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STATISTICAL MECHANICS AND THE JONES POLYNOMIAL
Louis H. Kauffman

ABSTRACT. This paper studies a relationship between the formalism
of knot theory and certain models in statistical mechanics. It is
shown how the partition function for the Potts model may be computed
from an associated link diagram, and how this provides a common al-
gorithmic model with the Jones polynomial. Certain features of bota
Jones polynomial and the Potts model can be treated in common, such
as the appearance of the Temperley-Lieb algebra for braid diagrams
and the geometry of the ice-model for piecewise linear diagrams.

I. INTRODUCTION

In his paper [3) on the Jones polynomial, Vaughan Jones described a con-
nection between his new polynomial invariant of links and the Potts model in
statistical mechanics. Both the Potts model and the Jones polynomial involve
traces defined on a von Neumann algebra A[n]. For the knot theory, Jones im-
plicated this algebra by constructing a representation to it with domain the
Artin braid group B[n]. In statistical mechanics the same algebra is used to
calculate the partition function for the Potts model (also by a trace), and
the algebra is known to the physicists as the Temperly-Lieb Algebra [1].

The purpose of this paper 1is to exhibit a direct diagrammatic connection
between these two subjects. In particular, I show that the partition function
of the Potts model for a planar lattice can be calculated from a link diagram
that is canonically associated with the lattice. (A link diagram is a schema-
tic planar picture of a knot or link embedded in three-dimensional space.)

The algorithm for computing the partition function from the link diagram is a
special case of a three-variable polynomial defined on such diagrams that I
call the bracket polynomial (denoted [L]) for a diagram L. Sée [s51, [6]1.).

The Jones polynomial, up to a normalization, is also a special case of the
bracket polynomial. In this way, the Jones polynomial and the Potts partition
function are both aspects of a single algorithm defined on diagrams of knots
and links.
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The actual relation of the partition function of the Potts model with
topological properties of knots and links is an open question. Remarkably,
the Potts partition function for a planar lattice G is computed by bracket
for an alternatiﬁg link K(G). (An alternating link has a weaving pattern so
that a given thread is seen to pass alternately under and over successive
strands.) If K(G) 4s reduced (see section 2), then the long-standing con-
jectures of Tait and Little imply that [K(G)] 1s an invariant of the topo-
logical type of K(G). Thus, if this conjecture is true, then the Potts par-
tition function of the lattice G 1is actually a topological invariant of the
associated link K(G). This leads to many questions regarding the meaning of
this connection between physics and topology.

The paper 1s organized as follows. Section II constructs the general
bracket, and shows how it specializes to the Jones polynomial and to the di-
chromatic polynomial for planar graphs. Section III gives the background for
the Potts model, shows that the Potts partition function is a dichromatic
polynomial, and relates these results to the discussion of the dichromate in
gection II. Section IV discusses the diagram monoid of states for the bracket,
and its relation to computing the dichromatic polynomial and the Potts parti-
tion function. This formalism is related to the Temperly-Lieb algebra via a
diagrammatic tensor formalism due to Roger Penrose [10]. Section V returns to
the Potts model, and shows how our viewpoint illuminates the discussion of the
critical point for the ferromagnetic case. The link K(G) and its mirror
image K(G)* correspond to the graph G and its dual G . This clarifies
the structure of an argument [16} locating the conjectured critical point for
the model.

Finally, in section VI, I show how a translation of the 6-vertex ice-model
{1] of statistical mechanics into our knot-theoretic formalism gives rise to
a different state-expansion for the bracket in terms of arrow coverings and
local angular data for piecewise-linear diagrams. This gives a new formalism
for the Jones polynomial and lets us raise further questions about the topo-

logy and the physics.

II. THE GENERAL BRACKET

I first define a three-variable polynomial [K] (A,B,d) ¢ Z[A,B,d] (2
denotes the integers) defined for unoriented link diagram K. The polynomial
[K] will be referred to as the general bracket polynomial or the square -

bracket. Only by specializing its variables does the bracket become a topo-
logical invariant, but it is well-defined on link diagrams as combinatorial

entities.
First recall a few basic facts about link diagrams and their relationship

with planar graphs: A universe (or link shadow) is a planar graph with four
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edges locally incident to each of its vertices. See Figure 1. A link diagram
is a universe endowed with extra structure at each vertex, indicating a cross-
ing. Again see Figure 1. A link diagram can be seen as a schematic drawing

of a knot or link and it can be regarded as a special species of planar graph.

‘I’rsi:ml universg
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Figuie 1

There 1s another planar graph associated with a link diagram K: This
graph, G(K), is obtained by first checkerboard shading the diagram K as in
Figure 2 (let the unbounded region be unshaded). The vertices of G(K) are
in one-to-one correspondence with the shaded regions of K. Two vertices are
joined by an edge 1f the two regions touch at a crossing in the knot diagram.

The graph G(K) depends only upon the underlying universe for K. If
we want a complete graphical translation of the link diagram, this can be
done by assigning signs (+1 or -1) to the edges of G(K) to indicate the
unoriented crossing types (See [5].).

The association U ——>> G(U) of a planar universe to a planar graph is
invertible. The inverse process takes a planar graph, G, and produces a uni-
verse, M(G). M(G) is sometimes called the medial graph for G. The medial
graph is produced by placing a crossing on each edge of G, and then connect-
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ing M(G) as shown in Figure 3.

6(K)

Checkerboard Shading and Associated Graph

% :i ;Eém(ﬂ
C] %

M(6)

Figure 3

Note that in producing the medial graph M(G) from the planar graph G,
we extend each crossing segment (of the crossings placed at each edge of G)
toward the corresponding vertex, connecting it to a crossing segment from the
next edge that is incident to this vertex - in clockwise or counterclockwise

order. By this construction, planar graphs and universes (shadows of link
diagrams) are in one-to-one correspondence.
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This is the basic connection between link diagrams and graph theory.
With the correspondence of graph and medial graph in hand, we are prepared
to define the general bracket, and to begin translations between the language

of link diagrams and the language of graph theory.

DEFINITION 2.1. Let K be a link diagram. The three-variable bracket poly-
nomial 1is defined by the axioms:

L [ ][ =D ]
2. [Ox]-d[x]
3.[O]=d

The small diagrams stand for parts of otherwise identical larger diagrams;
the circle next to the letter K 1in 2, denotes the disjoint union of K

with a Jordan curve., Thus

[oo0]-[@0 ]-[@® ]-+

Some words of explanation about this definition are in order. First, the
assignment of A and B to the two modes of splicing the crossing in equa-
tion 1 is determined as follows. The form of the crossing distinguishes a
pair of local regions by the rule: rotate the overcrossing line counterclock-

wise until it coincides with the undercrossing line.

DY,

The two regions swapt out by this rotation are labelled A. The other two are
labelled B. When splitting the vertex fuses the two A-regions, I say that
this splitting opens an A-channel. This is the part labelled A in formula

1. The other split opens the B-channel. See Figure 4.

The bracket is then well-defined recursively. Note that the order of
applications of formula 1. does not affect the final result, since the choice
of A or B 1is entirely local. Note also‘that switching a crossing reverses
the roles of A and B. Thus
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Figure 4

Here are a few sample bracket calculations:

o [Co]-[c=0]e>]

o [@]

= Bd + Ad
(111) l:‘ § ,]

@ I'{ ]

= Bd” + Ad

L QD [+ CD |

= A(Bd + Ad%) + P(Bd® + Ad)

= a24% + 8%a% + 2ama

In gemeral, we can give an explicit formula for the bracket by considering
the full recursion. I define a state S of K as the configuration of sim-
ple closed curves in the plane obtained by splitting each crossing in one of
the two possible ways. There are 2v states where V denotes the number of
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crossings in the diagram K. See Figure 4 for an example of a state for the
trefoil diagram. The formula for [K] will sum over the contributions of
each state.

Let S be a state of K. Let 1.(5) denote the number of A-channels
in S, and let j (S) denote the number of B-channels. Let |S| denote
the number of circuits in S, Then the general bracket is given by the form-
ula:

AiK(S)B’K(S)dI sl

(K] = 7§
s

EXAMPLE 1. (The Jones polynomial)

Let B = ACD and let d = -A% - A(-z). For this specialization, let

k> = (@ 1)[K]. (See [4], [5], [6].) Then <K> satisfies the axioms:

LLDE> -2 L=> +uhloc
. KOKy - - KK

3. <o> -1

This special bracket is invariant under the Reidemeister moves of type II and

type III. Under type I moves <K> is multiplied by -A3 or its inverse.
For K an oriented link, let w(K) denote the writhe of K, where this

number is the sum of the signs of crossings. Crossing signs are +1 or -1

as shown below.

-7 ~

‘/+.:L -4

Now define a normalized polynomial by the formula

fo= (-0 CFEy s,

In [5] I show that fK is an ambient isotopy invariant of the oriented link

K. Furthermore, if VK(t) denotes the original Jones polynomial [3], then

(-1/4)
£t ) = V(6.
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This gives a model for the Jones polynomial as a (normalized) specialization
of the general bracket.

The Jones po;ynomial VK(t) ‘1s an invariant of ambient isotopy for
oriented knots and links, and it is the first polynomial invariant capable of
detecting chirality for many knots. A knot is said to be chiral if it is not
ambient isotopic to its mirror image (obtained by switching all crossings).
The bracket provides an elementary route to the Jones polynomial. For the
reader interested in pursuing this direction, I record here the three types of

Reidemeister moves:

T D C

B N

Ambient isotopy is generated diagramatically by these three types of local
move. Each small diagram represents a corresponding situation in a larger
diagram.

The existence of combinatorial invariants such as the Jones polynomial
poses extraordinary problems for classical knot theory. For example, it is
not known as of this writing whether VK(t) detects knottedness in all cases.
In other words, does VK(t) = 1 imply that a knot K 1s unknotted (ambient
isotopic to an unknotted circle)?

EXAMPLE 2. (Chromatic Polynomial)

Let G be a planar graph. Let C[G](q) denote the number of ways to
properly color G with q colors. A proper coloring of G 1s an assignment
of colors to the vertices of G so that two vertices sharing an edge are
colored differently. The coloring polynomial satisfies the following graphi-
cal axioms:
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1. C = C -C
??(' > 6" < a’é:,

2. C = qC

oG G

The first axiom states that if three graphs G, G', G" are related so that
G' 1is obtained from G by deleting an edge, and G" 1is obtained from G by
collapsing the same edge, then

cle] = c[6'] - clG"].

The proof is due to Whitney [15] in his 1932 paper, "A logical identity in
mathematics". The logical identity is

[Different] = [Al1l] - [Same].

The second axiom states that the number of proper colorings of a graph
that is augmented by a disjoint vertex is q multiplied by the chromatic num-
ber of the original graph.

By using the medial graph M(G) and the checkerboard construction, we can
begin a translation of the chromatic polynomial in the direction of the gene-
ral bracket.

¢ Se— el ¢ %M(G)“%
' Se < &» 9 Cu(c')‘_,% %
e %"&m

We rewrite the axioms for the chromatic polynomial in terms of shaded uni-

verses as follows:

L [ R |- [B &) <[]

2. C[B u M] = qC[M] where B 1is any shaded component that is free of
crossings.

For example,
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G = e————=, M) -~ @D
‘@ -~ 0P ‘P

2
=q - q = q(q-1).

In general, for a shaded universe M(G), we can expand C[M(G)]} via the same
states as the bracket expansion, except that we keep track of the number of
shaded regions, and it is necessary to classify split vertices as internal or

external:

external internal

The open channel for an external vertex is unshaded, while the channel for an
internal vertex is shaded.

Let M be a shaded universe, and S(M) 1its collection of shaded states.
Let I(S) denote the number of internal vertices in the state S. Let “SI

denote the number of shaded components in the state S. Then our axioms imply

that

S(M)

This gives a specific algorithm for computing chromatic polynomials. The al-
gorithm at this level is of independent interest. I have been investigating
its behaviour as a quasi-physical system in collaboration with Mario Rasetti,
Corrado Agnes and Amelia Sparavigna of the Politecnico di Torino, Torino,
Italy. We compute C[G] by listing the states, starting with the state with
maximal number of shaded components (all external vertices). The algorithm
moves through the "space of states" changing only one vertex at a time (via a
gray code enumeration). We watch the partial sums for C[G). On a log-log
plot of partial sum versus number of iterations (in the listing of states) the
picture suggests a remarkable linearity of relationship for the chromatic num-
bers of subgraphs. These numbers arise after every 2" steps. In other
words, it seems to be possible to estimate the chromatic number rather long

before the computation is completed! See Figure 5 for an example of one of
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our plots. This algorithm, and our joint results will be reported in more de-
tail elsewhere.

I called this algorithm a quasi-physical system because it perforus an
artificial ergodic path through the space of states of the system. Thus it is
a very idealized model of the way a physical system may move from state to
state. Obviously, there is much experimental-mathematical and theoretical
work to be done here. As we shall see in the next section, the chromatic
polynomial (and its generalization to the dichromatic polynomial) is a central

feature in certain models in statistical mechanics.

EXAMPLE 3. (More translation between link diagrams and graphs).

We now translate the chromatic polynomial into a direct special case of
the bracket. The following lemma is the key. It gives the relation between

number of shaded components and number of circuits in a state.

LEMMA 2.2. Let M = M(G) be the shaded universe corresponding to a planar
graph G. Let G have N vertices. Let S be a state of M with ISI
shaded components, ISI circuits, and I(S) 1internal vertices. Then

Isl = (a/2)(ny - 1¢s) + |s]).

PROOF: Associate to each state S a graph G(S): The vertices of G(S) are
the vertices of G (our given graph G), one for each shaded region of

M= M(G). Two vertices of G(S) are connected by an edge exactly when this
edge corresponds to an interior vertex of S. Thus G(S) has I(S) edges.

I assert that G(S) has [S| -S| + 1 faces. (Count faces of G(S) by
counting circuits of S, but discard circuits forming outer boundaries of
shaded components of é; add 1 to count the unbounded face.) By construction,
G(S) has ﬂSI components. According to Euler

(vertices) - (edges) + (faces) = (components) + 1

for a planar graph. Hence

N-1(s) + (|s| -Ush + 1) =fs}+ 1.

This completes the proof.
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Examine Figure 6 for an example of the Lemma.

Isl = 2
Is| =3

I(S) = 3

Isl = 38 - 1¢s) + |sD

Figure 6

We are about to prove that the chromatic polynomial for a planar graph G
can be computed by a bracket applied to an alternating link K(G) associated
with G. Two diagrammatic facts are relevant to the construction of K(G):

Fact 1. Every connected universe is the shadow of exactly two alternating
1link diagrams. (In an alternating diagram the weave passes alternately under

and over as one moves along a strand.)

Fact 2. One of the diagrams alluded to in Fact 1 can be obtained as follows:

1. Shade the universe U to form a shaded universe M. (The
unbounded region is unshaded in our convention.)

2. Replace each shaded crossing in M by a diagrammatic crossing
of type-A, as indicated below.

Call the resulting link K(G). See Figure 7 for an illustration of this pro-

cess,
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I shall make the translation for a generalization of the chromatic poly-
nomial -~ the dichromatic polynomial, Z[G)(q,v). The dichromatic polynomial

has axioms:

1. ZH =Z> ( +v2*

2 =
2. ZOG qZ

G

Thus 2[G])(q,-1) = C[G](q), giving the chromatic polynomial as a special
case wvhen the variable v 1in the dichromatic polynomial is equal to minus

one.

EXAMPLE:
2
Zq o~ Zoo T Vig=4q *+Vq

Z O =2g +VZig = q(1+v)

PROPOSITION 2.3. Let G be a planar graph with N vertices. Let K(G) be
the alternating link diagram associated with G by the process described

above. For any diagram K 1let {K} be the special bracket defined by

-1/2 1/2

{K} = [K](q v,1,9°'“). That is, K satisfies the recursion
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1

{=>< )=} {> <!
o[ OK }-atuw

{-_O} Y

Then the dichromatic polynomial is given by the special bracket applied to
K(G) wvia the formula

N/2
q

Z =

G {(K(@G)1}.

PROOF: Just as in our discussion of the chromatic polynomial we find the di-
chromatic polynomial is given by a summation over shaded states of the uni-

verse M(G) by the formula

Z

- - 1(s) Jsh
G ZM(G) S(ZM)V ql .

Now use the formula from Lemma 2.2.

§ L /20-1(5) + Is])
s(M)

ZM=

* N/2 -1/2 \I(S), 1/2,]|S]|.
™) ZM'=q/ X(ql/v)()(q/)lI

s(M)
This gives a formula for the dichromatic polynomial in terms of internal ver-
tices and circuits in the states S.

Note that internal vertices in states of M(G) are in one-to-one corres-

pondence with type-A splits in the states of K(G).

The theorem follows from this remark, formula (*), and the form of the state

expansion of the general bracket.
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EXAMPLE. ® —oG GEP vo) S k@©)
{R(G)} = {OO }* q—llzv{wj} +{O O} = qM2ql2 1 g

(K@)} =v + q
qN/2

{K(G)} = qv + q°.

SUMMARY. We have defined a general bracket polynomial on link diagrams and
have shown how it specializes to the Jones polynomial for links, and to the
dichromatic polynomial for planar graphs via the use of the alternating link
diagram associated to a planar graph G.

III. THE POTTS MODEL AND THE DICHROMATIC POLYNOMIAL.

Here we discuss a model from statistical mechanics. The framework con-
sists in a lattice G, taken to be any planar graph. (It is also of interest
to consider lattices in three dimensional space.) The states of the physical
system associated with G consist in assignments of "spins'" to the vertices
of G. The spins are assumed to be available in q discrete values, where
q 1s a positivé integer. Thus we may take the neutral term color in place
of spin, and consider a state to be an assignment of colors to the vertices of
G (not necessarily a proper coloring). The colors may correspond to spins of
particles located at these vertices, or with other localizable and discrete
physical states.

Hence we shall speak of states o of a graph G where o = {01} is an

assignment o; to each vertex 1 of G where o, has q possible values.

These states should not be confused with the state: associated with a link
diagram of section 2. If necessary, I shall refer to the latter as diagram
states and the former as graph states. A graph state is simply any assignment
of q colors to the vertices of a graph G. A diagram state is a mode of
splitﬁing the crossings of a link diagram.

To each state o of a graph G there is an associated energy, E(c), and

for the ensemble of all the system's states there is the partition function

Z= 2 e-%E(o)

]
vhere T denotes temperature, and k 1is a constant (Boltzman's constant).
From the partition function can be deduced many physical properties of the
system. For example, the probability p(E) of the system being in a state
of energy E 1s given by the formula
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When the partition function itself is written in exponential form

7 = o F/KT

then F 1s the so-called free energy of the system. The average energy U
is the expectation value

U = z E(o)e-E(O)/kT

g

/2

and one can show that

U= F + ST

where T denotes temperature, as above, and S = -3F/3T 1s the entropy of
the system.

It should be mentioned that the intent of this type of model is to create
a mathematical situation that embodies the characteristics of a system of in-
teracting particles and its changes under changes of temperature. Thus, on

physical grounds, one would expect the system to exhibit phase transitionm.

This means, for example, that as the temperature is started at a high value
and then lowered, the distributions of spins will go from very random (at high
temperature) to clumping into domains'of alignment (at low temperature). The
corresponding transition in the distribution of probable states should then be
exhibited as a discontinuity or sharp change in the partition function (for
very large lattices) at certain critical temperatures.

Historically, very simple rules for the energy of a state have been con-

sidered. The Potts model [1] assigns energy by the formula

E(c) =¢ J 6&(o

»9,)
<, 1

where i1 and J are vertices of G, ¢ 1is +l1, <i,j> denotes an edge con-
necting 1 and j, and & is the Kronecker delta:

1 1f x =y
6(}(,}’) -
0 1f x ¥ y.

In the case q = 2, the Potts model is equivalent to the Ising Model. The
Ising model was solved exactly by Onsager in the 1940's. It is the first case
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of an exactly solved model, and was shown to have a phase transition for the
1imit of a square N x N planar lattice as N goes to infinity. No exact
expression is known for the limit of the Potts partition function on this lat-
tice for general gq.

The epsilon (e = +1) in this expression for the energy divides the Potts
models into two cases: anti-ferromagnetic (¢ = +1) and ferromagnetic

(¢ = -1). Consider the ferromagnetic case. Here it is higher energy for
neighboring spins to be different. Thus at low energies (low temperatures)
one expects neighboring spins to be aligned as happens in magnetic domains in
iron or other magnetic materials. In the anti-ferromagnetic case the low
temperature domains will correspond to regions of the graph that are properly
colored (neighboring spins different). Physically distinct, these two cases
have the same mathematical formalism.

We shall now show that the partition function for the Potts model for G

planar is a special case of the general bracket. 1In fact, I will give a proof

of the well-known [12] fact that the Potts partition function is a dichromatic
polynomial. Then we are in a position to apply our Proposition 2.3, express-

ing the dichromatic polynomial as a bracket.

PROPOSITION 3.1. Let G be a planar graph. Let Z be the partition func-
tion for the q-state Potts model on G. Let

€ /xT

v = - 1.

Then the partition function is the dichromatic polynomial in q and wv.

Z = 2[G](q,v)

PROOF: By the definition of the partition function, we have the following

sequence of equalities

z=Je kT =Je kT ) a(oi,oj)
o] c <i,j>
-5 o kT 800409y
o <i,j>
=] 1 @+vo,00),v=e T-1,
o <1,§> .

It is easy to see that this last formula is the dichromatic polynomial in q
and v. Just verify the recursive axioms (section II) directly. This comp-
letes the proof.
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Since we know how to translate the dichromatic polynomial into a bracket
polynomial, we can finally state

COROLLARY 3.2. Let Z[G] be the gq-state Potts partition function for a
€
planar graph G. Let v = e kT _ 1 where k is Boltzman's constant and T

is the temperature. Then

N/2

z[G] = q " “{K(G)}

where N 1is the number of vertices of G, and K(G) 1s the alternating link
associated with G (as in section II). The symbol (K} denotes the special
bracket defined by

o> (=<} (>]
2.{: O K :}_ ql/z{x},CO}- &2,

PROOF: Apply 2.3 to 3.1.

In [9] we shall discuss specific results of this translation for the
Potts model. It is remarkable that both the Jones polynomial and the Potts
model fit into exactly the same combinatorial framework.

One may wonder whether there is a direct relation between the topology of
the 1link K(G) and the Potts model. This may be the case. It follows from
the Tait flyping conjecture that [K(G)](A,B,d) (the general bracket) is a

topological invariant of K(G) whenever G 1is a connected planar graph

without isthmus. The Tait conjecture states that topological equivalences of
such alternating knots are generated by special moves (flypes) that each pre-
serve the alternating structure. -These moves preserve the general bracket,
and hence they preserve the Potts partition function.

This means that (modulo the Tait conjecture) we can take a planar lattice
G, form the alternating link K(G), transform this link topologically to any
other alternating link K' (in reduced form), take the planar graph G' of
K'. Then G and G' will have the same partition function. 1In [9] we shall
explore examples of this process.

The full Tait conjecture is not yet proved, but some of its corollaries
have been verified (minimality and invariance of the number of crossings and
of the writhe for reduced alternating diagrams). These verifications depend
crucially on the Jones polynomial, the bracket model, and on a two-variable

generalization of the Jones polynomial due to the present author (see [5],
(6], [10], [13], [14)).
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Much remains to be explored in this conduit between physics and topology.

REMARK: It is interesting to reformulate the general bracket as a generaliza-
tion of the Potts-model. To do this, we can regard any link diagram as cor-
responding to the medial graph of a signed graph G (G embedded in the
plane). By a signed graph G I mean that each edge of G 1s assigned +1.
This encodes the crossing type for the medial graph according to the conven-

tion
e e
_1 ——\
(- o £ —> ._____,¢<:::::::
Thus

- G— C— K
A

Changing all the signs creates the mirror image.

Letting K(G) denote the knot or link diagram corresponding to a signed
graph G, we then find (as in Proposition 2.3) that (K] = d'“w[c] where N
is the number of vertices in G, and W satisfies recursions:

1. w: + : - Adw[—‘—] + nw[—o -— :[
2, W: = : - ndw[—c—] +Aw[—0 o—]
3. w: o || c: - a%ute]

This generalized contraction-deletion algorithm can then be translated into a
corresponding energy model for signed graphs (with d2 spins per site, and
the interaction energy dependent on the sign of the bond). This model will

be investigated elsewhere.

IV. BRACKET, BRAID DIAGRAMS AND THE TEMPERLEY-LIEB ALGEBRA.

The n-gtrand braid group B[n] i1s generated by elementary braids

Oys O1s g Oy ey Op 45 O 4

18 shown in Figure 8.
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X X - H\X

% % n-1

Figure 8

A braid diagram is any specific diagram obtained by taking a word in these

generators. Thus alsi is the diagram

/

O ]
)

taken in this form (even though it is isotopic to the identity braid).
If b 1is a braid diagram, let b denote its closure, obtained by con-

necting top to bottom strands as shown in Figure 9. Let P(b) denote the
plat closure for braids with an even number of strands as also shown in
Figure 9.

As explained in [5], [6]), [B8], we cun represent any state in the expansion
for the general bracket for a braid diagram b as a product of generators
hl’hz""’hn-l of local splittings. These generators satisfy diagrammatic
relations as shown in Figure 10, and form a multiplicative monoid. We call
the diagram algebra the free additive algebra over this monoid, with coeffi-
cients in the polynomial ring in the variables A, B. The evaluation of the

bracket is invariant under the relations in the diagram algebra.



284 LOUIS H. KAUFFMAN

closure

plat closure

X
R)\ Y (&)) P(b)

Figure 9

Since, in the diagram algebra, hi = dhi’ it may seem appropriate to re-
gard d as a special element of the algebra. Since d commutes with all
elements it has the same status as the polynomial generators A and B. Thus
it is sometimes useful to regard the ring Z[A,B,d] as a coefficient ring
for the algebra. Note however, that as we have defined it, the diagram alge-~

bra is the free additive algebra over Z[A,B] that is generated multiplica-
tively by the diagram monoid.

In the expression of the relations for Figure 10 the letter d stands
for the closed loop. By using these relations we can expand the general
bracket, needing only to know the value of the bracket on a product of the
monoid generators. This value depends upon the type of closure, since the
value of the bracket on a disjoint collection of Jordan curves is d raised

to the number of curves. The case of plat closure is particularly interest-

LS
(XS
RS

%%

ing.
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K

+

N

{ 1e» Qs> d

y .
0~ OU
2

“ S HAA T s

u hhipaby = By
I~

ghy = by, [1-3] > 2

U
ki
N
U U
]

Generators and Relations for Diagram Monoid

Figure 10

As Figure 11 shows we have, for braids b' in »B[2n], the diagrammatic formula

HbH = P(b)H
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where B denotes the product h1h3h5 eee th-l = H.

UUU B=hhhb ... h
_ (\(‘\(\ 1PaPs <o Mopog

(here n = 3)

C

VaY;
QY o

o

2

> X all

2

nn

[HbH=P()H

Hrep(b)H = [b]H
where

—_
rep(ox) = Ah, + B

1

XL ¥ 1D ]

t.p(ui) = Bh‘ +A

RX}FLR 0]

Figure 11
A consequence of this is the following description for the general bracket on
the plat closure P(b):
1. The braid diagram b 1is given as a word in
Ope O seves Oy Oy

Replace each instance of % by Ahi + B, and each instance of
G, by Bhy +A.
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Call the resulting element of the diagram algebra rep(b).

2. Then Hrep(b)H = [P(b)]H 1is a valid identity in the
diagram algebra. By using the relations in the algebra
systematically, this formula provides an algorithm for
computing [P(B)].

287

EXAMPLE 1. b = 0,0, = § » P(b) = § ,rep(b)=(Ahl+B)2

2,2 2
Hrep(b)H hl(Ah1 + B) h1 hl(A hl + 2ABh1 +B )h1

= (a2a3 + 2ame? + Bzd)hl.

[P(b)] -|: § :l- (ad + B)zd

.. Hrep(b)H = [P(b)]H

Egﬁw

“French Sinnet"

K(G) = P(b(G))

b(G) = 0,0,0,04050,0,0,03050,0,, H = h)hshg
For {K}: rep(o,) = q-1/2v hy +1
rep(?i) =h + q-l/zv
— e
2 _ 1/2
hi q hi
<h1h111h1 =hy >
h,h, = h,h , |i-j] > 1
tly 1Y _J
N/2

{K(G)}, {K(G)}H = Hrep(b(G))H
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The formalism of this diagram algebra is identical to the Temperley-Lieb
Algebra [1] used in evaluating the Potts model. As the example above indi-
cates, the plat closure of the "French Sinnet™ braid is the alternating link
associated with é rectangular lattice in the plane. The calculation we have
indicated for the dichromatic polynomial in this example is exactly paralleled
in Baxter [1] in his chapter on the Potts model - but without mention of
braids. The entire formalism was invented in the lattice context.

Finally, it is worth indicating that the diagram algebra is actually a
"gkeleton" of a specific matrix representation for the algebra. Following
Penrose [11], et al, let

denote a Kronecker delta 62.

In general, let a diagram in the form

B, B, B

|
B,B, ... B
T = Tal(lz Qn
12 °°° "n
]
01 0.2 (!2 (!n

denote a matrix or tensor element. Depict contraction of indices (summation

over a repeated index) by connecting corresponding lines. Thus

B

O ™

™ R

B
ld
Let juxtaposition of these forms correspond to tensor product.

We may let

and
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a B aB
Then
€ v
h &——>p >J\ = Ma Buev
o 8
and

EV Ay - Ap
M Mch d(HaB“ )

h® &—>> > L
= dh

where /\
d= Mevuev «__» O )

In order to have the relations

we need that e ( @

L3 }e(

which is equivalent to the demand that

a 8 y &—» M MBY‘GY
aB a
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If MaB - HFB, then this requirement is equivalent to the demand that MM = I.
Thus we can take M to be a 2 x 2 Pauli matrix such as

0 /=1 A
M-
/Tal 0

and set
hy = (MOM) @IOIE .. 01<—» - |

hy=10 (M8M) O8I0 ...0I<—>» \\A\\

.
.
.

h

ey ~1010618...08M8M &P H\\A

This particular representation is specifically the algebra of Temperly and
Lieb. In this form note that

0 0 0 0

0 a 1 0 2
MO M= I A= A

0 1 | 0

0 0 0 0

(-2 - a3 (x 1)
12

<O = (A% - A" %)xk> .

2
I T (: 1)
1 a7t A

and recall that

Here reg:Bn + (Temperley-Lieb) is a representation of the braid group.

oi -+ Ahi + Afl, o A—lhi + A, Thus the formalism of the topological

bracket <K> (see section 1I, Example 1) lives in this algebra. It is a
nice exercise to see how to compute the topological bracket through this re-
presentation. The result is equivalent to Vaughan Jones' original construc-
tion of his polynomial for braids.

For the topological bracket we define <b> = <b> where b denotes the
closure of the braid b, as in Figure 9. Then for an element H in the dia-

gram monoid, <H> = dIH -1 where H denotes the number of disjoint closed

curves in H, and d = -2 _ a2,
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In order to detect this evaluation in the matrix algebra, define

and N, =N 8 ... 8 n (n-copies of n).

Let “n denote the matrix algebra we have constructed, representing the n-
strand diagram algebra. Let tr: Mn > z[A,A-II be the standard matrix trace.
Then for any H ¢ Mn’ we have the following trace formula for the bracket:

<H> = d'ltr(na).

This 18 our version of Vaughan Jones' trace formula for his polynomial. The
bracket "is" the trace.

.V. THE FERROMAGNETIC CRITICAL POINT

First an exercise about the general bracket. Let K be any link diagram,
*
and let K be its mirror image obtained by reversing all the crossings of
K. Suppose that K has c¢(K) crossings.

LEMMA 5.1. Under the above assumptions,
(K*1(a,8) = a/B)°® (k] (8%/a,5).
PROOF: Let g(K] = (A/B)°™)[K]. Then 1t 1s easy to check that
s[X] - (A%/B)g X] + Ag[ ) ( ]

from the expansion formula for the general bracket. It then follows by in-
duction that

g[K](A,B) = [K](A%/B,A).

Now use ([K"](A,B) = [K](A,B).
* -
Specialize this lemma to the bracket {K } where A = q
we find

1/Zv*, B=1 and

*1@ 2%, 1) = (7120 ¢ ® gy (12714 gy

In the case where K 1s the alternating link diagram associated with a
: *
rectangular lattice, then K 1s the diagram associated with its planar dual.

If (K} = {K}(q-llzv,l) then we see that we should make the identification
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2 o 12

in order to compare these models. (v and v* being the modified temperature
variables in each case). Thus
vw” = q,

A heuristic argument [16] then suggests that unless the critical point
occurs at v = v* there will, by duality, be at least two critical points,
(And this does not make sense physically.) Therefore, we expect the criti-
cality to be at

2

v- = q.
1

Here ekT -1 =v (ferromagnetic case), so that

1
k (1l + Vq)

Note that at this temperature CX}*{:X}+{ ) ( } Hence,

at this critcality the recursive expansion for the partition function is parti-

T

c = Tcritical =

cularly simple, and it is independent of crossing types, depending only on
the medial graph.
It would be very interesting to see this ferromagnetic critical point

verified by an exact calculation of the Potts model.

VI. ICE AND ANGLES.

In this section I explain a method for calculating the general bracket on
plecewise-linear link diagrams. The method depends on "arrow-coverings", a
state-notion derived from the ice model [1] in statistical mechanics. 1In the
ice-model (6-vertex model) the underlying graph M is 4-valent, hence it is
the shadow of a link diagram. An arrow-covering of M 1is a choice of orien-

tation for each M so that at each 4-valent vertex two arrows point into the

vertex and two arrows point out of it.

We shall also allow 2-valent vertices, but here the arrow covering must
give a consistent orientation across the vertex (one in and one out).
Figure 12 illustrates the possible arrow configuration at a vertex (four-

valent).



(a)

(a")

(b)

(")

(c)

(d)
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Arrow Configurat ion Split

Arrow Configurations and Their Corresponding Splittings
Figure 12

293



29 LOUIS H. KAUFFMAN

Each arrow configuration gives rise to one or two (see cases (c) and (d)
of Figure 12) modes of splitting the diagram at the vertex. We insist that
the splits be oriented so that the split diagrams inherit arrow coverings.

Let K be an unoriented link diagram, and let S denote the collection
of link diagrams states S, obtained by splitting vertices as in section 1.
Let S denote the collection of oriented states S where each simple closed
curve in S has been assigned an orientation. It is then easy to see that
each S in S closes to a unique arrow covering X ¢ A where A 1is the
set of arrow coverings of U (U 1is the shadow of K).

Since any simple closed curve ’b in a diagram state S will appear with

two orientations in the states S we shall write

where Z 18 a new variable. Then each 2-valent vertex will contribute a

power of 2Z, Ze, according to the rule

em /™ >
—, N e
/I N
W »i

Counterclockwise rotations give positive angles; clockwise rotations give
negative angles.
For a piecewise linear oriented simple closed curve the product

e1 e2 en 2% =2n
Z "2Z cee 2 over its vertices will equal Z or 2 according as the

curve is positively or negatively oriented.
By taking into account both orientations on a simple closed curve, and
summing these two products we retrieve d = 22" + 2-2“.

Now let A ¢ A be an arrow covering of a piecewise-linear (i.e., the

graph is composed of straight line segments) link shadow M. Let M be the
shadow of the link K. For each vertex v of M, define K(v) as follows:
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(1) If Vv is 2-valent then KA(V) = Ze(v) where 6(v) 1is

the angle corresponding to this vertex and arrow covering.

(11) If v 1is 4-valent, let v', v" the two local vertices
obtained by splitting the diagram according to the arrow

covering. Let KA(v) = the sum over allowed splittings
L] "
i(v)Bj(v)ze(v ) + 6(v™ here

A or B appear according to the usual rules of section 1.

d” e1 + e2
For example: 1if K = locally then K x = AZ
V4 A

wvhere v ,/
’
~J 6 )7(Q\SSF'
s ~

Each contribution KA(v) is strictly local, once the arrow covering has been

(there may be two) of A

[ ]
chosen. We then have

THEOREM 6.1. Let K be a link diagram represented piecewise linearly in the
plane. Let M be the shadow of K, and A the collection of arrow coverings
of M. Then the general bracket is given as a sum over all arrow coverings of

the products of the ice-angle contributions from each vertex of M:
K] =} T K,V).
Av

This theorem shows that the bracket is a generalized ice-model. In parti-
cular, the Jones polynomial is given by this formula, for we can write the
topological bracket in the form above, taking Z = /-1 A)I,'T This reformu-
lation of the bracket calculation in terms of strictly local data may pave the
way towards new (infinitesimal or differential geometric) interpretations of
the new invariants of knots and links.

In this section we have carried an idea from statistical mechanics into
the knot-theoretic context.
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K piecewise linear,

An arrow covering of the shadow M,

Figure 13

As pointed out by Baxter [1], in the case of the Potts model this change

/2w g2 4 g2 A/2n

of variables gives = 2 cosh(}) when Z = e . For q

taking values in the Beraha numbers
2
q =14 cos"(n/n), n =2,3,4, ...
we then have the A-values
A= in/2, in/3, in/4, ...

It is possible that this reformulation of the bracket will shed geometric
light on the mysterious appearances of the Beraha numbers in chromatic prob-
lems (q = 4, v = -1), the Jones algebra [3] and other recent work [2] about

the meaning of these models at these special values.
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