FOR NIKLAS LUHMANN: HOW RECURSIVE IS COMMUNICATION?
by Heinz von Foerster *

A vyear and a half ago Niklas Luhmann sent me a fascinating essay for my
80th birthday (Luhmann 1991). This article culminated in two
extraordinary questions. I will not broach these questions in detail now,
but I would like to report what kind of an impression these questions
made on me. I see in them a similarity to two great problems found in
antiquity, two geometric problems. One is the trisection of an angle. That
is the problem in which, only with compass and straight edge, one tries to
divide an angle into three parts. The other is squaring the circle. The task
is, again only with compass and straight edge, to construct a square whose
area is the same as a given circle. As you might recall, both of these
problems were basically unsolvable, as Karl-Friedrich Gauss proved around
200 years ago. If you take away the constraints of constructing only with
compass and straight edge, then these problems can easily be solved.

When I received the invitation to say a few words at Niklas Luhmannn's
birthday celebration, I immediately thought, ah, now I'll be able to give
the answers to both these problems that he gave me on my birthday. I sat
down and worked on these problems, but in the middle of my preparations
it suddenly occurred to me: but, Heinz, that is completely wrong! One
doesn't do that here in this country. Here they give birthday children
questions not answers! So then I thought, good, I'll save my answers for
another time. Today I'll come on this occasion to this birthday party with
two questions, too. And it won't just concern two questions, since we are
here at the Center for Interdisciplinary Research-- but it will concern two
research programs about unsolved problems in the social sciences. I
thought that today I would present these two problems, because I feel
that, if one would concern oneself with these questions, an essential
contribution to social theory will be made.

What are these questions? The first problem or rather research program
has to do with a furthering or perhaps rather a deepening of the concept of
a recursive function. You all know about the unprecedented results of
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using recursive functions in chaos theory and other places. But I have the
feeling that these results from the chaos theory will only be applied in a
metaphorical way to sociological problems. Why? The whole of chaos
research uses functions, and functions are only relations between numbers.
Consider the function that forms the square of a number. Put in a two, get
a four; put in a three, get a nine. It will only operate on numbers. But
sociology doesn't work with numbers. Sociology works with functions. And
functions of functions are called functors. A functor is a system in which
there is a correspondence between one group of functions and another
group of functions. And so I propose to develop a research program where
one employs recursive functors. I will speak more about it when I get into
the details. So that's problem number 1.

Problem number 2 that I would like to discuss is a theory of compositions.
It consists of the development of a composition system, and indeed, a
composition system for systems. Why consider this problem? I have a
system A and a system B, and I would like to integrate both of them into a
system C. What are the rules for integration, the composition rules, for
allowing a new system C to arise? Is it a matter of addition, of integration?
We have nothing but fine words for it, but how is the formalism for such a
problem to be expressed? Today one has another name for these
composition problems: Consider the Croatians, the Bosnians, the
Herzegovinians. One could call it the Vance-Owen problem. This is the
problem that we in social theory look at today. How can we solve this
problem? The problem can be found in autopoiesis: How can I bring
together an autopoietic system A with another autopoietic system B, so
that a new system C, also autopoietic, is formed? Unfortunately the
poieticists, or the autopoieticists, those who defined autopoiesis, have not
given us any rules for the various composition possibilities for such
systems. These are, in short, my two problems.

Now you may say, by the will of heaven, we are social scieatists and here
comes Heinz von Foerster with fundamental mathematical problems, what
should we do with them? So I thought that I would sweeten or make the
problems milder, in that I would try to present them so clearly as to make
them obvious. And when something is obvious, one no longer sees it: The



problems disappear. The second idea that I had was to give our birthday
child a pair of American gems from California.

The first present is an essay by Warren McCulloch, written about a half a
century ago. It is the famous article entitted "A Heterarchy of Values
Determined by the Topology of Nervous Nets" (1945). The article is of great
importance. 1 will read a sentence from the last paragraph. The main idea
is the circularity of the nmervous system: "Circularities in preference”. This
circularity comes about when A prefers B, B prefers C, and C prefers A.
This would be defined as illogical in classical logic. However, McCulloch
says that it is not illogical, but that it is how logic is used in reality. So:
"Circularities in preference instead of inconsistencies, actually demonstrate
consistency of a higher order than had been dreamed of in our philosophy.
An organism possessed of this nervous system - six neurons - is
sufficiently endowed to be unpredictable from any theory founded on a
scale of values". Among existing theories, a system of six neurons was, in
principle, previously unheard of. That is present number 1.

Present number 2 that I brought is an article by Louis Kauffman, a
mathematician who is fascinated with self-reference and recursion. The
article is called "Self-reference and Recursive Forms” (1987). And so that
you'll see why I think it's so important, I'll read the last sentence from the
article: "Mathematics is the consequence of what there would be if there
could be anything at all”.

Present number 3 is from my much admired teacher Karl Menger, a
member of the Vienna Circle, who I have followed, and still follow, with
the greatest pleasure. When I was a young student, I attended Karl
Menger's lectures with great enthusiasm. The article by Karl Menger that I
bring as present number 3 is "Gulliver in the Land without One, Two,
Three" (1959). You might ask why I bring such an article to a sociology
group. Karl Menger had already developed the idea of functors, namely
functions of functions, which I consider to be quite decisive in the
theoretical understanding of social structures. [ will also read the last
sentence from Karl Menger's article so that you will see what it is about.
*Gulliver intended to describe his experiences in the Land without One,



Two, Three in letters to Newton, to the successors of Descartes, to Leibniz,
and to the Bernoullis. One of these great minds, rushing from one
discovery to the next, might have paused for a minute's reflection upon the
way their own epochal ideas were expressed. It is a pity that, because of
Gulliver's preparations for another voyage, those letters were never
written".

So, now I would like to give the three presents to Niklas Luhmann.
Naturally this doesn't happen without a bouquet.

Now I come to a topic that was proposed by the Center for
Interdisciplinary Research. I always like it when a topic is suggested to
me, because then when I come to the meeting, I will completely fulfill the
wishes of my hosts. The proposition that has been put forward is the
question: "How recursive is communication?” I didn't know how to read
that. Should I read it how recursive is communication? or How recursive
is communication? or How recursive is communication? Unfortunately I
am not an ontologist. That is, I do not know what is. So I have framed
the question this way: What would it be like if we conceived of
communication as recursion? And that is my proposition Number 00:

00. Proposition: "Communication is recursion.”

You could understand this as if it were an entry in a dictionary. If you do
not know what communication is, just look in the dictionary under c. And
there is: "Communication is recursion." Aha, you say, good. What does
recursion mean? And then again you go to the dictionary, and look under
r: "Recursion is communication." And so it is with all dictionaries. If you
work with it, you will soon find that the dictionary is always self-
referential: You will be sent from A to B, from B to C, and then from C
back again to A. That is the game of the dictionary. You could also choose
to see this proposition as simply a tautology: communication is recursion.
Yes, but as philosophers maintain, tautologies say nothing. But tautologies
do say something about that which they express. At the end of my talk
you may perhaps know nothing about recursion or about communication,



but you will probably know something about me! My program is then to
make the proposition: "communication is recursion®.

I would like to divide my program into three parts. In the first part I will
cover the essentials, and remind you of the terminology whose central
idea is an imaginary "machine" that carries out well-defined operations on
numbers, expressions and operations. This part begins with a
recapitulation of current concepts. As you will see later, I need these
terms in order to take you to the decisive point of my proposition, namely,
an understanding of the inherent unsolvability of the so-called "analytical
problems". In other branches of science these problems are found under
other names: "Decidability problem" in logic, "halting problem® in
computer science, etc.

I considered very carefully how to bring you closer to understanding this
problem, without recourse to mathematical somersaults. I finally was lead
to a compromise position where I will not demonstrate the, in principle,
unsolvability of analytical problems, but only a milder version: namely
that all the treasures in the world and in our universe and all the available
time would be insufficient to solve the analytical problem for even
relatively simple "non-trivial® machines. The problem s
"transcomputational”. Qur ignorance is fundamental.

This deep unknowing, this completely fundamental ignorance -- I have
never seen developed in its full strength. In view of such fundamental
ignorance, how can we work with such problems? In the second part, I
will sketch the development of recursive functors. [ will make it as easy
and playful as possible, so that you will be able to follow the train of
thought. In the third part I will speak about composition, compositions of
functors and composition of systems.

Part 1: Machines

I begin with the recapitulation a language, introduced by Alan Turing, an
English mathematician, in order to shift long deductive, logical arguments



to the operation of a machine, a conceptual machine, that will turn all the
knobs and gears so that one only needs to watch. Input the problem in
one end, and the solution comes out the other end. Once this machine is
set up, then it operates a language in which it can very easily spring from
one given expression to another. And if you want to know how this
machine runs, you can always take it apart. We have a machine
programmed by a language of instructions.

I come to my proposition:

01. Trivial Machines: (i) synthetically determined, (ii) independent of
the past, (iii) analytically determined, (iv) predictable.

A trivial machine is characterized by the process of always doing what it
was programmed to do. If the machine says it will add 2 to every number,
then giving it a 5, a 7 will come out, give it a 10, a 12 comes out. Put the
machine on the shelf for a million years and come again and give it a 5 and
get a 7, give it a 9 and get an 11. That is the simplemindedness of a trivial
machine.

But you do not have to input numbers. You can also give it other forms.
For example, in the Middle Ages, logicians gave it logical propositions. The
classical logico-deductive proposition is the famous seatence: *All men are
mortal". So you come to the "all men are mortal"- trivial machines. Slide
in a man in one end, a dead man comes out the other side. Take Socrates
"Socrates is a man", push him in one end, boom, out comes Socrates, dead.
But you don't need men, and you don't need Socrates, you can also work
with the alphabet.

I present an anagram, a machine that computes anagrams. You know that
an anagram is something that replaces one letter with another.
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Figure 1

In order to make this matter as simple as possible, I propose an anagram
that has only four letters (A, B, C, D) as in the table in Figure 1: A is
replaced by B, B by C, C by D, and finally D by A. When [ was a little kid
and [ wrote letters to my friends, we agreed upon an anagram, naturally
so that the parents could not read what we wrote. Of course, these
anagrams are very easy to solve. How many anagrams can one build with
four letters? As you know, it is simply the number of permutations of the
four letters A, B, C and D. It is 4 times 3 times 2, that is 4!, which gives 24
anagrams (Figure 2).

010203040506070809101112131415161718192021222324
AAAAAABBBBBBCCCCCCDDDDDD
BBCCDDAACCDDAABBDDAABBCC
DDBDBCCDADACBDADABBCACAB
DCDBCBDCDACADBDABACBCABA

The 24 anagrams that are made from exactly 4 letters.
Figure 2



Here are 24 anagrams at my disposal, and if you want to run an
experiment to find out which anagram it is, then you only need four trials.
You give it an A and get a B; put in a B, get a C; put in a C, get a D; and
finally from a D, you get an A. So you have solved the problem. Trivial
machines are like that, as formulated in Proposition 01, synthetically
determined: we have just built one; time independent: we could put it on
the shelf for years; analytically determined: we have just done that; and
therefore predictable.

One understands the great love affair western culture has for trivial
machines. I could name example after example of trivial machines. When
you buy a car, you naturally ask for a trivialization document from the
salesman. It says that the car will stay a trivial machine for the next 100
or 1000 miles or the next five years. And if the car suddenly proves itself
unreliable, then one gets oneself a trivializer, who will put the car back in
order. It goes so far with our love for trivial machines that our children,
who are usually very unpredictable and completely surprising fellow
creatures, are sent to trivialization institutions, so that if one asks "How
much is 2 times 3?" The answer is not "green" or "I am that old” but "6" is
the confident reply. And so they will be reliable members of our society.

02. Non-trivial machines: (1) synthetically determined; (ii)
d{dependent g&) the past; (iii) analytically indeterminate; (iv) unpredictable.

Now [ will speak about non-trivial machines. Non-trivial machines have
"internal" states.

Figure 3



Every operation changes these internal states, so that when the next
operation takes place, not only will the previous operation not be repeated,
but another operation can be performed in its place. One may ask, how
many non-trivial machines can one construct if one has our example of 24
different types of internal states? The number of such possible machines
is N24=6.3 X 1057. That is a number followed by 57 zeroes. And you can
readily see the difficulties that arise when you want the machine to do
analytical investigations. If you ask this machine a question every
microsecond, then even if you had all the time in the world it still would
not be enough to see through this machine. My next proposition runs thus:

03. Quantities: Let n be the number of inputs as well as the number of
outputs. Then the number of possible trivial machines is NT: Nt(n) = nt
and the number of possible non-trivial machines NNT: NnT(n) = noz, where
z is the number of internal states of the NT-machine, and z cannot be
greater than the number of possible trivial machines, s0: zZmgx = n@, where

NNT(n) =n*{n(n*{n})}.

(ab is here denoted a*{b} to allow iterated exponentiation.)

For a trivial anagram (z=1) of four letters (n=4), this becomes:
NT(4)=44=22x4=28=256.

For a non-trivial anagram (one which computes various anagrams from

previously written rules): NNT(4) = 4*{4(4*{4})}= 22x2x2x256 = 22048 ahout

10620,

W. Ross Ashby, who worked with me in the Biological Computer
Laboratory, built a machine with 4 outputs, 4 inputs, and 4 internal states,
and gave this machine to the graduate students who wanted to work with
him. He told them to figure out how the machine worked and that he
would come back the next day. Well, I was a night owl. I would come into
the lab around noon and then not go home until 1, 2, or 3 am. These poor
students were sitting and working and making tables. I said to them:
"Forget it! You can't find it out!" They said: "No, no, I almost have it!"
Around 6 am on the next day they were still there working, green and



pale. When Ross Ashby came in, he said to them: "Forget it! I'll show you
how many possibilities there are: 10126," Then they were quiet.

Imagine that we have only 4 conditions, with input and output symbols
and with internal states of 24 possibilities. The complexity of this system
is so gigantic, that it is absolutely impossible to ever figure out how this
machine works. And then the representatives of "artificial intelligence”
dare to say that they are going to find out how the brain functions -- the
brain that has 1010 neurons at its disposal! They say, "I have worked on a
machine that works like the brain." "Oh, congratulations: how does the
brain work?" No one knows. One cannot draw a comparison. One can oaly
say, the machine works this way and that, but one cannot say how the
brain works, because no one knows that. But perhaps one does not need
to know how the brain works. Perhaps it is like the American proverb:
"We are barking up the wrong tree."

For example, how is it possible that this colloquium, in Luhmann's honor, is
brought about? Even though we have no idea how the brain works, we
all meet here at exactly nine o'clock. And what do we see? Everyone is
there, everyone listens, some make sounds with their mouth, others take
notes, and so on. So, how is this possible? What is happening here?

From here I would like to develop the next step. As I hope to show you,

this only happens because these systems are operating recursively. An
astonishing matter!

Part 2: Recursion
In order to make the following thoughts as clear as possible, I will increase
the complexity step by step, so that you will be able to follow and kmow

what it concerns.

04. Dimension 1 (operationally open)




[ am starting with systems of dimension 1. Why dimension 1? Because
here signals are linear and only flow in one direction. One could
demonstrate this situation in its utter simplicity  through a directed line.

an :
Figure 4

In all operations, which pass through a single point 0, x is transformed into
y. |

Since I have the intention to speak about compositions of at least two
systems, I now present the two systems D and S.

» =S

Figure §

D operates on the variable x and produces y, which is expressed by the
function y = D(x). The same applies for machine S, mutatis mutandis.

The letters have a historical background. In the development of recursive
machines or non-trivial machines one distinguishes between two functions:



the state function, or S-function, and the driving function, or D-function.
For this reason they are called D and S, but you don't need to worry about
the D and S. You need only be able to make a distinction between the two
machines, one of which operates on x and produces y, while the other
operates on u and produces v.

Parametrization
Now from the outside we add to these machines a new control variable so
that we can alter the operations of these machines.
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The control functions u and x, which drive the machines from above,
should change the operations of the machines. Seen another way, the
parameters allow us to control the non-triviality of the machines. If the
menu of the 24 anagrams from before were at the machines’ disposal, then
one could switch, as with TV, from channel to channel; thus here from
anagram to anagram. In algebraic terms, this can be expressed in two
ways. The parameter can be indicated once through a modified subscript
of the function: y = Dy(x), v = Sx(u), or it can be declared as a full-fledged
variable: y = D(x,u), v = S(u,x).
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04.1. Dimension 2 (operationally closed: the fundamental equations of
non-linear dynamics)

Now a decisive step comes, because I shall transform the one-dimensional
system into the second dimension through operational closure, by the
newly generated output becoming the next input (Figure 7).
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Let y, the output of the D machine, become the input to the S machine. Do
the same with the S machine. This step makes a transformation from
operational linearity into operational circularity. The situation lends itself
to be represented in a plane, that is, on a 2-dimensional manifold.

It can also be expressed as an algebraic formalism in two ways: in one
way, the present result of an opération, the output y, is made the next
input, X' = y:

x' = D(x,u) and u' = S(ux).

The recursion of these expressions is recognizable. The variables x and u
appear as functions of themselves. A “physicalization” of this affair would
include the time factor in the expression. The parameters of time are
introduced through single steps: mow t, and then t+1 a single step later:
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xt+1 = D(xt,u) and ug+] = S(ug,x).

Those of you who work with chaos theory and with recursion will
immediately recognize that these are the fundamental equations of
recursive function theory. This is the conceptual mechanism underlying
chaos research. The equations are always the same. And surprisingly,
some unforeseen operational characteristics arise.  Historically one has
already noted a convergence to certain stable values. For example:
recursively take the square root of some favorite number (most calculators
have a square root key). Then you will soon stabilize at a value of
1.0000... . No wonder, because the square root of one is one.
Mathematicians at the turn of the century, who discovered such stabilities,
called these values "eigenvalues" of the corresponding functions. The
eigenvalues 1 and also 0, since Y0 = 0, belong to root operations. The
essential difference between both of these eigenvalues is in terms of the
deviation from the initial value. If you deviate from 1, the recursive
nature of the system brings it back to eigenvalue 1. Even the slightest
deviation from O brings the system back to the stable eigenvalue of 1.

Around twenty years ago, new interest in recursive functions exploded.
One discovered that many functions not only had stable values but
developed stable dynamics. These stabilities are known as attractors,
evidently a teleological afterthought. One can let a specified system go
through the most varied eigenbehaviors by simple changes of the
parameters. This pushes ome very quickly into the highly interesting
behavior that is set in motion by these parametric values: the system
passes through a sequence of values that never repeats itself, not even the
initial value is repeated: the system becomes chaotic.

Let me make a few remarks about stable eigenbehaviors.

Please observe the mext process where, by recursion, only definite discrete
values are chosen from an infinite continuum of possibilities. Recall the
square root operation where, from the infinity of real numbers, only one,
namely the "1°, was brought forth. Can that be taken as a metaphor for
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events of nature, sometimes known as evolution, that from the limitless
possibilities for discrete entities, a fly, an elephant, even a Luhmann will
be selected? I claim "yes", and I hope to add more bricks to this
foundation.

Please also observe that a given set of eigenbehaviors may be closed under
a collection of operators, but one cannot necessarily deduce the operators
from the eigenbehaviors. For example, the "1" is the eigenvalue of
infinitely many different operations. Therefore the recursive eigenvalue
"I" of the square root as generator is not the whole story because iteration
of the square root function on the value "1° only produces the value "1". In
order to see the process, one needs to iterate the operator on a variety of
initial conditions. The pure iteration of the operator on itself,

/).

symbolizes the process itself without any numerical value. This too, is an
eigenbehavior. It is a pattern , invariant under an operation on patterns.

Can that explain metaphorically the recursion of natural events, sometimes
called nature's laws, of which a limitless number of versions could be
given, a Milky Way system, a planetary system, yes even a Luhmann? 1
assert "yes", and I base this on Wittgenstein's Tractatus P. 5.1361: ° Belief
in the causal nexus is the superstition.”

The form of these eigenvalues is the only thing that we can lean on. That
is where the impenetrable machine behaves so as to become predictable as
soon as it produces the pattern of an eigenform. Then I can naturally say
to you, for example, if this eigenform is a periodic sequence, what the next
value in the sequence is. By this closed recursive operation and only by
this closed recursive operation can one find the stable form: it is not found
through an examination of the input and output. It is fascinating that one
can observe the stable points, but in principle it is uninvestigatible how
these stabilities are produced. One cannot by analysis find out how this
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system operates, although we see that it operates in a way that makes it
possible to make predictions.

Part 3: Compositions

I have spoken of systems as wholes, about their relations, synthesis,
analysis and taxonomy. But here I am in the society of learned social
scientists. That is the science of "socius", of companions and colleagues, and
of the "secundus", of the followers, of the supporters. I have to work with
two systems, with their relations, their syntheses and analyses. In fact a
society usually contains more than two members, but if the procedure of
integration of the "composition " of the two systems is established, then
one can apply the established composition rules stepwise and recursively
to as many new arrivals as one wants.

How does such a condition come about?

Here, 1 believe, is the most essential step of the development, because
through composition of two systems of dimension 2, the recursive functors
arise from irreducibles in the third dimension.

But what is this third dimension?
04.3 Dimension 3 ( Calculus of recursive functors)

View Figure 8. I return to the two machines of Figure 7, recursions D and
S. In the first step I rotate recursion S by 90°, so that variable and
parameter in D and S are oriented parallel to one another; in the second
step I push both of them together so that out of the separated systems D
and S comes a new machine, a DS-composition.

This DS-composition can be described algebraically by the two equations
taken together



x'=D(x,u)
u'=S(u,x),

where it is understood that the marked values x' and u' are fed back to
both D and S. In this way D and S lose their individuality and become
contributors to the composite system.
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This new machine is drawn with double closures. Now both systems
control each other side by side. The operational parameters of each
system become functions of the other system: two linked recursive
functors.

THE COMPOSITION OF THE SECOND ORDER
05. Functors: functions of functions (functions of the second order).
From your school years you might recall differential and integral calculus.

One writes dy/dx and speaks of "the differential quotient of y by x", where
y is a function of x: y = f(x). That means that the differential quotient or
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differential operator Diff, as 1 would like to call it, is a functor, since it
operates on one function, say y = x2, and produces a function: Diff[x?] = 2x,
or in a more elegant quantitative form:Diff[()2]=2. Does Diff have
eigenfunctions?  Yes, indeed. Consider the exponential function y=e® and,
following Menger, Diff[exp]=exp. Because of the surprising relationship of
the exponential function to the trigonometric functions sine and cosine
(exp(i®)=cos(8)+isin(0) where i2=-1),

we have Diff4[sin]=sin, Diff4[cos]=cos. Whence sine and cosine are

eigenfunctions of the four times iterated differential operators.

One does not need to constrain oneself to mathematical expressions.
Menger (1962) developed these ideas for logical functions into a
generalization that is meaningful in wider contexts. For example the
algebraic expression of the composition of two systems D and S is rendered
clear in Figure 8:

Z=80)=50)
D =2(8)=DED)
R -/

The recursion of functors D amd S.

06. Compositions ( the characteristics of the composition are not those of
the components)

Historically, attention was paid to the qualitative changes which arose in
the transition from aggregate to system. By an unlucky description, this
transition is identified with the slogan: "The whole is greater than the sum
of its parts." New Agers, advocates of holism and environmentalists take
to this phrase. As one of my colleagues once remarked: "Can't these
fellows add?”



If a density function M is introduced, then the sentiment can be made
more precise: " The measure of the sum of the parts is the sum of the
measure of the parts": MY (Ty)=fM(T), (i=1, 2, 3, 4, ... n). If the density
function is superadditive, then even the holistic motto, properly
formulated, is a legitimate usage. Take two parts a and b, and square the
density function, then, in fact, (a+b)2 is greater than (a)2 + (b)2 because a2 +
b2 + 2ab is greater than a2 + b2. To be more exact, the difference is at the
place of alternating order, ab + ba, of the system, where, because of
symmetry ( ab=ba), ab + ba = 2ab.

A first step in the generalization of the density function allows one to write
down the rules of the game for a composition algebra, where one looks at
the distributive law for the operators as only a special case. Let there be a
particular composition K (addition, multiplication, logical implication, etc.),
then the failure of the distributive law is expressed by the equation:

Op[K(f.g)] # K[Op(f), Op(g)].

In other words, the result of an operation, Op, on a system built through
the K composition is not equivalent to the K composition of the results of

Op.

This inequality plays an important role among the autopoieticists, who like
to always insist that the properties of the autopoietic system are nmot able
to be expressed through its components.

And now I want to briefly mention two important cases (one is a
restriction and the other an extension). Both allow the interchangeability
of operator and composition.

(i) homogeneous composition: K is said to be a homogeneous
composition rule with respect to the operation Op if

Op[K(f,2)1=K[Op(f), Op(g));

(ii) superposition: A composition rule C is said to be a superposition of
Op and K if




Op(K(f,)1=C[Op(f), Op(2)].

Note that if Op has an inverse operation, denoted Op-l, then C is indeed
obtained from Op and K by the formula

CIf.g] = Op[K(Op-1(£),0p~1(g)).

The creators of information theory made these formulations, following
Boltzmann's example. For the entropy H (here Op) they chose the
logarithmic function. The entropy, H(X), is a measure of the uncertainty
for a system X. The measure for the uncertainty for two independent
systems X and Y, H(X & Y), should be the sum of the measures of
uncertainty of the individual systems. This yields the equation

H(X & Y) = HX) + H(Y). For specific numerical measures of the individual
systems this leads to the numerical equation H(xy) = H(x) + H(y). This can
be represented by the logarithm function since log(ab)=log(a)+log(b).

If you look more closely at the "composition” in Figure 8, you will see, that
in principle it is impossible for both the x and the u loops to be in the
plane of the paper without cutting each other. One must either raise x or
u out of the plane of the paper into the "third" dimension in order to retain
the independent paths of both recursions.

This three-dimensionality can be further clarified by drawing the circuit
for the combined system on the surface of a torus. Then the u-loop winds
around onme of the toral directions while the x-loop winds around the other
toral direction. The two loops need only meet at the DS-box on the torus
surface. This ring or torus is then the topological representation of a
doubly closed system.

If you would like pictures, you will find this illustrated already in a paper
by Warren McCulloch: "A Heterarchy of Values Determined by the
Topology of Nervous Nets":

07. Warren S. McCulloch: "A Heterarchy of Values Determined by the
Topology of Nervous Nets". (1945) (Figure 9)
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Figure 9

His argument is the following: In his Figure 3 (our Figure 9) he shows the
recursion of neuronal activity, where the internal components are drawn
out and the external ones are indicated by the dashed circle segments.
This illustrates McCulloch's thesis about environmentally closed nerve
pathways. In this network diagram the organization is hierarchical,
because the outer sensory motor loops (dromes) could inhibit the inner
ones. Therefore this network cannot compute the “circularities in
preference”, the "value-anomaly” which 1 already mentioned. In
McCulloch's Figure 4 he introduces the diallels which are neurons that can
inhibit the outer circle from the inner one. The result is a three-
dimensional double closure in which the bottom of the planar hierarchy
can influence the top of that hierarchy. In three dimensions the hierarchy
is toppled and heterarchy emerges.

Another point about the usefulness of the toroid in the presentation of the
double closure process is found in proposition 08:
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08. Double Closure of the sensory motor and innervated
neuronal circle (N = neural bundle, syn = synapses, NP = neuropituitary,
MS = motor surface, SS = sensory surface). (Figure 10)
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Figure 10

The black squares labelled N represent bundles of neurons that synapse
with neurons of other bundles over the (synaptic) gaps indicated by the
spaces between the squares. The sensory surface (SS) of the organism is to
the left, its motor surface is to the right, and the neuropituitary(NP), the
strongly innervated mastergland that regulates the entire endocrinal
system, is the stippled lower boundary of the array of squares. Nerve
impulses travelling horizontally (from left to right) ultimately act on the
motor surface (MS) whose changes (movements) are immediately sensed
by the sensory surface (SS), as suggested by the "external" pathway
following the arrows. Impulses travelling vertically (from top to bottom)
stimulate the neuropituitary (NP) whose activity releases steroids into the
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synaptic gaps, as suggested by the wiggly terminations of the lines
following the arrow, and thus modify the modus operandi of all synaptic
junctures, hence the modus operandi of the system as a whole. Note the
double closure of the system which now recursively operates not only on
what it "sees” but on its operators as well. In order to make this two-fold
closure even more apparent, wrap the diagram around its two axes of
circular symmetry until the artificial boundaries disappear and the torus is
obtained. This is the functional organization of a living organism in a
(dough)nut shell. <<This paragraph is taken from von Foerster (1973).>>

09. The closure theorem: “Eigenrelations arise in every operationally
closed system.”

Among the many variations and paraphrases of this amazing theorem, I
have taken the Francisco Varela, Joseph Goguen version, because I see an
affinity with the vocabulary of social science. Implicit in the word
'relation' are the concepts of ‘behavior', 'conduct’, and the recognition of
regularity, of 'invariants', in the temporal course of an event. Here, among
social scientists, one is not very interested in whether the cosine or sine
appears as an eigenrelation, but rather whether, in the meeting of two
persons, they greet each other with a handshake or with a bow.

One can go even further and look for the emergence of invariants, which
arise if the air passes in certain ways through the vocal chords, whose
oscillations produce whispers and grunts, by which two persons greet one
another. In the south they say "Gruss Gott!" and in the north you will hear
"Guten Tag!"

With everything that I have said until now, I have tried to show that these
invariants, these "eigenrelations”, are the essential form revealed from the
recursive interchange of the participants of a social situation.

I would like to return to the original question: "How recursive is
communication?” and to my suggestion:
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00. Communication is Recursion.
With the vocabulary that we have developed I can sharpen this statement
with a few words:

10. Communication is the eigenrelation in a recursively
operating, double closure system.

The essential point of the topology of double closure is that it does not
allow the pseudo solution of the hierarchy, by which one always pushed
the responsibility to a higher level. Instead, through the bound
heterarchical organisation, the operator becomes the operand and the
operand the operator. This is exactly what we wanted to understand -
that which in a one-dimensional logic would be made impossible. Through
the interchangeability of the  effects and the values of the pertinent
functors, the freedom of dealing with a situation is given back to us and
with it also our responsibility.

And with that I will close with thanks to Wilhelm Busch:

11. Wilhelm Busch's Desideratum:
"Two times two is four" is true
But it's too bad that it is easy and empty.
Because I would have preferred clarity
About that which is deep and difficult.”

Whether I have succeeded, I don't know, but I thank you very much, that
you have been so patient and kind to listen to me. And once more I would
like to wish Niklas Luhmann well on his birthday.
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