Church and Curry [B]. No direct knowledge of the
lambda calculus is needed for the discussion to follow. However, the
last part of this section is a discussion of the lambda calculus in
relation to knots.

Consider Gx = F(xx). If we substitute G for x, we obtain GG = F(GG).
At this level of formalism, every F has a fixed point GG where

Gx = F(xx). Diagramming the nonassociative algebra inherent in this
discussion we have:

e
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V_b, Nt:x
G F

Taking G=x in the above diagram, by tying together the lines, we
obtain GG = F(GG):

TN (66)

/—\—_
G r

In this way, we obtain a knot diagrammatic interpretation of the
basic fixed point construction of the lambda calculus. The analogy
with our previous construction of self membering knot sets is

striking, but these lambda calculus constructions use much more of
the structure of the knot and link diagrams.

Here is a knot diagrammatic interpretation of the equation
Ya = a(Ya). It is a double leveled twist.

a (D ) Ya

@/\Y

At this point we must take a more careful look at our conventions for
handling diagrammatic non-associative products. If we take the
convention for multiplication literally, then it can be read in two
ways at a given crossing as shown below.

/c C::a.l:
L :> C::(C}J)b.
- ] T A= c})
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Thus c=ab and a=cb. Hence c = (cb)b. For consistency, we
demand that c=(cb)b for all elements b and c. Look at the
diagrammatic consequences of taking the axiom ¢ = (cb)b. We have
the following diagram.

b s
Z—b/@/f% -

Under the axiom ¢ = (cb)b, the algebra cannot sce the second
Reidemeister move. The demand for invariance under the third
Reidemeister move leads to yet another axiom: (ab)c = (ac)(bc). This
states that the algebra is right-distributive over itself.

@ &s c @b)c
D
o Pb\ (zc) (bc)

Finally for the type 1 move we need aa=a for all a.

e . <@
&
Thus we need an algebraic system with one binary operation and
satisfying the axioms:
1. aa=2a
2. ¢ = (cb)b
3. (ab)c = (ac)(bc)

An algebra satisfying these axioms is called an involuntary quandle
[J]. If we eliminate the first axiom it is called a light crystal [K2], [K6}.



The simplest example of an involuntarylkquandle is as follows: Let R
be a commutative ring, and define a*b = 2b-a. Then the operation *
satisfies the axioms for an involuntary quandle. That is

1. a*a=a

2. ¢ = (c*b)y*d

3. (a*b)*c = (a*c)*(b*c)

The knot theory associated with this algebra is non-trivial. For

example, label the edges of the trefoil knot with elements a,b,c as
shown below:

C b =ca = @ba
6) a,::.-:.bG:-- b(a'\’)

21-0=2

S

a.z—-—[::.a S% 3=0,

We see that it is necessary that a=b(ab) and (ab)a =b. In the
specific representation we require that a = b*(a*b) = 2(a*b) -b =
2(2b-a) - b = 3b- 2a, whence 3(b-a) =0. Similarly, b=(a*b)*a = 2a-
(2b-a) = 3a-2b and 3(b-a) =0. This is satisfied in R= Z/3Z (Z denotes
the integers.) and so we can consistently label the knot from this
involuntary quandle. The number 3 is a topological characteristic of
the trefoil knot. The fact that this modulus is non-zero proves that
the trefoil is in fact knotted.

By representing this fixed point ( a = b(ab), b= (ab)a ) into the
structure of the involuntary quandle , we prove that the trefoil knot
is in fact knotted. (Subtler methods are required to distinguish the
trefoil from its mirror image.) These methods in fact show that the
fixed point pair

a=h(ab) , b=(ab)a

—s O —



is non-trivial in the lambda calculus associated with the involuntary
quandle axioms. Knot theory provides a rich domain for studying
combinatory fixed points and their properties. The topology
provides an expansion of the original context for lambda calculus.
Insights from lambda calculus inform the theory of knots and links.

Lambda Calculus

Lambda calculus is concerned with the formalism of composition of
functions in an arbitrary non-associative algebra with one binary
operation. The basic notation is illustrated by the forms A= AX.XX,
B= Axy. (xy)x. The prefix on the form tells the variables that are
free to accept substitution, and the order in which this substitution is
to take place. Thus

A= Axxx means Aq =qq and

B= Axy. (xy)x means (Bp)q = (pQp.

A completely left associated expression is written (by convention)
without parentheses. Note that the variable that appears first in the
list (Axy..) is the primary acceptor for substitution. Thus, given

C = axyz.F(x,y,z) , and any other expression D, we can write

CD = AayzF(D,y,z) where in CD we have substituted D for every
appearance of x in F, and we have removed x from the list of free
variables in CD.  This means that expressions in the lambda calculus
have a well-defined binary law of composition. This composition is
not associative. Note that the composition of expressions without
free variables is just their formal juxtaposition in the free non-
associative algebra (on one operation) generated by these
expressions.

Consider G = Ax.F(xx) where F is an ¢lement in the lambda
calculus, and xx denotes the composition of an expression with itself.
Then GG = F(GG) and hence the function F(z) has a fixed point in
the context of the lambda calculus. This is the well- known fixed
point theorem for the untyped lambda calculus [B].

This fixed point is as mysterious as the set that is its own member.

We have produced it without any use of infinity, and yet the
substitution process does not stop inside F. We get the sequence
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GG = F(GG) = FF(GG)) = ...

In this sense GG may be regarded as the creator of the limiting
formal fixed point

L = FF(F(F(F...))).

That is , by allowing infinite expressions we have the identity
F(L) = L.

Note the striking difference between the application of G to itself
and the application of G to any expression p. Gp = F(pp). If pp does
not involve further substitutions then the process stops, while GG
goes on forever. The key to this formation of recursion and fixed
point lies in the duplication (pp) involved in the definition of G.

G is ar operator on x that inserts x and duplicates it in the process of
insertion. The application of a duplicating operator to itself results in
an interior application of a copy of the duplicating operator to itself,
and this process goes on forever. The pattern fits in a2 myriad of
contexts. It is the basis of jokes, paradoxes, the theory of
self-reproducing machines and even Godel's incompleteness theorem.
See section 8 of this paper for a discussion of these connections.

One can do ordinary logic in the lambda caiculus by the simple
expedient of identifying true (T) and false (F) with the following
elementary lambda expressions: T = Axy.x, F = Axy.y.

Ty = x
(Fx)y=y

It is then easy to see that
xyz = (xy)z means exactly "If x theny , else z.".

(For example, let x=T. Then Tyz = (Ty)z =y. Thus Tyz is true ify
is true and Tyz is false exactly when vy is false. )

It is easy to define all the other logical operations in terms of the

if-then-else. For example, let ~a = aFT. Then ~F=FFI =T and
~T = TFT =F. Thus ~ a denotes the negation of a.

_..5";{'..



Now consider the following construction: Qx = ~ (xx). Let P = QQ.
Then P=QQ =~ (QQ)=~P. Thus P=~P. P is a paradoxical
combinator, the direct consequence of the fixed point theorem in the
domain of lambda calculus. The Russell paradox itself appears if we
interpret AB as "B is a member of A". Then RX = ~(XX) defines
the set R of all X that are not members of themselves, and the
substitution of R for X gives the paradoxical value: RR = ~(RR).

In terms of our conventions for non-associative algebra and link
diagrams, the interpretation of AB as B € A is backwards unless we
work with the opposite algebra where A represents an overcrossing
line and B and undercrossing line. Just for the rest of this section,
lets do that. Thus, the operation AB will be represented in link
diagrams as shown below.

AB

_W

BeA«—»AB

In this form we see that the non-associative algebraic interpretation
of knot diagrammatic formalism is a generalization of knot set
formalism where membership is indicated not by the full
undercrossing line, but by one arc B that approaches the overpass A.
The outgoing line, labelled AB, expresses the relation B e A.

Just so, the lambda calculus for sets (with AB denoting B as a
member of A) involves generalized sets corresponding to the
membership relations themselves. Thus A(BC) says that "C e B" is
a member of A. While the entity "C ¢ B" is not defined as a collection,
it is defined as a new arc in the diagrammatics. In this

diagrammatic system, each arc stands for a statement of membership
relative to the other arcs in the diagram. Self-membership is

diagrammed via //-—-
AAED>AERA
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and it is indicated by the exit line AA:

) ARgay O

(AR (AR)

A AL AER

A5

In this pictorial language, statements (such as A) and
meta-statements (such as A & A) are handled at the same level of
the formalism.

Diagramming the Russell paradox we find: )(G‘R,@ X ¢X .

RXGX iy (RX= 000
<% [ 2z ]

@ zR,R;-—--' ~(RR)
R RRY ~RR

The final circuit corresponding to RR = ~(RR) is balanced (labelled
consistently) if there is a value for RR such that RR = ~(RR).
Otherwise, it can be regarded as a runaway feedback system related
to the recursion Xp+1 = ~Xp. For the input values T or F, the
-system oscillates between T and F. For an appropriate imaginary
value for RR it is balanced.

..’

Remark on Insertion and Reentry, The lambda calculus shares
a structural component with the reentry notation of section 2. A
lambda expression is equipped with pointers into itself. We devise a
notation that makes these pointers explicit.

Let axF(x) = F( ‘ )) so that F( | )) a = F(a).
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Similarly, F( :: ) ) a = F(aa).
Thus, if G = F( :( ) ) then GG =F( :E )) G =F(GQG).

In reentry notation, GG = F(GG) is denoted by an arrow pointing
into the place where the expression reenters its own indicational

space:
GG = F( ; ) ) &> c6=F(GG)

F(Q))F(Q))zl’(z))-

In this formalism the simplest instance of the fixed point theorem is
the statement

VO =0

Thus

The notation is useful for the construction of specific fixed points.

Lemma. There is an expression Y in the lambda calculus such that
for any a, Ya = a(Ya). Thus Ya is a fixed point for a.

Proofl. N/, = g (Ya) > Ya=aq)

= V=07
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Thus Y = jaa.(ax.a(xx))(Ax.a(xx)). [
Proof2. yd’ e @CY@)
= Y LY ) ) = )

I

= “ )

Thus Y = (xa.(a((xx)a))(xa.(a(xx)a)). I

The two solutions to the assertion in the Lemma are (in standard
notation) due respectively to Church and to Turing. Without the
reentry and insertion notations and their interrelationship expressed
by the fixed point theorem, it would be hard to see that these two
solutions express the very same process.

Dana Scott's Tower

For many years there was a question about the relative consistency
of lambda calculus. This was particularly serious since the
paradoxical combinators lezp directly out of the mouth of the fixed
point theorem. In [S] Dana Scott produced a model by using a
"hierarchy of languages”. <<Recall Bertrand Russell's comments in the
introduction to Wittgenstein's Tractatus [WITT] about the
possibility of an exit from the "Wovon man nicht sprechen kann,
dariiber muf man schweigen.” through a hierarchy of languages.>>
Scott's hierarchy is a tower construction in the form

X0 X1 X2 C X3 C o0 CC X

Each X, is a topological space with a weak (non-Hausdorff) topology
and such that it contains the autohomeomorphisms of the previous
level. There is a projection from each level to the previous level.
The next higher level is produced by adjoining this projection. The



direct limit Xoo exists and is equal to its own set of
autohomeomorphisms. Every point in the limit space is also a
homeomorphism of that space. Enough properties are obtained so
that Xo becomes a model for the lambda calculus.

It is an interesting coincidence that a tower construction (due to
Vaughan Jones [JO]) of great formal similarity to the Scott tower was
the motivating force behind the discovery of the Jones polynomial in
knot theory. Jones' construction creates a tower of von Neumann
algebras and it is central to problems involving the classification of
these algebras. It is worthwhile exploring the parallels between the
Scott tower and the Jones tower. This will be the subject of another

paper.

This ends our sketch of the lambda calculus.

VI. Interlock Algebra

It is the purpose of this section to explain how one further
generalization of the methods of section 5 leads directly to the main
considerations of classical knot theory and to the problems of the
relationship of classical knot theory with the theory of quantum
invariants of knots and links [See e.g. K6].

The generalization assumes that the knot or link diagram is oriented.
An orientation consists in a choice of direction for each component -
indicated by an arrow drawn on the component. With orientations

indicated, we can define two binary operations corresponding to the
two possible orientations at a crossing: ‘

4 %b a#b

&

These operations are denoted by a*b for the right handed crossing
and a#b for the left handed crossing as illustrated above. Note that
we in fact need only indicate the orientation of the overcrossing line
and take the convention that if it goes to the right as one approaches



it along the under crossing line, then the operation is *, while if it
goes to the left as one approaches it along the undercrossing line,
then the operation is #. This means that we can once again take the
reverse view of a given crossing and conctude that (a*b)#b = a  and
that (a#b)*b = a for all a and b. This means that the algebra is
automatically invariant under the type two move.

Invariance under the type three move demands adding self
distributivity for each of the operations. Thus we arrive at the
axiomatic definition of a quandle [J]:

1. a*a =a, a#a=a
2. (a*b)#b = a, (a#b)*b = a
3. (a*b)*c = (a*c)*(b*c), (a#b)fc = (a#c)#(b#c)

A crystal is the algebraic structure that results from dropping the
first axiom(See [K6].). (In [RF] a crystal written in exponential
notation - a*b = ab is called a rack) . The crystal is an invariant of
framed links (see section 2). A quandle or crystal is associated to
any oriented knot or link by taking the free (non- associative)
algebra (in the sense of universal algebra) on the arcs of the
diagram (one label for each arc) modulo one relation for each
crossing as indicated above (c=a*b or c=a#b) and the axioms for the
quandle , crystal or rack.

Regularly isotopic links have isomorphic crystals, and isotopic links
have isomorphic quandles. The quandle completely classifies knots
up to mirror images [J]. That is , if two oriented knots have
isomorphic quandles, then they are either isotopic, or one is isotopic
to the (orientation reversed) mirror image of the other,

The crystal can be used to completely classify knots, but at the cost
of adding a subalgebra generated by special elements called
longitudes. In keeping with our lambda formulation of these
matters, a longitude L. is a cortain element in the form

A = Ax.xP1P2P3..Py where we use the convention that a product that
is not explicitly associated is put in left associated form, Thus if

A= AxXABC then A = Ax.(((xA)B)C), whence Ax= (((xA)B)C).



Here P}, P2, P3, ..., Pn are the operators (overcrossing lines) met in
order as one traverses the knot diagram from some given point on
the diagram. These operators are well defined up to cyclic order, and
there are, accordingly, a set of n longitude operators corresponding
to the cyclic permutations of the Pi's. We add these longitude
operators to the crystal, and take the algebra so generated, calling it
the interlock algebra of the knot.

Theorem. The interlock algebra is a complete classifier for the knot
in the following sense: Diagrams for two knots can be adjusted so
that they both have writhe zero (The writhe is the sum of the signs
of the crossings. See the example below.). If these diagrams have
isomorphic interlock algebras, then the knots are isotopic in three
dimensional space.

Proof. This follows directly from known theorems [Wald] about the
classification of knots. The knot is completely classified by the
fundamental group of the complement plus the peripheral subgroup
generated by meridians and a standard longitude on the tubular
neighborhood of the knot. This information can be read from the
interlock algebra. By writing the interlock algebra as a lambda
algebra, we are able to include the longitude in the algebra. /

Given a knot diagram K, let I(K) denote its interlock algebra and let
A(K) denote the set of longitudes in I(K). Note that the longitudes
themselves are elements at a different level than the elements of the
underlying crystal C(K). Elements of the crystal have no free
variables. Thus the algebra of longitudes and their compositions can
be directly identified in any version of the interlock algebra. This is
a case where combinatory logic impinges directly on topological
applications.

Example. The writhe [K2] is the sum of the crossing signs

Pat e



Thus the standard right-handed trefoil has writhe 3.

b
@)@w =(@2) )b

In this trefoil, the crystal is generated by ab,c  with the relations
a*b=c, b*c=a, c*a=b. A representative longitude (starting at the
segment labelled ¢)  for the interlock algebra of this projection is
A=Ax.x*a*c*b= Ax.((x*a)*c)*b.

A trefoil projection of writhe zero is shown below.

b I8
“’M
“=((Eh) ) e)a)F

The crystal of this projection is generated by ab,c with relations
a*b=c, cHc=d,d#d=e,e#fe=f,Ma=bb*f=a. A representative longitude A
is defined by the operation Ax = x*b#c#d#c*a*f (left associated).

The interlock algebra contains complete information about the trefoil
knot.

Classical Knots.

The fact that the interlock algebra is a complete classifier for knots
follows from known results about the fundamental group and
peripheral subgroup. It is an open problem to give a purely
diagrammatic or knot logical proof of this theorem.

One illustration in relation to the Alexander polynomial is useful.
Consider the trefoil knot indicated below.



() awa) ~
@? % =axa)

In the crystal, we have the equation  a*(x*a) = x, derived from this
diagram.

The reader will easily prove that the definitions

x*y = tx + (1-)y

x#ty = (1/t)x + (1- (11t))y

satisfy the crystal axioms. Here x, and y belong to a module M over
the ring of Laurent polynomials in t.

The trefoil equation a*(x*a) = x  makes an extra demand on this
module structure. In particular, the specific equation a*(0*a) = 0
becomes  (t2-t+1)a=0.

0 = a*(0*a)

= ta + (1-)(t0 + (1-t)a)

=ta + (1-t)2a

= (t2-t+1)a.

It turns out that the polynomial (t2-t+i) is itself an invariant of
the trefoil (up to multiplication by units in the ring of Laurent
polynomials in t). This is the Alexander polynomial of the trefoil.
Thus the Alexander polynomial is the annihilator of a module that is
associated with the knot,

This completes our discussion of the relationship of the lambda
calculus to classical knot theory and the theory of link diagrams.

Operator Notation

Another notation is worth mentioning in this context. Rather than
work in a non-associative algebra we can use an operator notation

for a*b as follows: Let a*b = aa and a#b = aﬁ;

We regard a, ﬂ and [b_ as elements in a non-commutative
algebra.

Thus (a*b)*c = ab|c|  while a*(b*c)= abc] .



A formalism of this type is equivalent to exponential notation
(a*b = ab), but can be handled more systematically. Since in the
crystal we have two operations a*b and a#b, two operator
notations are also required.

Then inversion (a*b)#b = a  becomes the equation a?;g =a We

can therefore regard _b—l and {; as elements of a group of

automorphisms of the underlying set S of the crystal, and b is
the inverse of b . If we isolate this associated group structure G,
then the longitudes of the interiock algebra find a natural home as
special elements of G. With this viewpoint, we can eliminate the
lambda notations and use the pair consisting of the crystal and
special longitudinal elements in G to form a knot classifier.

Remark., One way to handle the operator notation in ordinary
typography is to write A{B} for AE| . We will use this
convention in the next section.

Remark on Terminology

Brieskorn [BR] called structures such as quandles, crystals and racks
automorphic sets. The term quandle came first in David Joyce's
1979 thesis [J]. Crystals and racks mean essentially the same thing,
and crystals first appeared in [K2],[K6]. Fenn and Rourke
independently invented the concept and called it the rack in [RF].
Their concept includes new points of view about the homotopy and
topology related to these structures.

VII. The LD-Magma

We now turn to a remarkable application of the theory of braids to a
problem in the borderline between universal algebra, set theory and
logic. It is a problem that fits naturally into this discussion of knot
logic. It is the problem of understanding a nomn-associative algebra
with one binary operation that distributes over itself. In the
notation of the previous sections we have seen that right-
distributivity is an expression of the third Reidemeister move in the
theory of knots. An equivalent convention will give similar pictures
for left-distributivity, and we shall here discuss the structure of
algebras that are left-distributive:  a*(b*c) = (a*b)*(a*c).

In [L] Laver raised the question of the word problem for free left
distributive algebras (called LD-magmas ). He solved the word
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problem under the assumption of the existence of certain types of
infinite cardinal numbers. Dehornoy [DH] discovered a direct solution
to the word problem that was purely combinatorial. In the process
Dehornoy showed how to embed an LD-magma into the Artin braid
group and to thereby reduce the word problem to the topological and
already-solved word problem for the braid group. In this section
we discuss some of the properties of the LD-magma and how
Dehornoy puts it inside the Artin braid group.

Here we work with a single binary operation a*b. Let a*b = a{b} in
operator notation as explained at the end of the last section. Let us
assume left distributivity so that a*(b*c) = (a*b)*(a*c). In operator
notation,
a*(b*c) = a{b{c}}
(@*b)*(a*c) = a{b}{a{c}}

Thus, for left distributivity, we assume the equation below

afb{e}} = abHalel}

for any a, b and c in the algebra. In order to get an intuition for this
structure it is useful to do a few computations. We restrict
ourselves to the case of the free algebra that is generated by one
element a with left distributivity. - Call this the LD-Magma.

Lets begin by listing some clements of the magma:

a
afa}
a{af{a}}.

The elements a and afa} are not subject to the distributive law.
But afafa}} is subject to this law and it is in this way infinitely
productive:

a{a{a}}

= afa}{a{a}}

a{a}{a}{a{aH{a}}
afaf{a}{a{a}}alaHaHa}} = ..

Il

i
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At the last stage shown we meet the possibility of distributing in two
ways and enter a branching infinity of expressions derived from
afaf{a}}. Note that all expressions in the LD-Magma are of the form
a{A{B}{C}... where A,B,C,. ... are themselves expressions in the
Magma. The set of truncations of a given expression af{AHBHC}...
are the expressions a, a{A}, a{A}{B}, ... We shall say that X is
less than Y (denoted X <Y) if X is a truncation of any expression
that is equivalent to Y. Thus we have (by continuing the
computation started above) that

a < a{a} < a{a}{a} < a{a}{aH{a} < ... < a{a{a}}.

Dehornoy proves that, with this notion of inequality, the LD-Magma
is a linearly ordered set. Given any two elements of the magma,
either they are equal, or one is a truncation of an equivalent version
of the other. There is great subtlety in this ordering.

Just to give the flavor of this enterprise, consider the elements aln]
defined inductively by

alll = a and aln] = afaln]}.
Thus alll = a, al2] = af{a}, al3] = a{a{a}}. al4]l = af{a{a{a}}}, ..

Proposition. Let P be any element of the LD-Magma.
Then P < altl for some natural number n. In fact, for any P there
is a natural number r such that P{al®-11} = alnl for all n > r.

Proof. We take the second sentence of the proposition as an
inductive hypothesis, and proceed by mathematical induction. The

simplest element of the magma is a, and we have afaln-11} = alnl for
all n by the definition of alrl. Thus r=1 for the element a. This
establishes the base for the induction argument. Now suppose that
R{aln-11} = a0l for all n > r and that S{alm-11} = alm] for all m > s.
Letn > r+s. Let P=R{S}. Then

P{alnl}

=R{S}{alnl}

=R{S} {R{aln-11}}

= R{S{aln-11}}

=R{aln}}

=a[n+1].
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Since any expression in the magma can be built in the form R{S}, this
completes the inductive step and hence the proof of the theorem.//

Dehornoy gives an inductive construction that embeds the LD-Magma
into the Artin braid group. Equivalent expressions in the Magma go
to topologically equivalent braids. In order to describe Dehornoy's
construction, we must first recall the structure of the braid group.
We regard the Artin braid group Bee as the union of the braid
groups Bp on n strands where Bp is embedded in Bp+1 by adding a

trivial n+1st strand on the right.

Then By is generated by the elementary braids ¢1,02,..,0n-1 and
their inverses where o¢j is a braid where only the ith and i+lth
strands cross as shown below.

I D P Lt

ey
Ui—- P 0;:-:1

In general, a braid in Bp is a configuration of n strands in a plane
crossed with the unit interval, so that the strands have a specific row
of starting points in the top plane and a corresponding row of ending
points in the bottom plane. Each planar cross section of the strands
consists in n points. Thus each strand descends from the top plane to
the bottom plane, possibly winding about its neighbors. Bp becomes
a group through the composition induced by attaching the bottom
points of one braid to the top points of the other. The inverse of a
braid is its mirror image obtained by reversing all the crossings in a
planar projection of the braid. The group Bp is generated by
01,02,....,on-1 and has a complete list of relations: oicj+]0j = oi+10ioi+1
and ojoj = ojoi for li-jl>1. The first relation is a version of the third

Reidemeister move. The fact that cic;‘l =1 1is an expression of the
second Reidemeister move.

Dechornoy's construction takes elements of the magma into Bee. Let
X be an element of the magma and b(X) its corresponding braid.
Then b(X) is defined inductively by the formulas

b(a) = ¥ and bX{YD = DbX)s(b(Y))ois(b(X)4).
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Here s(b) is the braid obtained from the braid b by shifting all its
strands to the right by one strand (add one straight strand to the left
of b.) and b(X)* denotes the inverse of b(X) in the braid group.

Lemma. b(A*(B*C)) = b((A*B)*(A*C)) where the equality on the
right is equality of braids in the braid group.

Proof.

It is convenient to prove this result by checking that the
corresponding operation on braids is left distributive. That is, we
define on braids the operation X*Y = X{Y} = Xs(Y)o1s(X)*. We shall
demonstrate that for braids A,B,C we have the equality in the braid
group A*(B*C) = (A*B)*(A*C).

A*(B*C)

=A{B{C}}

= A s(B{C}) o1 s(A")

= A s(B s(C) o1 s(B")) o1 s(A*)
= A s(B) ss(C) 02 ss(B*) 01 s(A%)

(A*B)*(A*C)

=A{BHA{C}}

= A{B} s(A{C}) o1 s(A{B})"

= A 5(B) 01 s(A)" s(A s(C) o1 s(A)") o1 s(A s(B) o1 s(A* )"

= A s5(B) a1 s(A)" s(A) ss(C) 02 s3(A)* 01 [s(A) ss(B) 02 ss(A)*

= A 3(B) 01 s(A)" s(A) ss(C) 02 sg(A)* 61 ss(A) 62 lss(B)* s(A)

= A s(B) 61 ss(C) 02 ss(A)* 01 ss(A) 62 Iss(B)* s(A)A

= A s(B) 61 ss(C) 02 ss(A)A ss(A) o1 02-1ss(B)* s(A)

= A s(B) 61 ss(C) 02 o1 02 lss(B)* s(A)A

= A s(B) ss(C) 01 02 o1 02 lss(B)* s(A)*

= A s(B) ss(C) 02 61 02 62-Lss(B)* s(A)*

= A s(B) ss(C) 02 o1 ss(B)" s(AY

= A s(B) ss(C) 02 ss(B)* 01 s(A)*

= A¥(B*C)

This completes the proof 7~ the Lemma, [/

See Figure 4 for a diagrammatic illustration of this proof.
Dehornoy proves that b: LD-Magma ----—- > Bee is injective. Thus
the word problem in the magma is reduced to the already solved
word problem in the braid group. He wuses his results to prove that
certain classes of braids are non-trivial, and raises the question of
further interactions between this theory of magmas and the topology
associated with the braid group.
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In the spirit of this quest I suggest an investigation of the

composition LD-Magma ----- > Boo -ae-w > TL  where TL
denotes the Temperley Lieb algebra (See Remark 2 at the end of
section 2.) with generators 1, Uj,U2,U3,... and relations

UiUj+1Uj = Ui, UjUi-1Uj = Ui,  UjUj = UjU; if fi-j>2, (Up?2 = du;.
Here TL is regarded with coefficients in Z[A,A'il and d=-A2-A-2,
We then have the Jones representation [JO] p:Boe ----- > TL

of the braid group to the Temperley Lieb algebra given by the
formulas p(oj) = AU; + A-l and p(oi-1) = A-1U; + A,

It is possible that the Jones representation is faithful. If this is so,
then the composition pb:LD-Magma -----> TL is an embedding of
the magma into the Temperley Lieb algebra.
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VIII. On Gédel's Theorem, Self-Reproducing  Machines, Knots
and the Lambda Calculus

We point out the pattern that relates the fixed point theorem in
lambda calculus to Goédel's Incompleteness Theorem, and to other
issues about reference. Then we discuss mechanisms of replication,
and even how to make knots reproduce themselves.

The pattern: Let G be defined by the equation Gx = F(xx).
Then , by substituting G for x, GG = F(GG).

In one step, we have gone from finity to infinity, for GG demands to
be substituted again and again in the form
GG = F(GG)
F(F(GG))
F(F(F(GG)))

ads -

In the limit, J = F(F(FFFCDN))) and FJ) = J.

it

The Building Machine
Suppose B is a universal building machine . Give B a description
x; then B builds the machine X described by x. B sends along
the description x with X:

Bx ----—--- > Xx.

11— >  Bb.

This process will not stop. An endless cycle of self-reproduction
ensues.

Gidel's Theorem, Indicative Shift, Quine and Knot

It is best to understand that Gx=F(xx) means that G is an entity
that wil! create two copies of x for any x that it meets, and tuck these
two copies inside the parentheses of F. In the Lambda Calculus of
Church and Curry [B] one writes G = Ax.F(xx). The lambda just
indicates explicitly what variables are free for substitution and in
what order the substitutions are to take place.

With this notation in mind, let #X = XX .

We then have



G = axF(xx) = Ax.F(#x)
Whence
#G = GG = aF#x)G = FH#HG).
Now replace the equality sign by a sign of reference as we did in the
case of the building machine. We obtain [K17]

The Indicative Shift: G --—-> H then #G ----- > HG.

In this context the line above becomes the definition of #G. #G no
Jonger connotes direct repetition of G, rather it connotes a new
reference to G's referent and to G. As such #G is a symbolic
description of the movement to a meta-level where sign and referent
are together in one setting.

Self-reference occurs when the meta-operator becomes a referent.

" 1 am the observed relation between myself and observing myself.”
et I ------ > #,  then substituting into the indicative shift, we
G ----->H then #G ---—- > HG.

| > # then #1 —eem- > Al

The simplest case of this self-reference occurs when we take "#" to
refer to #. Then "#° ---- > # shifts to #"#" - > #"#". This is a
syntactic analogue of the famous Quine sentence: "Refers to itself
when appended to its own quotation” refers to itself when appended
to its own quotation.

A student at the School of the Art Institute of Chicago once remarked

to the author of this paper that the trefoil knot was rather like the
Quine sentence, if we regard "quoting” as "putting a loop around it".

— 7 —



Then the irefoil has the structure "A"A  where A is a loop looping
about itself,

“ R

D

Now return to original format, with a lambda expression:
g-----> AX.NE(#x) then #g ----- > NE(#g).

The reference of g to Ax.NE(#Xx) is shifted into a reference of #g
to NE(#g). The statement NE(#g) speaks about its own indicator,
#g.  This is the core of the logic of the Gddel Theorem on the
incompleteness of formal systems. In that context, NE(Y) is the
statement that there is no proof of the statement indicated by Y.

Y is an integer. Every statement is indicated by a specific integer.

With g the indicator of Ax.NE(#x), #g is the indicator of NE(#g).
NE(#g) asserts its own unprovability, and thereby becomes a
theorem that cannot be proved within the system without an
inconsistency. If the system is consistent, then the theorem NE(#g)
is in fect true, and proved by a meta-argument outside the system.
The meca-argument is precisely that NE(#g) cannot be proved
within the system, coupled with its interpretation stating that NE(#g)
asserts its own unprovability within the system.

Can a knot deny its own detectability?  This is the curious

speculation that emerges from the present line of thought. Such a
Godelian knot would have to occur within the context of a given
method of knot detection. In the case of the Alexander polynomial
there are knots that avoid detection.  For example, the Kinoshita-
Terasaka knot shown below has Alexander polynomial equal to 1, the
same value as the unknot, and it is indeed knotted.
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Alexander cannot detect the K-T knot, even though his predecessor
slew the Gordian Knot. Is the K-T knot a Godelian knot with respect
to the Alexander polynomial? Does the structure of the K-T knot
"say" that the Alexander polynomial is incapable of detecting it? We
cannot answer this question with the present tools. It is tantalizing to
imagine that the K-T knot encodes such a denial in its diagrammatic
surface structure. If this could be understood, then it might be
possible to generalize it and locate knots that are Godelian with
respect to the Jones polynomial and other invariants. To this date, no
one has found a knot that the Jones polynomial can not detect. Is
there a knot that says

"I am (k)not detectable by the Jones polynomial™?

The Diagrammatics of Self-Reproduction

1. DNA

DNA self-rep [RZvL] (self-rep is short for self-reproduction) is based
on the fact that DNA =WC, a joining of base-paired Watson (W) and
Crick (C) strands. Here WC denotes the joined strands.

Let (WC)E ----- > (WE) (CE)  denote the process of strand separation
(The Watson and Crick strands pull apart into two separate strands
during mitosis.) in an appropriate environment E. The remaining
abstract rules for this self-rep are:

WE ----- > (WC)E and CE-—-> (WC)E. These rules are instantiated in
the living medium, as free floating molecules attach themselves to the
bare Watson or Crick strands. Thus the schema of DNA seif-rep is as
follows

DNA = (WC)E > (WE) (CE) —> (WC)E (WC)E = DNA DNA.



2.The Building Machine (again)
Placed in this same format the Building Machine self-rep takes the
form

Bx ----- > Bx Xx
Here we have indicated a building machine that produces its work
without destroying itself. Applied to its own description, the Machine
appears to reproduce itself,

Bb ----- > Bb Bb.

The scenario for the building machine is similar to the scenario for
DNA, but conceptually quite different. DNA depends upon a form that
can divide into complementary parts (W and C) that each rebuild
their missing mate from the materials in the environment. The
building machine follows arbitrary instructions to bwild "anything”.
Consequently, it can build itself. The formalisms reflect this
conceptual difference. The DNA formalism accomplishes repetition
through matching complementarities. The Building Machine
formalism has repetition built into its structure.

3. Mighty Simple Self-Rep
Here is indeed a mighty simple set of formal rules for self-rep.
C - >A A
A e > C
The "cell” C splits apart into intermediate entities A and A.
Each A becomes a copy of C.

Of course one might wonder why we don't go directly for the very
simple  self-rep C -—--> C C, repetition pure and simple. But after
all, Mighty Simple Self-Rep has the advar:age that it has a referent
to an intermediate stage. Thus we can diagram Mirosis as a mighty
simple self-rep:

(O)-C=0-C=0
— OO

A symbolic schema for this mitosis might be



Yy — C;)——-\OOI
(O-=0

We are thrown into the arena of arrow epistemology (See section 4
of the present essay). The entity C that seif-replicates 1is a
circularity, hence a self-pointing arrow. The arrow duplicates into
two non-self-pointing arrows (C ----- > A A), but arrows being what
they are tend to curl up and become self-pointing (A ----- > C). Cut
a circularity, and it is no longer circular. Cutting the circularity is
essential for its duplication. The intermediate stage is syntactically
and semantically inevitable.

These structures for self-rep can also be seen as precursors for the
topological complexities inherent in the self-rep for circularly closed
DNA embedded in three-dimensional space.  Here the individual
strands are linked and a more complex environment (topological
strand switching enzymes and more [SU]) is needed to navigate the
appropriate intermediate stages. At this point the whole structure of
knot theory comes to bear upon molecular biology.

4. A Knot-Logical Self-Rep

Here is a self-rep of a topological circle that is based upon letting go
of part of the formal structure of knot diagrams. As we have
discussed, the standard representation of a crossing involves
breaking the undercrossing line into two local arcs at the crossing site.
In the usual convention the end points of these arcs are paired across
the boundary formed by the overcrossing line. It is as though the
endpoints were magnetically attracted to one another so that if you
move one of them, then the other one follows. Let us let loose of this
convention, Let the arcs move independently of one another, but
keep the convention that the endpoint of the arc must hug the
overcrossing line.  We then have

/
))e/\/e/
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Call the equivalence relation generated by this slide together with the
Reidemeister moves slide equivalence of knot and link diagrams. It
is not hard to see that slide equivalence does away with most of the
interesting topology, but it is quite fascinating to see how it does this.
In particular, a single circle in the plane is slide equivalent to the
disjoint union of two circles. This is our knot logical self-rep, as
shown below.

L £B - G = E Tt

.__.\GQO'—A O ‘

Notice how this process goes. First, by an ordinary Reidemeister
move, the circle bifurcates into two arcs.

O—--*@"Dlpa

One arc stands as a platform for the other arc, so we shall label the
platform B, and the arc standing upon it x. Then by another
Reidemeister move we see that x can now triple into X (below the
platform) and two copies of x.




Sliding rearrangements let us pair X and x to form a new circle, XXx,
that disengages from the platform to form a separate circle C'. This
leaves a single x on the platform, and a slide plus Reidemeister move
reassembles this back to the original circle C. We have accomplished
the self-rep C - > C C.

e O /
. Y Ve
g ©B
Bx ----- > Bx Xx --—--- > Bx C

This self-reproduction via sliding is a way to make the formalism of
the Building Machine into diagrams. It corresponds to the syntax of
building machine formalism, but gives us a topological picture of this
syntax. The mighty simple self-rep and the building machine self-rep
are seen to be gremlins of the same clan.

End of Section on Self-Reproduction



Remark on Slide Equivalence. The slide equivalence used in
knot logical self reproduction is actually a way to build any knot or
link from the unknot. Any two knots or links are related by this
equivalence relation. From the point of view of a topologist, this
renders the equivalence relation trivial. From the point of view of
biological analogy and epistemology it is intriguing to find a domain
of forms just below the more rigid domain that holds the topology of
knots and links. Slide equivalence is pre-topological (see the
discussions of pre-geometry in sections 2 and 10). For the reader
interested in how to build any knot or link by slide equivalence, we
include here the appropriate sequence of Lemmas in diagrammatic
form in Figure 5. For a related discussion, see [KH].

D M~~~ O (se.\:f—-i"e-f’).
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A modified version of slide equivalence is central to the study of
three dimensional manifolds. Knots and links classify 3-manifolds
when taken up to regular isotopy (see section 2) and the handle-
sliding equivalence illustrated below together with creation and

annihilation of singly framed circles. [KI]}

D+ +©

In this context, the link diagram is a code for the construction of the
associated 3-manifold via surgery. The surgery process is
accomplished by regarding the three dimensional space that contains
the knots as the boundary of a four dimensional ball. To this ball, a
thickened disk (thickened to a family of disks parametrized by
another disk) is attached along its boundary to each knot component
in the diagram. Each such attachment is called a "handle”. The
boundary of the resulting 4-manifold is the 3-manifold obtained by
surgery along the given link. The handle-siding move indicated
above is exactly the result of sliding one of the four-dimensional
handles over another so that at the end of the process the boundaries
of both handles are in the original 3-dimensional space.

We can tell the story of the handle-sliding more slowly by moves on
the links as shown below.

L



In the diagram shown above the handle on the ieft has just begun to
slide up on the handle on the right. Part of the left diagram
disapp=ars into 4-space. The process continues, mediated by the
rules

These local sliding rules resurrect the usual theory of handie sliding
for link diagrams. If is understood, however, that free-wheeling
recombinations of arcs are not allowed so that the self-rep is not part
of this formal system. This modified version of slide equivalence for
the study of 3-manifolds embodies a significant part of the
relationship of knots with the theory of spin networks [K21], {K22] ,
[K19] and will be discussed at greater length in another paper.



IX. Quantum Knots and Topological Quantum Field Theory
Topological quantum field theory is a generalization of quantum
mechanics, In quantum mechanics one computes amplitudes <alb>
where <a] denotes preparation and |b> denotes detection.

In computing such an amplitude we cut the world via the distinction
preparation/detection. It is the rules of quantum mechanical
amplitudes that tell us how to combine networks of such cuts to form
more complex amplitudes. These rules are utterly categorical, and
they fit into topology in the following way: Imagine a topological
space M, and a direction associated with that space that we can call
"ime". In this time direction there is an evolution of the slices of
that space perpendicular to time. Thus the space is seen as a pProcess
that goes from vacuum to vacuum. /{/(//

/VL/

=M =< M >

Let <M> denote the vacuum to vacuum amplitude for this time
evolution. Let us cut M in two pieces M' and M" so that M is the
union of M' and M" along their common boundary S. Then we
can think of <M> as the amplitude <M'M'> , and the two halves
<M' and [M'">  become preparation and detection. In order for
this to make physical sense it must be the case that the amplitude
<M> does not depend upon the way in which we cut M into two
pieces, and it must not depend upon the direction of time either. It
is out of these very stringent conditions that one comes upon <M>
as a topological invariant of the space M!  In the process, the notion
of bras (<al), kets (Jb>) and amplitudes <alb> has been generalized
far beyond the confines of standard quantum mechanics.

S
-

The simplest case of bras and kets must be considered first. A bra ,
<a| , is an element of a Hilbert space H. If everything is taken over
the complex numbers C, then an element of H can be regarded as a



mapping C -—- > H (that is, the element itself is the im;ge of the
unit element 1). The ket, [b>, is an element of the dual space and
hence it is a map H - > C.

The bracket is the composition <alb>: C ----- > H - > C, and the
amplitude itself is the image of 1 under this composite. More
complex spatial decompositions lead to more complex compositions,
but the basic pattern is the same.

The Logic of Dirac Brackets

This bracket notation of Dirac is subtle. If we write P=fb><a] then
the square of P is a multiple of P.  This is embodied directly in the
formalism:

P2 = PP = |b><a|lb><al =|b><alb><a| = <a|b> |b><a] = P

where 5 = <alb>. Note that we have implicitly adopted the notation
| = | in order to indicate that the result of the composition of a bra
with a ket is a scalar: <allb> = <ajb>. The Boolean law of idempotencey
(xx=x) underlies the structure of the Dirac bracket.

We can abstract the notation to the formal ket bra Q= >< with

QQ =><><=<>><=§><=5Q

where <>=d is regarded as a scalar. Amplifying this notation
slightly, we have

DC)C:DQ C =8DC.

This is the simplest glyph in the diagrammatic interpretation of the
Temperley Lieb algebra (See the remarks on the Temperiey Lieb
algebra and boundary logic at the end of section 2 of this essay.).
Thus the Temperley Lieb algebra can be seen as a generalization of
the formalism of Dirac brackets. In this way the brackets are
directly related to topology. |
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Recoupling

When the link diagrams are interpreted as toy models of particle
interactions then it is natural to color the lines according to the
particle states and to include trivalent interaction vertices that can
be interpreted as the emission of a third particle under the
interaction of the other two lines.

b
c

A

In the classical theory of quantum angular momentum there are
many recoupling formulas such as
2 b

& b = EE (a’) L) C) ¢
c b

ao

A formula like this matches the pattern of the handleslide as
described at the end of the last section.

OC— X
\
DGR
——"/
The marriage of these formalisms in the context of the Temperley
Lieb algebra or the context of q-deformed spin networks results in

invariants of 3-manifolds and in reconstruction of the invariants of
Witten-Reshetikhin-Turaev in a combinatorial form [K19].

-8l



X. Knots and Circuits

It is perhaps not surprising that knots and electrical circuits should
have some relationship with each other. However, it came as a
distinct surprise [GK] to discover a way to get topological
information about a knot by measuring the conductivity of an
associated electrical circuit! This section will sketch this method and
relate it to the context of logic and switching circuits.

Every knot or link diagram, K, implicates a planar graph, G(K), by the
checkerboard construction illustrated below. In this construction,
one shades the regions of the diagram, leaving the outer region
unshaded. FEach shaded region is then taken as a vertex of the graph.
The edges correspond to  crossings in common between  pairs of
regions (or between a region and itself for an edge that is a loop).
Each edge is labelled with a plus sign (+) or a minus sign (-)
according to the way the crossing is situated with respect to the edge.
The sign is plus if turning the overcrossing line through the shaded
regions is a counterclockwise turn. Otherwise, the edge is negative.
This convention is illustrated below.

Given a planar graph with signed edges, we can construct a
corresponding link diagram by the medial construction. The medial
construction is inverse to the process that associates the graph G(K)
to a link diagram K. Given G, we form the medial, M(G), as follows.
First draw simple closed curves each describing the border of one of
the regions of the planar graph G. Each curve is drawn just inside
the region near the border actually described by the graph.

ViV
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The result of this process will be that to each edge of G there are
associated two parallel arcs from the curves drawn on either side of
that edge in the plane. Insert in each such pair of arcs (one pair for
each edge of G) a crossing of the type indicated by the sign of the
edge. (When the edge has a positive label, turning the overcrossing

line counter clockwise sweeps it across the edge.)
7 @

6 M ()

The reader can easily verify that

1. If K is a connected link diagram (i.e. the projected 4-valent graph
in the plane associated with K is connected), then M(G(K))=K.

2. If H is a connected planar graph with signed edges, then

G(M(H))=H.

(Equality in the first case is up to graphical isotopy of the link
diagram in the plane. Graphical isotopy of the link diagram does not
allow Reidemeister moves. It is just planar isotopy of the projected
4-valent graph that preserves the over and under crossing structure.
Equality in the second case is graphical isotopy in the plane that
preserves the signed edge structure of the graph. )

We conclude that there is a one-to-one correspondence
between connected signed planar graphs and connected link
diagrams in the plane.

Consequently, it is possible to translate knot theory to a theory about
signed planar graphs. We now make this translation for the
Reidemeister moves. From now on we shall regard the edge labels +
and - as the integers +1 and -1. This convention is crucial to
everything that follows.
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The first Ré;idemeister move becomes the addition or removal of a
pendant edge or loop in the signed graph:

\

<‘%; T

The second Reidemeister move becomes the contraction of a series
connection of plus and minus or the deletion of a parailel connection

of a plus and minus.
+
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The third Reidemeister move is a replacement of a triangle by a star
(or vice versa), with corresponding sign changes. In each of these
local configurations there are two signs of one type and one sign of
the opposite type. With the edges labelled a,b,c in the triangle and
A,B,C in the star we have = - X. (Edges in the triangle are matched
with edges in the star so that a superposition of star and triangle has
three distinct alphabetical labels at each vertex.)




Just for practice, here is the reduction of a graph to a point
(corresponding to an isotopy of a diagram that represents the
unknot).

N = 0=
aT I

All of knot theory can be done in this category of graphs. In the
original setting of the knot theory the Reidemeister moves have a
definite topological meaning. One can wonder whether there is a
natural interpretation of these moves for signed planar graphs.
One answer to this question will emerge as soon as we recall a little
elementary electrical theory.

Recalling Electricity

It is most common to consider c1rcu1ts composed of elements with
different values of resistance. Two resistors connected in series have
the sum of the resistances of the individuals. Two resistors
connected in parallel have the reciprocal of the sum of the
reciprocals of the individual resistors.

These rules follow from the relation E=IR of voltage (E),
current (I) and resistance (R) in conjunction with the
Kirchhoff laws that the sum of the currents at a junction
in a circuit is zero, and that the sum of the voltage drops
around a closed loop is zero.

In the case of the series connection of resistances R] and
R, we have a constant current I in the wire and voltage
drops Ei and E2 across R1 and R2 respectively. Thus
Ei=IRi, E2 = IR2 and E=E] + E2 = IR where R is the
resistance of the series connection of Rl and R2.
Therefore, IR] + IR2 = IR and so Ri + R2 =R,

Ra

R4
i
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In the case of a parallel connection of resistances R and
R2 we have currents I1 in the R branch and I2 in the R2
branch and a total current of [ = [} + Ip flowing out of the
junction of the two branches.

The voltage drop across the parailel connection of the two
branches being E, we have E = IR, I=Ij+], E=I1R],
E=I2R2. Thus

R=E/I1+I2) = E/(E/R| + E/R2) = /(1/R1 + 1/R)).

Conductance is the reciprocal of resistance. Thus an open circuit has
zero conductance and infinite resistance. A closed circuit with no
resistance has infinite conductance. It is convenient in our context to
work with conductance. Thus the parallel and series rules for
conductance are

alpjb =a +b

a{s}b =afb = 1/((1/a) + (1/b)) = ab/(a+b)

where {s} stands for a series connection and {p} stands for a
parallel connection.

There is a star-triangle relation in electrical theory. For
corresponding edges x and X from triangle a,b,c to star A,B,C the
transformation is X= S/x where S=ab+ac+bc. With these

assignments of local conductance, stars and triangles can be
interchanged in circuits that are otherwise identical without changing
any global conductance calculation. (Edges in the triangie are
matched with edges in the star so that a superposition of star and
triangle has three distinct alphabetical labels at each vertex.)
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The linear algebra in back of conductance Jeads to a global formula
for the conductance of a circuit between two chosen points v and w
(the input and output respectively). Let G be the underlying graph
of the circuit. G is a graph with labels on its edges corresponding to
the conductance of each edge. Let ZX(G) denote the sum over all
maximal trees in G of the products of the labels on the edges of each
tree. Let G(v,w) be the graph obtained from G by identifying v with
w. Let C(G,v,w) denote the conductance of G from v to w. Then (See
[GK].) we have the formula

(*) C(G,v,w) = Z(G)Z(G(v,w)).

For example, consider G as shown below. Then G has. one tree and
¥(G) =ab. G(v,w) has two trees, and (G{v,w))= a + b. Thus C(G,v,w)
~ ab/(a+b). This corresponds to the rule for the conductance of a
series connection.

T
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By using the formula (*), we can define conductivity for arbitrary
algebraic labellings of graphs and the resulting theory will still be
invariant under the series, parallel and star-triangle transformations,
In particular, one can consider (formally) conductances that take
negative or imaginary values. In such cases the quotient
Z(G)L(G(v,w)) may take undefined values (0/0) when the
denominator is zero. As long as the denominator is not zero, the
transformations remain valid.

Return to Knots

Since we can consider generalized conductances where the labels
take negative values, it is now possible to return to the link
diagrams, translated into graphs, and examine the relationship of the
conductance with the performance of the Reidemeister moves.

Using the graphical form we see at once from the previous discussion
that each Reidemeister move is a transformation that leaves the
conductance invariant. (It is assumed that the input and output
terminals are not involved in the given Reidemeister move.)
Therefore the conductance measures a topological property of the
original link diagram and the Reidemeister moves have a
(generalized) electrical interpretation,

For example, consider the Borommean rings as shown below. These
rings are linked as a triple, but any two of them (in the absence of
the third) are unlinked. We have drawn the corresponding graph,
and see at once that the conductance will be non-zero for any two
terminals since all the edges have weight +1. This means that we
have proved that the Borommean rings cannot unlinked by any
isotopy that does not pass the diagram over the points v and w.




One way to put this is to imagine that two lines have been removed
from 3-space. One line is perpendicular to the plane and runs
through v, the other is perpendicular to the plane and runs through
w. C(G,v,w) is an invariant of the link M(G) (equal the borommean
rings in this case) as embedded in 3-space with these two lines
removed. Call this space the tunnel 3-space, Tiv,w].

It is easy to see that if you replace a link by its mirror image (by
reversing all the crossings), then G is replaced by G* where all the
edges change their signs. From this it follows that

C(G*,v,w) = - C(G,v,w) whenever C(G,v,w) is not equal to 0/1, 0/0 or
1/Q = oo,

A nice application of this result ensues for alternating links. In an
alternating link diagram a walker moving along one the strands of
the link will alternately go over and under on successive crossings.
A link is said to be alternating if it has an alternating diagram.
Furthermore, the graph of an alternating diagram has all positive or
all negative signs, just as in the case of the Borommean rings. Thus
C(G,v,w) is non-zero ( determinate and not infinite) if G=G(L) for L a
connected alternating diagram.  Therefore we have shown

Theorem[GK]. For any choice of terminals (hence any choice of a
pair of shaded regions) in a connected alternating diagram L, the
corresponding embedding of L in the tunnel space T[v,w] is not
ambient isotopic to its mirror image.

This result is interesting because many alternating knots and links
are equivalent to their mirror images in ordinary 3-space. Nonme of
this achirality can prolong to the tunnel spaces associated with the
diagram. For example, the figure eight knot shown below is
equivalent to its mirror image, but it is not equivalent to its mirror
image in the tunnel space §hown below.
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In [GK] we show how the conductance invariant can be expressed in
terms of the Alexander-Conway polynomial in the special case where
the terminals define a tangle. This case of tangles is of interest in its
own right. We consider boxes with two inputs (top) and outputs
(bottom) where the input and output lines are part of a weave or
linkage inside the box. Equivalence of tangles is topological
equivalence of these weaves restricted to motion inside the box that
leaves the inputs and outputs fixed. It is natural to associate a
shaded graph to a tangle as shown below.
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With this association we have natural choices for input and output
vertices of the graph corresponding to the input and output lines of
the tangle. Therefore, we can directly define the conductance of a
tangle, and it is equal to a conductance for the numerator of the
tangle where the numerator is obtained by tying the two input lines
together and the two output lines together as indicated below.

;‘lj —>> @ Nuf»’b (T)

If we tie the inputs to the outputs as shown here, we get the
denominator  of the tangle. In the signed graph of the denominator
of the tangle we see that the input and output vertices of the
numerator have been identified with each other. Thus, by our
definition of conductance, the conductance of the tangle is equal to
the ratio of the tree sums for the numerator (graph) and the
denominator (graph).  Furthermore, the operations of series and
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parallel combination for graphs become operations of addition and
multiplication for tangles. See below.

T Den,(_r) 7| Num (T)
e (1) = = 6MuntD)/Z G (Dentr)).

With these pictures, we can look again at the properties of
conductance in terms of the calculus of tangles. The tangle

corresponding to 0 is U

-
Y J > A 07
The tangle corresponding to oo is

(} «» ¥ 6=

A

Series (#) and parallel (+) combination of circuits correspond to the
following tangle operations - also denoted # and +.  The operation
# is called tangle multiplication and the operation + is called tangle
addition. L

S| SHT sl [ (S+ 1
= |

The cquations 1 + (-1) =0 aad 1#(~1) = o correspond to the tangle

X+ K= \/\ N Rﬁ

The tangle calculus is quite useful because many classes of knots and
links can be built from elementary tangle operations.
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From Electricity to Circuit Logic

We now turn to a relationship among eclementary electricity, topology
and switching logic. In studying the logic of switching circuits, one is
concerned with networks of elementary switches. e @mm——r
An elementary switch is a circuit element with one input lead, one
output lead and two states. The states of a switch are closed and
open. In the closed state the switch presents infinite conductivity.
In the open state the switch presents zero conductivity. Thus we can
represent the binary values for switching circuits by the values zero
(0) and infinity (). In this way we view switching circuits as
special cases of circuits composed of conductances that vary between
0 and o, or as special cases of circuits composed of arbitrary
conductance values.

A switch will be denoted as shown below, with a labelled arc to
indicate that no state has been chosen. A solid arc indicates that the
switch is closed and the absence of an arc indicates that the switch is
O1en,. -

P pe—— contingent

—— closeé

———
¢ o——— oPeYb

When we refer to a switching circuit we mean one with a designated
input and a designated output line. Such circuits can be combined in
series and in parallel. A given circuit may, however, not be obtained
by series and parallel combination from elementary switches. For
example, the switching circuit below is not so obtained.

™
———{-«c.-%—————

d

“*
Equality of switching circuits (A=B) means that they are both open or
they are both closed. This makes sense if all the switches in a and all
the switches in b have been set to specific states. We shall extend
this notion of equality to circuits with labelled, but undetermined
switches. Once a circuit has labelled switches it is possibie for more
than one switch to have the same label. The convention is that this is
a ganged switch: All occurrences of a given label are either open or

they are closed. Mechanical examples of switches that control a
multiplicity of contacts are quite common. Now suppose that A and
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B are switching circuits with switches labelled ab,c,... . Call the set of
labels L(A&B) = {ab,c,...}. Each label appears in A or in B or in both A
and B. A state of A&B is a choice of values for the elements of
L(A&B). For each state of A&B there is a specific choice of contacts in
each circuit and hence each circuit is either open or it is closed. We
say that A=B if this equality is true for each state of A&B.

For example, if A and B are as shown below, then A=B. Note that the
switch ¢ in A is ganged. With ¢ open both A and B are closed only if
a and b are closed. With ¢ closed, both A and B are ciosed.

_--a.:b—J AEA
I i = 1B

Let a+b denote parallel combination of switching circuits
s i‘—"\

Note that 0+0=0,0+ 0o =0 =0 +( and o + oo =,

___J.“'—'[——- o+0 =0 . o

—* ] O -+ 00 =0

Let a#b denote series combination of switching circuits.

—] @ b*—““}&#“b
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Note that O#0 = 0, O#cc = 0 = o0 and ooffec = oo,

e e —— ofto=O0 —

o= O —ses &
PR SO ey O#

. S oo oo =0 —8———

Since each switch has the two states (zero and infinity) , we can
define a unary operation , a -~--- > a', on switching circuits (with one
input and one output designated) with 0' = oo and «' =0.

The definition is:

a' is the circuit obtained by flipping all the switches in a.

It was Claude Shannon [SH] who observed that one input, one output
switching circuits have the structure (as we have just described it) of
a Boolean algebra. That is, Shannon observed that the operations +
and # are associative and commutative, that each distributes over
the other: a#(b+c) = a#b + a#c and a+(b#c) = (at+b)#(a+c).
Furthermore, (a+b) =a' #b',a + a'=, affa’ =0, and

O+a = a, oo+a=oo, Offa= @ coffa=a for any circuits a and b. Here we
have written the underlying two-valued Boolean arithmetic with the
symbols 0 and . The infinity symbol is usually denoted by the
notation "1" in  presentations of Boolean algebra.

Shannon also proved a star-triangle relation in switching theory. The
Shannon relation is shown below.

- S

b" @i
c
b =a’#c’ b/=a+c
— b/ / a,’:b-{-C
< ,,_.bl:ﬁ:c/ = a+b
=k'$b =
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This Boolean star-triangle relation is a direct consequence of the
distributive law in Boolean algebra (Each of the operations + and #
distributes over the other.). Thus a#b + ¢ = (a+c)#(b +c), and this
equation corresponds to the network transformation shown below.

g )

ads
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Note that the Boolean star-triangle relation is exactly the limiting
case of the electrical one. One way to keep track of this is to use
formal fractions involving 0 and e with o = 1/0 so that Qe =1.
Keep track of orders of zero and orders of infinity to the end of the
calculation. In the example below, the triangle has labels 0,00 and
so by Boolean rules the star has labels

(+oo=o0, cotoo=oo and oo+() = oo, Here S = Oco + o000 + 00f) = 2 + 002,

Thus in the limit calculation for electricity, the star is labelled with
S/0= Seo = 200 + w3 = oo ( final reduction of orders), S/ = SO

= 2x0 + o000) = () + o0 = oo,

*° ,S’:Z-i—oo&
oo oo <

o0 O
o)
2,
Sl ==, Sfeo = B+ S =0 oo 2o

In this sense we see that the extended real numbers (including
and -~} with operations + (ordinary addition) and #

(a#b = 1/((1/a) + (1/b)) = abl(atb)) form a natural extension of
Boolean algebra. Of course the Boolean rules no longer hold in this
larger system. The operations + and # fail to distribute over one¢
another and the values +1 and -1 satisfy x' = x , paradoxical
elements if restricted to a Boolean algebra. Note that it is exactly
these paradoxical values that serve to label the two crossings in the
knot theory.
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Note that a universe (a link diagram with no indication of over or
under crossings) can be regarded as a Boolean switching network in
the plane. Each crossing is a switch with the two settings

> =, DC

In order to make input and output specific, lets take a flattened
tangle T for our Boolean net. Once the switches are set, we get a
state of our tangle, and its (Boolean) value is 0 if it is possible to walk
between the input lines and end up at the output lines without
crossing any arcs. Otherwise the value is oo,

<7

&P
N — __/
&>

Let S be suc.. a state for T. Let §| num(S)|| denote the number of
simple closed curves in the numerator of S, and let ||den(S)]] denote
the number of simple closed curves in the denominator of §. Let
D(S) = lInum(S)|| - llden(S)il. Then it is easy to see that S has Boolean
value Q0 if and only if D(S) = 1 and that S has Boolean value oo if
and only if D(S) = -1. Thus we have ( in our formal conventions for

orders of 0 and infinity) the equation VAL(S) = 0D(S), where
VAL(S) is the Boolean value of the state S.

From Circuit Logic to Electricity

This formulation for the Boolean case shows that the states of the
knot theoretic switching net are in fact the states of the summation
for the bracket polynomial {K2],{K3],[K4]. This suggests that the
bracket polynomial at Joop value zero may have something to do
with conductance. This is correct, and gives the following formula in



the full case of tangles T with arbitrary over and undercrossings:
Let BR(K) denote the bracket polynomial for a link K evaluated at

A =+vi where i2=-1. (Note that the loop value is zero in this case.)
Then the conductance of a tangle T is given by the formula

C(T) = -i BR(num(T))/BR(den(T)). This formula follows from the
results in [GK].

Let K* be the mirror image of the link K (obtained by reversing all
the crossings of T). Then BR(K*) = BR(K)* where z* denotes the
complex conjugate of the complex number z. It follows directly from
this formula that C(T*) = - C(T), a fact that we know directly from
conductance calculations.

Since the bracket evaluation is based on the expansion formula

BR( =) = Yi BR(==<{ ) + (I¥i)BR(D ), we sce that the
conductance of an arbitrary tangle is the ratio of weighted averages
of Boolean evaluations for states of the switching network that
underlie the tangle.

[in general BR( =>X) = ABR( ==X ) + A"IBR(D <) with loop
value equal to -A2-A-2 defines an invariant of regular isotopy that
is a version of the original Jones polynomial. See [JOI, [K3], {K51, {K6].]

Abstract Tangle Calculus

We have just seen a natural evolution of definitions for the
multiplication (#) and addition (+) of tangles. In the electrical
theory the analogs of these operations ( series (#) and parallel (+)
combination) satisfy the relation a#b = (a' + b))’ where x' =1/x. This
leads to the question: Can we define an "inverse” operation on
tangles T ----- > T' such that for tangles S and T the equation

SHT = (S' + T')' is a topological identity? The answer is that we can
come very close.

The difference between the topology and the algebra is that
topotogically neither addition nor multiplication of tangles is
commutative. Furthermore, the tangle obtained by turning a tangle
upside down (exchanging inputs and outputs) is not necessarily the
same as the original tangle. Lets define this operation by T ~--—-- > TA
and call TA the flip of the tangle T. The flip of T is obtained by
turning T around in the plane by 180 degrees.
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The diagrams above give an example of a tangle where T and T* are
topologically distinct. Note that we know that the conductance
invariant cannot tell the difference between T and T

That is, C(T) = C(T*) for any tangle T.

We now define the inverse T' of a tangle T by the formula

T = t(I*) where T* denotes the mirror image tangle obtained by
reversing all the crossings of T, and t(T*) is the rwist  of T* obtained
by making the left input the left output and the right output the

right input, as shown below.
| / / _— OO
T tTF © :(\(J\J il

Lemma. For any tangles S and T, the following equation is valid
topologically: (§' + T') = (S#T)". Thus for any evaluation on tangles
T - > v(T) satisfying v(A*) = v(A) and v(A#B) = v(B#A) it follows
that v( (§' + T)) = v(S#T).

Proof.

Ts1| ()] &
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We may still wish to regard the sum of infinity and infinity as
infinity rather than 0/0. This works if one is willing to take the
different powers of zero into account ( as we did in the evaluation of
a Boolean network). Formally, we take 02.0® = 0(2*b) and

0a + Qb = omin(a,b). This suggests working in a realm of formal
fractions [a, b] where [a, b]+[c, d] = [ad+bc, bd] and powers of zero
are handled according to the above rules.

In the tangle category, this brings us right back to the phenomenon
that the powers of the zero tangle act like the Dirac bracket: Let G
denote this tangle. Identify G with the formal fraction of 0/1 :
G=[0,1]. Then G#G = 0G where 0 denotes a single loop and is taken to
be the value zero in our conductance calculations.  Since

GH#G = (G' + G = (e + oyl = [0,0.0]-1= {0.0, 0] = 0[0, 1] = 0G this
multiplicative phenomenon is identical to the matter of adding the
infinity tangle to itself. U

U 4l /-:::.
6 n J C ﬂ ) O

Now note the following algebra. Formally write aG+b where a and b
are complex numbers and GG=0G.

Then (aG+b}cG+d) = (acGG + adG + bcG +bd) = (ad+bc)G + bd.

Define v(aG+b) = a/b. Then we have that

v((aG+b)(cG+d)) = (a/b) +(c/d) so that v(XY) = v(X) + v(Y).

Since v(G) = v(G +0) = 1/0, we see that the rule GG=0G corresponds
directly to the formal addition 1/0 + 1/0 = 0/0.

Multiplication of the forms aG+b corresponds to formal addition of
fractions a/b and c/d. In this context it is natural to define the
involution (aG+b)' = b*G + a* where z* denotes the complex
conjugate of z.

This form of calculation corresponds to the bracket model for these

tangles. In the bracket model, we can expand the tangle as a formal
sum of tangles using the rules

/ _ VY
A% o
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Letting G denote the 0 tangle and 1 denote the < tangle, we then
have that any tangle S expands to a formal sum S = aG +b for some
complex numbers a and b.

The algebra of forms aG+b can itself be regarded as a non-standard
extension of the almost-Boolean logic of G and 1 with GG =0G. Here
G'=1 and 1'=G. In order to have I=aG+a* and J=a*G+a such that
1J=1 we require that

1= 1J = (aG +a*)(a*G +a) = (a2 + a*2)G + aa*. Hence a* = a-l and

0=a2 + a2, Thus we take a = ¥i. This corresponds exactly to the
choice of bracket expansion that gives the conductance. I and J
correspond to the two types of crossing. Here they are motivated by
the desire to construct elements I and J in a quasi-Boolean algebra
such that I'=l, J'=J, J and 1 are two views of an alternation [ab], and
IJ=1. Compare this discussion with the description of the DeMorgan
algebra at the end of section 2.

Remark. The requirement I1J=1 that makes all the difference. If we
had asked that IJ = 0 we can achieve this end quite simply by taking
{a,b} with a and b Boolean values of 0 and 1, with {a,b}' = {b'a'} and
G={0,0}, 1={1,1}, {ab}+{c.d} = {atcb+d}, 1={0,1}, }={1,0}. This is the
DeMorgan algebra mentioned in Remark 1 of section 2.
Thematically, asking for IJ=1 is to ask that the "waveforms" I and J
interfere destructively. That the solutions to this go beyond a
Boolean context is not surprising. That they are intimately involved
in topology is remarkable,

The Topological Deformation of Logic.

Finally, we must remark that having allowed GG=0G for G an
analogue of a dominant Boolean value, it is now a small step to try
GG=dG for d an arbitrary (possibly non-zero) constant. We try our
(waveform) philosophy again: I=aG+b, J=bG+a.

We want the equation IJ=1.

Then 1 = (aG+b)(bG + a) = abGG + a2G + b2G + ab = (abd+a2+b2)G + ab.
Thus b=a-! and d = -a2 - a2, Thus we arrive at the topological
conditions for the bracket polynomial transposed into a quasi-
Boolean domain. (The specific properties of tangle fraction addition
are special to the value d=0.) The resulting logic is deformed with
deformation parameter a. Its idempotencey law carries a
remembrance of multiplicities in the the powers of d=-a2 -a-2,
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XI. Logic and Circuit Design - Knot Automata

In using the interlock algebra, one regards the link diagram as a
circuit whose parts (the arcs in the diagram) are both carriers of
circuit values and operators that process these values. This duality is
the core of the interrelationship  with topology. In actval
applications of digital circuitry, there is usually a sharp distinction
between circuit elements as operators and circuit elements as
carriers of signals. One exception to this is the phenomena of
inductance and capacitance where the time dependent values in
components of the circuit affect the way these components process
the values. The close analogy of combinatorial knot theory with a
combinatorial theory of digital circuits is worth pursuing even in the
absence of inductance and capacitance. The purpose of this section is
to outline such a theory of digital circuits for future reference and
comparison with the knot theory.

In this section we consider a class of automata that are direct
abstractions of digital circuitry. A real digital circuit instantiates
this structure into hardware.  The circuits that are described in this
section are a well defined class of abstract automata. They are rich
enough to build real computers, hence rich enough to construct
universal Turing machines.

The basic digital element is an inverter, diagrammed as shown
below.

P ')6/:: <L
1

Here we use two valued logic with values 0 and 1. We take 0'=1
and 1'=0, 00=0, 01=10=0, 11=1. This operation of juxtaposition
{(a,b --—- > ab) can be interpreted as logical "or" for the
interpretation of 0 as the value True. With more than one input
the inverter becomes a NOR gate: abyc,.. —-- > (abc...).

Notation: Let <abc..> denote (abc..)".
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In this convention, the value 0 is dominant among inputs to the NOR
gate, since 01=0.

In a circuit diagram, a state is a coloring of the arcs that start from
one inverter's output and terminate at another inverter's input. The
colors are chosen from the set {0,1}. All arcs emanating from a
given inverter are colored identically in a given state. (In this
model an inverter has only one output value in any given state.)

As a consequence of this stipulation we can write a single equation
that describes the action of a given inverter in the circuit. Let z
denote the label for the outgoing lines of the inverter. Let ab,c,...
denote the labels of its ingoing lines. Then z=(abc...)'=<abc...> (see
the notational remark above) is the equation describing the action of
the inverter. In a given state these equations may not be satisfied at
some places in the circuit,

A state is said to be balanced if the equation z= <abc...> is satisfied
at every inverter in the diagram. Here z=<abc...> denotes the
equation that defines the operation of the given inverter. Thus in
the circuit below the balanced states are choices of values for a and b
such that b=<a> and a=<b>.

This circuit has exactly two balanced states: a=0,b=1 and a=1b=0.

If S is an unbalanced state of a circuit C, then there will be one or
more equations of the form z = <abc..> that are not satisfied by the
coloring. A transition consists in reassigning the value of z for the
outgoing arcs z of one inverter at which there is an imbalance.
The new state achieved by the transition may or may not itself be
balanced.
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Examplel. In the circuit below there are two possible transitions:
a=lb=1 --—-- > a=]b=0 and a=lb=1 - > a=0,b=1. The states that
result from this transition are both balanced. Call this circuit a
memory. It has the equations a=<b>, b=<a>.

@;AQ
oy P >%

Example2. In the circuit below there is one possible transition
a=1l ---- > a=0, but the resulting state is not balanced, and its
transition a=0 ----- > a=1 returns the circuit to its original state.
This circuit has the equation z=<z>, for which there are no Boolean
solutions.

= = <Z>

The circuit z=<z> embodies the Liar paradox. If z = 0 then z=1. If
z=1, then z=0. Its behaviour is an oscillation between 0 and 1.

Circuit action  consists in a sequence of transitions from an
(unbalanced) state of a given circuit. The action terminates when a
balanced state is reached.

We are interested in designing circuits with given behaviours. The
behaviour of a circuit consists in an appropriate summary of its
circuit action - what balanced states it can achieve from a given set
of unbalanced states that are relevant to the design problem. In this
regard it is useful to say that a circuit action is determinate if it has
only one possible end state independent of the possible sequences of
transitions that may lead to this end state. Thus we can ask of a
given unbalanced state whether the resulting circuit action is
determinate. In the first example above the action is not
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determinate. In the second example the action is determinate, but
the set of possible balanced end-states is empty.

Example 3. This example, a modified memory, has equations
a=<bc>b=<a>, c=<b>. Its only balanced state is a=l, b=0,c=1.

If placed in any other state it transits to this balanced state. A
sample transition is indicated below. This automaton is the abstract
version of a machine that acts to turn itself off whenever it is turned

on.
C

(78

Example 4. Here is a memory circuit with inputs a and b to the two
sides of the memory, labelled ¢ and d. (An input is a lead that
enters an inverter, but does not originate from an inverter in the
given graph. An output is a lead that emanates from an inverter,
but does not terminate at another inverter.) If we set a=0, b=l, c=l,
d=1 then the circuit has a determinate transition to the end state
a=0, b=1, ¢=0, c=1.

Note that input values do not change during a transition.

Example 5. The equations for this automaton, M, are
=<hiz>
b=<ajz>
¢=<bd>
d=<ac>
i=<ad>
j=<bc>,
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Here we regard z as an input to the system. For each value of z
there are two balanced states of M. If z=0, then V = (abc,di,j) =A
or C 'where A= (1,1,0,1,0,1) and C= (1,1,1,0, 1,0). If z=1, then
V=B or D where and B=(1,0,1,0,1,1) and D=(0,1, 0,1, 1,1). One
can then verify that for a given value of z and balanced state S, the
transition that ensues upon changing z (from 0 to 1 or from 1 to zero)
is determinate. The result is that the sequence of values
2=0,1,0,1,0,1,... results in the the sequence of states AB,C.DABCD, ..
(Assuming that we start with z=0 in state A.).

As a model for action we assume that each change in z is held fixed
long enough for the automaton to accomplish its transition to the
next state. In terms of applications this means that the model
assumes delays associated with each inverter. There are no delays
associated with the connecting lines in the graph. This method of
distributing the delays is a mathematical abstraction, but it is
sufficiently realistic so that these circuits can actually work at the
hardware level. In any given instantiation the delays are given up
to the variation in the components. If the automaton is
mathematically determinate (as in this example), then it will behave
in the same way for any choice of actual delays- so long as the input
varies more slowly than the time needed for internal balancing.

The circuit in this example converts an input oscillation z: 010101...
to internal oscillations of twice the period. For example we have in
the above state sequence d:100110011001100.... By taking d as an
output, we therefore obtain a black box B with input line z and
output line d  with this behaviour. This is exactly the behaviour
needed to make circuits that count in binary. A series connection of
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n such black boxes produces an automaton that cycles through 2n+1
distinct states as the the input z oscillates between 0 and 1.

Discussion.

Note the basic behaviour of our black box B. If z changes from 0 to
1 then the output d changes its value. If z changes from 1 to 0, then
the output d does not change its value. Call a determinate automaton
with this behaviour (or the corresponding behaviour with O and 1
interchanged, and also the possibility of starting with z and d the
same value) a reductor.

Note that the number of leads in the automaton M can be read from
its equations by making a chart of the inverters (labelled a,b,c,d,i,j)
to which each inverter or input is connected. For our automaton M
this chart takes the form

z:ab

a:bhdi

b:acj

c:dj

d:ci

i:a

b

Here each line in the chart is of the form

R: : st of inverters to which R is connected.
where R is either an inverter or an input (z). The number of leads
(14) is the number of letters occurring after the colons in this chart.

Thus we have a notion of the complexity of a reductor in terms of the
number of inverters and the number of leads. We shall say that M is
of type (6,14), meaning that it has 6 inverters and 14 leads. Until
recently I had thought that this design, which I discovered in 1978,
was the reductor of minimal complexity. However, G. Spencer-
Brown informed me in the Fall of 1992 that he has found a reductor
of type (6,13) [SB-92]. It may be that (6,13) is the true minimum
for this design. 1 conjecture this to be the case.

A more general conjecture is the following.

Conjecture: It is not possible to make a determinate
(asynchronous) reductor with less than six inverters.
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In this last conjecture, you are allowed to use as many leads as you
please, but are requested to minimize the number of inverters.

The designs in common use such as the asynchronous JK flip flop [Gl]
tend to use more inverters (NOR gates or NAND gates) and more
leads. The least number of inverters in a published flip flop design
that I have encountered is nine. Nevertheless, it is the case that
smaller working designs such as the reductor M are available, and
could be used to save the number of transistors in the central
processing units of digital computers by a factor of (2/3).

The most straightforward case for comparing the modes of thinking
about circuit automata presented in this section with the knots
discussed in the rest of the essay is to juxtapose the quandle
description of a knot with the equational description of a circuit.
Each structure is determined by a set of local equations that
describes it interconnectedness and graphical structure. In the case
of the topology of knots and links we have regarded the quandle
equations as defining a possible coloring of the arcs in the knot
diagram. This coloring is the analogue of a balanced state in a circuit
automaton. In the topology we wanted to know that by perturbing
the structure of the knot by a topological transformation
(Reidemeister move) there was a natural balanced state for the new
version of the knot corresponding to each balanced state of the old
version. This led to an analysis of a very simple class of state
transitions for the knot diagrams. In the circuit automata we do not
change the structure of the network, but we do allow a great
complexity of state transitions.

Knot Automata

Consider a class of circuit automata that are based on the theory of
knots and links in three dimensional space. The basic circuit element
for these automata has an equation of the form z = xRy or z=xLy
with box depictions as shown below. Note the orientations on the
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Here R and L denote the two types of operations, depending upon left
and right orientations in the plane. The circuit box for z=xRy is a
box with inputs y and x and outputs y and z. The box is regarded as
passing without processing it, the value of y, while it transforms x to
z=xRy by some, as yet unspecified, rule. In this way, the action of
the box is dependent upon the y value, but its action does not affect
this value. It is part of the rules of the game, that the circuit

diagram for such an automaton must be drawn in the plane, and that
it must satisfy the following diagrammatic exchanges without
affecting the balanced states of the automaton.

AN
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R < —R 3
R > Ri—?
Cand similerly Sor )
This means that if a given automaton has a balanced state, then all
the automata obtained from it by transformations as shown will also
have balanced states. By examining properties of the states of two
given automata it is often possible to show that there is no sequence

of transformations from one of them to the other due to differences
in particularities of the states.

These structures have a topological interpretation because it is
possible to associate a diagram for a knot or a link to each
automaton, as shown below.
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In this way the transformations that we have indicated become
topological transformations of the diagrams, and these three types of
transformation are known to generate all possible topological
transformations of knots and links in three dimensional space (See
the discussion of the Reidemeister moves in section 3.).

Returning to the automata, the three moves translate into the
demands

l.aRa=a, ala=a

2. (aRb)Lb = a, (aLb)Rb = a
3. (aRb)Rc= (aRc)R(bRc), (aLb)Lc= (alc)L(bLc)
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The second and the third are the most significant demands, asking
that the operations R and L are invertible and inverses of each other
for any b, wad that the operations R and L are self-distributive.

The resuiting algebraic structure is a quandle (See [J1,[BRL[DH].)

For our purposes, the simplest example of a quandle is the structure
aRb=aLb = 2b-a where a and b are elements of an additive abelian
group. Thus the knottedness of the trefoil can be seen to be a
consequence of using a three valued logic in the signals of an
automaton associated with the diagram of the knot.

It remains to be seen how the transition behaviour of these automata
is related to the topology.

XI11. Pregeometry
John Wheeler coined the term pregeometry in relation to foundations
of physics.

" Among all the principles that one can name out of the world of
science, it is difficult to think of one more compelling than simplicity;
and among all the simplicities of dynamics and life and movement
none is starker than the binary choice yes-no or true-false. It in no
way proves that this choice for a starting principle is correct, but at
least it gives one some comfort in the choice that Pauli's

"nonclassical two-valuedness or "spin" so dominates the world of
particle physics.”

"It is one thing to have a start, a tentative construction of
pregeometry: but how does one go on? ... One suddenly realizes
that a machinery for the combination of  yes-no or true-false
eclements does not hove to be invented. It already exists. What else
can pregeometry be, one asks oneself, than the calculus of
propositions™  ( [MTW} pp. 1208-1209.)

The diagrammatics of knots and links forms a natural domain for
such a pre-geometric calculus of propositions . Links and their
diagrams encode three dimensional manifolds. In this form a link is
precisely a pregeometry. It is a distillation of the topological
structure of a three dimensional manifold.
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Knots and links form a calculus that is inherently self-referential and
mutual. It is a pregeometry whose networks describe spaces and
contain instructions for building these spaces. The knot and link
diagrams are an intermediary domain between the realm of logical
form and the geometry and topology of the perceived world.

In order to begin to understand how the diagrammatic languages for
knots and links can be interpreted as pre-geometry, we must stand
before these pictures with a new mind. These pictures, so redolent
of images from familiar 3-dimensional space, are actually of another
character entircly. They are traces of elementary action - the stroke
of a hand, the movement of a brush. They are beginnings that fall
back into void. They cohere through rules we provided for them,
and fall apart when we change these rules. They are a mirror of
language. They are the basis of language. In the multiplicity of
mathematical interpretations for these diagrams, we have traversed
wide territory. Yet there are other realms prior to geometry, prior to
logic, more akin to the emotions and the brush stroke of the artist.
These too are in the diagrams, and the world is every bit as much
constructed from such ground as the ground of reason. It is
necessary to start again and begin to draw a line ...

_—

Pregeometry arose in the beginnings of things. In these beginnings,
structures are unified because the distinctions that we use to tell
them apart are not present. There seem to be hints of greater
unifications at these points of beginning. It is here that one can start
over again. In this sense, all the movements from nothing- from
scientific descriptions of the creation of the universe to a writer's
gropings before a blank sheet of paper- are all parts of the domain of
pregeometry.

In this essay knots have been a touchstone in reconstructing logical
ideas in a fusion with topology, recursion and quantum mechanics.
Our attitude towards knots as pregeometry has been that of the
mathematician standing before a clean blackboard and finding out
what wants to be constructed. The idea of pregeometry arose in
locking for a unification of gravity and relativity. Can knots be
useful in that quest? Remarkably, there is a strong case for just that
in the Ashtekar-Smolin-Rovelli theory of quantum gravity

— 12, -



[Ash92),[ASH],[PUL},[SM],[SM88]. In that theory, knots take a
fundamental role through the topology and geometry of the loop
transform.

Quaptum Gravity - The Loop Transform

We now discuss briefly the relationship of the Wilson loop <KI|A>
and quantum gravity as forged in the theory of Ashtekar, Rovelli and
Smolin. In this theory the metric is expressed in terms of a spin
connection A, and quantization involves considering wavefunctions
¥(A). Smolin and Rovelli analyze the loop transform

YA(K) = fdA W(A) <K|A> where <K|A> denotes the Wilson loop for
the knot or singular embedding K. Differential operators on the
wavefunction can be referred, via integration by parts, to
corresponding statements about the Wilson loop. It turns out that
the condition that WA(K) be a knot invariant is equivalent to the
so-called diffeomorphism constraint for these wave functions. In
this way, knots and weaves and their topological invariants become
a language for representing the states of quantum gravity. This
effects a transformation between field theoretic and differential
geometric formulations of gravity with formulations based upon
functionals on loops in three dimensional space.

The key to this transition from classical gravity to quantum gravity
is the movement to functions on arbitrary loops in space. In the
classical mode, the Wilson loop around a very tiny loop about a point
measures the curvature of the gauge field at that point. In this
theory the Wilson loop around arbitrary loops contains extra
information that is quantum mechanical.  The constraints on the
quantum theory demand that the loop functionals be topological
invariants. This means that the question of size of a loop must
disappear. This quantum theory does not discriminate between the
macroscopic and the microscopic. In fact, it regards the entire three
dimensional spatial universe as the analogue of a single particle.

Size returns in the form of a mesh of measurements by loop or
weave that fills the space. For a given classical metric there is an
optimal weave ([ASH92], [SM88]) whose loops best approximate this
metric. This means that the metrics on the space can be replaced (up
to approximation) by weaves that fill the space. In this sense this
theory takes to heart the old metaphors associated with the "fabric of
spacetime”.
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Insertion, Lambda Calculus and Pregeometry

The Wilson line is the limit, over partitions of the loop K, of
products of the matrices (1 + A(x)) where x runs over the partition.
Thus one can write symbolically,

<KJA> = TxeK(l +A(X) = TxeK(l + A3k(x)TadxK).

It is understood that a product of matrices around a closed loop
connotes the trace of the product. The ordering is forced by the one
dimensional nature of the loop. Insertion of a given matrix into this
product at a point on the loop is then a well-defined concept. If T
is a given matrix then it is understood that <K]A>T denotes the
insertion of T into some point of the loop.

From the point of view of the discussions in this paper of lambda
calculus in relation to knots, it is apparent that the Wilson line
provides the knot with the structure of a lambda operator . In fact,
within the confines of the conventions we have indicated for
insertion, the notation could be prolonged to write Axyz.<KjA> to
indicate that insertions were to be performed at the positions X, y
and z successively along the knot.

Our remarks imply the following formula for the variation of the
Wilson loop with respect to the gauge field:

3<K|A>IB(ABK(x)) = Ax.<KJA>TadxK.

Varying the Wilson loop with respect to the gauge field results in
the insertion of an infinitesimal Lie algebra element into the loop.

Proof.
5<K|A>IB(A%k(x))

= bTyeK(l + Afk(y)TadyK)is(A3k(x))

= [My<x(1+A8k(y)Tady¥)] [TadxK][Ty>x(1+A2k(y)Tady¥)]
= ax.<K|A>TadxK., QED.

In practice, one tends to use this operator structure informaily, with
points of insertion indicated by the context. Nevertheless the
lambda structure is crucial to the use of the loop transform.
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For example we now work out the transform of the operator
A=315(A3k(x)):

APNMK) = J‘dA (A¥(A)) <K|A>

_fdA GY(A)B(AK(X) <K|A>

H

fl

- fdA W(A) (3<K]A>I3(AK(x))
(integration by parts)

(AW (K) = -IdA Y(A) Ax.<KlA>Tadxk.

This example shows clearly how the loop transform takes differential
operators on the wave functions W(A) and translates them into
operations on Wilson loops that can be expressed in terms of this
version of lambda calculus.

The knots form an underlying calculus of propositions for the the
states in the Ashtekar-Smolin-Rovelli theory of quantum gravity.
They are indeed a calculus of propositions forming pregeometry.

Coda on Reentry.

Having pointed to knots and links as a form of pregeometry, it is
necessary to ask whether this is too restrictive a point of view. It
may be more appropriate to say that the domain of recursive forms
and self-reference is the actual resting place of pregeometry, and
that knots are a special case of this phenomena that interrelate
directly with the structure of three dimensional space. In order to
leave the reader with an example to ponder for this question, here is
a sequence of reentry forms that we shall label S¢, S1, S2, S3, ... .

Y J®,@>
S0 S4 S
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It is easy to see that the number of divisions of Sp at depfh k,
denoted Spk is given by the formula Sp+1k+1 = Snk * Snk-1.
From this it follows that Spk+1 is the number of divisions of
Euclidean n-space by k hyperplanes in general position. The forms
Sn are the representatives of the pregeometry of the Euclidean
spaces. In particular, a point (dimension zero) is represented by an
elementary self-reference.

By the same token, every knot is a labelling of the Fibonacci tree
[K2, Chapter 6] represented by the reentry shown below.
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Deeper understanding of space, topology, geometry and physics is
hidden in the properties of these recursive forms.
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Appendix: The Bracket Polynomial

This appendix describes the construction and basic properties of the
bracket polynomial [K3],[K4],[K6]. We have referred to the bracket in a
number of places in this essay. The bracket polynomial is probably the
simplest entry point into the study of invariants of knots and links. This
invariant provides a model for the original Jones polynomial. The bracket
formulation is related to models in statistical mechanics and to the
Temperley Lieb algebra.

The idea is to first set up a well-defined recursive polynomial calculation
on unoriented link diagrams. The calculation wiil depend upon three
polynomial variables and we then investigate what specialization of these
variables can yield invariance under the Reidemeister moves.

The recursion is based on the following idea: Given a link diagram and a
crossing in that diagram, there are two ways to smooth the crossing to
eliminate the crossing. See the diagram below.

>< B
/ \,\ g\»

Sce & &

We take the defining equation for the bracket calculation to be
<X> = A<~ > +B<DC>

where the small diagrams indicate parts of larger diagrams that are
identical except at the site of the crossing and its two smoothings.

Here A and B are commuting algebraic variables. Repeated performance
of this calculation eventually eliminates all the crossings and demands an
evaluation of collections of disjoint simple closed curves in the plane. We
take the evaluation of such a collection S to be diiSIl where d is a new
algebraic variable commuting with A and B and |{S|| is one less than the
number of simple closed curves in the collection S. We can summarize this
rule by the equations < O K> = d<K>, and <O> = 1. The first equation states
that an extra curve in the link diagram multiplies the bracket by d. The
second states that a single curve receives the evaluation of 1.
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Thus we have the bracket defined by the axioms
< DC> = A<= > +B<DC>
<QK>=d<K>
<O>=1.

It is easy to see that this gives a well-defined 3-variable polynomial
associated to any unoriented link diagram. One way to think about

this calculation is to view it as a sum over “states” where a state S is a
configuration of simple closed curves in the plane that is obtained from a
given diagram K by replacing each of its crossings by one of the two
smoothings decorated either by A or by B as shown below:

We define the A’s and B’s that decorate a state to be the verrex
weights of that state, and take <K|S> to be the product of the vertex
weights for the state S. We take {IS|| as defined above.

Then the bracket evaluation of K is given by the formula
<K>= ZS <KjS>d||S||,

It is the summation of the product of the vertex weights times the loop
evaluation over all the states of the diagram S.

This form of bracket evaluation is in direct analogy to formulas for
partition functions in statistical mechanics. In fact for planar graphs, the
bracket can be used to directly evaluate the partition function for the Potts
model [K4] and also to evaluate chromatic polynomials for planar graphs.
See [JO] and {K6] for more about the relationship of knot theory and
statistical mechanics.
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Returning to the topology, we see at once that

-~
Lemma. <E_____ > = AB< D> + (ABd +A2 +B2)< -

Proof.
/
=T -B

/_JB\
g

ol Bg
A
W 2,

Hence we can achieve the invariance

3--DC

by taking B=A-1 and d = -A2 - A2, A miracle happens, and we are
granted invariance under the triangle move with no extra restrictions:

<///\/¢> = A<”>’<‘"’> +A_l<")ﬂ(“"’>
= A <\>,</‘> +A ‘<‘>"(/> = <\/\//‘ >

Call this invariant the bracket polynomial [K3].

Note that the bracket polynomial is not invariant under the first
Reidemeister move. It should be regarded as an invariant of framed links,
whose framing is expressed in the plane. We have the formulas
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This allows normalization of the bracket by multiplication by a power of
(-A3). Up to this normalization, the bracket gives a model for the
original Jones polynomial [JO]. The Jones polynomial is denoted VK(t).
The precise relationship with the bracket is [K3] that

VK@) = fK(t-1/4) where fK(A) = (-A3)-W(K)<K>(A) where w(K) is the
sum of the crossing signs of the oriented link K, and <K> is the bracket
polynomial obtained by ignoring the oriemtation of K.

For braids, the bracket polynomial provides a representation, p, of the
Artin braid group into the Temperley Lieb algebra with loop value
d = -A2 -A-2,

p(oi) = AU; + A-l

p(oi-1) = A-1U; + A

The reader unfamiliar with this bracketology should compute the bracket
polynomial for the trefoil knot and use this result to prove that the trefoil
is topologically distinct from its mirror image. The mentions of the bracket
polynomial in the body of the essay occur in sections 9 and 10. The
Temperley Lieb algebra is introduced in section 2, remark 3. The
representation of the Temperley Lieb algebra to the Artin Braid group is
discussed at the end of section 7.
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