
------------------- CH A PT ER 2
CONSTRUCTION OF THE
STEENROD SQUARES

The object of this chapter is to construct the Steenrod squares. These are
cohomology operations of type (Zz, n; Z z, n + i).
We remark now, once and for all, that there are analogous operations

for Zp coefficients, where p is an odd prime; but they will not be treated in
this book.

THE COMPLEX K(Zz,l)

In Chapter I we constructed a CW-complex K(n,n) for any abelian group
re where n > 2. We now have need for an explicit complex K(Zz,I).
Proposition 1
Let P = P( (0) = Un pen) denote infinite-dimensional real projective

space, the limit of pen) under the natural injections pen) ---+ pen + 1). Then
P is a K(Zz,l) space.
PROOF: The n-sphere sn is a covering space for pen) with covering

group Zz. From the exact homotopy sequence of this covering, it follows
that n1(P(n)) = Zz and that n;(P(n)) is trivial for 1 < i < n. The result
follows.
Let Sw denote the infinite-dimensional sphere, i.e., the union of all sn

under the natural injections sn ---+ sn+ 1. We can easily give a cell structure
for SW as a CW-complex. In each dimension i > 0, we have two cells,
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CONSTRUCTION OF THE STEENROD SQUARES 13

which will be denoted di and Td j • The action of the homology boundary
o is given by Odi = di-l + (-I)iTdi-\' with aT = To, TT= 1. (A sketch of
S2 will make this plausible.)
We can compute the homology of SCYJ from these formulas, verifying

that SCYJ is acyclic. Indeed, in even dimensions the only non-zero cycles are
generated by d2j - Td2j = Od2j + 1 ; in odd dimensions, only the sign is
changed in the argument.
The homology of P is more interesting. We obtain a cell structure for

P = P( (0) by collapsing SOO under the action of Z 2considered as generated
by T; in other words, identify di with Tdi for every i > O. Thus P has
exactly one cell in each dimension, denoted by ei ; and the boundary
formula is oe2j = 2e2j-l, oe2j - 1 = O. Therefore fi;(p;Z) must be Z2 for i
odd, 0 for i even.
By the universal coefficient theorems, since H*(P;Z) is Z2 in odd

dimensions, we have also the following: H*(P;Z) is Z2 in positive even
dimensions; H*(P;Z2) and likewise H*(P;Z2) are Z2 in all dimensions.
Thus we know the homology and cohomology groups of K(Z2' I) in all

dimensions and for any coefficients and in particular for coefficients Z
or Z2' We turn to the calculation of the cohomology ring.
Let W denote the chain complex of SOO. Then W is a Z2-free acyclic

chain complex with two generators in each dimension i > O.
To compute the ring structure of H*(P), we must give a diagonal map

for W. The action of Ton W gives an action of Ton W 0 Wby T(u 0 v) =
T(u) 0 T(v).
Define r: W -----+ W 0 W by

r(dJ = Loo;jo;i(-l)j(i-j)dj 0 Tjd j _ j
r(TdJ = T(r(dJ)

where Tj of course denotes T or I according to whether j is odd or even.
Then r is a chain map with respect to the usual boundary in W 0 W,
namely, o(u 0 v) = (ou) 0 v + (_l)degll u 0 (cv). The verification is direct
but tedious, and we omit it.
If h denotes the diagonal map of Z 2' then it is clear from the definitions

that r is h-equivariant, that is, r(gw) = h(g)r(w) for 9 E Z2 and IV E W.
Thereforerinducesachain maps: WIT -----+ WIT 0 WIT, where WjT= WjZ2
is the chain complex of P = P(oo). Explicitly,

s(eJ = Loo;jO; i(_l)j<i- j) ej 0 e j _ j

This map s is a chain approximation to the diagonal map Ll of P, and
so we may use it to find cup products in H*(P;Z2)' Let (J.i denote the
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nontrivial element of Hi(P;Zz) = Zz. The summation for s(ej+k) contains
a term ej <8> ek with coefficient I mod 2. Therefore,

<lX j U IXb ej+k) = <A*(lXj x IXk), ej+k)

= <lXj x IXk' s(ej+k)

I (mod 2)

so that IX j U IXk= IXJ+k' We have indicated the proof of the following result.

Proposition 2
H*(Zz,l; Zz) = H*(P;Zz), as a ring, is the polynomial ring Zz[lXd on

one generator, the non-zero one-dimensional class 1X 1•

THE ACYCLIC CARRIER THEOREM

To state the fundamental theorem on acyclic carriers, we need some
terminology. Let nand G be groups (not necessarily abelian) and let
Z [n] denote the group ring of n. Let K be a n-free chain complex with a
Z [n]-basis B of homogeneous elements, called "cells." For two cells
0';. E B, let [r:a] denote the coefficient of ain or; this is an element in
Z [n]. Let L be a chain complex on which G acts, and let h be a homo-
morphism n -+G.

Definition
An h-equivariant carrier e from K to L is a function e from B to the

subcomplexes of L such that:

1. if [r: 0'] *0 then ea c er;
2. for x E nand 0' E B, h(x)ea c ea.

The carrier e is said to be acyclic if the subcomplex ea is acyclic for every
cell 0' E B. The h-chain map f: K -+L is said to be carried by e if fa E ae
for every 0' E B.

Theorem 1
Let e be an acyclic carrier from K to L. Let K' be a subcomplex of K

which is a Z(n)-free complex on a subset of B. Let f: K' -+L be an
h-equivariant chain map carried bye. Then f extends over all of K to
an h-equivariant chain map carried bye. Moreover the extension is unique
up to an h-equivariant chain homotopy carried bye.
Note the important special case where K' is empty.



CONSTRUCTION OF THE STEENROD SQUARES 15

The proof proceeds by induction on the dimension; suppose thatfhas
been extended over all of Kg and consider a (q + I)-cell rE B. Then
or = Laiui whereai = [r: u;] E Zen). Thusf(or) = 'i.J(aiu i) = Lh(ai)j(ui),
which is in Cr by properties (1) and (2). Sincefis a chain map,f(or) is a
cycle, but then, since Cr is acyclic, there must exist x in Cu such that
ox = f(or). Choose any such x, and putf(r) = x. This is the essential step
in the construction ;jis extended over Kg + 1 by requiring it to be h-invariant.
Uniqueness is proved by applying the construction to the complex K x I
and its subcomplex K' x I u K x i.

CONSTRUCTION OF THE CUP-i PRODUCTS

Now let K be the chain complex of a simplicial complex, and let W
be the Z 2-free complex discussed above. Define the action ofZ 2 (generated
by T) on W (8) K by T(w (8) k) = (Tw) (8) k, and on K (8) K by T(x (8) y) =

(-1 )dgx dg Y(y (8) x). Define a carrier C from W (8) K to K (8) K by

C: d i (8) u -+ C(u X u)

where by C(u x u) we mean the following: K = C(X), the chain complex
of the simplicial complex X. By the Eilenberg-Zilber theorem, there is
a canonical chain-homotopy equivalence '¥: C(X x X) -+C(X) (8) C(X).
Then for u a generator of K, i.e., a simplex of X, by C(u X u) we mean the
subcomplex '¥C(u x u) of C(X) (8) C(X). Then C is clearly acyclic and
h-equivariant, where h is the identity map of Z2. Therefore there exists
an h-equivariant chain map

<p: W(8)K-+K(8)K

carried by C.
. We should examine this <P because it plays a principal role in the defini-
tion of the squaring operations. Consider the restriction <Po = <P Ido (8) K.
This can be viewed as a map K -+K (8) K, and as such it is carried by the
diagonal carrier. Thus it is a chain approximation to the diagonal, suitable
for computing cup products in K. The same remarks apply to T<po: u-+
<p(Tdo (8) u). Since both <Po and T<po are carried by C, they must be equi-
variantly homotopic. In fact it is not hard to verify that the chain homotopy
is given by <Pt: K -+K (8) K: u -+<p(d1 (8) u). Further, <PI and T<Pl are equi-
variantly homotopic homotopies; a homotopy is given by ({J2; and so
forth.
We now use <p to construct cochain products.
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Definition
For each integer i > 0, define a "cup-i product"

cP(K) ® e(K) ----+ cP+q- i(K): (u,v) ----+ u V i V

by the formula

(u Vi v)(e) = (u ® v)cp(di ® c) e E Cp+q_i(K)

For the definition we must make an explicit choice of cp, but it will be
seen that this choice is not essential.

Coboundary formula

b(u Vi v) = (_l)i bu Vi V+ (-l)i+ Puvi bv - (-I)iuVi_ 1v-(-l)
pqvv i_1 U

(It is understood that u V -I V = 0.)
The proof is a routine computation from the definitions: let e be a chain

ofCp+q_i+I(K); then

(b(u Vi v»(e) = (u Vi v)(oe) = (u ® v)cp(di® oe)

By definition, o(di ® c) = Odi® e + (-l)idi® oe; so this becomes

(-lr(u ® v) cpo(di ® c) - (--lhu ® v)cp(odi® c)
= (-lr(u ® v) ocp(di ® c) - (-lr(u ® v)cp(di- I ® c)

- (_1)2i(u ® v)cp(Tdi- 1 ® c)
= (_l)i b(u ® v)<p(di ® c) - (-l)i(u ® v)<p(di- I ® c)

- (u ® v)Tcp(di_1 ® c)
= (_l)i b(u ® v)cp(di® c) - (-lhu ® v)cp(di_1 ® c)

- (-1)pq(v ® u)cp(di- I ® c)

By definition of b(u ® v), the first term may be written

(-l)i(bu ® v)cp(di® c) + (-l)i+ P(u ® bv)cp(di ® c)

and so we finally have, from the definitions,

(b(u Vi v»(e) = (_1)i bu V i V+ (-lr+ pu Vi bv - (-l)iu V i-IV
- (-l) pqv V i-I u

which is the required formula.

THE SQUARING OPERATIONS

We emphasize that the cup-i products are defined on integral cochains
and take values in integral cochains. But suppose u E CP(K) is a cocyc1e
mod 2, that is, bu = 2a, a E cP+ I(K). It follows from the coboundary
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formula that u U i U is also a cocycle mod 2. We can therefore define opera-
tions

Sq;: ZP(K;Z2) � Z2P-;(K;Z2): U� Uu; u

in the obvious way. Moreover, we can compose this with the natural
projection of cocycles onto cohomology classes.

Lemma 1
The resulting function Sqi: �������������������� is a homo-

morphism. .
PROOF: Let c be a cochain of the appropriate dimension, and write down

Sq;(u + v)(c). As expected, one obtains the terms Sq;(u)(c) and Sq;(v)(c)
plus two cross terms, but the sum of the cross terms is a coboundary
mod 2:

(u u; v)(c) + (v u; u)(c) = e5(u U;+ 1 v)(c) (mod 2)

Lemma 2
If u is a coboundary, so also is Sq;(u).
PROOF: If u = e5a, Sq;(u) = e5(a u; e5a +a U ;-1 a) (mod 2)

Proposition 3
The above operation passes to a homomorphism:

Sq;: HP(K;Z2) ������������

This follows from the preceding lemmas. Of course" homomorphism "
is understood in the sense of additive groups, not of rings.
Proposition 4
Letfbe a continuous map ���� Thenf* commutes with Sq; as in the

diagram below.
HP(L'Z) Sq, H 2P-i(L' Z ), 2 � ,2

r1 lr
HP(K'Z) Sq, H 2p- i(K' Z ), 2 � ,2

PROOF: By the simplicial approximation theorem, we may assume f is
simplicial. Let u be a p-cochain of L. From the definitions, we have the
formulas

f*(Sq;(u)): ���� ® u)(fJL(di ® fee)) = (u ® u)(fJL(I ® f)(d; ® e)
Sqj(f*(u)): ������ ® f*u)cpl\(d; ® e) = (u ® u)(f® f)cpl\(d; ® e)

where e is a (2p - i)-chain of K. But the two chain maps CPL(I ® f) and
(f ® f)cp K are both carried by the acyclic carrier C from W ® K to L ® L
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given by C(di (2) a) = C(fax fa). Thus they are equivariantly chain-
homotopic, and hence the two images displayed above are cohomologous.
In fact, if h is the homotopy, the difference between the above cochains is
tJg where gee) = (u (2) u)h(di (2) e).
The definition of the squaring operations is now complete, in the sense

that we can draw the following inference.

Corollary 1
The operation Sqi is independent of the choice of qJ:
The corollary is proved by putting K = L in Proposition 4, letting qJK' qJL

denote two different choices of qJ, and taking for f the identity map.

Proposition 5
If u is a cochain of dimension p, then Sqo(u) is the cup-product

square u2 •
This follows from the remarks given after the definition of qJ, since

(u Uo u)(c) = (u (2) u)qJo(c) and qJo is suitable for computing cup products.
We have already begun to assemble the basic properties of the squaring

operations, and henceforward it will be more convenient to modify the
notation as follows.

Definition
Denote by Sqi (with upper index) the natural homomorphisms

i = 0, I, ... , p

given by Sqi = Sqp-i' For values of i outside the range °<i <p, Sqi is
understood to be the zero homomorphism.
Thus Sqi raises dimension by i in the cohomology of K.

COMPATIBILITY WITH COBOUNDARY AND SUSPENSION

We now wish to define squaring operations in relative cohomology. Let
L be a subcomplex of K; we have an exact sequence, at the cochain level,

o� C*(K,L) --.!4 C*(K) L C*(L)� 0

We may assume that qJL = qJK IW (2) L, since qJK(di (2) a) E C(a X a) c
L (2) L for (J EL. This implies that for u,v E C*(K), j*(u U i v) =j*u U d*v.
Define relative cup-i products as follows. Let u,v E C*(K,L); then
j*(q*u U i q*v) = 0, so that (q*u U i q*v) is in the image of q*, by exactness;
but q* is one-to-one, and hence we may define u U i v as the unique cochain
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in C*(K,L) such that q*(u U i v) = q*u U i q*v. It is trivial to verify that the
coboundary formula for cup-i products carries over into this context.
Therefore we obtain homomorphisms

Sqi: HP(K,L; 2 2) -----t HP+ i(K,L; 2 2 )

by the same process as in the absolute case. It is obvious from the defini-
tion that q*Sqi = Sqiq*.
In what follows, all coefficients are in 2 2 and we drop the 2 2 from the

notation. .
We recall the definition of the coboundary homomorphism c5*: H*(L)-----t

H*(K,L). Let a be a cocycle and ii its cohomology class, a E ii E HP(L).
Then a = j*b for some b E cP(K). Thenj*(c5b) = (c5a) = 0, and so c5b = q*c
for some C E CP+ 1(K,L). Since q* is one-to-one, c must be a cocycle, and by
definition c5*(a) = C, the cohomology class of c.

Proposition 6
Sqi commutes with c5* as in the diagram.

������� HP+i(L)

6-1 16- (coefficients 2 2)

���������� HP+i+l(K,L)

PROOF: Using the notation of the last paragraph, Sqiii and Sqi(c5*ii) are
represented by a u p _ i a and c U p + 1- i C, respectively. Now

q*(c U p + 1 - i c)=q*c u p+l _ i q*c=c5b U p+1 - i c5b=c5b' (mod 2)

where b' = (b u p+1-, c5b) + (b u p_ i b). Moreover, j*(b') = °+ (a u p_ i a).
Therefore, by definition of c5*,

c5*(Sqi(ii)) = c5*[a U p- i a] = [c U p+1 - i c]

and the class on the right is Sqi(c5*(a)).
Recall that, given any space X, we may define the cone over X and the

suspension of X from the product space X x I by collapsing X x °or
X x i, respectively, to a point. In reduced cohomology, we have the
suspension isomorphism S*: R*(X)-----tR*(SX) defined by the composition

Rp(X) � I �������������������

which raises dimension by one. The second isomorphism is proved by an
�������� argument and is based on a map. This, together with the naturality
of the squaring operations and Proposition 6, yields the following funda-
mental property.
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Proposition 7
The squares commute with suspension:

Sqi. S* = S* . Sqi: fjP(X) --)fjp+i+J(SX)

We can apply Proposition 7 to obtain an example of a non-trivial
squaring operation which is not just a cup product. Let K denote the real
projective plane; its cohomology ring with Z z coefficients is just the poly-
nomial ring over Z z generated by the non-trivial one-dimensional
cohomology class a and truncated by the relation a3 = O. From Proposition
5, SqJ(a) = Sqo(rx) = rx z, so that S*SqJ(rx) is non-zero. Hence SqIS*(ex) is
also non-zero, showing that the operation SqJ is non-trivial in HZ(SK;Zz).

DISCUSSION

The squaring operations constructed in this chapter are a special case
of the reduced power operations of Steenrod. These operations have been
very important in the development of algebraic topology; most of this book
is devoted to their properties and applications. And there are many more.
The specific construction we have given is neither the simplest possible

nor the most subtle. Steenrod's original definition is more direct; his most
recent definition is far more elegant. The construction we have given is
adopted as a middle ground-one from which the algebraic properties
are easily deduced, and yet the geometric genesis is not totally obliterated.
The reader will observe that we have defined the squaring operations in

the simplicial cohomology theory, yet we will use these operations in
singular theory. We justify this usage as follows. In their book (pp. 123-
124), Steenrod and Epstein show that the squares, if defined for finite
regular cell complexes, have unique extension to both singular and Cech
theory for arbitrary pairs. But a finite regular cell complex has the homo-
topy type of a simplicial complex, on which we have defined the operations.

EXERCISE

1. Suppose the cocycle u E CZP(X;Z) satisfies bu = 2a for some a.
i. Show that u V o u + U VI U is a cocycle mod 4.
11. Define a natural operation, the Pontrjagin square,

Pz: HZp( ;Zz) � H4p( ;Z4)
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iii. Show that pP2(u) = u U u, where p: H*( ;Z4) -+ H*( ;Z2) denotes
reduction mod 2.

iv. Show that P2(u + v) = Piu) + P2(v) + u u v, where u u v is computed
with the non-trivial pairing Z2 <8> Z2 -+ Z4.
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CHAPTER 3
PROPERTIES OF THE
SQUARES

We assemble the fundamental properties of the squaring operations in
an omnibus theorem.

Theorem 1
The operations Sqi, defined (for i > 0) in the previous chapter, have the

following properties:

o. Sqi is a natural homomorphism HP(K,L; 2 2) -+ HP+ i(K,L; 2 2)

1. If i > p, Sqi(X) = 0 for all x E HP(K,L; 2 2)

2. Sqi(X) = x 2 for all x E H\K,L; 2 2)

3. SqO is the identity homomorphism
4. Sql is the Bockstein homomorphism
5. b*Sqi = Sqib* where b*: H*(L;22) -+H*(K,L; 2 2 )

6. Cartanformula: Sqi(xy) = IiSqjx)(Sqi- jy )
7. Adem relations: For a<2b, ��������������������������where the
binomial coefficient is taken mod 2

We remark that the above properties completely characterize the
squaring operations and may be taken as axioms, as is done in the book of
Steenrod and Epstein.
Properties (0), (I), (2) and (5) have been proved in the last chapter. This

chapter will be devoted to the proof of (3), (4), (6), and (7).
22
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Let f3 denote the Bockstein homomorphism attached to the exact
coefficient sequence 0-----+Z-----+Z-----+Z2-----+0. Then f3 is a homomorphism
H*(K,L; Z2) -----+H*(K,L; Z), which raises dimension by one. It is defined
on x E HP(K,L; Z2) as follows: represent the class x by a cocycle e; choose
an integral cochain e' which maps to e under reduction mod 2; then be' is
divisible by 2 and !Cbe') represents f3x.
The composition of f3 and the reduction homomorphism gives a homo-

morphism

b2: HP(K,L; Z2) -----+ HP+I(K,L; Z2)

which we also call "the Bockstein homomorphism"; in fact, it is the
Bockstein of the sequence 0-----+Z2-----+Z4-----+Z2-----+0. To show that this is
Sql, we will use the following lemma, which in the light of (3) and (4) will
be seen to be a special case of the Adem relations (7).

Lemma 1
b2Sqi = 0 if j is odd; b2Sqi = Sqi+ I if j is even.
PROOF: Given u E HP(K,L; Z2), let e be an integral cochain such that

the reduction mod 2 of e is in the class u. Then Sqiu is the class of
(e up-i e). Now be = 2a for some integral cochain a E CP+I(K,L). Writing
i for (p - j), we have, by the coboundary formula,

b(e U i e) = (-I)i2a U i e+ (-lYe U i 2a - (-l)ie U i-I e - (-l)pe U i-I e

Thus b2(Sqiu) is represented by the mod 2 cocycle

a U i e + e U i a + (s)(e Ui-I e)

where the coefficient s is 0 or I according to whether j is even or odd,
respectively. But the sum of the first two terms is a coboundary, namely,
()(e U i+ I a) (mod 2), and the last term represents (s)(Sqi+ I u). This proves
the lemma. .
As a special case of the lemma, b2SqO = Sql. This shows that (4) follows

from (3). It remains to prove (3).
Property (3) must be true in the real projective plane P(2), for in that case

')zSqO(ex) = Sq\ex) = (a 2) eft 0, and so SqO(a) eft 0, which proves SqO(a) = a
since a is the only non-zero element of H I(P(2);Z2) =Z2' We can deduce
that (3) is true in the circle S I by taking a map f: S I ��P(2) such that
f*: ex -----+ 0", where 0" denotes the generator of H*(S I ; Z 2), and applying the
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naturality condition: SqOu = SqOf*a = f*SqOa = f*a = u. Then (3) holds
in every sphere sn by suspension (Proposition 6 of Chapter 2).
Let K be a complex of dimension n; map K to sn so that u pulls back

to a given class in Hn(K;Z2) (use the Hopf-Whitney theorem, Theorem 5 of
Chapter 1). Then (3) holds for that class. Now let K be any complex, of
unrestricted dimension; (3) must hold on any n-dimensional cohomology
class in K because the injection j of the n-skeleton Kn into K induces a
monomorphism j*: Hn(K;Z2)-----+Hn(Kn;Z2) and the result follows as
before by naturality. Thus (3) has been shown to hold in absolute
cohomology.
Now let K,L be a pair and K u CL the space obtained by attaching to K

the cone over L, attached at the common subspace L. We then have iso-
morphisms, commuting with SqO,

H*(K,L) � H*(K u CL, CL) � H*(K u CL)

The first isomorphism is by excision; the second, by contractibility of CL.
This completes the proof of (3) and hence also of (4).

THE CARTAN FORMULA AND THE HOMOMORPHISM Sq

The Cartan formula (6) has two forms, one where we interpret the multi-
plication as the external cross product and another in which it is inter-
preted as the cup product. We will prove the first form and deduce the
second as a corollary.
Consider the composition

���������W® ���������W®K® W®L
��������������������������

where r: W -----+ W ® W was defined in Chapter 2 and T permutes the second
and third factors (we are not concerned with sign changes because we want
conclusions in Z2 coefficients). This composition, which we denote by
<{JK ® L, is easily seen to be suitable for computations of cup-i products and
hence Sqi, in K ® L.

V sing the same letters to denote (co-)homology classes or their represen-
tatives, and writing p,q,n for dim u, dim v, and p +q - i, respectively, we
compute as follows:

Sqi(U X v)(a ® b) = ((u ® v) un (u ® v»(a ® b)

= (u ® v ® u® V)<{JK ® L(dn ® a ® b)

= (u ® u ® v® v)I <(JK(dj ® a) ® Tj<{JL(dn - j ® b)
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the last step using the definition of r, and the summation being over j,
o<j<n;

Sqi(U X v)(a ® b) = L (u U j u)(a) ® (v u n - j v)(b)
= L (SqP- ju)(a) ® (Sqq-n+ jv)(b)
= L (SqP-ju x Sqq-n+jv)(a ® b)

Hence, since Sqix is zero for i outside the range 0 < i < dim x, we have

Sqi(U X v) = LJ=o SqP- ju X Sqq-n+ jv

= Lf=i-q SqSu X Sqi-sv
= ���� SqSu X Sqi-sv

s=p-j

which completes the proof of the first form of (6).
In order to prove the cup-product form of (6), let A denote the diagonal

map of K; if x,y E H*(K;Zz), x U Y = A*(x x y), and so

Sqi(X U y) = Sqi A*(x x y)
= A* Sqi(X X y)
= A* ���� Sqjx X Sqi- jy
= L Sqix U Sqi- jy

This completes the proof of the Cartan formula (6) in both interpreta-
tions.
We remarked before that the Sqi are homomorphisms only in the sense

of groups; the Cartan formula makes it clear that they are not ring homo-
morphisms, but they can be combined into a ring homomorphism in the
following sense.

Definition
Define Sq: H*(K;Zz) ���������by

Sq(u) = Li Sqiu

The sum is essentially finite; the image Sq(u) is not in general homogen-
eous, i.e., it need not be contained in HP for some p. (It is understood that
each Sqi is defined on nonhomogeneous elements u E H* by requiring it
to be additive.)

Proposition 1
Sq is a ring homomorphism.
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PROOF: Clearly Sq(u) U Sq(l') = (Li SqiU) U (Lj Sqjl') has Sqi(U U l') as
its (p +q + i)-dimensional term, by the Cartan formula. Thus Sq(u) U
Sq(v) = Sq(u U v).
As an application of this homomorphism, we compute the Sqi on any

power of anyone-dimensional cohomology class of any complex, as
follows.

Proposition 2
For u E H1(K;Zz), Sqi(Uj) = ({)u j

+ i •

PROOF: Sq(u) = SqOu + Sq1 u = II +UZ by properties (1) to (3). But
Sq is a ring homomorphism. Therefore Sq(uj) = (u +UZ)j = uj Lk muk, and
the proposition follows by comparing coefficients.
In particular this gives us the action of all the Sqi in H*(Zz,1 ;Zz), since

this is generated as a ring by a one-dimensional class.
We pursue this line not only for its intrinsic interest but because it will

serve us in the proof of the Adem relations.

SQUARES IN THE n-FOLD CARTESIAN PRODUCT OF K(Zz,l)

Definition
Let K" be the topological product of n copies of K(Zz,I). Here we may

take for K(Z z, I) the complex P(CI)) discussed in Chapter 2.
Since H*(Zz,I; Zz) is the polynomial ring on the one-dimensional class,

it follows by the Kiinneth theorem that the ring H*(K,,;Zz) is the poly-
nomial ring over 2 z on generators X\, ... , x"' where Xi is the non-trivial
one-dimensional class of the ith copy of K(Z2,l). In this polynomial ring
Zz[xj, . .. ,x,,], we have the subring S of symmetric polynomials, which (by
the fundamental theorem of symmetric algebra) may be written as
ZZ[O"I'" .,0",,] where O"j is the elementary symmetric function of degree j
(for example, 0"1 =X1+ ... + X,,).

Proposition 3
In H*(K,,; Z 2)' Sqi(O",,) = 0",,0" i (l < i :s;; n).
PROOF: Sq(O",,) = Sq([1 xJ = [1 Sq(x;) = [1 (Xi + X;) = 0",,([1 (I + Xi)) =

0"" :D=o O"i' The result follows.

Corollary 1
In H*(Zz,n; Zz), Sqi,,, =I- 0 for 0 :::; i < n.
PROOF: By Theorem I of Chapter I, we can find a map f of Kn into

K(Zz,n) such that f*(I,,) = 0"". Then f*Sqi(I,,) = Sqj*(l,,) = S(/(O",,) =
0",,0"; 7'= 0, which proves the corollary.
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We can show more; we can find a host of linearly independent elements
in H*(Z2,n; Z2) by using compositions of the squares.

Notation
Given a sequence 1= {iJ> ,ir } of (strictly) positive integers, denote by

SqI the composition Sqit Sqir. By convention, SqI = SqO, the identity,
when I is the empty sequence (the unique sequence with r = 0).
For example, Sq{2,[)(X) = Sq2(Sq[(X)).

Definitions
A sequence I as above is admissible if i j ::::0: 2(ij+ d for every J < r. (This

condition is vacuously satisfied if r < 1.) In this case we may also refer to
SqI as admissible. The length of any sequence I is the number of terms, r in
the above notation. The degree d(I) is the sum of the terms, Lj ij . (Thus
SqI raises dimension by d(!).) For an admissible sequence I, the excess
e(I) is 2i[ - d(I).
For the excess, we have

e(I) = 2i[ - d(!)

The last expression justifies the name, but the first two are more convenient
in practice.
Recall that S denotes the symmetric polynomial subring of the poly-

nomial ring H*(Kn;Z2)=Z2[X1, ••• ,xn]. We define an ordering on the
monomials of S as follows: given any such monomial, write it as
III = ������� .. aj: with the Jk in decreasing order, J[ > J2 > .. '. Then put
III <m' if}[ <}{ or if}[ =}{ and (mfajJ < (m'fah)'

Theorem 2
If deI) < n, then SqI(an) can be written an' QI where QI = ait' .. air +

la sum of monomials of lower order).
We prove this theorem by induction on the length of I; it reduces to the

last proposition if r = 1. Let r be the length of I, and write J for i 2 , •.• , ir •
We assume the result for sequences of length < r (in particular for J);
then, using the Cartan formula,
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. ,
,;,
(

By the induction hypothesis on Qb SqI((Jn) may be written

(In(J i,(Ji2 •.. (J i r + (In(J i, (lower terms of QJ) + ����A(In(JmSqi1 -m(QJ)

Observe that Sqi((J;) < (J i + i and also that Sqi((J;) = (J; < (J 2 i' Therefore the
largest possible term after the first term in the above expression is obtained
from the last group of terms by taking m = i , - i2 + 1, so that i , - m =

i z - 1; thus this term is

Now I is admissible, and so 2i2 - 1 < 2i2 ..:;; i
"
but this implies that

x < (In(Ji,(Ji2' .. (Ji r' and the proof is complete.
As I runs through all admissible sequences ofdegree < n, the monomials

(JI = (Ji,(Ji2' . '(Jir are linearly independent in S and hence in H*(Kn;Z2)'
From the above theorem, the SqI((Jn) are also linearly independent. We can
draw the following inference.

Corollary 2
As I runs through the admissible sequences of degree < n, the elements

SqI(ln) are linearly independent in H*(Z2,n; Z2)'
Choose a mapj: Kn----+K(Z2,n) such thatf*(ln) = (In' Then the corollary

follows from the preceding remarks.

Proposition 4
If u E Hn(K; Z2) for any space K, and I has excess e(l) > n, then

Sqlu = O. If e(l) = n, then Sqlu = (SqJU)2, where J denotes the sequence
obtained from I by dropping i).
This proposition may be considered as a generalization of properties

(1) and (2) of Theorem I. To prove the first statement, note that if e(l) =

i, - i2 -' •• - ir> n, then i) > n + i2 +... + ir = dim (SqJu), so that
Sqlu = Sqi'(SqJU) - 0 by (1). The second statement of the proposition
follows in a similar way from (2).
These results are included in a theorem of Serre, which states that

H*(Z2,n; Z2) is exactly the polynomial ring over Z2 with generators
{SqI(ln)}, as I runs through all admissible sequences of excess less than n.
We will establish Serre's theorem in Chapter 9, using spectral-sequence
methods.
As a corollary to Serre's theorem, we mention that the map j: Kn ----+

K(Z2,n) such that f*(l n) = (In clearly has the property that f* is a mono-
morphism through dimension 2n. We will use this fact in the proof of the
Adem relations, and so we call attention to the fact that our proof of
Theorem 1 will not be complete until we have proved Serre's theorem.
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THE ADEM RELATIONS

We now discuss the Adem relations (7).
An Adem relation has the form
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R = Sq"Sq" + ������ ����� 1) Sq"+b-cSqC = 0 (mod 2 )
where a < 2b, and [aI2] denotes the greatest integer < a12. We usually drop
the limits of summation from the expression, since the lower limit is
implicit in the term SqC while the upper limit is implicit in the convention
that the binomial coefficient G) is zero if y < O. We also use the standard
convention that G) = 0 if x < y. (As an exercise in the use of these conven-
tions, the reader may note that the Adem relations give Sq2.-1Sq' = 0 for
every n.)
We will establish the Adem relations through a series of lemmas.

Lemma 2
Let y be a fixed cohomology class such that R(y) = 0 for every Adem

relation R. Then R(xy) = 0 for everyone-dimensional cohomology class
x (and every R).
We will defer the proof of Lemma 2 to the end, since it is elementary

but long and complicated.

Lemma 3
For every R and for every n > 1, R(a.) = 0 where aa E Ha(Ka;Z2) as

before.
PROOF: Let 1 denote the unit in the ring H*(Ka ;Z2); then R(l) = 0

for every R, by dimensional arguments. Then R(x1 ) = R(lx1 ) = 0 by
Lemma 2; and finally R(aa) = R(x1 ••• xa) = 0 by induction on n using
Lemma 2.

Lemma 4
Let y be any cohomology class of dimension n of any space K, with

Z2 coefficients, and let R = R(a,b) be the Adem relation for Sq"Sq" where
a +b < n. Then R(y) = O.
PROOF: By Serre's theorem we have a map f*: H*(Z2,n; Z2)-----+

H*(x a
; Z 2) which takes I. to aa and is a monomorphism through dimen-

sion 2n. We have R(a.) = 0 by Lemma 2, and so R(l a) = 0, since these
elements have dimension n + a + b < 2n. The result for y follows by
naturality, using a map g: K -----+K(Z2,n) such that g*(la) = Y'.
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Lemma 5
Let R be an Adem relation. If R(y) = 0 for every class y of dimension

p, then R(z) = 0 for every class z of dimension (p - 1).
PROOF: Let u denote the generator of H l(S 1 ; Z 2)' Clearly Sqiu = 0 for

all i > O. Therefore, by the Cartan formula, R(u x z) = u x R(z). But
u x z has dimension p; hence R(u x z) = 0, and so R(z) = O.
The Adem relations follow easily from Lemma 4 and Lemma 5 by

induction on dimension.
It remains to prove Lemma 2.
We begin by recalling the formula en = (:=n + (P;l), which holds for

all p,q except for the case p = q = O.

Lemma 6
en + (q! 1) +(:=1) + (:;D 0 (mod 2) except in the cases (p = q = 0)

and (p=O,q= -1).
This lemma follows from the formula just cited. (The easiest way to see

the sense of these two formulas is to consider Pascal's triangle.)
To prove Lemma 2 is to show R(xy) = 0 where x is anyone-dimensional

class and y has the property that R(y) = 0 for every R. We begin by
applying the Cartan formula to Sqb(xy); since dim x = 1, Sqb(xy) =

xSqby +X2Sqb-1y . Again by the Cartan formula,

SqaSqb(xy) = Sif(XSqby +X2Sqb-1y)
= xSqaSqby + x 2Sqa - 1Sqby + X2SqaSqb -ly + 0
+ x 4Sqa- 2Sl-1y

the zero coming from Sq1(X2), which is zero mod 2. In a similar manner
we find that

I (s)Sqa+b-CSqC(xy) = x I (s)Sqa+b-CSqCy + x 2 I (s)Sqa+b-C- 1SqCy
+ x 2 I (s)Sqa+b-cSqC-1y +x4 I (s)Sif+ b- c- 2Sqc-1y

where s = s(c) = �������� In these two formulas, the first terms match,
SInce

xSqaSqby + x I (s)Sqa+b-CSqCy = xR(y) = 0

Now a < 2b implies (a - 2) < 2(b - 1), and so the fourth terms also
match: since R(y) = 0 for all R, in particular, for R(a - 2, b - 1),
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where c' = c+ 1. Thus it remains to show that
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SqaSqb-ly +L ���������������������

= L(S)sqa+b-e-1sqey +L(s)sqa+b-esqe-ly
where the second term on the left-hand side (LHS) replaces sqa-1sty,
using R(a - 1, b). We consider three cases.
CASE 1: a = 2b - 2. Then a - 2e = 2(b - e - 1), and so (s) = (A) = °

unless k = 0, that is, unless c = b - 1; so RHS = SqaSqb-ly + Sqa+lSqb-2y .
Similarly, �������� = (2k':.1) = °unless k = 1, that is, unless c = b - 2; so
LHS = SqaSqb-ly + Sqa+lSqb-2y , and the two sides are equal.
CASE 2: a = 2b - 1. Proved by a similar argument.
CASE 3: a < 2b - 2. Then, by R(a, b - 1),

S'n"S b-l = '" (b-e-2)S("'+b-e-1S e'1 q Y L.e a- 2e '1 q Y

Also,

where c' = e - 1, so we are reduced to verifying that

(b-e-2) +(b-e-l )=(b-e-l) +(b-e-2 )a-2e a-2e-l - a-2e a-2e-2 (mod 2)

But this follows from Lemma 5, with p = b - c - 1, q = a - 2e - 1. The
exceptional cases are excluded automatically, because p = 0, q = °or -1
means b = e+ 1, a = 2e + 1 or 2c, respectively, contradicting the Case 3
hypothesis.
This completes the proof of Lemma 2.
We attach a short table of representative Adem relations.

Sq1Sql = 0, Sq1Sq3 = 0, ... ; Sq1Sq2n+l = °
Sq1Sq2 = Sq3, Sq1Sq4 = Sq5, ... ; Sq1Sq2n = Sq2n+l
Sq2Sq2= Sq3Sql, Sq2Sq6 = Sq7Sql, ... ; Sq2Sq4n-2 = Sq4n- 1Sql
Sq2Sq3= Sq5 + Sq4Sqt, ; Sq2Sq4n-l = Sq4n+l + Sq4nSql
Sq2Sq4= Sq6 + Sq5Sql, ; Sq2Sq4n = Sq4n+2 + Sq4n+lSql
Sq2Sq5= Sq6Sq\ ... ; Sq2Sq4n+l = Sq4n+2Sql
Sq3Sq2 = 0, ... ; Sq3Sq4n+2 = °
Sq3Sq3 = Sq5Sql; ...
Sq2n- 1s qn= °



32 COHOMOLOGY OPERATIONS

DISCUSSION

Theorem I lists the major properties of the squaring operations, and, as
we remarked, these properties characterize the squares uniquely. Parts
(0) to (5) are due to Steenrod. The Cartan formula (6) was indeed dis-
covered by Cartan; the Adem relations (7) were proved independently, and
by very different methods, by Adem and Cartan.
Theorem 2, the surrounding material, and the proof we have given of

the Adem relations include work of Cartan, Serre, and Thorn. From our
point of view this material will be amplified and completed by the calcula-
tions of Serre given in Chapter 9.
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