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Preface

This essay constitutes a gentle introduction to the theory of knots as it has
been influenced by developments concurrent with the discovery of the Jones
polynomial in 1984 and the subsequent explosion of research that followed this
singluar event in the mathematics of the twentieth century.

I hope to give the flavour of these extraordinary events in this exposition.
Even the act of tying a shoelace can become an adventure. The familiar world
of string, rope and the third dimension becomes an inexhaustible source of ideas
and phenomena.

As indicated by the table of contents, Sections 2 and 3 constitute a start
on the subject of knots. Later sections introduce more technical topics. The
theme of a relationship of knots with physics begins already with the Jones
polynomial and the bracket model for the Jones polynomial as discussed in
Section 5. Sections 6 and 7 provide an introduction to Vassiliev invariants and
the remarkable relationship between Lie algebras and knot theory. The idea for
the bracket model and its generalizations is to regard the knot itself as a discrete
physical system - obtaining information about its topology by averaging over
the states of the system. In the case of the bracket model this summation is
finite and purely combinatorial. Transpositions of this idea occur throughout,
involving ideas from quantum mechanics (Sections 8 and 9 ) and quantum field
theory (Section 10 ). In this way knots have become a testing ground not only
for topological ideas but also for the methods of modern theoretical physics.

This essay concentrates on the construction of invariants of knots and the
relationships of these invariants to other mathematics (such as Lie algebras)
and to physical ideas (quantum mechanics and quantum field theory). There
is also a rich vein of knot theory that considers a knot as a physical object in
three dimensional space. Then one can put electrical charge on the knot and
watch (in a computer) the knot repel itself to form beautiful shapes in three
dimensions. Or one can think of the knot as made of thick rope and ask for
an “ideal” form of the knot with minimal length to diameter ratio. There are
many aspects to this idea of physical knots. I wish that there had been space in
this essay to cover these matters. The developments described in this paper end
with Vassiliev invariants and relationships with quantum field theory. We do
not discuss here relationships with string theory, Link Homology, Virtual Knot
Theory and many developments of the last fifteen years. These are described
by many others and by the author in other papers.

It gives me great pleasure to thank Vaughan Jones, Ed Witten, Nicolai
Reshetikhin, Mario Rasetti, Sostenes Lins, Massimo Ferri,Lee Smolin,Louis
Crane,David Yetter, Ray Lickorish, DeWitt Sumners,Hugh Morton, Joan Bir-
man, John Conway, John Simon and Dennis Roseman for many conversations
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related to the topics of this paper. It gives the author great pleasure to thank
Sujoy Mukherjee for his excellent help in preparing the first LaTeX draft of
this paper from its earlier incarnation as a set of notes in MS Word. This re-
search was partially supported by the National Science Foundation Grant DMS
-2528707.
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1 Knot Tying And The Reidemeister Moves

For this section it is recommended that the reader obtain a length of soft rope
for the sake of direct experimentation.
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Figure 1: The Bowline

Let us begin by making some knots. In particular, we shall take a look at the
bowline, a most useful knot. The bowline is widely used by persons who need
to tie a horse to a post or their boat to a dock. It is easy and quick to make,
holds exceedingly well and can be undone in a jiffy. Figure 1 gives instructions
for making the bowline.

In showing the bowline we have drawn it loosely. To use it, grab the lower
loop and pull it tight by the upper line shown in the drawing. You will find that
it tightens while maintaining the given size of the loop. Nevertheless, the knot
is easily undone, as some experimentation will show.

The utility of a schema for drawing a knot is that the schema does not have to
indicate all the physical properties of the knot. It is sufficient that the schema
should contain the information needed to build the knot. Here is a remarkable
use of language. The language of the diagrams for knots implicitly contains all
their topological and physical properties, but this information may not be easily
available unless the “word is made flesh” in the sense of actually building the
knot from rope or cord.

Our aim is to get topological information about knots from their diagrams.
Topological information is information about a knot that does not depend upon
the material from which it is made and is not changed by stretching or bending
that material so long as it is not torn in the process. We do not want the knot
to disappear in the course of such a stretching process by slipping over one of
the ends of the rope. The knot theorist’s usual convention for preventing this
is to assume that the knot is formed in a closed loop of string. The trefoil knot
shown in Figure 2 is an example of such a closed knotted loop.
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Figure 2: The Trefoil As A Closed Loop

A knot presented in closed loop form is a robust object, capable of being
pushed and twisted into many topologically equivalent forms. For example, the
knot shown in Figure 3 is topologically equivalent to the trefoil shown in Figure
2.

The existence of innumerable versions of a given knot or link gives rise to a
mathematical problem. To state that a loop is knotted is to state that nowhere
among the infinity of forms that it can take do we find an unknotted loop. Two
loops are said to be (topologically) equivalent if it is possible to deform one
smoothly into the other so that all the intermediate stages are loops without
self intersections. In this sense a loop is knotted if it is not equivalent to a
simple flat loop in the plane.

The key result that makes it possible to begin a (combinatorial) theory of
knots is the Theorem of Reidemeister [71] that states that two diagrams repre-
sent equivalent loops if and only if one diagram can be obtained from the other
by a finite sequence of special deformations called the Reidemeister moves.
I shall illustrate these moves in a moment. The upshot of Reidemeister’s Theo-
rem is that the topological problems about knots can all be formulated in terms
of knot diagrams.

There is a famous philosophy of mathematics called “formalism”, in which
mathematics is considered to be a game played with symbols according to spe-
cific rules. Knot theory, done with diagrams, illustrates the formalist idea very
well. In the formalist point of view a specific mathematical game (formal sys-
tem) can itself be an object of study for the mathematician. Each particular
game may act as a coordinate system, illuminating key aspects of the subject.
One can think about knots through the model of the diagrams. Other models
(such as regarding the knots as specific kinds of embeddings in three dimen-
sional space) are equally useful in other contexts. As we shall see, the diagrams
are amazingly useful, allowing us to pivot from knots to other ideas and fields
and then back to topology again.
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Figure 3: Deformed Trefoil

The Reidemeister moves are illustrated in Figure 4. The moves shown in
Figure 4 are intended to indicate changes that are made in a larger diagram.
These changes modify the diagram only locally as shown in the Figure. Figure
5 shows a sequence of Reidemeister moves from one diagram for a trefoil knot
to another. In this illustration we have performed two instances of the second
Reidemeister move in the first step, a combination of the second move and the
third move in the second step and we have used “move zero” (a topological
rearrangement that does not change any of the crossing patterns) in the last
step. Move zero is as important as the other Reidemeister moves, but since
it does not change any essential diagrammatic relationships it is left in the
background of the discussion.

Knots As Analog Computers

We end this section with one more illustration. This time we take the bowline
and close it into a loop. A deformation then reveals that the closed loop form
of the bowline is topologically equivalent to two trefoils clasping one another,
as shown in Figure 6.

This deformation was discovered by making a bowline in a length of rope,
closing it into a loop and fooling about with the rope until the nice pair of
clasped trefoils appeared. Note that there is more than one way to close the
bowline into a loop. Figure 6 illustrates one choice. After discovering them, it
took some time to find a clear pictorial pathway from the closed loop bowline
to the clasped trefoils. The pictorial pathway shown in Figure 6 can be easily
expanded to a full sequence of Reidemeister moves. In this way the model of
the the knot in real rope is an analog computer that can help to find sequences
of deformations that would otherwise be overlooked.
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Figure 4: Reidemeister Moves

It is a curious reversal of roles that the original physical object of study
becomes a computational aid for getting insight into the mathematics. Of course
this is really a two way street. The very close fit between the mathematical
model for knots and the topological properties of actual knotted rope is the key
ingredient.

Knots are analogous to integers. Just as we believe that objects follow the
laws of arithmetic, we believe that the topological properties of knotted rope
follow the laws of knot topology.

2 Invariants Of Knots And Links- A First Pass

We want to be able to calculate numbers (or bits of algebra such as polynomials)
from given link diagrams in such a way that these numbers do not change when
the diagrams are changed by Reidemeister moves.

Numbers or polynomials of this kind are called invariants of the knot or
link represented by the diagram. If we produce such invariants, then we are
finding topological information about the knot or link. The easiest example
of such an invariant is the linking number of two curves, which measures how
many times one curve winds around another. In order to calculate the linking
number we orient the curves. This means that each curve is equipped with a
directional arrow, and we keep track of the direction of the arrow when the curve
is deformed by the Reidemeister moves. If the curves A and B are represented
by an oriented link diagram with two components, attach a sign (+1 or -1) to
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Figure 5: Equivalence Of Two Diagrams Of The Trefoil Knot Under
Reidemeister Moves

each crossing as in Figure 7. Then the linking number, Lk(A,B), is the sum of
these signs over all the crossings of A with B.

Of course, two singly linked rings receive linking number equal to +1 or −1
as shown in Figure 8.

It can be shown that the linking number is invariant under the Reidemeister
moves. That is, if we take a given diagram D (representing the curves A and B)
and change it to a new diagram E by applying one of the Reidemeister moves,
then the linking number calculation for D will be the same as the calculation
for E.

The calculation is unaffected by the first Reidemeister move because self-
crossings of a single curve do not figure in the calculation of the linking number.
The second Reidemeister move either creates or destroys two crossings of op-
posite sign, and the third move rearranges a configuration of crossing without
changing their signs.

With these observations we have in fact proved that the singly linked rings
are indeed linked! There is no possible sequence of Reidemeister moves from
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Figure 6: Closing The Bowline To Form A Knot And Showing A Picto-
rial Pathway From The Closed Loop Bowline To The Clasped Trefoils

these rings to two separated rings because the linking number of separated rings
is equal to zero, not to plus or minus one.

It may seem a minor accomplishment to prove something as obvious as the
inseparability of this simple configuration, but it is the first step in the successful
application of algebraic topology to the study of knots and links. The linking
number has a long and interesting history, and there are a number of ways to
define it, many considerably more complicated than the sum of diagrammatic
signs. We shall discuss some of these alternative definitions at the end of this
section.

One of the most fascinating aspects of the linking number is its limitations
as an invariant. Figure 9 shows the Whitehead link, a link of two components
with linking number equal to zero. The Whitehead link is indeed linked, but it
requires methods more powerful than the linking number to demonstrate this
fact.
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Figure 7: Crossing Signs

Figure 8: Two Singly Linked Rings Receive Linking Number Equal To
+1 Or −1

Another example of this sort is the Borromean (or Ballantine) rings as shown
in Figure 10. These three rings are topologically inseparable, but if any one of
them is ignored, then the other two are not linked.

Just in case these last few examples leave you pessimistic about the prospects
of the linking number, here is a positive application. We shall use the linking
number to show that the Mobius strip is not topologically equivalent to its
mirror image. The Mobius strip is a circular band with a half twist in it as
illustrated in Figure 11. The Mobius is a justly famous example of a surface
with only one side and one edge. An observer walking along the surface goes
through the half-twist and arrives back where she started only to discover that
she is on the other local side of the band! It requires another trip around the
band to return to the original local side. As a result there is only one side to the
surface in the global sense. It is as though the opposite side of the world were
infinitesimally close to us by drilling into the ground, but a full circumnavigation
of the globe away by external travel.
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Figure 9: The Whitehead Link

To make matters even more surprising, there are actually two Mobius bands
depending on the sense of the half twist. Call them M and M* as illustrated in
Figure 11.

If you make these two Mobius bands from strips of paper and try to deform
one into the other without tearing the paper, you will fail (Try it!).

How can we understand the topological nature of the handedness of the Mo-
bius band M? Draw a curve C down the center of the band M as shown in
Figure 11. Compare this curve with the space curve formed by the boundary of
the band. Orient these curves in parallel and compute the linking number. It is
+1. The very same calculation for the mirror image band M* yields the linking
number of -1.

If it were possible topologically to deform M to M* then the corresponding
links (formed by the core curve and the boundary curve of the band) would be
topologically equivalent, and hence they would have the same linking number.
Since this is not the case, we conclude that M cannot be deformed to M*.

We have shown that there are two topologically distinct Mobius bands. The
two bands are mirror images of one another in the sense that each looks like
the image of the other in a reflecting mirror. When an object is topologically
inequivalent to its mirror image, it is said to be chiral. We have demonstrated
the chirality of the Mobius band.
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Figure 10: The Borromean Rings

2.1 Three Coloring A Knot

There is a remarkable proof that the trefoil knot is knotted. This proof goes as
follows: Color the three arcs of the trefoil diagram with three distinct colors.
Let’s say these colors are red, blue and purple. Note that in the standard trefoil
diagram three distinct colors occur at each crossing. Now adopt the following
coloring rule:

1. Either three colors or exactly one color occur at any crossing in the colored
diagram.

2. Call a diagram colored if its arcs are colored and they satisfy this rule.
Note that the standard unknot diagram is colored by simply assigning one
color to its circle. A coloring does not necessarily have three colors on a
given diagram. Call a diagram 3-colored if it is colored and three colors
actually appear on the diagram.

Theorem 2.1. Every diagram that is obtained from the standard trefoil diagram
by Reidemeister moves can be 3- colored. Hence the trefoil diagram represents
a knot.

Proof. Rather than write a formal proof of this Theorem, we illustrate the
coloring process in Figures 13 and 14.

Each time a Reidemeister move is performed, it is possible to extend the
coloring from the original diagram to the diagram that is obtained from the
move. These extensions of colorings involve only local changes in the colorings
of the original diagrams. The best way to see that this proof works is to do a
few experiments yourself. The Figures 13 and 14 should get you started!
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Figure 11: Mobius And Mirror Mobius

Note that in the case of the second move performed in the simplifying direc-
tion, although a color is lost in the arc that disappears under the move, this
color must appear elsewhere in the diagram or else it is not possible for the two
arcs in the move to have different colors (since there is a path along the knot
from one local arc to the other). Thus 3-coloration is preserved under Reide-
meister moves, whether they make the diagram simpler or more complicated.
As a result, every diagram for the trefoil knot can be colored with three colors
according to our rules. This proves that the trefoil is knotted, since an unknot-
ted trefoil would have a simple circle among its diagrams, and the simple circle
can be colored with only one color.

2.2 The Quandle And The Determinant Of A Knot

There is a wide generalisation of this coloring argument. We shall replace the
colors by arbitrary labels for the arcs in the diagram and replace the coloring
rule by a method for combining these labels. It turns out that a good way
to articulate such a rule of combination is to make the label on one of the
undercrossing arcs at a crossing a product (in the sense of this new mode of
combination) of the labels of the other two arcs. In fact, we shall assume that
this product operation depends upon the orientation of the arcs as shown in
Figure 15.

In Figure 15, we show how a label a on an undercrossing arc combines with
a label b on an overcrossing arc to form c = a ∗ b or c = a#b depending upon
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Figure 12: The Three Colored Trefoil

Figure 13: Inheriting Coloring Under The Type-2 Move

whether the overcrossing arc is oriented to the left or to the right for an observer
facing the overcrossing line and standing on the arc labelled a.

This operation depends upon the orientation of the line labelled b so that a∗b
corresponds to b pointing to the right for an observer approaching the crossing
along a, and a#b corresponds to b pointing to the left for the same observer.
All of this is illustrated in Figure 15.

The binary operations ∗ and # are not necessarily associative. For example,
our original color assignments of R (red), B (blue) and P (purple) for the trefoil
knot correspond to products R∗R = R,B∗B = B,P ∗P = P,R∗B = P,B∗P =
R,P ∗R = B. Then R ∗ (B ∗ P ) = R ∗R = R while (R ∗B) ∗ P = P ∗ P = P.
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Figure 14: Coloring Under Type-2 And Type-3 Moves

Figure 15: The Quandle Operation

We shall insist that these operations satisfy a number of identities so that the
labelling is compatible with the Reidemeister moves.

In Figure 16, I have illustrated the diagrammatic justification for the following
algebraic rules about ∗ and #.

An algebraic system satisfying these rules is called a quandle [35].

1. a ∗ a = a and a#a = a for any label a.

2. (a ∗ b)#b = a and (a#b) ∗ b = a for any labels a and b.

3. (a ∗ b) ∗ c = (a ∗ c) ∗ (b ∗ c) and (a#b)#c = (a#c)#(b#c) for any labels
a,b,c.

These rules correspond, respectively to the Reidemeister moves 1,2 and 3.
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Labellings that obey these rules can be handled just like the 3-coloring that
we have already studied. In particular a given labelling of a knot diagram means
that it is possible to label (satisfying the rules given above for the labels) any
diagram that is related to it by a sequence of Reidemeister moves. However, not
all the labels will necessarily appear on every related diagram, and for a given
coloring scheme and a given knot, certain special restrictions can arise.

Figure 16: Quandle Identities

To illustrate this, consider the color rule for numbers: a ∗ b = a#b = 2b− a.

This satisfies the axioms as is easy to see. Figure 17 shows how, on the trefoil,
such a coloring must obey the equations a ∗ b = c, c ∗ a = b, b ∗ c = a. Hence
2b − a = c, 2a − c = b, 2c − b = a. For example, if a = 0 and b = 1, then
c = 2b− a = 2 and a = 2c− b = 4− 1 = 3. We need 3 = 0. Hence this system
of equations will be satisfied for appropriate labellings in Z/3Z, the integers
modulo three, a modular number system.

For the reader unfamiliar with the concept of modular number system, con-
sider a standard clock whose dial is labelled with the hours {1, 2, 3, ..., 11, 12.}
We ask what time is it 4 hours past the hour of 10? The answer is 2, and one
can say that in the arithmetic of this clock 10 + 4 = 2. In fact 12 = 0 in this
arithmetic because adding 12 hours to the time does not change the time indi-
cated on the clock. We work in clock arithmetic by remembering to set blocks
of 12 hours to zero. One can multiply in this arithmetic as well. The square of
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the present time is 1 o’clock, what time is it? The answer is 7 since 7 squared
is 49 and 49 is equal to 1 on the clock.

We say that the clock represents a modular number system Z/12Z with mod-
ulus 12. It is convenient in mathematics to think of the elements of Z/12Z as
the set 0,1,2,...,11. Since 0=12 this takes care of all the hours.

In general we can consider Z/nZ where n is any positive integer modulus.
The resulting modular number system has elements {0, 1, 2, · · · , n − 1} and is
handled just as though there were a clock with n hours rather than 12.

Figure 17: Equations For The Trefoil Knot

In such a system one says that x = y (mod n) if the difference between x and
y is divisible by n. For example 49 =1 (mod 12) since 49-1=48 is divisible by
12.

The modular number system, Z/3Z, reproduces exactly the three coloring of
the trefoil, and we see that the number 3 emerges as a characteristic of the
equations associated with the knot. In fact, 3 is the value of a determinant that
is associated with these equations, and its absolute value is an invariant of the
knot. For more about this construction, see [45], Part 1, Chapter 13.

Here is another example: For the figure eight knot E, we have that the mod-
ulus is 5. This shows that E is indeed knotted and that it is distinct from the
trefoil. We can color (label) the figure eight knot with five “colors”0, 1, 2, 3, 4
with the rules: a ∗ b = 2b− a(mod5). See Figure 18.

Note that in coloring the figure eight knot we have only used four out of the
five available “colors” from the set 0,1,2,3,4. Figure 18 uses the colors 0,1,2 and
4. In [54] we define the coloring number of a knot or link K to be the least
number of colors (greater than 1) needed to color it in the 2b − a fashion for
any diagram of K. It is a nice exercise to verify that the coloring number of the
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Figure 18: Five Colors For The Figure-8 Knot

figure eight knot is indeed four. In general the coloring number of knot or link
is not easy to determine. This is an example of a topological invariant that has
subtle combinatorial properties.

Other knots and links that we have mentioned in this section can be shown
to be knotted and linked by the modular method. The reader should try it for
the Borommean rings and the Whitehead link. In fact, one can reason, using
coloring, in a reverse fashion to prove that the Borommean rings are linked and
the Whitehead link is linked! Consider a link L of at least two components.
Suppose that L is equivalent by Reidemeister moves to an unlink U (of at least
two components). The unlink can be non-trivially colored with three colors (i.e.
in Z/3Z). Consider the sequence of Reidemeister moves in the opposite order
going from U to L. Then each intermediate diagram can inherit a 3-coloring
from the previous diagram, starting with the 3-coloring of U. Thus L can be 3-
colored, and this 3-coloring of L must be non-trivial, since the orginal sequence
of moves will make the unlink U inherit a non-trivial 3 coloring. Therefore, if
the link L cannot be 3-colored non-trivially, then L is linked. The reader should
verify that indeed neither the Borommean rings nor the Whithead link can be
non-trivially 3-colored. (There is nothing special about the number 3 in this
argument, but it is the simplest one to try.) This “reverse method” for showing
linkedness via non-colorability is due to Colin Adams [1].

The coloring (labelling) rules as we have formalised them can be described
as axioms for an algebra associated with the knot. This is called the quandle
[35]. It has been generalized to the crystal [45], the interlock algebra [50], and
the rack [22]. The quandle is itself a generalisation of the fundamental group of
the knot complement [16].
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2.3 The Alexander Polynomial

The modular labelling method has a marvellous generalisation to the Alexander
polynomial of the knot. This comes about through generalized coloring rules

a ∗ b = ta+ (1− t)b

and
a#b = t−1a+ (1− t−1)b,

where t is an indeterminate. It is a nice exercise to verify that these rules satisfy
the axioms for the quandle. This algebraic structure is called the Alexander
Module.

The case t = −1 gives the rule 2b − a that we have already considered. By
coloring diagrams with arbitrary t, we obtain a polynomial that generalizes the
modulus. This polynomial is the Alexander polynomial.
Alexander [AL] described it differently in his original paper, and there is a
remarkable history to the development of this invariant. See [16, 25, 14, 36, 37,
39] for more information. The flavor of this relationship can be seen by doing a
little experiment in labelling the trefoil diagram shown in Figure 19.

The circularity inherent in the knot diagram results in relations that must
be satisfied by the module action. In Figure 19 we see directly by labelling the
diagram that if arc 1 is labelled 0 and arc 2 is labelled a, then (t+(1−t)2)a = 0.
In fact, t+ (1− t)2 = t2 − t+ 1 is the Alexander polynomial of the trefoil knot.
The Alexander polynomial is an algebraic modulus for the knot.

Figure 19: Alexander Polynomial Of The Trefoil Knot
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3 The Jones Polynomial

Our next topic describes an invariant of knots and links of quite a different
character than the modulus or the Alexander polynomial of the knot. It is a
“polynomial” invariant of knots and links discovered by Vaughan Jones in 1984
[31]. Jones’ invariant, usually denoted VK(t), is a polynomial in the variable
t1/2 and its inverse t−1/2. One says that VK(t) is a Laurent polynomial in t1/2.
Superficially, the Jones polynomial appears to be just another polynomial invari-
ant of knots and links, somewhat similar to the Alexander polynomial. When
I say that the Jones polynomial is of a different character, I mean something
deeper, and it will take a little while to explain this difference. A little history
will help.

The Alexander polynomial was discovered in the 1920’s and until 1984 no
one had found another polynomial invariant of knots and links that was not a
simple generalizaton of the Alexander polynomial. Vaughan Jones discovered
a new polynomial invariant of knots and links that had some very remarkable
properties.

The Alexander polynomial cannot detect the difference between any knot and
its mirror image. What made the Jones polynomial such an exciting discovery
for knot theorists was the fact that it could detect the difference between many
knots and their mirror images. Later other properties began to emerge. It
became a key tool in proving properties of alternating links (and generalizations)
that had been conjectured since the last century [38, 65, 66, 79, 64].

It turns out the the Jones polynomial is intimately related to a number of
topics in mathematical physics.

Curiously, it is actually easier to define and verify the properties of the Jones
polynomial than for any other invariant in the theory of knots (except of course
the linking number). We shall devote this section to the defining properties of
the Jones polynomial, and later sections to the relationships with physics.

Here are a set of axioms for the Jones polynomial. The polynomial was not
discovered in the form of these axioms. The axioms are in a format analogous to
the framework that John H. Conway [14, 36, 37], discovered for the Alexander
polynomial. I am starting with these axioms because they give a quick access
to the polynomial and to sample computations.

3.1 Axioms for the Jones Polynomial

1. If two oriented links K and K ′are ambient isotopic, then VK(t) = VK′(t).
The invariant VK(t) belongs the ring of Laurent polynomials Z[t, t−1].

2. If U is an unknotted loop, then VU (t) = 1.
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3. If K+,K−, and K0 are three links with diagrams that differ only as shown
in the neighbourhood of a single crossing site for K+ and K−(see Figure
20), then

t−1VK+
(t)− tVK−(t) = (t1/2 − t−1/2)VK0

(t)

Figure 20: Neighbourhood Of Single Crossing Sites

The axioms for VK(t) are a consequence of Jones’ original definition of his
invariant. He was led to this invariant by a trail that began with the study of
von Neumann algebras [30] (a branch of algebra directly related to quantum
theory and to statistical mechanics) and ended in braids, knots and links. The
Jones polynomial has a distinctly different flavor from the Alexander-Conway
polynomial even though it can be axiomatized in a very similar way. In fact,
this similarity of axiomatics points to a common generalization (the Homfly(Pt)
polynomial) [28, 69] and to another generalization (the Kauffman polynomial)
[44], and then to further generalizations in the connection with statistical me-
chanics [43, 34, 2].

To this date no one has found a knotted loop that the Jones polynomial does
not declare to be knotted. Thus one can make the

Conjecture. If a single component loop K is knotted, then VK(t) is not equal
to one.

While it is possible that the Jones polynomial is able to detect the property
of being knotted, it is not a complete classifier for knots. There are inequivalent
pairs of knots that have the same Jones polynomial. Such a pair is shown in
Figure 21. These two knots, the Kinoshita-Terasaka knot and the Conway knot,
both have the same Jones polynomial but are different topologically. Inciden-
tally these two knots are examples whose knottedness cannot be detected by
the Alexander polynomial. Remarkably, it is the case that there are infinitely
many non-trivial links that the Jones polynomial cannot distinguish from the
unlink [80, 19, 55]. The character of this problem appears to be quite different
for knots.

Lets get to work and use the axioms to compute the Jones polynomial for the
trefoil knot. To this end, there is a useful device called the skein tree. A skein
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Figure 21: The Kinoshita-Terashaka Knot and the Conway Knot

tree is obtained from a given knot or link diagram by recording the knots and
links obtained from this diagram by smoothing or switching crossings. Each
node of the tree is a knot or link. The nodes farthest from the original knot
or link are unknotted or unlinked. Such a tree can be produced from a given
knot or link by using the fact that any knot or link diagram can be transformed
into an unknotted (unlinked) diagram by a sequence of crossing switches. See
Figure 22.

In Figure 22, I have illustrated a “standard unknot diagram”. This diagram is
drawn by starting at the arrowhead in the Figure and tracing the diagram in such
a way that one always draws an over crossing before drawing an undercrossing.
This is the easiest possible knot diagram to draw since one never has to make
any corrections - just pass under when you want to cross an an already created
line in the diagram. Standard unknot diagrams are always unknotted. Try your
hand at the one in Figure 22 and you will see why this is so.

Using the fact that standard unknot diagrams are available, we can use the
difference between a given diagram K and a standard unknot with the same
plane projection to give a procedure for switching crossings to unknot the di-
agram K. This switching procedure can be used to produce a skein tree for
calculating the Jones polynomial of K.

We have illustrated in Figure 23 a skein tree for the computation of the Jones
polynomial of the trefoil knot. The tree reduces the calculation of the Jones
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Figure 22: A Standard Unknot

polynomial of the trefoil diagram to the calculation of certain unknots and
unlinks. In order to see how to calculate an unlink it is useful to observe the
behaviour of the axioms in this case:

t−1VU+ − tVU− = (t1/2 − t−1/2)VU0 .

Here U+ and U− denote unknots with single positive and negative twists in
them. U0, obtained by smoothing the crossing of U+ or U−, is an unlinked pair
of circles with no twists. See Figure 24.

Therefore
(t−1 − t) = (t1/2 − t−1/2)VU0 .

Hence
d = VU0 = (t−1 − t)/(t1/2 − t−1/2) = −(t1/2 + t−1/2).

Thus we see that an extra unknotted component of the link multiplies the in-
variant by

d = −(t1/2 + t−1/2).

Here T denotes the trefoil knot, U denotes the unknot and L denotes the link
of two unknotted circles as shown in Figure 23. With this fact in place, we find
that

t−1VT − tVU = (t1/2 − t−1/2)VL, t
−1VL − td = (t1/2 − t−1/2)VU

Thus
VL = t(td+ (t1/2 − t−1/2)) = −t5/2 − t1/2.

Hence

VT = t(t+ (t1/2 − t−1/2)VL) = t(t+ (t1/2 − t−1/2)(−t5/2 − t1/2))

= t(t− t3 − t+ t2 + 1) = t(−t3 + t2 + 1) = −t4 + t3 + t.
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Figure 23: The Trefoil Skein-Tree

The same calculation applied to the mirror image T ∗ (obtained by reversing
all the crossings of T ) of the trefoil yields the invariant VT∗ = −t−4 + t−3 + t−1.
This shows how the Jones polynomial discriminates between the trefoil and its
mirror image, thereby proving that there is no ambient isotopy from T to T ∗.

This method of calculating the Jones polynomial from its axioms does not
tell us why the invariant works.

It is possible to analyse this method of calculation and show that it does
not depend upon the choices that one makes in the process and that it gives
topological information about the knot or link in question. There is a different
way to proceed that leads to a very nice formula for the Jones polynomial as a
sum over “states” of the diagram. In this formulation, the polynomial is well
defined from the beginning, and we can see the topological invariance arise in
the course of adjusting certain parameters of a well-defined function. Our next
topic is this state summation model for the Jones polynomial.

4 The Bracket State Sum

In the last section we gave axioms for the Jones polynomial and showed how
to compute it by skein calculations from these axioms. In this section we shall
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Figure 24: U+, U− and U0

show one way to prove that the Jones polynomial is well-defined by these axioms,
and that it is an invariant of ambient isotopy of links in three dimensional space.

In order to accomplish this aim, we shall give a different definition of the
polynomial as a certain summation over combinatorial configurations associated
with the given link diagram. This summation will be called a state summation
model for the Jones polynomial.

In fact, we shall first construct a state summation called the bracket polyno-
mial [38], and then explain how to modify the bracket polynomial to obtain the
Jones polynomial. The bracket polynomial has a rather natural development,
and is defined for unoriented link diagrams.

We work with diagrams for unoriented knots and links. To each crossing in
the diagram assign two local states with labels A and B, as shown in Figure 25.

(In the A-state the regions swept out by a counterclockwise turn of the over-
crossing line are joined. In the B-state the regions swept out by a clockwise
turn of the over-crossing line are joined.)

A state S of a diagram K consists in a choice of local state for each crossing
of K. Thus a diagram with N crossings will have 2N states. Two states S and
S′ of the trefoil diagram are indicated in Figure 26.

States are evaluated in two ways. These ways are denoted by 〈K|S〉 and
by ‖ S ‖. The norm of the state S, ‖ S ‖, is defined to be one less than the
number of closed curves in the plane described by S. In the example in Figure
26, we have ‖ S ‖= 1 and ‖ S′ ‖= 0. The evaluation 〈K|S〉 is defined to be the
product of all the state labels (A and B) in the state. Thus in Figure 26 we
have 〈K|S〉 = A3 and 〈K|S′〉 = A2B.

Taking variables A,B and d, we define the state summation associated to a
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Figure 25: Type A and Type B Smoothings

given diagram K by the formula 〈K〉 = ΣS〈K|S〉d‖S‖.

In other words, for each state we take the product of the labels for that state
multiplied by d raised to the number of loops in the state. 〈K〉 is the summation
of this state evaluation over all the states in the diagram for K.

We will show that the state summation 〈K〉 is invariant under the second
and third Reidemeister moves if we take B = A−1 and d = −(A2 + A−2). A
normalization then enables us to obtain invariance under all three Reidemeister
moves, and hence topological information about knots and links. (See [38] for
more information about the bracket and its relationship with the Jones polyno-
mial.) There is a great deal of topological information in the calculations that
ensue from the bracket polynomial. In particular, one can distinguish many
knots from their mirror images, and it is possible that the bracket calculation
can detect whether a given diagram is actually knotted.

4.1 Steps in Bracketology

The first constructions related to the bracket polynomial are quite elementary.
There are two basic formulas that are reminiscent of the exchange relations we
have already seen for the Jones polynomial. These formulas are as shown in
Figure 27.

Here the small diagrams indicate parts of larger diagrams that are otherwise
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Figure 26: States of a Diagram

identical.

Formula 1. just says that the state summation breaks up into two sums
with respect to a given crossing in the diagram. In one sum, we have made a
smoothing of type A at the crossing, while in the other sum we have made a
smoothing of type B. The factors of A and B indicated in the formula are the
contributions to the product of vertex weights from this crossing. All the rest of
the two partial sums can be interpreted as bracket evaluations of the smoothed
diagrams.

Formula 2. just states that an extra simple closed curve in a diagram multi-
plies its bracket evaluation by the loop value d. Note that a single loop receives
the value 1.

With the help of these two formulas, we can compute some basic bracket
evaluations. Note that we have not yet specialized the variables A,B and d.
We shall analyze just what specialization will produce an invariant of knots and
links. The advantage to having set up the definition of the bracket polynomial
in this way is exactly that we have a method of labelling link diagrams with
algebra, and it is possible to then adjust the evaluation so that it is invariant
under Reidemeister moves. To this end, the next Lemma tells us how the gen-
eral bracket behaves under a Reidemeister move of type two. Essential diagrams
for this Lemma are in Figure 28.

Lemma Let K be a given link diagram, and let K ′ denote a diagram that is
obtained from K by performing a type 2 Reidemeister move in the simplifying
direction (eliminating two crossings from K). Let K ′′ be the diagram obtained
from K by replacing the site of the type 2 move by two arcs in the opposite
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Figure 27: Bracket Equations

pattern to the form of the simplified site in K ′. (The diagrams in Figure 28
illustrate this construction.) Then 〈K〉 = AB〈K ′〉+ (ABd+A2 +B2)〈K ′′〉.

Proof. Consider the four local state configurations that are obtained from the
diagram K on the left hand side of the equation, as illustrated in Figure 28. The
formula follows from the fact that one of these states has coefficient AB and the
other three have the same underlying diagram and respective coefficients ABd
(after converting the loop to a value d), A2 and B2. This completes the proof
of the Lemma. //

With the help of this Lemma it is now obvious that if we choose B = A−1

and d+A2+A−2 = 0, then 〈K〉 is invariant under the second Reidemeister move.

Once this choice is made, the resulting specialized bracket is invariant under
the third Reidemeister move, as illustrated in Figure 29.

Finally, we can investigate bracket behaviour under the first Reidemeister
move.

Lemma Let 〈K〉 denote the bracket state sum with B = A−1 and d = −A2 −
A−2. Then 〈K〉 is invariant under the Reidemeister moves 2 and 3 and on move
1 behaves as shown below:

〈K(+)〉 = (−A3)〈K〉

and
〈K(−)〉 = (−A−3)〈K〉,
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Figure 28: Type Two Changes

where K(+) denotes a diagram with a simplifying move of type 1 available where
the crossing that is to be removed has type +1. K is the diagram obtained from
K(+) by doing the type 1 move. Similarly, K(−) denotes a diagram with a
simplifying move of type 1 available where the crossing that is to be removed
has type −1. Figure 30 illustrates the diagrams for K(+) and K(−).

Proof. See Figure 30 for the behaviour under type I moves.
We have already verified the other statements in this Lemma.//

4.2 Framing Philosophy - Twist and Writhe

Is it unfortunate that the bracket is not invariant under the first Reidemeister
move? No, it is fortunate! First of all, the matter is easy to fix by a little
adjustment: Let K be an oriented knot or link, and define the writhe of K,
denoted w(K), to be the sum of the signs of all the crossings in K. Thus the
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Figure 29: Type 3 Invariance of the Bracket

writhe of the right-handed trefoil knot is three.

The writhe has the following behaviour under Reidemeister moves:

(i) w(K) is invariant under the second and third Reidemeister moves.

(ii) w(K) changes by plus or minus one under the first Reidemeister move:

w(K(+)) = w(K) + 1, w(K(−)) = w(K)− 1.

(Here we use the notation of the previous Lemma as shown in Figure 30.)

Thus the writhe behaves in a parallel way to the bracket on the type 1 moves,
and we can combine writhe and bracket to make a new calculation that is invari-
ant under all three Reidemeister moves. We call the fully invariant calculation
the “f-polynomial” and define it by the equation fK(A) = (−A3)−w(K)〈K〉(A).
Up to this normalization, the bracket gives a model for the original Jones poly-
nomial. The precise relationship is that VK(t) = fK(t−1/4) where w(K) is the
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Figure 30: Bracket Under Type 1 Move

sum of the crossing signs of the oriented link K, and 〈K〉 is the bracket polyno-
mial obtained by ignoring the orientation of K.

We shall return to this relationship with the Jones polynomial in a moment,
but first a little extra mathematical philosophy: Another way to view the fact
of the bracket’s lack of invariance under the first Reidemeister move is to see
that the bracket is an invariant of knotted and linked bands embedded in three
dimensional space. Regard a link diagram as shorthand for an embedding of
bands as shown in Figure 31.

In Figure 31 we have illustrated a link diagram for the trefoil knot in a thick
dark mode of drawing.

This diagram is juxtaposed with a drawing of a knotted band that parallels
that knot diagram . The band has two boundary components that proceed
(mostly in the plane) parallel to one another. The curl in the knot diagram
becomes a flat curl in the band that is ambient isotopic to a full twist ( two half
twists) in the band. This isotopy is indicated in Figure 31. The top of Figure 31
shows a full twist in a band and two flat curls that both give rise to this same
full twist by ambient isotopy that leaves their ends fixed. Each component of
a link diagram is replaced by a parallelled version - the analog of a ribbon-like
strip of paper attached to itself with an even number of half-twists. The first
Reidemeister move no longer applies to this shorthand since we can, at best,
replace a curl by a twist as shown in Figure 31.

In fact, as Figure 31 shows, there are two distinct curls corresponding to a
single full twist of a band.

29



Figure 31: Bands And Twists

The bracket (and the writhe) behave the same way on both of these twists.
This means that we can re-interpret the bracket as an invariant of the topo-
logical embeddings of knotted, linked and twisted bands in three-dimensional
space. This means that the bracket has a fully three-dimensional interpretation,
although its definition depends upon the use of planar projections.

4.3 Calculating the Bracket

In Figure 32 we show a tree for calculating the bracket polynomial of the trefoil
knot T.

It follows at once from the behaviour of the bracket on curls that the con-
tributions of the three (farthest from the trefoil itself) branches of this tree add
to give the bracket polynomial of the trefoil:

〈T 〉 = A2(−A3) +AA−1(−A−3) +A−1(−A−3)2 = −A5 −A−3 +A−7.

Hence, fT (A) = (−A3)−w(T )〈T 〉 = A−4 +A−12 −A−16.

Note that we managed only three branches in the tree for this calculation
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Figure 32: Tree For Bracket of Trefoil

rather than the full expansion into the eight states. A savings like this is always
possible, because we know how the bracket behaves on curls. The resulting ex-
pansion gives a sum of monomials and is useful for thinking about the properties
of the invariant.

4.4 Mirror Mirror

The knot K∗ obtained by reversing all the crossings of K is called the mirror
image of K. K∗ is the mirror image of the knot that would ensue if the plane
on which the knot is drawn were a mirror. It is easy to see that 〈K∗〉(A) =
〈K〉(A−1) and that fK∗(A) = fK(A−1). Thus, if K is ambient isotopic to K∗

(all three Reidemeister moves allowed), then fK(A) = fK∗(A) = fK(A−1).

Returning to the evaluation of the f-invariant for the trefoil, note that
fT (A−1) is not equal to fT (A).
Therefore, the trefoil knot T and its mirror image T ∗ are topologically distinct.

The proof that we have given for it is the simplest proof known to this au-
thor. Note that we have given a complete proof of this fact, starting with the
Reidemeister moves, constructing and applying the bracket invariant.
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Figure 33: Figure-8 Knot and its Mirror Image

A knot is said to be chiral if it is not ambient isotopic to its mirror image.

The words chiral and chirality come from physical chemistry and natural
science. A knot that is equivalent to its mirror image is said to be achiral (or
amphicheiral in the speech of knot theorists). Many knots are achiral. The
reader may enjoy verifying that the figure eight knot shown in Figure 33 is am-
bient isotopic to its mirror image.

A complete understanding of the problem of determining whether a knot is
chiral remains in the far distance.

The new invariants of knots and links have enhanced our understanding of
this difficult question.

4.5 Return to the Jones Polynomial

Now lets verify that the bracket does indeed give a model for the Jones polyno-
mial. To see this, consider fK(A) = (−A3)−w(K)〈K〉(A).

Since the writhe, w(K), is obtained by summing signs over all the crossings
of K, we can interpret the factor (−A3)−w(K) as the product of contributions
of (−A3)or(−A3)−1 one from each crossing and depending upon the sign of
the crossing. Thus we can write an oriented state expansion formula for fK
as shown below where K+ and K denote links with corresponding sites with
oriented crossings, K0 is the result of smoothing the crossing in an oriented
fashion and K† is the result of smoothing the crossing against the orientation.

fK+
= (−A3)−1AfK0

+ (−A3)−1A−1fK† .

Hence,
fK+

= −A−2fK0
−A−4fK†
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and similarly, for a negative crossing

fK− = −A2fK0
−A4fK† .

Letting
VK(t) = fK(t−1/4)

we have
VK+ = −t1/2VK0 − tVK†

and
VK− = −t−1/2VK0

− t−1VK† .

Therefore,
t−1VK+ − tVK− = (t1/2 − t−1/2)VK0 .

We leave the rest of the verification that VK(t) is the Jones polynomial (see
section 4) to the reader (You should check that it has the right behaviour on
unknotted loops.).

5 Vassiliev Invariants

We have seen how it is fundamental to take the difference of an invariant at
a positive crossing and at a negative crossing, leaving the rest of the diagram
alone. The earliest instance of this is the Alexander-Conway polynomial [14],
CK(z) with its exchange identity CK+

− CK− = zCK0
.

Vassiliev [V] gave new meaning to this sort of identity by thinking of the
structure of the entire space of all mappings of a circle into three dimensional
space. This space of mappings includes mappings with singularities where two
points on a curve touch. He interpreted the equation ZK+

− ZK− = ZK]
as

describing the difference of values across a singular embedding K] where K]

has a transverse singularity in the knot space as illustrated in Figure 34. (In a
transverse singularity the curve touches itself along two different directions.)

The Vassiliev formula serves to define the value of the invariant on a singu-
lar embedding in terms of the the values on two knots “on either side” on this
embedding. This Vassiliev formula serves to describe a method of extending a
given invariant of knots to a corresponding invariant of embedded graphs with
controlled singularities of this transverse type. This idea had been considered
before Vassiliev.
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Figure 34: Difference Equation

Vassiliev carried out his program of analysing the singular knot space using
techniques of algebraic topology, and in the course of this investigation he dis-
covered a key concept that had been completely overlooked in the context of
graph invariants. That concept is the idea of an invariant of finite type.

Definition. We shall say that ZG is an invariant of finite type i if ZG vanishes
for all graphs with greater than i nodes.

This concept was extracted from Vassiliev’s work by Birman and Lin [13].
A (rigid vertex) invariant of knotted graphs is a Vassiliev invariant of finite
type i if it satisfies the identity ZK+ − ZK− = ZK]

and it is of finite type i. In
rigid vertex isotopy the cyclic order at the vertex is preserved, so that the ver-
tex behaves like a rigid disk with flexible strings attached to it at specific points.

Vassiliev invariants form an extraordinary class of knot invariants.

It is an open problem whether the Vassiliev invariants are sufficient to dis-
tinguish knots that are topologically distinct.

Vassiliev began an analysis of the combinatorial conditions on graph evalu-
ations that could support such invariants. The key observation is the

Lemma. If ZG is a Vassiliev invariant of finite type i, then ZG is independent
of the embedding of the graph G when G has i vertices.

Proof. Suppose that G is an embedded graph G with i nodes. If we switch a
crossing in G to form G′ then the exchange relation for the Vassiliev invariant
says that ZG − ZG′ = ZG′′ where G′′ has one more node than G or G′. But
then G′′ has (i+ 1) nodes and hence ZG′′ = 0.

Therefore ZG = ZG′ . This shows that we can switch crossings in any em-
bedding of G without changing the value of ZG.
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It follows from this that ZG is independent of the embedding and depends
only on the graph G. This completes the proof of the Lemma. //

For a Vassiliev invariant of type i, there is important information in the val-
ues it takes on graphs with exactly i nodes. These evaluations do not depend
upon the embedding type of the graph. However, not just any such graphical
evaluation will extend to give a topological invariant of knots and graphs. There
are necessary conditions. Vassiliev found a version of these conditions through
his analysis of the knot space. Ted Stanford [76] , a student of Joan Birman,
discovered the beautiful topological meaning of these conditions in relation to
the switching identity. Stanford’s argument goes as follows: Consider a singular
crossing that has an arc from the diagram passing underneath it as shown in
Figure 35.

Figure 35: Embedded Four-Term Relation

Four crossing switches will take that arc above the singular crossing and
return the diagram to a position that is topologically equivalent to its original
position.
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Each crossing switch gives an equation. There are four equations. Add them
up and you get an identity among the values of the invariant on four diagrams.
Call this the four-term relation. This identity is illustrated in the second box
in Figure 35.

Now recall from the Lemma we proved above that for a Vassiliev invariant
of type i, the graphs with i nodes have values that are independent of their
embeddings in three dimensional space. This means that at the top level (The i
noded graphs for a Vassiliev invariant of type i will be called the top level.) the
four-term relations will be relations among the evaluations of abstract graphs.
At the top level the four-term relations will be purely combinatorial conditions
related to the topology.

How shall we think of abstract 4-valent graphs corresponding to singular
embeddings of a knot? An abstract knot is just a circle. An abstract singular
knot is a circle with pairs of points marked that become the singular points in
the embedding. Indicate these paired points by arcs between them. Call the
resulting structure a chord diagram. See the example at the beginning of Figure
36. In the language of the chord diagrams the four-term relation at the top level
(see the discussion of the top level in the paragraph above) becomes the equa-
tion shown in Figure 36. This can be seen by translating the relation in Figure
35 into the language of chord diagrams. In Figure 36 we have indicated parts of
the chord diagram that are neighbors by showing an outer bracket connecting
them. Those sites that are neighbors can have no other chords between them.
Otherwise there can be many chords in these diagrams that are not indicated,
just so long as the diagrams in the equation for the four-term relation differ
only as shown in the Figure.

If you can write down a top level evaluation of chord diagrams that satisfies
the four-term relation, then you have the raw data for a Vassiliev invariant.
Such an evaluation of chord diagrams is called a weight system for a Vassiliev
invariant. By the Theorems of Kontsevich and Bar-Natan [7], this raw data
guarantees the existence of at least one invariant that satisfies the top level
evaluation.

The world is rife with Vassiliev invariants. Birman and Lin [13] showed di-
rectly that the Jones polynomial and its generalizations give rise to Vassiliev
invariants. In the case of the Jones polynomial here is an easy proof of their
result:

Theorem. Let VG(t) denote the Jones polynomial extended to rigid vertex
4-valent graphs by the formula VK+

− VK− = VK]
.

Let vi(G) denote the coefficient of xi in the expansion of VG(exp(x)). Then
vi(G) is a Vassiliev invariant of type i.
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Figure 36: Abstract Four-Term Relation Via Chord Diagrams

Proof. Use the identities from the end of section 4.

VK+ = −t1/2VK0 − tVK† , VK− = −t−1/2VK0 − t−1VK† .

Substitute t = exp(x). It follows at once that VK]
= VK+

− VK− is divisible
by x. Hence VG is divisible by xi when G has i nodes. This implies that the co-
efficients vi(G) = 0 (vanish) if G has more than i nodes. Hence the coefficients
vi(G) are of finite type, proving the Theorem. //

With the help of theorems of this type it is possible to study Vassiliev in-
variants by studying the structure of known invariants of knots and links. In
particular it is possible to justify the structure of many weight systems in terms
of known invariants. We shall not go into these sorts of investigations in this
exposition. The next section shows how the algebraic study of Lie algebras is
directly related to the construction of Vassiliev invariants. This is one beginning
of a whole world of relationships between knot theory and algebra.
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6 Vassiliev Invariants And Lie Algebras

The subject of Lie algebras is an algebraic study with a remarkable connection
with the topology of knots and links. The purpose of this section is to first give
a brief introduction to the concept of a Lie algebra and then to show the deep
connection between these algebras and the structure of Vassiliev invariants for
knots and links, as described in the previous section.

In order to understand the idea behind a Lie algebra it is helpful to first
consider the concept of a group. A set G is said to be a group if it has a single
binary operation ∗ such that:

1. Given a and b in G then a∗b is also in G.

2. If a, b, c are in G then (a ∗ b) ∗ c = a ∗ (b ∗ c).

3. There is an element E in G such that E ∗ a = a ∗ E = a for all a in G.

4. Given a in G there exists an element a−1 in G such that a∗a−1 = a−1∗a =
E.

One of the most fertile sources of groups is matrix algebra. Recall that an
n× n matrix A is an array of numbers Aij (real or complex), A = (Aij), where
i and j range in value from 1 to n.

One defines the product of two matrices by the formula (AB)ij =
∑
k AikBkj

where k runs from 1 to n in this summation. For our purposes it is essential to
have a diagrammatic representation for matrix multiplication. This represen-
tation is illustrated in Figure 37. Each matrix is represented by a labelled box
with one arrow that enters the box and one arrow that leaves the box.

The entering arrow corresponds to the left index i in Aij , while the right
arrow corresponds to the right index j. In multiplying two matrices A and B
together to form AB we tie the outgoing arrow of A to the ingoing arrow of B.
By convention, an arrow that has no free ends connotes the summation over all
possible choices of index for that arrow.

Many facts about matrices become quite transparent in this notation. For
example, the trace of A, denoted tr(A), is the sum of the diagonal entries Aii
where i ranges from one to n. The diagrammatic proof of the basic formula
tr(AB) = tr(BA) is illustrated in Figure 38.

For a given value of n, we let Mn(R) denote the set of all n × n matrices
with coefficients in the real numbers R. We let AB denote the product of ma-
trices and we let E denote the matrix whose entries are given by the formula:
Eii = 1∀i, and Eij = 0 if i is not equal to j. With this choice of multiplica-
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Figure 37: Diagrammatic Matrix Multiplication

tion and identity element E, Mn(R) satisfies the first three axioms for a group.
However there are matrices A that have no inverse (A−1 so that AA−1 = E).
For example the matrix 0, all of whose entries are zero, is a matrix without an
inverse. Thus Mn(R) is not itself a group.

There is a criterion for a matrix to have an inverse. This is simply that the
determinant, Det(A), should be nonzero.

Thus the largest group of matrices of size n × n that we can devise is the
set of all matrices A such that Det(A) is non-zero. This is called the general
linear group and is denoted by GLn(R). There are many interesting subgroups
of this large group of matrices. One example is the group SL(n) of all matrices
with determinant equal to one. We may also restrict to orthogonal matrices A
over R. These are invertible matrices A such that At = A−1 where At denotes
the transpose of the matrix A: Atij = Aji. The group of orthogonal matrices is
denoted by O(n).

The intersection of O(n) and Sl(n) is denoted SO(n). The special orthogonal
group SO(n) consists in the orthogonal matrices of determinant equal to one.
In the case n = 2, SO(2) consists in rotations of the plane that fix the origin,
and in the case of n = 3, SO(3) consists in rotations of three dimensional space
about specified axes. SO(3) has a fascinating collection of finite subgroups in-
cluding the symmetries of the classical regular solids: the tetrahedron, the cube,
the octahedron, the dodecahedron and the icosahedron. Ultimately, the matrix
groups become a language for the precise expression of symmetry.

We now ask when a matrix A can be written in the form:
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Figure 38: Diagrammatic Matrix Trace

A = eB = E + (1/1!)B1 + (1/2!)B2 + (1/3!)B3 + ... for some matrix B.
Since eB = limm−→∞(E + B/m)m, we can regard (E + B/m), for m large,
as an “infinitesimal” version of the matrix A, and one refers to B as an “in-
finitesimal generator” for A1/m. (That is, if B is already “small”, then eB is
approximately E +B.) It is interesting and mathematically significant to com-
pare the algebraic properties of A and B. The key property for this comparison
is the determinant equation Det(eB) = etr(B) where tr(B) denotes the trace of
B. (One way to prove this identity is to use the Jordan canonical form for the
matrix and the fact that similar matrices have the same trace and determinant.)

For example, if Det(eB) = 1 then we need that tr(B) = 0. This means that
elements of SL(n) are the exponentials of matrices with trace equal to zero.

Let sl(n) denote the set of n× n matrices with trace equal to zero. The set
sl(n) is not closed under matrix multiplication, but it is closed under the Lie
bracket (or commutator) operation [B,C] = BC − CB.

If tr(B) = tr(C) = 0, then tr[B,C] = tr(BC − CB) = tr(BC)− tr(CB) =
tr(BC) − tr(BC) = 0, (since tr(BC) = tr(CB) for any matrices B and C).
Thus, if B and C belong to sl(n), then [B,C] also belongs to sl(n). This clo-
sure under the bracket operation leads directly to the notion of a Lie algebra.

Definition. A Lie algebra is a vector space L over a field F that is closed under
a binary operation, called the Lie bracket and denoted by [B,C] for B and C
in L. The bracket is assumed to satisfy the following axioms:

1. [X,Y ] = −[Y,X], ∀ X and Y in L.
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2. [aX + bY, Z] = a[X,Z] + b[Y, Z], ∀ a and b in F and X,Y, Z in L.

3. [X, [Y, Z]] + [Z, [X,Y ]] + [Y, [Z,X]] = 0, ∀ X,Y, Z in L.

This last identity is called the Jacobi identity. Note that

[X, [Y, Z]] = −[Z, [X,Y ]]− [Y, [Z,X]] = [[X,Y ], Z] + [Y, [X,Z]],

and hence the Jacobi identity is equivalent ( in the context of the first axiom)
to the equation

[X, [Y,Z]] = [[X,Y ], Z] + [Y, [X,Z]].

This can be interpreted as saying that the left action of the Lie bracket satisfies
the Leibniz rule with respect to the Lie bracket itself.

It is easy to verify that the bracket operation [B,C] = BC−CB on the vec-
tor space of all n × n matrices over F (e.g. F = R, the real numbers) satisfies
the axioms given above. Thus, we have so far seen that sl(n) is a Lie algebra
that is naturally associated with the group of matrices Sl(n). In fact, sl(n)
generates Sl(n) by exponentiation.

There is a general pattern. Each matrix group has its corresponding Lie
algebra. The classification of matrix groups is simplified by a corresponding
classification of Lie algebras. As a result, the Lie algebras are a subject in their
own right. It has often happened that Lie algebras are connected mathemati-
cally with subjects different from their original roots in group theory.

In our context the Lie algebras turn out to be related to the formation of
weight systems for Vassiliev invariants. One way to see this is to just take the
case of matrix Lie algebras with commutator brackets and interpret diagram-
matically the formula that states that the Lie algebra is closed under the bracket
operation.

This formula states that there is a basis {T 1, T 2, · · · , Tm} for the Lie algebra
as a vector space over F such that each T a is an n× n matrix and such that

T aT b − T bT a = fabc T
c,

where fabc is a set of constants in F depending on the three indices a, b, c (each
running from 1 to n). The right hand side of this equation connotes a summation
over all values of the index c = 1, ..., n. The left hand side is the commutator
of T a and T b for any given choice of a and b. In the matrix context this closure
identity is the equivalent of the Jacobi identity, and is often referred to as the
Jacobi identity for the matrix Lie algebra.
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In Figure 39 we have diagrammed this equation using the conventions for
diagrammatic matrix multiplication explained in this section. The structure
constants fabc are represented by a graphical vertex with three lines attached
to it, one for a, one for b and one for c. For the purpose of discussion,we shall
assume that fabc is dependent only on the cyclic order of abc. It is convenient
to regard the graphical vertex as representing a “tensor” that has this cyclic
invariance since this means that we can slide the diagram for the structure con-
stant tensor around in the plane so long as we keep the cyclic order of its legs
unchanged. Such bases can be obtained in many cases of matrix Lie algebras,
and the results that we outline can be generalized in any case.

Figure 39: Commutation Relation and Jacobi Identity

Now view Figure 40. You will see a formal version of the commutator rela-
tion of Figure 39, except that the labels and indices have been removed and the
boxes for matrix elements have been replaced by graphical vertices. Imagine
that the terms in this formal version of the commutator relation are parts of
chord diagrams as illustrated with examples in this figure. In other words, recall
the method of chord diagrams from the last section and imagine that along with
the chords there are also trivalent graphical vertices among the chords, and that
these vertices are related to commutators as shown in the Figure.

Finally, view Figure 41 and you will see a formal derivation of the four term
relation for chord diagrams from the diagrammatic commutator identity.

This means that the four-term relation, that we derived from topological
considerations in the last section, is intimately related to the basic structure of
a Lie algebra. This is the essence of the relationship of Vassiliev invariants with
Lie algebras and their generalizations.

Concretely, the relationship we have just described means that it is possible
to construct weight systems for Vassiliev invariants by using matrix Lie algebras.
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Figure 40: Jacobi Identity and Chord Diagrams

To see how this works view Figure 42. Here we have indicated a chord diagram
D and a corresponding diagram involving matrices Ta from a Lie algebra basis.

The second diagram represents the sum of traces

wt(D) =
∑
a,b,c

tr(T aT bT cT aT bT c)

where we are summing over all values for the indices a, b and c. This second
diagram represents the weight, wt(D), that is assigned to the first diagram. It
follows from our considerations that this weight system satisfies the four-term
relation and hence, by the Theorem of Kontsevich [BAR95], is the top row eval-
uation for a Vassiliev invariant.

This section has been a sketch of the amazing and deep connection between
Lie algebras and invariants of knots and links. The territory is even more sur-
prising as one explores it further. First of all, it should be clear from what we
have said that what is really needed here is an appropriate generalization of
Lie algebras. In fact, prior to the discovery of the Vassiliev invariants, a very
remarkable such generalization called “quantum groups” (via quasi-triangular
Hopf algebras) was discovered through work in statistical mechanics and was
applied to knot theory. It was already known that quantum groups provided a
strong connection between Lie algebras and their generalizations and invariants
of knots and links. Now the matter of finding all weight systems challenges the
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Figure 41: Four-Term Relation

Figure 42: Lie Algebra Evaluation

resources of quantum groups, and it is not known if all Vassiliev invariants can
be built through the quantum groups or more generally through Hopf algebras.

In the next few sections we shall discuss the physical background behind
many of the mathematical ideas discussed so far in this introduction to knot
invariants.

7 A Quick Review Of Quantum Mechanics

To recall principles of quantum mechanics it is useful to have a quick historical
recapitulation. Quantum mechanics really got started when DeBroglie intro-
duced the fantastic notion that matter (such as an electron) is accompanied by
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a wave that guides its motion and produces interference phenomena just like
the waves on the surface of the ocean or the diffraction effects of light going
through a small aperture.

DeBroglie’s idea was successful in explaining the properties of atomic spec-
tra. In this domain, his wave hypothesis led to the correct orbits and spectra of
atoms, formally solving a puzzle that had been only described in ad hoc terms
by the preceding theory of Niels Bohr. In Bohr’s theory of the atom, the elec-
trons are restricted to move only in certain elliptical orbits. These restrictions
are placed in the theory to get agreement with the known atomic spectra, and
to avoid a paradox! The paradox arises if one thinks of the electron as a classical
particle orbiting the nucleus of the atom. Such a particle is undergoing acceler-
ation in order to move in its orbit. Accelerated charged particles emit radiation.

Therefore the electron should radiate away its energy and spiral into the nu-
cleus! Bohr commanded the electron to only occupy certain orbits and thereby
avoided the spiral death of the atom - at the expense of logical consistency.

DeBroglie hypothesised a wave associated with the electron and he said that
an integral multiple of the length of this wave must match the circumference
of the electron orbit. Thus, not all orbits are possible, only those where the
wave pattern can “bite its own tail”. The mathematics works out, providing an
alternative to Bohrs picture.

DeBroglie had waves, but he did not have an equation describing the spatial
distribution and temporal evolution of these waves. Such an equation was dis-
covered by Erwin Schrodinger. Schrodinger relied on inspired guesswork, based
on DeBroglie’s hypothesis and produced a wave equation, known ever since as
the Schrodinger equation. Schrodinger’s equation was enormously successful,
predicting fine structure of the spectrum of hydrogen and many other aspects
of physics. Suddenly a new physics, quantum mechanics, was born from this
musical hypothesis of DeBroglie.

Along with the successes of quantum mechanics came a host of extraordi-
nary problems of interpretation.

What is the status of this wave function of Schrodinger and DeBroglie. Does
it connote a new element of physical reality? Is matter “nothing but” the pat-
terning of waves in a continuum? How can the electron be a wave and still have
the capacity to instantiate a very specific event at one place and one time (such
as causing a bit of phosphor to glow there on your television screen)? It came to
pass that Max Born developed a statistical interpretation of the wave-function
wherein the wave determines a probability for the appearance of the localised
particulate phenomenon that one wanted to call an “electron”. In this story the
wavefunction ψ takes values in the complex numbers and the associated prob-
ability is ψ∗ψ, where ψ∗ denotes the complex conjugate of ψ. Mathematically,
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this is a satisfactory recipe for dealing with the theory, but it leads to further
questions about the exact character of the statistics. If quantum theory is inher-
ently statistical, then it can give no complete information about the motion of
the electron. In fact, there may be no such complete information available even
in principle. Electrons manifest as particles when they are observed in a certain
manner and as waves when they are observed in another, complementary man-
ner. This is a capsule summary of the view taken by Bohr,Heisenberg and Born.

Others, including DeBroglie, Einstein and Schrodinger, hoped for a more
direct and deterministic theory of nature.

As we shall see, in the course of this essay, the statistical nature of quantum
theory has a formal side that can be exploited to understand the topological
properties of such mundane objects as knotted ropes in space and spaces con-
structed by identifying the sides of polyhedra. These topological applications of
quantum mechanical ideas are exciting in their own right. They may shed light
on the nature of quantum theory itself.

In this section we review a bit of the mathematics of quantum theory. Recall
the equation for a wave:

f(x, t) = sin((2π/λ)(x− ct)).

With x interpreted as the position and t and as the time, this function de-
scribes a sinusoidal wave travelling with velocity c. We define the wave number
k = 2π/λ and the frequency w = (2πc/λ) where λ is the wavelength. Thus we
can write f(x, t) = sin(kx−wt). Note that the velocity, c, of the wave is given
by the ratio of frequency to wave number, c = w/k.

DeBroglie hypothesised two fundamental relationships: between energy and
frequency, and between momentum and wave number. These relationships are
summarized in the equations E = ~w, p = ~k, where E denotes the energy as-
sociated with a wave and p denotes the momentum associated with the wave.

Here ~ = h/2π where h is Planck’s constant.

For DeBroglie the discrete energy levels of the orbits of electrons in an atom
of hydrogen could be explained by restrictions on the vibrational modes of waves
associated with the motion of the electron. His choices for the energy and the
momentum in relation to a wave are not arbitrary. They are designed to be
consistent with the notion that the wave or wave packet moves along with the
electron. That is, the velocity of the wave-packet is designed to be the velocity
of the “corresponding” material particle.

It is worth illustrating how DeBroglie’s idea works. Consider two waves
whose frequencies are very nearly the same. If we superimpose them (as a piano

46



tuner superimposes his tuning fork with the vibration of the piano string), then
there will be a new wave produced by the interference of the original waves. This
new wave pattern will move at its own velocity, different (and generally smaller)
than the velocity of the original waves. To be specific, let f(x, t) = sin(kx−wt)
and g(x, t) = sin(k′x− w′t).

Let h(x, t) = sin(kx− wt) + sin(k′x− w′t) == f(x, t) + g(x, t).

A little trigonometry shows that

h(x, t) = cos(((k − k′)/2)x− ((w − w′)/2)t)sin(((k + k′)/2)x− ((w + w′)/2)t).

If we assume that k and k′ are very close and that w and w′ are very close, then
(k+ k′)/2 is approximately k, and (w+w′)/2 is approximately w. Thus h(x, t)
can be represented by

H(x, t) = cos((δk/2)x− (δw/2)t)f(x, t)

where δk = (k′)/2 and δw = (w − w′)/2. This means that the superposition,
H(x, t), behaves as the waveform f(x, t) carrying a slower-moving “wave-packet”

G(x, t) = cos((δk/2)x− (δw/2)t).

See Figure 43.

Figure 43: Waves and Wave Packets

Since the wave packet (seen as the clumped oscillations in Figure 43) has the
equation G(x, t) = cos((δk/2)x− (δw/2)t), we see that the velocity of this wave
packet is vg = dw/dk. Recall that wave velocity is the ratio of frequency to
wave number. Now according to DeBroglie, E = ~w and p = ~k, where E and
p are the energy and momentum associated with this wave packet. Thus we get
the formula vg = dE/dp. In other words, the velocity of the wave-packet is the
rate of change of its energy with respect to its momentum. Now this is exactly
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in accord with the well-known classical laws for a material particle! For such a
particle, E = mv2/2 and p = mv. Thus E = p2/2m and dE/dp = p/m = v. It is
this astonishing concordance between the simple wave model and the classical
notions of energy and momentum that initiated the beginnings of quantum
theory.

7.1 Schrodinger’s Equation

Schrodinger answered the question:

What is the wave equation for DeBroglie’s waves?

Writing an elementary wave in complex form ψ = ψ(x, t) = exp(i(kx−wt)),
we see that we can extract DeBroglie’s energy and momentum by differentiating:

i~∂ψ/∂t = ~wψ = Eψ

and
−i~∂ψ/∂x = ~kψ = pψ.

This led Schrodinger to postulate the identification of dynamical variables with
operators so that the first equation,

i~∂ψ/∂t = Eψ,

is promoted to the status of an equation of motion while the second equation
becomes the definition of momentum as an operator:

p = −i~∂/∂x.

Once p is identified as an operator, the numerical value of momentum is asso-
ciated with an eigenvalue of this operator, just as in the example above. In our
example pψ = ~kψ.

In this formulation, the position operator is just multiplication by x itself.
Once we have fixed specific operators for position and momentum, the operators
for other physical quantities can be expressed in terms of them. We obtain
the energy operator by substitution of the momentum operator in the classical
formula for the energy:

E = (1/2)mv2 + V,E = p2/2m+ V,E = −(~2/2m)∂2/∂x2 + V.

Here V is the potential energy, and its corresponding operator depends upon
the details of the application.

With this operator identification for the energy operator E, Schrodinger’s
equation

i~∂ψ/∂t = −(~2/2m)∂2ψ/∂x2 + V ψ
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is an equation in the first derivatives of time and in second derivatives of space.
In this form of the theory one considers general solutions to the differential
equation and this in turn leads to excellent results in a myriad of applications.

In quantum theory, observation is modeled by the concept of eigenvalues for
corresponding operators. The quantum model of an observation is a projection
of the wave function into an eigenstate.

An energy spectrum Eλ corresponds to wave functions ψ satisfying the
Schrodinger equation, such that there are constants Eλ with Eψ = Eλψ and
λ running over an appropriate index set. An observable (such as energy) E
is a Hermitian operator on a Hilbert space of wavefunctions. Since Hermitian
operators have real eigenvalues, this provides the link with measurement for the
quantum theory.

It is important to notice that there is no mechanism postulated in this theory
for how a wave function is “sent” into an eigenstate by an observable. Just as
mathematical logic need not demand causality behind an implication between
propositions, the logic of quantum mechanics does not demand a specified cause
behind an observation.

The absence of causality in logic does not obviate the possibility of causality
in the world. Similarly, the absence of causality in quantum observation does
not obviate causality in the physical world.

Nevertheless, the debate over the interpretation of quantum theory has often
led its participants into asserting that causality has been demolished in physics.

The operators for position and momentum satisfy the equation

xp− px = ~i.

This corresponds directly to the equation obtained by Heisenberg, on other
grounds, that dynamical variables can no longer necessarily commute with one
another. In this way, the points of view of DeBroglie, Schrodinger and Heisen-
berg came together, and quantum mechanics was born. In the course of this
development, interpretations varied widely. Eventually, physicists came to re-
gard the wave function not as a generalized wave packet, but as a carrier of
information about possible observations. In this way of thinking ψ∗ψ (ψ∗ de-
notes the complex conjugate of ψ. ) represents the probability of finding the
“particle” (A particle is an observable with local spatial characteristics.) at a
given point in spacetime.
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7.2 Dirac Brackets

We now discuss Dirac’s notation, 〈b|a〉, [17]. In this notation 〈b| and |a〉 are
covectors and vectors respectively. 〈b|a〉 is the evaluation of |a〉 by 〈b|, hence it
is a scalar, and in ordinary quantum mechanics it is a complex number. One
can think of this as the amplitude for the state to begin in “a” and end in “b”.

That is, there is a process that can mediate a transition from state a to state
b. Except for the fact that amplitudes are complex valued, they obey the usual
laws of probability. This means that if the process can be factored into a set
of all possible intermediate states c1, c2, ..., cn, then the amplitude for a −→ b
is the sum of the amplitudes for a −→ ci −→ b. Meanwhile, the amplitude for
a −→ ci −→ b is the product of the amplitudes of the two subconfigurations
a −→ ci and ci −→ b. Formally we have 〈b|a〉 = Σi〈b|ci〉〈ci|a〉 where the sum-
mation is over all the intermediate states i=1, ..., n.

In general, the amplitude for mutually disjoint processes is the sum of the
amplitudes of the individual processes. The amplitude for a configuration of
disjoint processes is the product of their individual amplitudes.

Dirac’s division of the amplitudes into bras 〈b| and kets |a〉is done math-
ematically by taking a vector space V (a Hilbert space, but it can be finite
dimensional) for the bras: |a〉 belongs to V. The dual space V ∗ is the home of
the kets. Thus 〈b| belongs to V ∗ so that 〈b| is a linear mapping 〈b| : V −→ C
where C denotes the complex numbers. We restore symmetry to the definition
by realizing that an element of a vector space V can be regarded as a mapping
from the complex numbers to V.

Given |a〉 : C −→ V , the corresponding element of V is the image of 1 (in
C) under this mapping. In other words, |a〉(1) is a member of V. Now we have
|a〉 : C −→ V and 〈b| : V −→ C. The composition 〈b||a〉 = 〈b|a〉 : C −→ C
is regarded as an element of C by taking the specific value 〈b|a〉(1). The com-
plex numbers are regarded as the “vacuum”, and the entire amplitude 〈b|a〉
is a “vacuum to vacuum” amplitude for a process that includes the creation of
the state a, its transition to b, and the annihilation of b to the vacuum once more.

Dirac notation has a life of its own.

Let P = |y〉〈x| and 〈x||y〉 = 〈x|y〉.

Then PP = |y〉〈x||y〉〈x| = |y〉〈x|y〉〈x| = 〈x|y〉P .

Up to a scalar multiple, P is a projection operator.
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That is, if we let Q = P
〈x|y〉 , then

QQ =
PP

〈x|y〉〈x|y〉
=
〈x|y〉P
〈x|y〉〈x|y〉

=
P

〈x|y〉
= Q.

Thus QQ = Q. In this language, the completeness of intermediate states be-
comes the statement that a certain sum of projections is equal to the identity:

Σi|ci〉〈ci| = 1

(summing over i) with 〈ci|ci〉 = 1 for each i. It follows that

〈a|b〉 = 〈a| |b〉 = 〈a| Σi|ci〉〈ci| |b〉 = Σi〈a||ci〉〈ci||b〉 = Σi〈a|ci〉〈ci|b〉.

Iterating this principle of expansion over a complete set of states leads to the
most primitive form of the Feynman integral [24].

Imagine that the initial and final states a and b are points on the vertical
lines x = 0 and x = n+ 1 respectively in the x− y plane, and that (c(k)i(k), k)
is a given point on the line x = k for 0 < i(k) < m. Suppose that the sum
of projectors for each intermediate state is complete. That is, we assume that
following sum is equal to one, for each k from 1 to n− 1:

|c(k)1〉〈c(k)1|+ ...+ |c(k)m〉〈c(k)m| = 1

.
Applying the completeness iteratively, we obtain the following expression for
the amplitude

〈a|b〉 : 〈a|b〉 = Σ〈a|c(1)i(1)〉〈c(1)i(1)|c(2)i(2)〉 · · · 〈c(n)i(n)|b〉,

where the sum is taken over all i(k) ranging between 1 and m, and k ranging
between 1 and n. Each term in this sum can be construed as a combinatorial
path from a to b in the two dimensional space of the x− y plane.

Thus the amplitude for going from a to b is seen as a summation of contri-
butions from all the “paths” connecting a to b. Feynman used this description
to produce his famous path integral expression for amplitudes in quantum me-
chanics. His path integral takes the form

∫
dP exp(iS) where i is the square root

of minus one, the integral is taken over all paths from point a to point b, and
S is the action for a particle to travel from a to b along a given path. For the
quantum mechanics associated with a classical (Newtonian) particle the action
S is given by the integral along the given path from a to b of the difference
T − V where T is the classical kinetic energy and V is the classical potential
energy of the particle.

The beauty of Feynman’s approach to quantum mechanics is that it shows
the relationship between the classical and the quantum in a particularly trans-
parent manner. Classical motion corresponds to those regions where all nearby

51



paths contribute constructively to the summation. This classical path occurs
when the variation of the action is null. To ask for those paths where the varia-
tion of the action is zero is a problem in the calculus of variations, and it leads
directly to Newton’s equations of motion. Thus with the appropriate choice of
action, classical and quantum points of view are unified.

The drawback of this approach lies in the unavailability at the present time
of an appropriate measure theory to support all cases of the Feynman integral.

To summarize, Dirac notation shows at once how the probabilistic interpre-
tation for amplitudes is tied with the vector space structure of the space of states
of the quantum mechanical system. Our strategy for bringing forth relations
between quantum theory and topology is to pivot on the Dirac bracket. The
Dirac bracket intermediates between notation and linear algebra. In a very real
sense, the connection of quantum mechanics with topology is an amplification
of Dirac notation.

The next two sections discuss how topological invariants in low dimensional
topology are related to amplitudes in quantum mechanics. In these cases the
relationship with quantum mechanics is primarily mathematical. Ideas and
techniques are borrowed. It is not yet clear what the effect of this interaction
will be on the physics itself.

8 Knot Amplitudes

At the end of the last section we said: the connection of quantum mechanics
with topology is an amplification of Dirac notation.

Consider first a circle in a spacetime plane with time represented vertically
and space horizontally. See Figure 44.

Figure 44: Spacetime Circle

The circle represents a vacuum to vacuum process that includes the creation
of two “particles”, (Figure 45) and their subsequent annihilation (Figure 46).
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Figure 45: Cup

Figure 46: Cap

In accord with our previous description, we could divide the circle into these
two parts (creation(a) and annihilation (b)) and consider the amplitude 〈a|b〉.
Since the diagram for the creation of the two particles ends in two separate
points, it is natural to take a vector space of the form V ⊗V (the tensor product
of V with V) as the target for the bra and as the domain of the ket.

We imagine at least one particle property being catalogued by each dimen-
sion of V. For example, a basis of V could enumerate the spins of the created
particles. If {ea} is a basis for V then {ea ⊗ eb} forms a basis for V ⊗ V. The
elements of this new basis constitute all possible combinations of the particle
properties. Since such combinations are multiplicative, the tensor product is
the appropriate construction.

In this language the creation ket is a map cup, cup = 〈a| : C −→ V ⊗ V ,
and the annihilation bra is a mapping cap, cap = |b〉 : V ⊗ V −→ C.

The first hint of topology comes when we realize that it is possible to draw
a much more complicated simple closed curve in the plane that is nevertheless
decomposed with respect to the vertical direction into many cups and caps. In
fact, any non-self-intersecting differentiable curve can be rigidly rotated until
it is in general position with respect to the vertical. It will then be seen to be
decomposed into these minima and maxima.
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Our prescriptions for amplitudes suggest that we regard any such curve as
an amplitude via its description as a mapping from C to C.

Each simple closed curve gives rise to an amplitude, but any simple closed
curve in the plane is isotopic to a circle, by the Jordan Curve Theorem. If
these are topological amplitudes, then they should all be equal to the original
amplitude for the circle. Thus the question: What condition on creation and
annihilation will insure topological amplitudes? The answer derives from the
fact that all isotopies of the simple closed curves are generated by the cancella-
tion of adjacent maxima and minima as illustrated in Figure 47.

Figure 47: Cap - Cup Cancellation

In composing mappings it is necessary to use the identifications (V⊗V )⊗V =
V ⊗ (V ⊗ V ) and V ⊗ k = k ⊗ V = V .

Thus in Figure 47, the composition on the left is given by

V = V ⊗ k −→ V ⊗ (V ⊗ V ) = (V ⊗ V )⊗ V −→ k ⊗ V = V.

This composition must equal the identity map on V (denoted 1 here) for the
amplitudes to have a proper image of the topological cancellation.

This condition is said very simply by taking a matrix representation for the
corresponding operators.

Specifically, let {e1, e2, ..., en} be a basis for V. Let eab = ea ⊗ eb denote the
elements of the tensor basis for V ⊗ V . Then there are matrices Mab and Mab

such that cup(1) = ΣabM
abeab with the summation taken over all values of a

and b from 1 to n. Similarly, cap is described by cap(eab) = Mab. Thus the
amplitude for the circle is cap[cup(1)] = capΣabM

abeab = ΣabM
abMab.

In general, the value of the amplitude on a simple closed curve is obtained
by translating it into an “abstract tensor expression” in the Mab and Mab, and
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then summing over these products for all cases of repeated indices.

Returning to the topological conditions we see that they are just that the
matrices (Mab) and (Mab) are inverses in the sense that ΣiMaiM

ib = Iba and
SigmaiM

aiMib = Iab are identity matrices.

In the Figure 48, we show the diagrammatic representative of the equation
ΣiMaiM

ib = Iba.

Figure 48: Diagrammatic Matrix Cap - Cup Cancellation

In the simplest case cup and cap are represented by 2×2 matrices. The topo-
logical condition implies that these matrices are inverses of each other. Thus
the problem of the existence of topological amplitudes is very easily solved for
simple closed curves in the plane.

Now we go to knots and links. Any knot or link can be represented by
a picture that is configured with respect to a vertical direction in the plane.
The picture will decompose into minima (creations) maxima (annihilations)
and crossings of the two types shown below. (Here I consider knots and links
that are unoriented. They do not have an intrinsic preferred direction of travel.)
See Figure 49. In Figure 49, next to each of the crossings we have indicated
mappings of V ⊗ V to itself , called R and R−1 respectively. These mappings
represent the transitions corresponding to these elementary configurations.

That R and R−1 really must be inverses follows from the isotopy shown in
Figure 50 (This is the second Reidemeister move.)

We now have the vocabulary of cup,cap, R andR−1. Any knot or link can
be written as a composition of these fragments, and consequently a choice of
such mappings determines an amplitude for knots and links.
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Figure 49: Knot Amplitude

Figure 50: Second Reidemeister Move

In order for such an amplitude to be topological we want it to be invariant
under the list of local moves on the diagrams shown in Figure 51. These moves
are an augmented list of the Reidemeister moves (See Figure 4 in section 2),
adjusted to take care of the fact that the diagrams are arranged with respect to
a given direction in the plane.

The equivalence relation generated by these moves is called regular isotopy.
It is one move short of the relation known as ambient isotopy. The missing move
is the first Reidemeister move shown in Figure 4 of section 2.

In the first Reidemeister move, a curl in the diagram is created or destroyed.
Ambient isotopy (generated by all the Reidemeister moves) corresponds to the
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full topology of knots and links embedded in three dimensional space. Two link
diagrams are ambient isotopic via the Reidemeister moves if and only if there is
a continuous family of embeddings in three dimensions leading from one link to
the other. The moves give a combinatorial reformulation of the spatial topology
of knots and links.

By ignoring the first Reidemeister move, we allow the possibility that these
diagrams can model framed links, that is links with a normal vector field
or,equivalently, embeddings of curves that are thickened into bands. It turns
out to be fruitful to study invariants of regular isotopy. In fact, one can usually
normalise an invariant of regular isotopy to obtain an invariant of ambient iso-
topy. We have already discussed this phenomenon with the bracket polynomial
in section 5.

As the reader can see, we have already discussed the algebraic meaning of
Moves 0. and 2. The other moves translate into very interesting algebra. Move
3., when translated into algebra, is the famous Yang-Baxter equation. The
Yang-Baxter equation occurred for the first time in problems related to exactly
solved models in statistical mechanics (See [9]). All the moves taken together
are directly related to the axioms for a quasi-triangular Hopf algebra (aka quan-
tum group). We shall not go into this connection here.

There is an intimate connection between knot invariants and the structure
of generalized amplitudes, as we have described them in terms of vector space
mappings associated with link diagrams. This strategy for the construction of
invariants is directly motivated by the concept of an amplitude in quantum me-
chanics. It turns out that the invariants that can actually be produced by this
means (that is by assigning finite dimensional matrices to the caps, cups and
crossings) are incredibly rich. They encompass, at present, all of the known in-
variants of polynomial type (Alexander polynomial, Jones polynomial and their
generalisations.).

It is now possible to indicate the construction of the Jones polynomial via
the bracket polynomial as an amplitude, by specifying its matrices.

The cups and the caps are defined by (Mab) = (Mab) = M where M is the
2× 2 matrix (with ii = −1):

M =

(
0 iA

−iA−1 0

)
.

Note that MM = I where I is the identity matrix. Note also that the
amplitude for the circle is

ΣabMabM
ab = ΣabMabMab = Σab(Mab)

2 = (iA)2 + (−iA−1)2 = −A2 −A−2.
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Figure 51: Augmented Reidemeister Moves For Regular Isotopy

The matrix R is then defined by the equation

Rabcd = AMabMcd +AIac I
b
d.

Since, diagrammatically, we identify R with a (right handed) crossing, this
equation can be written diagrammatically as:

Figure 52: Bracket Identity

Taken together with the loop value of A2 − A−2, these equations can be
regarded as a recursive algorithm for computing the amplitude.

This algorithm is the bracket state model for the (unnormalised) Jones poly-
nomial [38]. This model can be studied on its own grounds as we have already
done in section 5.
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Figure 53: Amplitude for the Circle

9 Topological Quantum Field Theory- First Few
Steps

In order to further justify the idea of topology in relation to the amplification
of Dirac notation, consider the following scenario. Let M be a 3-dimensional
manifold; that is, a space that is locally homeomorphic to Euclidean three di-
mensional space. Suppose that F is a closed orientable surface inside M dividing
M into two pieces M1 and M2. These pieces are 3-manifolds with boundary.
They meet along the surface F. Now consider an amplitude 〈M1|M2〉 = Z(M).
The form of this amplitude generalizes our previous considerations, with the
surface F constituting the distinction between the “preparation” M1 and the
“detection” M2. This generalization of the Dirac amplitude 〈a|b〉 amplifies the
notational distinction consisting in the vertical line of the bracket to a topo-
logical distinction in a space M. The amplitude Z(M) will be said to be a
topological amplitude for M if it is a topological invariant of the 3-manifoldM.
Note that a topological amplitude does not depend upon the choice of surface
F that divides M.

From a physical point of view the independence of the topological amplitude
on the particular surface that divides the 3-manifold is the most important prop-
erty. An amplitude arises in the condition of one part of the distinction carved
in the 3-manifold acting as “the observed” and the other part of the distinction
acting as “the observer”. If the amplitude is to reflect physical (read topological)
information about the underlying manifold, then it should not depend upon this
particular decomposition into observer and observed. The same remarks apply
to 4-manifolds and interface with ideas in relativity. We mention 3-manifolds
because it is possible to describe many examples of topological amplitudes in
three dimensions. The matter of 4-dimensional amplitudes is a topic of cur-
rent research. The notion that an amplitude be independent of the distinction
producing it is prior to topology. Topological invariance of the amplitude is a
convenient and fundamental way to produce such independence.

This sudden jump to topological amplitudes has its counterpart in mathe-
matical physics. In [88] Edward Witten proposed a formulation of a class of
3-manifold invariants as generalized Feynman integrals taking the form Z(M)
where Z(M) =

∫
dAexp[(ik/4π)S(M,A)].

Here M denotes a 3-manifold without boundary and A is a gauge field (also

59



called a gauge potential or gauge connection) defined on M. The gauge field is
a one-form on M with values in a representation of a Lie algebra. The group
corresponding to this Lie algebra is said to be the gauge group for this particular
field. In this integral the “action” S(M,A) is taken to be the integral over M of
the trace of the Chern-Simons three-form CS = AdA+ (2/3)A3. (The product
is the wedge product of differential forms.)

Instead of integrating over paths, the integral Z(M) integrates over all gauge
fields modulo gauge equivalence.

This generalization from paths to fields is characteristic of quantum field
theory. Quantum field theory was designed in order to accomplish the quan-
tization of electromagnetism. In quantum electrodynamics the classical entity
is the electromagnetic field. The question posed in this domain is to find the
value of an amplitude for starting with one field configuration and ending with
another. The analogue of all paths from point a to point b is ”all fields from
field A to field B”.

Witten’s integral Z(M) is, in its form, a typical integral in quantum field
theory. In its content Z(M) is highly unusual. The formalism of the integral,
and its internal logic supports the existence of a large class of topological in-
variants of 3-manifolds and associated invariants of knots and links in these
manifolds.

Invariants of three-manifolds were initiated by Witten as functional integrals
in [88] and at the same time defined in a combinatorial way by Reshetikhin and
Turaev in [74]. The Reshetikhin-Turaev definition proceeds in a way that is
quite similar to the definition that we gave for the bracket model for the Jones
polynomial in section 2. It is an amazing fact that Witten’s definition seems to
give the very same invariants.

We are not in a position to go into the details of this correspondence here.
However, one theme is worth mentioning: For k large, the Witten integral is
approximated by those gauge connections A for which S(M,A) has zero varia-
tion with respect to change in A. These are the so-called flat connections. It is
possible in many examples to calculate this contribution via both the functional
integral and by the combinatorial definition of Reshetikhin and Turaev. In all
cases, the two methods agree (See e.g. [27, 63]). This is one of the pieces of
evidence in a puzzle that everyone expects will eventually justify the formalism
of the functional integral.

In order to obtain invariants of knots and links from Witten’s integral, one
adds an extra bit of machinery to the brew. The new machinery is the Wilson
loop. The Wilson loop is an exponentiated version of integrating the gauge field
along a loop K. We take this loop K in three space to be an embedding (a
knot) or a curve with transversal self-intersections. It is usually indicated by
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the symbolism

tr(Pexp(

∫
K

A)).

Here the P denotes path ordered integration - that is we are integrating and
exponentiating matrix valued functions, and one must keep track of the order
of the operations. The symbol tr denotes the trace of the resulting matrix.

With the help of the Wilson loop function on knots and links, Witten [88]
writes down a functional integral for link invariants in a 3-manifold M :

Z(M,K) =
∫
dAexp[(ik/4π)S(M,A)]tr(Pexp(

∫
K
A)).

Here S(M,A) is the Chern-Simons Lagrangian, as in the previous discussion.

If one takes the standard representation of the Lie algebra of SU(2) as 2× 2
complex matrices then it is a fascinating exercise to see that the formalism of
Z(S3,K)(S3 denotes the three-dimensional sphere.) yields the original Jones
polynomial with the basic properties as discussed in section 1. See Witten’s
paper [88] or [52] for discussions of this part of the heuristics.

This approach to link invariants crosses boundaries between different meth-
ods. There are close relations between Z(S3,K) and the invariants defined by
Vassiliev (See [7, 52]), to name one facet of this complex crystal.

9.1 Links and the Wilson loop

We shall now indicate an analysis the formalism of this functional integral that
reveals quite a bit about its role in knot theory. This analysis depends upon
some key facts relating the curvature of the gauge field to both the Wilson loop
and the Chern-Simons Lagrangian. To this end, let us recall the local coordi-
nate structure of the gauge field A(x), where x is a point in three-space. We can
write A(x) = Aak(x)Tadx

k where the index a ranges from 1 to m with the Lie
algebra basis T1, T2, T3, ..., Tm. The index k goes from 1 to 3. For each choice
of a and k, Aak(x) is a smooth function defined on three-space. In A(x) we sum
over the values of repeated indices. The Lie algebra generators Ta are actually
matrices corresponding to a given representation of an abstract Lie algebra.

9.2 Difference Formula

One can deduce a difference formula for the Witten invariants from the formal
properties of the functional integral. Let K+ and K− denote knots that differ at
a single crossing with + and − signs respectively, and K∗∗ the result of replacing
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the crossing by a transverse singularity ( i.e. with distinct tangent directions for
the two local curve segments). We take K∗ to denote the insertion of a graphical
node at the transverse crossing, as we have done in our discussion of the Vassiliev
invariant. The notation K∗∗ indicates that the curve intersects itself in space
at one point. Let K∗∗TaTa denote the result of placing the matrices of the Lie
algebra basis into the Wilson line at the singular crossing as shown in Figure 54.

Figure 54: Lie Algebra Insertion

These matrices become part of the big matrix product that generates the
Wilson line. Then, up to order (1/k) one has the difference relation (See [52]):

Z(K+)− Z(K−) = (4π/k)Z(K∗∗TaTa).

This formula is the key to unwrapping many properties of the knot invariants.
It shows how the Lie algebra weight systems that we discussed earlier are im-
plicit in the structure of Witten’s functional integral. In a sense, the functional
integral supplies the necessary ingredients to convert the bare-bones of a weight
system into a sequence of Vassiliev invariants.

9.3 Graph Invariants and Vassiliev Invariants

Recall, from section 6, that V (G) is a Vassiliev invariant if

VK+
− VK− = VK∗ .

V (G) is said to be of finite type k if V (G) = 0 whenever |G| < k where |G|
denotes the number of 4-valent nodes in the graph G. See section 6.

With this definition in hand, lets return to the invariants derived from the
functional integral Z(K). We have that Z(K+)−Z(K−) = (4π/k)Z(K∗∗TaTa).
This formula tells us that for the Vassiliev invariant associated with Z we have

Z(K∗) = (4π/k)Z(K∗∗TaTa).
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Furthermore, if Vj(K) denotes the coefficient of (4π/k)j in the expansion of
Z(K) in powers of (1/k), then the ambient difference formula implies that (1/k)j

divides Z(G) when G has j or more nodes. Hence Vj(G) = 0 if G has more than
j nodes. Therefore Vj(K) is a Vassiliev invariant of finite type. (This result was
proved by Birman and Lin [13] by different methods and by Bar-Natan [7] by
methods equivalent to the above.)

The fascinating thing is that the ambient difference formula, appropriately
interpreted, actually tells us how to compute Vk(G) when G has k nodes. This
result is equivalent to the description of weight systems derived from Lie al-
gebras that we described in section 7. Thus the approach to link invariants
via the functional integral motivates and explains the fundamental structure of
Vassiliev invariants.

This deep relationship between topological invariants in low dimensional
topology and quantum field theory in the sense of Witten’s functional integral
is really still in its infancy. This is true at the time of this writing, twenty seven
years since Witten’s breakthrough relating the Jones polynomial with quantum
field theory. There will be many surprises in the future as we discover that what
has so far been uncovered is only the tip of an iceberg.
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