1. Give a proof by mathematical induction of the following statement:

\[1 + 3 + 5 + \cdots + (2n - 1) = n^2 \]

for all \(n = 1, 2, 3, \cdots \).

2. Suppose that there are \(n \) straight lines in the plane, positioned so that each line intersects each of the other lines once. Prove that the total number of intersection points among these \(n \) lines is equal to \(n(n - 1)/2 \) for \(n = 1, 2, 3, \cdots \). (Hint: You can proceed by induction on \(n \) and ask: If there are already \(n \) lines in the plane, how many new intersection points will occur when a new line is added to the set of \(n \) lines?)

3. Find integers \(r \) and \(s \) such that \(30r + 43s = 1 \).

4. Recall that a natural number \(p \) is said to be prime if it has no divisors other than 1 and itself. By convention, the number 1 is not taken to be a prime, so the prime numbers begin with 2, 3, 5, 7, 11, 13, \cdots. Prove that there are infinitely many distinct prime numbers.

5. Prove that there exist irrational numbers \(a \) and \(b \) such that \(a^b \) is rational.

6. Prove that the following two statements are equivalent:

\[(A \Rightarrow B) \Rightarrow C\]

and

\[(A \lor C) \land (B \Rightarrow C).\]

In your proof, do not use truth tables. Use the facts that
\[A \Rightarrow B = (\sim A) \lor B\] and \[\sim (A \land B) = (\sim A) \lor (\sim B),\] and give a completely algebraic proof.

7. (a) Give the definitions of the terms injective and surjective for a function \(f : X \rightarrow Y \) from a set \(X \) to a set \(Y \).
(b) We define the composition of the function \(f : X \rightarrow Y \) and the function \(g : Y \rightarrow Z \) to be the function \(g \circ f : X \rightarrow Z \) with \(g \circ f(x) = g(f(x)) \) for all \(x \in X \). A map \(f : X \rightarrow Y \) between two sets is said to be bijective if it is both injective and surjective. Prove that if \(f : X \rightarrow Y \) and \(g : Y \rightarrow Z \) are both bijective, then \(g \circ f : X \rightarrow Z \) is also bijective.

8. Let there be given an infinite list of sequences of 0’s and 1’s

\[s^1, s^2, s^3, \ldots \]

That is, for each natural number \(n \) we have

\[s^n = (s^n_1, s^n_2, s^n_3, \ldots) \]

where each entry \(s^n_k \) is equal either to 0 or to 1. Construct a sequence \(s, \)

\[s = (s_1, s_2, s_3, \ldots) \]

of 0’s and 1’s such that \(s \neq s^n \) for any \(n = 1, 2, 3, \ldots \).

9. Let \(X \) be any set. Let \(P(X) \) denote the set of subsets of \(X \). Let

\[F : X \rightarrow P(X) \]

be any well-defined mapping from \(X \) to its power set \(P(X) \). Show that \(F \) is not surjective.

10. Recall that we say that two integers \(n \) and \(m \) are congruent modulo \(p \)

\[n \equiv m \ (\text{mod } p) \]

exactly when

\[n - m = kp \]

for some integer \(k \).
(a) Prove that if \(a \equiv b \ (\text{mod } p) \) and \(b \equiv c \ (\text{mod } p) \), then \(a \equiv c \ (\text{mod } p) \).
(b) Prove that for any integer \(x \), \((x - p)^2 \equiv x^2 \ (\text{mod } p) \).