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1. Intro duction

I Sec. 2 wé reformulate the Four Color Theorem in terms of an algebraic prob-

.. lem about the vector cross product algebra in three-dimensional space. The struc-
- ture of this reformulation relates the quatermons to an example of spin network

theory. :

In Sec. 3 we review the bracket polynomial and its relation to the Potts model,
chromatic polynomial, Jones polynomial and the Temperley-Lieb algebra. We dis-
cuss,how the general bracket can be expanded in terms of the Temperley-Lieb

_algebra. It is shown how the Potts partition function (hence the chromatic polyno--

mial) of any plane graph can be expressed in terms of the Temperley-Lieb algebra.
By using this formulation we describe joint work with H. Saleur that reformulates
the Four Color Theorem as part of a larger conjecture about the Temperley-Lieb
algebra.

Section 4 discusses the relationship of the bracket polynomial with the SL(Q)
quantum group.

Section 5 recalls the framework of Penrose spin network theory and shows how
this viewpoint torrelates the coloring reformulations of Secs. 2 and 3. Section 6
details our generalization of spin networks to g-deformed spin networks. We dis-
cuss g-spin network recoupling theory and state joint results with Sostenes Lins
(Propositions A and B) about the structure of this theory when ¢ is a root of unity.

Finally, Sec. 7 describes joint work of the author and Sostenes Lins in construct-
ing 3-manifold invariants of the Turaev-Viro type by using the recoupling theory of
¢-spin networks. The epilogue discusses connections and applications.

2. Map Coloring -

Let’s begin with a combinatorial problem about the vector cross product algebra.
Recall that the vector cross product algebra for three-dimensional space is generated
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by the three principal (orthogonal) vector directions, denoted by i and j and k.

k

;
The algebra obeys the rules

i=p=kk=0,
ij=k,jk=1iki=],
ji=—ij, jk = —kj,
ki = —kj.

As a consequence, this is a non-associative algebra, with the simplest instance of
non-associativity being

(i)j = 0§ = 0
i(ij) = ik = —j.

(The product in the vector cross product algebra is written without the usual z
sign. Let this cause no confusion.)

Since this algebra is non-associative, it is natural to consider the following propo-
sition.

Proposition P. Let L and R denote two associations of the product X7Xs...Xn
for any positive integer n. Then there exist values for X, Xa,... , X, taken from
the set {i,,k} such that neither L nor R are zero, and L = R.

For example, if n = 4, then we can consider the equation
(xy)(zw) = (x(y2))w,
and we find that
(i) (ik) = (1())k
gives a non-zero solution.

Theorem 2.1 [18]. Proposition P is equivalent to the Four Color Theorem.

The Four Color Theorem states that any map drawn in the plane so that no
region borders on itself can be colored in four colors so that no two regions, sharing
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a border, are colored with the same color. This theorem has a notorious history,
and there is — to date — no simple proof of its veracity.

A hint of the proof of 2.1 will remove the mystery: Any associated product
can be regarded as encoding a tree where the simplest branching indicates a single
multiplication. Thus the tree corresponding to (zy)(2w) is

X y z w

and the tree corresponding to w((zy)z) is

w z y X

In these trees an assignment of values to the branches gives rise to the parenthesized
product value at the trunk. An equation of the form L = R can be encoded by
connecting the trees T(L) and T*(R) where T*(R) is the mirror image of the tree
T(R). That is, T*(R) is the tree T(R*) where R* is the result of writing R in
reverse order. For example, [(z(yz))w]* = w((zy)z). The connection of the two
trees is.denoted by T(L)#T(R"); it is obtained by connecting the trunks and the
corresponding branches as shown below: :

T(L)#T(R")
L = (zy)(zw)
R = (z(yz))w
R* = w((zy)=)
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We see that T(L)#T(R*) is a planar map, and that coloring the map gives rise to
a coloring of the edges with three distinct edge colors at each vertex. If the region
colors are I, J, K, E, then we take E as an identity element , and for purposes
of labelling associate 1 to any edge that is bordered by E/I or J/K. In general,
associate the product zy of region colors to the common edge where we take the
products IJ = JI=k, JK =XJ =i, IK = KI = j. (This method of translating
region colorings to edge colorings for cubic maps is due to Heawood [7]. Kempe
[30] was the first to observe , by replacing higher order vertices by regions, that
it is sufficient to four color cubic plane maps in order to derive the colorability of
arbitrary pane maps.) Read off the associations of edge colors as assignments to
the variables in L and R. This gives rise to the solution to the equation L = R.

(15)(ik) = [k((5)))" = (i(49))k -

This prescription for solving L = R clearly works up to the sign. That the sign
also works can be seen as follows (This short argument is due to George Bergmann
(private communication)): If L = R is solved in 1, 7, k and both sides are non-zero,
then each product can be regarded as a non-zero product in the quaternions. Since
the quaternions are associative, the two products must be equal. This argument
shows that it is sufficient to find values for the X; (i = 1,2,... ,n) such that L and
R are each non-zero. Then they are necessarily equal.

The equivalence of the solvability of the vector cross product problem with the
Four Color Theorem depends upon a theorem of Hassler Whitney . See [18] for a
full discussion of the equivalence. ,
It is this matter of the sign (of L and of R) that leads into state models and

chromatic sums. Rather than using quaternions the proof in [18] (of the validity of
the sign) uses a Lemma about colorings due to Pentose [38].

Coloring Lemma. If one colors a plane cubic (three edges per vertex) graph with
three colors (say 4,7, k) at each vertex, and associates to each vertex ++/—1 or
—+/=1 according to the cyclic order of the vertex as shown below, then the product
f these imaginary values (product taken over all the vertices in the graph) is equal
o 1.
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See [18] for a proof of this lemma.

Example:

(—v=D)° (v=1)* = +1.

The Coloring Lemma can be used to give a chromatic recursion for cubic maps. Let
G be a cubic graph with an immersion in the plane all of whose singularities are of
the type shown below (transversal crossing segments).

Let C be any coloring of the edges of G with three colors and three distinct colors
per vertex. Call such a coloring an admissible coloring of G. Let #(G|C) denote the
product of the imaginary values associated (via the conventions described above) to
the edges of G by the coloring C. If G 1s embedd_ed in the plane, then this product
is equal to 1, by the Lemma. Now define the state summation

[61=_=(GIC)

where the summation runs over all the admissible colorings of G.

Remark: Another way to view the state summation [G] is to assign the tensor
/—1eape to each vertex of the graph G. (Eapc denotes the matrix that assigns the
value 1 to €123, changes sign under transpositions of indices, and is zero if any index
appears more than once.) Since G has a (singular) embedding in Fhe plan.e, there
is an assigned cyclic order to each vertex of G, and this gives a unique assignment
according to the convention that abc refers to a clockwise cyclic order at the vertex.
Each assignment of the numbers 1,2,3 to the edges of G gives rise to a set of (scalar)
values for v/—1€abc, one value for each vertex of G. Then [G] is the sum, over all
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assignments of 1,2,3 to the edges of G, of the products of these vertex weights

vV —leape. a b
vV —leabe

¢ .
The summation, [G), satisfies the recursion formula

where the value of any closed loop (possibly self-intersecting) is 3. For example

00]/00]-+-

The Penrose recursion only counts colors for plane cubic graphs. Let the terminology
planar graph denote a graph that has an embedding in the plane, and let plane
graph mean a graph that is equipped with a given embedding in the plane. The
recursion applied to a planar graph with a singular embedding may not count colors,

@l-a]@

=3—32
=—6.

Furthermore, there are examples of non-planar graphs that are colorable, but receive
0 as the value of the recursion for a singular embedding. For example,

- -

Remarks: (1) The Coloring Lemma can be used [18] to give an alternate proof that
the signs work in the vector cross product formulation. This provides a relationship
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between the vector cross product algebra and the partition function [G] that we
have associated with the tensor v/—1eape.

3. Bracket Polynomial and Temperley-Lieb Algébra

Recall the bracket polynomial and its relation with the Temperley-Lieb algebra [12].
The three-variable bracket polynomial is defined on link diagrams by the following
formulas:

<X’_>:A<X>+B<D >
<0K>=d< K>
<0>=d.

Here the small diagrams stand for otherwise identical parts of larger diagrams,
and the second formula means that any Jordan curve disjoint from the rest of the
diagram contributes a factor of d to the polynomial. This recursive description of
the bracket is well-defined so long as the variables A, B and d commute with one
another.

The bracket can be expressed as a state summation where the states are obtained
by splicing the link diagram in one of two ways at each crossing. These choices are
designated type A and type B, as shown below.

A B

A’splice of type A contributes a vertex weight of A to the state sum. A splice of
t;yP B contributes a vertex weight of B to the state sum. The norm of a state S,
deric S]], is defined to be the number of Jordan curves in §. It then follows
hat the bracket is given by the formula
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The formalism of the bracket can be specialized to a number of different situ-
ations — including the Potts model for planar graphs (equivalently, to the dichro-
matic polynomial for planar graphs) and the Jones polynomial for knot and links.

Potts Model

The Potts model is defined for any graph G. A state in the g-state Potts model for
G is an assignment of “spins” to the vertices of G from the index set {1,2,3,...,9}-
If s is a state of G, then s(i) denotes the spin assigned to the ith vertex of G.

The energy, E(s), of a state s is the summation E(s) = Y 6(s(9), s(j)) where é
denotes the Kronecker delta (6(z,y) = 1if = equals y, d(z,y) = 0 if z is not equal
to y), and the summation is over all pairs of vertices forming the endpoints of an
edge in the graph G.

The Potts partition function s the summation

2(G) =y, exp((—1/(kT))E(s))

where the summation is over all states s of G, k denotes Boltzmann’s constant, and
T is the temperature. ‘

For G a planar graph, by taking the alternating medial link diagram, K (G),
associated with G, we obtain [15] a formula for the Potts partition function
in terms of the bracket polynomial:

7(G) = "2 <K(G) > (B=q *v,A=1d= a*/?)

where NV denotes the number of vertices of G and v = exp(—1/(kT)) — 1.

For arbitrary v, Z(G)(q,V) is the dichromatic polynomial of the graph G. In
particular, if v = —1, then Z(G)(g,-1) = C(G)(q), the chromatic polynomial for
the planar graph G. The value of the chromatic polynomial at a positive integer ¢
is equal to the number of proper vertex colorings of the graph G using g colors. (A
coloring is proper if pairs of vertices joined by an edge receive different colors.)

Jones Polynomial

Letting B=A"',and d = —AZ — A—2, the bracket becomes an invariant of reg-
ular isotopy (Reidemeister moves II and III). With this specialization, bracket be-
haves multiplicatively on the type-I move, allowing the normalization

fie = (—A3)™VE) <K >

so that fx is an invariant of ambient isotopy for links in three space. Here w(K) is
the sum of the signs of the crossings of the oriented link K.
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Theorem [12]. fx(~/%) = Vi (t) where Vi (t) is the original Jones polynomial

[8].

Temperley-Lieb Algebra

First consider calculating the bracket for a braid. We must choose a specific closure
for the braid. The two most common closures are indicated below.

X

5

(

plat
strand

They are strand closure and plat closure. In strand closure, the braid is
attached to a trivial braid to form a link that circulates around an axis. In plat
closure, the top and bottom of the braid are completed by adding maxima and
minima. Plat closure requires an even number of braid strands. In either case, we
can consider the state expansion of the bracket of the braid by regarding the states
of the braid that are obtained by splicing the crossings of the braid. Thus a braid
state is a product (in the sense of braids) of elementary states in the forms shown

below
I I
U U

—— —— N - =
1n Uy Uz

n-2 n-1

These states — regarded as tangles with tangle multiplication in the form of
braid mutiplication — have multiplicative relations as indicated below

U? = dU;
UiUiiU: = U;
UiUia Ui = U;
VU = UU; i fi—]> 1.
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The Temperley-Lieb algebra T, is the free additive algebra over Z[A, B,d] gen-

erated by 1,,U;,Ugz,...,Uy—; with multiplicative relations as indicated above.

This algebra has its origins in the statistical mechanics of the Potts model, and it

also appears crucially in Vaughan Jones’ work on von Neumann algebras, and his -
construction of the original Jones polynomial [7]. The diagrammatic (tangle theo-

retic) interpretation of the Temperley-Lieb algebra, as shown above first appears in

[12].

The states of a braid can be regarded as elements of the Temperley-Lieb alge-
bra, and the bracket of the braid is obtained by converting these Temperley-Lieb
elements to powers of d, via the braid closure (strand or plat). This becomes an
algebraic algorithm:

1t

1. Replace each braid generator o; in the braid word b by AU; + B, and replace
the inverse of the generator by A 4+ BU;.

2. Let < b > denote the element of the Temperley-Lieb algebra that is obtained
by this replacement.

Let C(b) denote the strand closure of b, and P(b) denote the plat closure of b.
Then < C(b)> and < P(b) > are obtained from <b> by replacing the Temperley-
Lieb algebra products in the summation <b> by their corresponding closure eval-
uations (powers of d that count the number of loops in the closure).

We do not assert that the bracket with coefficients A, B, d gives a representation
of the braid group to the Temperley-Lieb algebra (This is true in the special choice
of A,B,d that gives the Jones polynomial.) Nevertheless, the algorithm gives a
well-defined method to evaluate the bracket for any braid (and arbitrary A, B,d)
via the Temperley-Lieb algebra. This is a parallel of the way the Temperley-Lieb
algebra comes into play in evaluating the partition function of the Potts model.

Colors Again

It is shown in [28] (joint work with H. Saleur) that the Potts partition function of
any plane graph can be expressed in terms of the Temperley-Lieb Algebra, and that
the Four Color Theorem is equivalent to a purely algebraic problem expressed in
terms of this algebra. Here is a sketch of this approach.
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We shall use the formulation of the Potts model in terms of the alternating
medial. Thus

2(G) = " {K(G)}
where N denotes the number of vertices in G and
(K(GQ)} =< K(G) > (B=¢ %v,A=1,d= q%)

denotes the three-variable bracket, evaluated as shown above. Thus {K} enjoys the
formulas

(<) = {ODCTHa 2 v{)
{0y =q"%.

Recall that the alternating medial link diagram is obtained from an arbitrary plane
graph by placing a crossing on each edge of the graph, and connecting the crossings
as indicated below:

AN}

Tn this construction the edge of the graph goes through the crossing on its A-
regions. As a result the link K(G) is necessarily an alternating link. For example,
the triangle graph G gives rise to a diagram for a trefoil knot as shown below:

ND

In order to express {K(G)} in terms of the Temperley-Lieb algebra, we arrange
the diagram K (G) with respect to the vertical direction on the page so that each
internal minimum is paired with an internal maximum. The result is a plat closure
that can be interpreted as a product of Temperley-Lieb elements and formal braid
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elements R; and R; as indicated below:

[+1

S| e
K | e

In the trefoil case we have

We write K(G) = P(RyR; R3Us) where P denotes the plat closure.
The expansion formula for {K} indicates how to expand R; and R; in terms of
the Temperley-Lieb algebra:

R; =14 ¢ Y00
Ry =g¢"Pu4U; .

With these assignments, we have an expansion of {K} in terms of the Temperley-
Lieb algebra for any diagram K. In fact, this approach shows how to expand the
three variable brackets in terms of the Temperley-Lieb algebra for any link diagram
K. With W(K) denoting the word in R’s and U’s we have {K} ={P(W(K))}. In
the case ¢ = 4, v = —1 (for the four color problem) it follows from the faithfulness
of the Jones trace [9] that {K} = 0 if and only if W(K) is equal to zerc in the
Temperley-Lieb algebra.

This is the key to an algebraic reformulation of the Four Color Theorem. For in
the case ¢ = 4, v = —1, we find

R =1-(1/2)U;
R; = —(1/2) + U;

Hence R;U; = 0 and U; R;41U; = 0 since U;U; = 2U;.
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It is easy to see that each of the words R;U; and U; R;4,U; corresponds to a plat
formation of a graphical loop. For example:

<>

The fact that these words are zero in the algebra corresponds to the uncolorability
of a loop. (A graph containing a loop is not vertex-colorable since the vertex at a
loop is asked to be colored differently from itself.) Call a word W in the R’s and
U’s loop free if it cannot be transformed to a word containing R;U; or UiRH,l U;
by Temperley-Lieb relations among the U;, augmented by the external relations
R;U; = U; R;, Rin = UjRi for i —j] > 1.

Conjecture 1. If a word W (as described above) is loop free, then W is

non-zero as an element of the Temperley-Lieb algebra at loop value 2.

Conjecture 2. If a word W (as described above) is loop free and such
that all indices i of the form R; have the same parity and all indices j of
the form R; have the opposite parity, then W is non-zero as an element
of the Temperley-Lieb algebra at loop value 2.

In [29] we show that Conjecture 2 is equivalent to the Four Color Theorem. The
parity conditions refer to what is the case for words arising from an alternating me-
dial. To us, Conjecture 1 appears just as plausible as Conjecture 2, but Conjecture
1 is a considerable generalization of the original coloring problem.

4. The Bracket Polynomial and SL(2)q

First recall the specialization of the bracket polynomial [12] , that gives an elemen-
tary picture of the Jones polynomial as a state summation. This bracket is defined
by the equations:

L <>X=A<>4+4-1<0
2. <0K >=d< K> withd=-A42-A"%
3. <0 >=d.

A Yang-Baxter model for the bracket is obtained as follows [19] : Let M denote the
matrix

M=+-1&
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where
= 0 A
T =AY 0
Associate to each diagram a height function so that the diagram is decomposed into

crossings, minima and maxima. Delineate each of these critical points by placing
nodes on the diagram as shown below:

nuUo XX

For example, (\\? <> (\\9

A state (note that the states 1o follow are of a somewhat different character
from the general combinatorial states for the bracket) of the diagram is a choice of
assignments of the indices {1,2} to the nodes of the diagram. With a given state,
associate matrix elements to each maxima, minima or crossing as indicated below

a

a b
) <> Ma, U <> ue, / <<>> 68
a b b

a b

Y <«<«>> RY
c / d
a b

\/ <«>> R%
c \ d

Here the lower and upper index entries of M denote the same elements of M — its
ab entry, and the matrices R and R are defined by the formulas

a b a b
R% =4 \) + A™? )) = AM® M5+ A=1626% .
' c d c d

R = AT M® M. + A6%80 .
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The Kronecker delta corresponds to an arc that is free of critical points with respect
to this height function.

To each state S : Nodes(K) — {1, 2}, let < K|S > denote the product of the
matrix entries that are produced by S at the critical points of the diagram. Then
< K >=S < K|S > where the summation is taken over all possible states.

For example,

‘aOb <€>> ST MaMe =3 (M)’
ab

a,b

= (V=TA)? 4 (—V—TA™H)?2 = —A? - 472

Tt is easy to see from the definition of the matrices that < K > satisfies the identities
1.,2., 3. above. Abstract properties of the bracket make it easy to deduce that R
satlsﬁes the Yang-Baxter equation (see [23] and [19] for a discussion of this point.).
Special Value A= —1
With this model of the bracket in front of us, note how it behaves at the special
value A = —1. Here we have

< X >=< X >=(bydef) < X >.
< R>+<DC>+<X>=0
<0 >=-2.

LY =< ~>.

In this special case, the matrix M = +/—1¢ where ¢ is the matrix

e 0 1
“\-10
This matrix , epsilon, is the defining invariant for the group SL(2) (read SL(2,C)

if you like). That is, SL(2) is the set of matrices of determinant 1, and the epsilon
has the property that for any matrix with commuting entries

PePT = DET(P)e .

In this context, we can interpret Eq. (1) above as a matrix identity where the crossed
arcs are Kronecker deltas:

€%Peoq = 6265 — 6360 .

The network calculus associated with the value A = —1 corresponds to a diagram-
matic calculus of tensor identities for SL(2) invariant tensors. This calculus was
studied by Roger Penrose [38] in order to investigate the foundatlons of spin, angu-
lar momentum and the structure of space-time.
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The Quantum Group SL(2)q

The calculus of link evaluations via the bracket polynomial provides a significant
generalization of the Penrose spin networks. This is obtained by shifting from SL(2)
at A = —1 to SL(2)q at ¢ = /A for arbitrary A, where SL(2)g denotes the quantum
group in the sense of Drinfeld. Here is how SL(2)q arises in this context:

Since SL(2) is characterized by matrices P (with commutative entries) such that
PePT = ¢, it is natural to ask what sorts of matrices will satisfy the equations of
invariance with ¢ replaced by €:

(x) PePT =8
PTep =&
Attempting to generalize invariance in this way leads to well-known difficulties. It

is necessary to assume that the entries of P do not necessarily commute with one
another. Assume that P has the form

a b
P- (2 3)
where a,b,¢,d belong to an associative (not necessarily commutative) ring. It is
then an exercise in elementary algebra to see that the equations (*) are equivalent
to the system of relations shown below.
ba = qab ca = qac
de = ged db = gbd
bc=cb
ad — da = (q¢~! — q)bc
ad —q 'be=1
where q = VA.

The entries of the matrix P form a non-commutative algebra, A. The algebra
A is a Hopf algebra with coproduct

AA— AQA
given by the formula

Ala)=a®a+b®c
Ab)=a@b+b®d
Al)=c®a+d®c
Ald)=c@b+d®d .
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The antipode is determined by the fact that P is invertible with respect to the
algebra of its own elements. We have s : A — A, the antipode with

<2 b\ _ d —qgb
cd/)  \—-q7l¢ a '
This Hopf algebra is the quantum group SL(2). Thus SL(2), arises quite naturally
from the bracket model of the Jones polynomial. See [19] for a more complete

discussion of this point of view.

5. Spin Networks

Classical Penrose spin networks are based on the binor calculus (see below), and
they are designed to facilitate calculations about angular momentum and SL(2). A
spinor is a vector in two complex variables, denoted by WA A =1,2. The spinor
space is acted on by elements U in SL(2) so that

(U = UAT®

(Einstein summation convention). A natural SL(2) invariant inner product on
spinors is given by the formula ¥¥* where

U = SAB\I/B

so that U¥* = ¥4e,5¥F (sum on A and B). If we wish to diagram this inner
product, then we let

A

T4 <>

It is natural to lower the index via

Ty <e—>>

Then

gy <>
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and the fragment m 1s interpreted as the epsilon, £45. Penrose made special
conventions for maxima or minima (a minus sign for the minima) in order to in-

sure planar topological invariance. These conventions are equivalent to choosing to
replace ¢ by \/=1¢, as we have done in Sec. 2. Thus in the classical spin nets

c c :
/,b\} - / <> (\/—_1545) (V=1e¥) = 8¢

b

a
>< <&e>> 5368 .
c d

and

Note that the loop value is

O =D+ D=2,

This calculus entails the binor identity

><+ )( +>< —¢,

and (directly or from the fact that we are looking at a special case of the bracket)
it is invariant under the projections of the Reidemeister moves. Therefore, any
loop, even with self-crossings, has value —2. The binor calculus is a unique planar
calculus associated with both the bracket polynomial and the representations of
SL(2).

The next important spin network ingredient is the antisymmetrizer. This is
a diagram sum associated to a bundle of lines, and is denoted by

N

—

where the N denotes a bundle of parallel strands of multiplicity N.
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The antisymmetrizer is defined by the formula

N 1
=3 Z sgn (o)

: cESN

where o runs over all permutations in Sa, sgn(o) is the sign of the permutation,
and the o in the box denotes the diagrammatic representation of this permutation
as a braid projection. Thus

cdh |l - X
sl -l X IX KX K

These antisymmetrizers are the basic ingredients for making the spin network cal-
culations of Clebsch-Gordon coefficients, 3; and 6; symbols, and other apparatus
for angular momentum. In this framework, the 3-vertex is defined as follows:

Here a, b, ¢ are positive integers satisfying the condition that the equations i+j = a,
i+k=", j+k=ccanbe solved in non-negative integers. Think of spins being
apportioned in this way in interactions along the lines. This vertex gives the spin-
network analog of the quantum mechanics of particles of spins b and ¢ interacting
to produce spin a.

Formally, the 6j symbols are defined in terms of these three-vertices by the
formula

1l

b c b c

" -v{eih L

7

a d a d

From this it is clear why the 6 symbol is called a recoupling coefficient.



1784 L. H. Kauffman

Now, with this sketch of recoupling theory in mind, let us return to the anti-
symmetrizers. They are projection operators in the sense that

N
= 7

=k

and that they kill off the generators of the Temperley-Lieb algebra U;, Us, ... ,Up_1:

TEIE
L 1
I Voo,

Al

= ¢ by dint of antisymmetry.

=¢

since

These remarks mean that the expanded forms of the antisymmetrizers are special
projection operators in the Temperley -Lieb algebra. For example

s 1-X]=2l 1+ R
, S

We see in the next section, that a suitable generalization of spin-nets produces the
analogs of these operators in the full Temperley-Lieb algebra with arbitrary loop
value.

Colors One More Time

With the binor calculus in hand, we can return to the coloring problem from a
slightly different angle. The tensor object igqp. (2 = v/—1) can be expressed inside
the binor calculus. Diagrammatically the correspondence is as shown below [38]

c b
VTeae <> /7 <> 5—\%
a

-1 - X
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where the bars denote 2-line anti-symmetrizers in the spin nets associated with the
binor calculus. The algebraic properties of the ie4. object on the left and the binor
object on the right are identical. The upshot of this remark is that the number

. of edge three-colorings of a cubic plane graph can be expressed in terms of the

binor calculus. In our terms this becomes the following formula: Let [G] denote
the number of edge three-colorings of a cubic plane graph G. Let K(G) be the
alternating medial of G, described in Sec. 2. Let ||K|| denote the bracket expansion
defined by the equations

I>< =2 = I+ 11>C
lof=-2.

Then [G] = (—1)V/227V||K(G)|| where N is the number of vertices of the graph G.

It is of interest to note that the underlying bracket expansion, || K|, for this col-
oring formula is directly tied with the representation of the Temperley-Lieb algebra
associated to the binors. Thus we can write

<)

a
0=-2, /\/ = +636¢

d

where the crossed lines denote Kronecker deltas. This corresponds to a repre-
sentation of the Temperley-Lieb algebra into a quotient of the group ring of the
symmmetric group. In this way the results of Sec. 3, reformulating the coloring
problem in terms of the Temperley-Lieb algebra can be reformulated in terms of
this quotient of the symmetric group. This SL(2) governed model for the coloring
problem interconnects the points of view of Secs. 2 and 3. In this way we have
drawn an admittedly indirect connection between the combinatorics of the vector
cross product algebra and the combinatorics of the Temperley-Lieb algbra. The
relationship deserves further study.

6. q-Deformed Spin Networks

We now construct the generalized antisymmetrizers (see Sec. 5). I shall refer to the
generalization as a g-symmetrizer. A g¢-spin network is nothing more than a link
diagram with special nodes that are interpreted as these g-symmetrizers.

We take ¢ = VA, and use the bracket identity

X:A X-I-A_IDC

in place of the binor identity, with loop value
—A?—AT2.

Thus any ¢-spin network computes its own bracket polynomial.
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N
Now define the g-symmetrizer by the formula
N . |
__ A—S T(a) =~

N —4
W= 3 (a7 =] (——lliﬁf)

€SN k=1

where T'(0) is the minimal number of transpositions needed to return o to the
identity, and o is a minimal braid representing ¢ with all negative crossings, i.e.
with all crossings in the form shown below with respect to the braid direction

X

|| +a- /\/ J = (1+A‘4)‘1[” +a72[a R yat ) ]J

v}
N

Note that fi = 1 — d~1U; is the first of a sequence of Jones—Temperley~Lieb pro-
jectors f, defined inductively (see e.g. [9] and [34]) via
fo=1 ,
41 = fa — pns1faUng1fn
p=d7, pngr=(d—pa)7t
d=—-A*~4"?

Example 1.

EHD: (ljul“‘)‘1

= H +(A2 4472

Theorem. The Temperley-Lieb elements f, (for loop value — A2 — A™?) are equiv-
alent to the symmetrizers. In particular , we have the formula -

N

noi= [ ]
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Proof. The proper generalization of the antisymmetric property is that
!; | LR N I l LN L
i l L N ] U LI 3 l

and we see that this is a curl compensation.

[2)! [:‘6'] = U +A73 5/ = U +A‘3(—A3)U

=¢.

The rest follows easily from the uniqueness of the projectors. //

Example.
o e[| e X e [ X
/
D G

s
The Temperley-Lieb element is given by

d V) V) 1 vV Y
[0 8 l e X

(d=—-A%—A7%).

We now see that the g-symmetrizers form a special structure for direct generalization
of the methods outlined in Sec. 4 to g-angular momentum. Thus spin network
techniques can be used as a foundation for the theory of ¢ — 6; recoupling and other
intricacies of the SL(2)g quantum group. In particular , this applies directly to the
3.manifold invariants of Viro, and Turaev [45]. Thus these invariants can also be
given a basis in terms of the Jones polynomial and the Temperley—Lieb Algebra.
In order to explain this connection, I outline the our results about g¢-spin network
recoupling theory below. The 3-manifold invariant is discussed in the next section.

=¢,

+ (A73)

g-Spin Recoupling Theory

The (Jones) trace of a tangle is calculated via the bracket polynomial by closing
the tangle
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One then has that tr(fu-3) = A, where A, is the Chebyshev polynomial
Ap = (21—t 1y /(t —t~1), t=-A%.

Hence
A, =

The 3-vertex is now defined as before, with g-symmetrizers replacing the anti-
symmetrizers.

Here a, b, c are positive integers satisfying the condition that the equations i+j =
a,i+k=1", j+ k= c can be solved in non-negative integers.
By using this strand-description of the vertices, it is easy to verify that

b c = @/@D : Eﬂ 62

and

where & = (—1)(@+?=<)/2 and 2/ = z(z + 2).
We call the evaluation of the §-shaped network

c

the f—symbol, and denote its value by 6(a, b, ¢).
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The q — 6j symbols are defined in terms of the three-vertices by the recoupling
formula (again as before).

a d a d

To obtain a formula for these recoupling coefficients, proceed diagrammatically
using properties of the 3-vertex and find:

Here we call the factor

the tetrahedron. In calculating the tetrahedron, we expand its vertices to get a
network of g-symmetrizers.

The formula shown above determines the ¢ — 6 symbol in terms of spin network
evaluations of some small nets. These can be handled by combinatorial means.
This same approach can be used to prove various properties of these objects such
as orthogonality relations, and pentagon (or Elliot-Biedenharn) identities (See [24],
[26], [27))-

All of these evaluations work as advertised for generic g. When ¢ is a root of
unity, then the story is a bit different. We say that a triple is r-admissible if
a-+ b+ c <= 2r —4 where r is an integer greater than 2.
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Proposition A [27]. Let ¢ be a primitive 2r-root of unity, and (a,b,c) be the
§-symbol for an admissible triple (a,b,c). Then (a,b,c) is r-admissible iff 8(a, b, ¢)
is non-zero.

Proposition B [27]. For ¢ a primitive 2r-root of unity the recoupling formula for
g — 6j symbols exists in the sense that a vertex triple in the formula is present iff it
is r-admissible.

Under these conditions of r-admissibility, the orthogonality and Elliot-
Biedenharn identities continue to hold, and the specific formula for the ¢ — 6
symbol works since the denominators are non-zero.

7. The Turaev-Viro Invariant of 3-Manifolds

We use the Matveev representation (see [35]) of three-manifolds in terms of special
spines. In such a spine , a typical vertex appears as shown below with four adjacent
one-cells , and six adjacent two-cells. Each one-cell abuts to three two cells.

/ /
/: r

For an integer r >= 3 the color set is C(r) = {0,1,2,... ,r — 2}. A state at
level r of the three-manifold M is an assignment of colors from C(r) to each of the
two-dimensional faces of the spine of M. Let ¢ be a primitive 2r-root of unity.

Given a state S of M, assign to each vertex the tetrahedral symbol whose edge
colors are the face colors at that vertex. The form of this assignment is shown below
with the standard orientation at the vertex .

Assign to each edge the f-symbol associated with its triple of colors.
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wss L)
H C

Assign to each face the Chebyshev polynomial

/ i / <> = A

whose index is the color of that face.

Let I(M,r) denote the sum over all states for level r, of the products of the
vertex evaluations and the face evaluations divided by the edge evaluations for
those evaluations that are r-admissible (see Sec. 5).

IITET (v, s)II; A%

I(M,n) = ZS: IL0(Sa(e), S(e), Se(e))~=C®)

where z(f) and z(e) are the Euler characteristics of f and of e. _

Here TET(v,S) denotes the tetrahedral evaluation associated with a vertex v,
for the state S. S(f) is the color assigned to a face f, and Sa, Sb, Sc are the triplet
of colors associated with an edge in the spine.

It follows via the orthogonality and Elliot-Biedenharn identities for the q—6j
symbols, that I(M, r) is invariant under the Matveev moves. Hence, by Matveev’s
work [35]. I(M, r) is a topological invariant of the 3-manifold M. This is our version
of the Turaev-Viro invarians.

I(M,r) does not depend upon the orientation of the 3-manifold M. This follows
easily from the symmetries in the evaluation of the tetrahedron. It is an open
question whether a state sum of this sort can be constructed to produce an invariant
of 3-manifolds that detects orientation. This question is particularly interesting in
this context, since the Lickorish approach [34] to the (oriented) Reshetikhin-Turaev
invariant also uses the Temperley-Lieb algebra and the properties of the projection
operators. The same underlying formalisms apply to both invariants. Perhaps a
subtle combinatorial insight will produce the full Reshetikhin-Turaev invariant as a
state summation on the 3-manifold.

8. Epilogue

This paper has spanned a number of themes: coloring problems, statistical physics,
low dimensional topology and quantum groups. The combinatorial structure of the
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bracket polynomial and its relationship with the Temperley-Lieb algebra motivates
these connections. The coloring problem is a central theme in these considerations.
It is a test case for subtle questions and reformulations. The g-spin networks are of
interest in themselves. In particular, one would like to know if the large scale limit
of ¢-spin nets leads to models for spacetime (in analogy with ideas of Penrose), and
if the known relationships of spin nets and recoupling theory to quantum gravity
([6], [37]) have a new life in the g-deformed context. The nature of the 3-manifold
invariants (of Turaev and Viro) deserves further study. The combinatorial approach
via spin nets, laying the recoupling theory out on the table, may help in general-
izing these invariants to handle orientation, and to fit them into the contexts of
Reshetikhin, Turaev and Witten.
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