LINK MANIFOLDS
Louis H. Kauffman

INTRODUCTION

A link-manifold M2™*1 is a smooth closed manifold admitting a smooth action
of the orthogonal group O(n) such that the isotropy subgroups are conjugate to O(n),
0O(n-1), or O(n-2), and such that for n > 1 the orbit space is the 4-disk D4. The
set of fixed points in M corresponds to a link L C S3=93D%. (For n> 1, one as-
sumes that all three orbit types occur. For n = 1, the orbit space is taken to be s3
and the orbits are 0-spheres and fixed points.)

These manifolds occur readily in nature. For example, let Ma,b denote the
Brieskorn manifold [2] V(Z3 +ZP + Z5 + .- + 22, ) N §27*3. Then O(n) acts on
M, 1, via the last n coordinates, giving it the structure of a link manifold whose
fixed-point set is a torus link of type (a, b).

In this paper, we generalize results of F. Hirzebruch and D. Erle [6] (see also
[1] and [7] to [10]) to obtain a classification of link manifolds in terms of embedding
invariants of links in S3 (Theorems 10 and 11).

Link manifolds are a larger class than knot manifolds. We show that for
n=2k -1 (k> 2) every (n- 1) connected (2n + 1)-manifold that bounds a parallel-
izable manifold is a link manifold (Theorem 7).

The results in this paper were announced in [11].

1. LINKING NUMBERS AND INVARIANTS OF LINKS
A. Seifeyt Paiving

Given a Link L c S3 with preassigned orientations for the components, one may
form a connected oriented surface F C S3 with 9F = L such that ¥ induces the
chosen orientation for L (see [16, p. 572]). Define

0: H,(F) x H{(F) — Z

via 6(a, b) = £(i, a, b), where £( , ) denotes linking numbers in S3 and i, denotes
the operation of pushing away from F in the positive normal direction. This bi-
linear pairing is called the Seifert pairing. Symmetrizing, one obtains the mapping
f: H(F) X H{(F) —» Z defined by the formula f(x, y) = 0(x, y) + 0(y, x).

An argument due to J. Levine [13] shows that if F' is another surface in S3
whose boundary is ambient-isotopic to L and if V and V' denote matrices for the
Seifert pairings for F and F', respectively, then V and V' are velated. This
means that V' may be obtained from V by a chain of operations of the two types
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(i) V <> PVP!, where P is unimodular over Z and P! denotes the trans-
posed matrix of P,

(ii) VI|Bg o0
V <> or V <> 0o 1|,
0
0 0

where a is a row vector and 8 is a column vector.

Definition. The signature of the link L (notation: o (L)) is defined by
o (L) = o(f), where o(f) denotes the signature of the bilinear form in the preceding
paragraph.

Note that ¢(L) depends only on the embedding type of L, since the condition that
V is related to V' implies that V +Vt and V' + V't have the same signature.

Remark. OQur signature is the same as the Murasugi signature [14, pp. 389-394].
K. Murasugi defines a signature for links in terms of a symmetric matrix associated
with a link projection. His matrix is the matrix of f for an appropriate choice of F
and basis for H,(F).

B. Pass-Equivalence

This section is devoted to an equivalence relation on links that is useful for
classifying link manifolds whose dimension is congruent to 1 modulo 4. Correspond-
ing to each link L C s3 , there is a connected oriented surface F spanning L. In
fact, F may be represented as a standardly embedded disk with attached (possibly
knotted, twisted, and linked) bands.

Definition. A band-pass operation on F is the local replacement of an over-
crossing of bands with an under-crossing, or vice versa. This may be performed
between two different bands or upon the same band (see Figure 1).

i\ \..
Figure 1.

Definition. Two links L and L' are said to be pass-equivalent (notation:
L ~ L") if we can obtain L' from L by a sequence of band passes, possibly choos-
ing a new spanning surface at each stage.

Definition. Let L=K;U Kz U --- UK., where the K; are the components of
the link L. We say that L is proper if £(K;, L - K;) isevenfor i =1, 2, ---, r.

LEMMA 1. If L ~ L' and L is proper, then L' is also proper.
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Proof. Simply note that a single band-pass preserves the parity of the linking
numbers £(K;, L - Kj).

Let 0 denote the trivial knot, 7 the trefoil knot, Ag a trivial link of two com-
ponents, A} a link consisting of two unknotted circles with linking number one. When
I write L = L' U L", where L' and L" are links, this means that there exist disjoint
three-balls in S3 enclosing L' and L", respectively.

Given two links L; and Lj, let L # L be the link obtained from S3 # S3 with
L; in one piece and L in the other by choosing a three-ball B; in each S3 such
that B; N L; is a single strand. Form S3 # S3 by removing these balls, and let the
gluing homeomorphlsm S2 — 82 take the two points in ¢B; N L; to the two in
0B, N L, . The link L; # L, is not well-defined, but this symbol will denote any
link obtained by this procedure.

Definition. Let L, L, C S3 be two links. Suppose that L and L' denote two
choices for a connected sum Lj # L. We say that L' is obtained from L by a 7e-
arvangement.

Given any two links L, L' C s3 , we say that L is place-equivalent to L' (nota-
tion: L <> L') if L' may be obtained from L by a finite sequence of pass-equiva-
lences and rearrangements.

Note that connected sum is well-defined on place classes of links. Also, if L is
proper and L <= L', then L' is proper.

LEMMA 2. 7#7 ~9, TH#X] ~ X, Ao #X] ~ Ay #N.

Proof. The first of these pass-equivalences is illustrated in Figure 2. The
others follow similarly. Note that in Figure 2, the surfaces F |, F,, and F3 are
ambient-isotopic. The knot 7 # 7 is ambient-isotopic to the boundary of the surface
F. The surface F' is ambient-isotopic to F, and the surface F" is obtained from
F' by band-passing. Since the boundary of F" is the trivial knot, this shows that
TH# T ~ 6.

PROPOSITION 3. Let L C S3 be any link. Then
) L o~ xg# -#ng #Ay #--#N #TH# - #7,

(ii) L is place-equivalent to one of the following:

A:ho#ho#”'#}\o,
B =X #hg #-H#rg #T,
C =Xy #xg # - #2o #21.

Proof. Choose a spanning surface F for L so that the cores of the bands
represent a basis for H(F, D?) ~ H(F) and so that, with respect to this basis, the
matrix of the intersection pairing

(), Y H(F) xH(F) — 2

has the form S(-1) @ S(-1) @ --- @ S(-1) (D [0]. Here S(-1) =l:_2 é] and [0] is
an s-by-s zero matrix. Thus F is a disk with 2r + s bands. We may list the bands

as By, By, -, B., By, Bl, -+, B; so that the pairs correspond to copies of S(-1)
and the collection of singlets corresponds to the zero matrix. Applying band-passing
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Figure 2.
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operatmns to F, separate the bands so that B; and B are not linked with Bj, BJ ,
or Bk for i # j and any k. Pass the bands of form Bk so that they are not linked

with one another. Letting F denote this new surface, we see that F decomposes
into a boundary-connected sum of surfaces, each carrying at most two bands.

The proposition now follows from repeated application of Lemma 2.

To strengthen Proposition 3, we would like to show that A is not pass- or place-
equivalent to B. In order to do this, we introduce some algebra.

Let L ¢ S> be a link with spanning surface F, and let W = H,(F). Note that the
intersection and Seifert pairings are related by the formula

<X} Y> = 9(X7 y) - 9(37, X)

(see [6, p. 178]).

Definition. Let W =W (X)Z, and define ¥: W — Z> by the equation
w(x) = 6(x, x) (mod 2). Note that Y(x +y) = Y¢(x) + ¥(y) + (x, y) (mod 2) and thus
Y is a Zp-quadratic form associated with the skew form ( , >

Remavrk. Certainly ¥ depends upon the choice of spanning surface. However, it
follows as in Part A of Section 1 that ¢ is determined up to direct sums with a form
which we denote by ¢

(Pg: Zp DZy = Z,, dgla) = ¢o(b) =0, <a, b> =1, where a=(1, 0), b =(0, 1)).

Since the Arf invariant c(¢g) is 0, we conclude as follows.
LEMMA 4. When defined, the Arf invarviant c(y) is an invariant of link type.

Definition. Let ¢ and Y, be two Zj-quadratic forms. We say ¢ is s-
equivalent to Y, (notation: ¥, ~ ) if and only if

Y1 D@D Do =¥ Do D Do

with ¢g as above.

LEMMA 5. If L and L' ave links with Z,-quadratic forms Y and ' corre-
sponding to spanning suvfaces F and F¥', then L <> L' implies ¢ ~ ¢'.

Proof. 1t is clear that a band-pass operation leaves the Z,-form alone. Change
of spanning surface induces s-equivalence, as we remarked above. Since any con-
nected sum of links gives rise to the (well-defined) connected sum of forms, re-
arrangements have no effect.

COROLLARY 6. If L is a link with Z,-form 3, then the Arf invariant c(y) is
defined exactly when L is propey. Fuvthevmove, if L is proper, then

c() =0 => L <> A, c(y) =1 <=> L <> B.

In pariticular, A is not place-equivalent to B.

Proof. This follows from Proposition 3, Lemmas 4 and 5, and the definition of
Y, since the Arf invariant is defined exactly when y | Rad ¥ = 0 (see [3, p. 56]).

Definition. 1f L is a proper link, let
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0 if L <> A

o(L) =
1 if L <> B.

We call ¢(L) the Robertello-Arf invariant of L. This generalizes a definition due to
Rotiertello for knots (see [15]). One can show that ¢(L) is a concordance invariant
[12].

Remark. Letting P denote the set of place-classes of links and C the set of s-
equivalence classes of Z,-quadratic forms, we may define T: P — C by saying that
T(L) is the s-equivalence class of Y(L). It is an easy corollary of the discussion
above and the classical theory of quadratic forms that T is one-to-one and surjec-
tive, and that it takes # into (P.

C. Linking Invaviant

Let f: VXV — Z be a symmetric bilinear form, where V is a finitely gen-
erated free Z-module. Letting V* = Hom (V, Z), one has the adjoint

Af: Vv — V¥, Af(x)(y) = f(x, v).

Let G denote the cokernel of Af and 7G the torsion subgroup of G.

Definition. Define the linking pairing b(f): 7G X 7G — Q/Z by the equation
b(f) (%, ¥) =-Ijlgf(X, Y) (mod 1). Here x, y € V* are representatives of X, ¥, and
rx = Af(X), sy = Af(Y), r, s e Z.

If f is even, that is, if f(x, xX) is even for all x € V, then one also defines
q(f): 7G — Q/Z by

ad® = 4 (310x, %) (moa ).

This is a quadratic form associated with b(f).

Definition. Using the notation of Part A of Section 1, let V = H;(F), where F is
a spanning surface for L, and let { be the pairing defined on V by the equation
f(x, y) = 0(x, y) + 6(y, x). Define

G(L) = cokernel (Af), b(L) = b(f), q(L) = q{f) ( is even).

The group G(L) and the forms b(L) and q(L) are then invariants of link type.
In fact, G(L) is isomorphic to the first homology group of the double branched cover
of S3 with branch set L; the pairing b(L) is the linking invariant for this manifold.
(This last fact follows from the remarks at the beginning of the next section.)

2. CLASSIFICATION OF LINK MANIFOLDS
Definition. We denote by B,, the set of O(n - 1)-link manifolds; by BP;, the
set of (n - 2)-connected (2n - 1)-manifolds that bound parallelizable manifolds.

By directly carrying over the equivariant surgery technique of [6, pp. 201-207],
we can easily prove the following facts.
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(1) By, € BP,, . Indeed, if L € S° is an oriented link and F is a connected
orientable spanning surface for L, then by O(n - 1)-equivariant surgery on §2n-1
one can construct M2n-1(L) = aN21(F) € B,,, . The manifold N2O(F) is (n - 1)-
connected and parallelizable. Its boundary M2n-1(L) is a link manifold correspond-
ing to L, and it is independent of the choice of Seifert surface F.

(2) N2™(F) has intersection matrix V + (-1)*"1 vt where V is the matrix of
the Seifert pairing 6: H;(F) X H,(F) — Z.

(3) If n is odd and n > 3, and if F' is obtained from F by a band-pass opera-
tion (see Part B of Section 1), then N2n(F) ~ N2n(F").

As we noted above, B, € BP,,,. We shall see shortly that if n is odd then
B,, # BP,,,. However, we have the following result.

THEOREM 7. BP4k = B4k fO’l’ k> 1.

The proof of this theorem will proceed by way of a lemma about Seifert matrices
for links.

Definition. Let A be a symmetric square matrix with even entries on the
diagonal. We say that A is of link-f{ype if no row contains more than one odd entry.

LEMMA 8. If A is of link-type, then A =V +Vt, wheve V is a Seifert malvix
fov some link in S3.

Pyoof. We shall prove the lemma by constructing a disk with attached bands
such that A =V + Vt, where V is the Seifert matrix for this surface. If A is an
n X n matrix, we want a surface F with n bands. Let o; € H(F) (i=1, -+, n) be
the homology classes corresponding to the bands. Thus, if A = (aij), then F must be
constructed so that a5 = 6(a; , on-) + B(aj , @;). The following observations are in
order.

(1) The matrix element a;; = 26(a;, ;) specifies the twisting of the band cor-
responding to «;.

(2) For i # j, the linking number 6(q;, aj) is independent of the twisting of the
ith and jth bands. It is specified by the embeddings of their cores.

(3) Consider the two points of intersection of a band core with D2 . Call these
the feet of the band. Choose an orientation for the disk and therefore for its bound-
ary. Given two points p, q € Sl = 3D2 that divide S! into unequal segments, let
[p, a] be the smaller segment. We say p < q if, when this segment is oriented from
p to q, the orientation agrees with the orientation of st.

Assume that the feet of each band divide S! into unequal segments. If p and q
are the feet of a band with p < q, we say that a point x is between p and q if

x € [p, ql.

(4) Letting Y(a, a') = 0(a, a') + 8(a', a), note that we can ensure that Y(o, a')
is odd by planting one foot of &' between the feet of @ and adjusting the linking
accordingly.

(5) We can ensure that Y(a, a') is even by keeping both feet of @' out from
between the feet of «.

Induction Hypothesis. The lemma is true for all matrices A of link type and
size r Xr for r <n. Assume that if @ and o' are band cores and Y¥(c, a') is
even, then a has no feet between the feet of a', and vice versa; if Y{a, @') is odd,
then each band has one foot between the feet of the other.
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Case 1. If A is a 1-by-1 matrix (a), take a disk with one band having a half-
twists.

Case 2. Suppose A =(ajj) is (n +1)-by-(n + 1) and of link type. Let A = (ai5)
(i<n, j<n). Since A is also of link type, we may apply the induction hypothesis.
Since ap+1,j is odd for at most one j (1 <j < n), we can choose the feet of @ ;) as
follows: If a n+1,j 18 odd, let p be a point between the feet of @. and choose q > p
so that q does not lie between the feet of any band. Then p and q are the feet of

@p+p - Note that such p and q can be chosen because a,.; ; is odd and, hence, aj Kk
is even for 1 <k < n (since A is of link type). Therefore no other feet stand be—
tween the feet of @j, nor do the feet of aj stand between any feet (by the induction
hypothesis).

If ajyy,5 isevenfor 1 <j<n, choose p<q sothat p and q stand outside the
feet of all the bands. Again, p and q will be the feet of a4+ .

Finally, change an arc from p to q by cutting small segments from it and re-
placing these by segments linking the @; so that aj+),; = Y(apt+1, @i). This con-
structs the core of the (n + 1)st band. Now thicken this core into a band and intro-
duce anpt+i,n+1 hali-twists. The result is a new surface satisfying the induction
hypothe51s and such that i z,!/(oz1 , J-) for i, j<n+1.

Hence the lemma is proved by induction.

LEMMA 9. Lel A be a symmetvic squave matvix with even entvies on the
diagonal. Then theve exists a unimodulay matvix P such that PAPt is of link type.

Proof. A is a matrix over Z. Let A= (éij) be the matrix of residue classes
modulo 2 over Z, . A matrix over Z; will be said to be of link {ype if no row con-
tains more than one nonzero entry. Thus, if A is of link type, then A is of link
type, and conversely. However, over Z; , the symmetrlc matrix A is congruent to
a matrix B of the form

[0 1

o]
Il
@
<

1 0

In fact, B is obtained from A by a sequence of simultaneous row and column opera-
tions. Each operation is represented by con]ugatmn with an elementary matrix E
where E is invertible over Z. Hence B = PA Pt where P is invertible over Z.
Now PAPt= PAPt=B. Hence PAP! is of link type. This proves the lemma.

Proof of Theorem 7. Given M € BPy4 (k > 1), we know that there exists a
manifold N4k, parallelizable and (2k - 1)-connected, such that aN = M. Also, by
[17] and [18], N is determined up to diffeomorphism by its intersection form on
H,(N). If A is the matrix of this form with respect to some basis, then A is sym-
metric, with even diagonal entries. By Lemma 9, we see that PAP! is of link type,
and hence there is a link L € $3 with spanning surface F such that N4k(F) has in-
tersection form PAPt. Thus N(F) ~ N, and thus M4k-1(L) ~ M4k-1: this proves
the theorem.

The next two theorems give a more detailed picture of the diffeomorphism
classification.
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THEOREM 10. Lef k > 1 and M(L), M(L') € By, , and suppose that
G(L) ~ G(L'), q(L) ~ q(L'), o(L) > o(L')
(see Section 1); then

M(L) = M(L) # 3 (0(L) - o(L) - 2,

wheve X is the Milnor spheve. (If G(L) and G(L') have no summands of order 2 or
4, we may replace the hypothesis q(L) ~ q(L') by b(L) ~ b(L'").)

Proof. The remarks at the beginning of this section show that
G(L) ~ Hjy_;(M(L)), q(L), and b(L)

may be identified with the linking quadratic and bilinear forms on the torsion part of
H,y _1(M(L)). Also, o(L) is the signature of N(L). The theorem now follows from
the fact that By4i C BP4y and from a theorem of A. Durfee (see [5]), classifying
manifolds in BPy .

THEOREM 11. Let M = M(L) € B, for n odd, n > 2. Let the link L C S3
have (r + 1) components.

(1) If L is proper, then
(S Ix8 # (S Ixs™ 4. #(S™ xS  if ¢(L) =0,

M ~
(SP-lxgm # (sn-Ixs?) # ... #' (8P Ixs™# %, if ¢(L) =1.

Theve ave r copies of S™~1 x S™ in each connected sum. The symbol 3| denotes
the Kevvaire spheve, and ¢(L) is the Robertello-Avf invariant as defined in Sec-
tion 1.

(2) If L is improper, then
M~ (SPlxs®#. ... #(SPIxs)#T.

This is a connected sum of r manifolds. The symbol T denotes the tangent sphere
bundle to S™.

(Note that for n = 3 or 7, the theorem degenerates to the statement
M ~ (Sn—l % Sn) # oo # (Sn—l % Sn)_)

Proof. 1t follows from fact (3) at the beginning of this section that the relation
L ~ L' implies M(L) ~ M(L.") (~ denotes pass-equivalence). The theorem now fol-
lows from Proposition 3, the definition of ¥(IL.), and identification of M(A), M(B), and
M(C), where A, B, and C are the three link types discussed in Section 1.

Since a connected sum of links corresponds to a connected sum of the corre-
sponding manifolds, it suffices to identify M(Ay), M(x;), and M(7). But

M@g) ~ s~ lxs?,  M() ~ T, M7)~3.

This may be seen by direct calculation of the corresponding quadratic forms.
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3. APPLICATIONS AND EXAMPLES

Throughout this section, n will denote an odd integer greater than 2.

(a) If Ly denotes a torus link of type (2, k), then Ly ~ Ly ,g, and thus one can
deduce the 8-fold periodicity in the list M2n-1(L,) (k =1, 2, ---). This was ex-
plained in [11].

(b) Let L be the Borommean rings. Figure 3 illustrates a surface F with
oF = L. from which it is easy to deduce by band-passing that

ML) ~ (™ I xS #(s" xS # 3.

gNire

Figure 3.

(c) Suppose L is any link with two components. Say L = K; U K, and let
¢ = (K, K») be the linking number in S3. Theorem 11 implies that M2n-1(L) is
then diffeomorphic to S? x 8?1 or to (S"-1x 8P # =, if ¢ isevenandto T if ¢ is
odd. This was a conjecture of Michael Davis (see [4, p. 311]).

(d) PROPOSITION 12. Suppose that L and L' are oviented links sharving the
same unoviented link. Take M(L), M(L') € Bayx with k > 1. Then G(L) ~ G(L'),
b(L) ~ b(L'), and hence, if G(L) has no summands of ovder 2 ov 4, then

M(L) ~ M(L") #3 (0(L) - o(L) - =

(we assume that o(L) > o(L")).

Proof. The double branched cover of S3 with branching set L is independent
of the choice of orientation for L. Hence G(L) ~ G(L') and b(L) ~ b(L'). The
Proposition now follows from Theorem 10.

For example, let L and L' be as in Figure 4. Then a calculation reveals that
o(L) =8, o(L') =0, G(L) = Z. Hence

M(L) ~ SZk—l X SZk # M(L') ~ SZk-l X SZk.
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Figure 4.

(e) Let L, j, denote a torus link of type (a, b). If d = ged(a, b), so that a = da
and b = dj, where a and B are relatively prime positive integers, then L,  con-
sists of d torus knots of type (a, B). (A torus knot is a knot that lies on a standard-
ly embedded torus in S3 and winds a times in the meridian direction and B times
in the longitudinal direction on this torus.)

Torus links may also be described as follows: Let f(x, y) = X2+ YP be a poly-
nomial in two complex variables. Let

V() = {(x, y) € C?| f(x, y) =0} .
Then Lo p=V({E) N S*. If Lap=K) UK, U--- UKy, where each component X; is

an (o, B) torus knot, then one can verify that E(Kl, K) apf for i+ j.

PROPOSITION 13. Let = denote homeowmovphism. For a fixed positive integer
b, let Mgn‘l = Mzn‘l(La’b). Then the list of manifolds Mgn‘l (a=1, 2, ) has a
homeomorphism periodicity 2b; that is, Min"l ~ Mgﬂ:éé

Proof. Let d(a) = ged(a, b) and £(a) = ab/d(a)? . By Theorem 11 we know that
M;""h ~ MZP! if and only if d(a) = d(a') and L, p and L, 1, are either both

proper or both improper. Now £(a) = £(a') (mod 2) certainly implies that L, and
L, p share propriety or impropriety. Thus the proposition follows from the easﬂy
verified fact that d(a +2b) = d(a) and £(a + 2b) = £(a) (mod 2).

Remark. This result is best possible. For example, the homeomorphism peri-

odicity in Example (a) is exactly 4. We conjecture that Proposition 13 has a differ-
entiable counterpart.
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