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Abstract In this paper we report on a mathematical pattern that we call bios, and its generation

by recursions of bipolar feedback. Bios is a newly found form of ovganization, that resembles chaos

in its aperiodic pattern and its extreme sensitivity to initial conditions, but has additional
. properties (diversification, novelty, nonrandom complexity, life-limited patterning, 1/f power

spectrum) found in natural créative processes, and absent in chaos. The process equation
i Apr=Astg; sin(Ay generates convergence to , a cascade of bifurcations, chaos, bios and
| : infinstation, as the value of the feedback gain g increases. In the complex plane, series generated by
' orthogonal process equations display fractal organic patterns.

Defining bios

Bios is a pattern that we have discovered through examining both
mathematical recursions (Kauffman and Sabelli, 1998) and biological,
meteorological and economic data (Carlson-Sabelli et al, 1995; Sabelli, 2000;
Sabelli and Kauffman, 1999; Sabelli ef al., 1997). As natural creative processes,
bios is nonstationary aperiodic series that displays:

(1) diversification [increased variance with the duration of the sample
(Sabelli and Abouzeid, in press)];

(2) novelty meaning less recurrent than its randomized copy (F igure 1)
- (Sabelli, 2001a, b);

(3) nonrandom complexity (Sabelli, 2002);

(4) episodic patterns with a beginning and end (“complexes”), in contrast to
random, periodic or chaotic series that show uniform configuration over
time; and : ,

(5) global sensitivity to initial conditions; chaos is only locally sensitive.

The statistical distributions of biotic series are multimodal anq asymmetric, in
contrast to symmetric random, periodic and chaotic series. We regard
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asymmetry as an essential component of creativity, because cosmological
evolution can be understood as a sequence of symmetry-breakings. Other
noteworthy properties of bios are the 1/f power spectrum and the generation of
Mandala patterns in complement plots (Figure 2). As chaos, bios is aperiodic,
deterministic, and extremely sensitive to initial conditions. Chaos is bounded
(Kaplan and Glass, 1995); bios may be bounded or not.

Diversification, novelty, nonrandom complexity, and episodic patterning are
measurable properties found in bios and in creative natural processes, but not
observed in random, periodic, or chaotic series. In contrast to simpler chaos,
bios is creative. We thus regard bios as an authentically new phenomenon
rather than as a subtype of chaos. The exemplar of bios is heart rate variation,
just as the exemplar of chaos is turbulence.
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Figure 1.
Recurrence plots of biotic

series (top) and of its.

shuffled copy (bottom).
Note the time-limited
patterns (complexes) in
bios, and the increase in
recurrences with
shuffling (novelty)
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Figure 2. .
Complement plot. Top:
Biotic series generated
by process equation with
delay A1 =
At +gSiI].(At—-1), g= 37
rounded to the nearest
integer. Bottom:
Complement plot
generated by plotting the
sine {y axis) and the
cosine {r axis) of each
term in a'Cartesian plane
and connecting
successive term. The
circular form imposed on
the data reveals a
surprising regularity
that reminds us of
Mandala archetypes.
This pattern also
appears in series of

" heartbeat intervals
(Sabelli, 2000) but not in
chaos

Process equations
Bios is generated by the recursion

A1 = A+ gsin(4y)

where A; are real numbers. We call this equation the process equation
(Kauffman and Sabelli, 1998). It models interactions that produce both positive

(augmenting, synergistic) and negative (decreasing, antagonistic) change.

Change is a function of the previous action, ie. a feedback. The feedback is
bipolar and diverse, spanning the range from plus to minus g through.the
continuity of the trigonometric function; g is the feedback gain. The circle map,
widely discussed in the literature, computes the same recursion modulo
(Kaplan and Glass, 1995). The circle maps does not produce bios. Interesting
variants are the process equation with delay

As1 = Az + gsin(Az-1)

that generates biotic series very close to those found in heartbeat data (Sabelli,
1999), and the kinetic process equation (Sabelli and Kauffman, 1999) '
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Apy1 = As + gesin(4y)

in which the gain is a function of time. We usually take g; = &t, where £ is a
small constant and ¢ is the number of iterations. As the gain g; increases,
the time. series generates equilibrium, a cascade of bifurcations forming
2" periods, chaos, and bios, a sequence of increasing complexity and amplitude
(Figure 3).

For g < 2, the equation converges to an odd multiple of 7 (e.g. 7 for initial
values between 0 and 2). As the gain is increased the fixed point becomes
unstable. At g = 2, 4 bifurcation generates asymmetric opposites that diverge
as the gain increases. Of course, it is the computational error-in the computer
that allows the bifurcation to begin. If the computer were mathematically
perfect, then the process would remain at the fixed point! Following the initial
bifurcation, there is shift in each branch of the series that looks as a bifurcation
in which only one outcome is visible (unifurcation). The polarity of the
unifurcation can be reversed by changing %, the rate of increase in gain.

As g increases a cascade of period-doubling bifurcations generates
periods, followed by a transition to chaos, analogous to that in the logistic
equation Az =gA; (1 — Ay). Initially, the chaotic regime overlaps with
period 2, at variance with the description of mutually exclusive basins of
attraction. “Period 2 chaos” can also be readily demonstrated in the logistic
equation, although we are not cognizant of previous reports. Remarkably, we
can experimentally verify that the bifurcation sequence of the logistic
equation occurs inside the time series of the process equatlon (Figure 4). In
the process recursion, however, we have the abrupt expansions never seen in
logistic chaos. Process chaos is interspersed with periodicities, among which

g =1+0.0001t A=A +gsin(A)
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Figure 3.

Time series generated by
the kinetic process
equation. Note
logarithmic scale
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Figure 4.

Detail of process chaos,
showing period 2 chaos
in which:each branch
shows a logistic pattern
that ends with the
expansion of chaos that
appears to continue the
virtual branch of the
unifurcation. There are
periods 6 before and after
this expansion. After the
unification of chaos (end
of period 2), there is a
narrow period 3, and a
prominent period 4

period 6 and period 4 are prominent. In contrast, period 3 is prominent in
logistic chaos.

The range of A; increases throughout the chaotic phase, but it remains
within the basin of attraction, and is always smaller than the range of
differences between successive terms. When the range reaches 27 (g =<
4.604), the time series expands both positively and negatively, generating
aperiodic biotic patterns resembling those observed with cardiac data. The
range of A; becomes much larger than AA4,. This disproportion between long
duration change and moment-to-moment differences distinguishes bios from
chaos. The transition from chaos to bios is best visualized in cobweb plots-
(Figure 5).

Aperiodic bios is periodically interrupted by bioperiod 2 when the gain
equals odd multiples of = (half rotation). From this new pair of opposites, a
new biotic phase emerges. Chaos does not show periodic repetitions of
period 2. Bioperiods differ from other periods in being sensitive fo initial
conditions. Aperiodic bios also is periodically interrupted by flights toward
positive or negative infinity (infinitation) when the gain equals an even
multiple of 7 (full rotation) and at few other critical values. As g increases
further, new biotic series emerge, and further infinitations follow — a
mathematical metaphor for death and renewal, essential features of living
processes. ' '

This-sequence from one initial state, successive bifurcations, and the
generation of complex chaotic and biotic patterns resembles cosmological
evolution and embryological development. This series illustrates the greater
creativeness of bipolar interactions, both synergic and antagonistic, in
comparison to simple positive or negative feedback. Process development is
very flexible, allowing any initial value, and any value or sign for the g
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parameter, and generates biotic patterns beyond chaos. Logistic
development requires initial values between 0 and 1, and flights into

infinity after chaos.

Sensitivity and reversibility

Bios, bioperiods, and infinitations show global sensitivity to initial conditions,
meaning that the entire series is displaced by a small change in initial value
(Figure 6 top). In chaos, initial conditions change the trajectory but not the
overall distribution of the data (Figure 6 bottom). Bios, bioperiods, and
infinitations also show extreme sensitivity to changes in the rate % of change of
the gain.

If the gain first increases and then decreases, the time series evolves
from an initial steady state to greater complexity, and then devolves back
to simpler patterns (Figure 7). If the series evolves up to chaos, a
subsequent decrease in the gain leads back to the initial steady state. In

{
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Figure 5.

Cobweb plots during
chaos (top) and bios
(bottom). Each trajectory
is generated with a
constant g. The
sinusoidal envelope in the
cobweb plot portrays the
generator of the aperiodic
biotic process. The plot
has a dotted wavy figure
that is the graph of y =
f(x) = x + g sin(x) where

x denotes the horizontal

axis and y denotes the
vertical axis. We draw
lines from (x, x) to (x, f(x))
and from (x, f(x)) to

(f(x), f(x)). The iterates of
the function f(x) appear
as the off-diagonal points
in the cobweb
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Global sensitivity to
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contrast, if the series reaches the biotic regime, a subsequent decrease in

gain does not lead back to the starting point. One is tempted to relate this
N mathematical irreversibility of bios, absent in chaos, to the irreversibility of
} physical processes. |




At+ 4= At+ Kk * t*sin (Af)
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Differencing bios, integrating chaos

The time series of differences between successive members is chaotic. Biotic
patterns in natural processes will be mistakenly identified as chaotic when data
are differenced prior to analysis. Integrating chaotic series (logistic chaos,
process chaos, shift map, sine map, Rossler, Ikeda, and Henon attractors) does
not generate bios. One may generate bios-like series by integrating the Lorenz
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Figure 7.

Time series computed
with a positive increment
in gain for 15,000
iterations and then a
negative value for %

attractor, the chaotic series generated by A;q =gsin(ds) or Am1 =

g cos(4y), or other chaotic series after rescaling them to mean 0. Integrated
chaos shows diversification and novelty, but do not show time-limited
complexes characteristic of mathematical bios and of biological or economic

data.




Kybernetes
31,9/10

1426

Figure 8.
The Sabelli attractor
(see text)

Co-creating equations

The process equation models Heraclitus’ notion that the interaction of
opposites generates evolution (Sabelli and Kauffman, 1999). To study the -
phenomenon of co-creation (Sabelli, 2001a, b), we are exploring systems of two,
three and many interacting process equations. We find that circles of equations
enter into stable chaos, while cascades of equations generate progressively
more complex patterns.

The recursion shown in Figure 8

Azy1 = Ap + Bscos(4y)
Biy1 = B; + Az sin(By)

is a self-contained two dimensional process consisting in two interlocked

process equations where the gain of each equation is the output of the other

equation. This mutuality gives rise to a very beautiful attractor (Sabelli, 1999).
In the co-creating equations

Ap1 = As + g By sin(By)
Bi.1 =B+ hAt cos(4;)

the gain and feedback of each recursion comes from the other one. For specific
values as shown in Figure 9, we get a most extraordinary development of an
organic-like pattern that displays fractal repetition at successive levels of
magnification.

In summary, biotic and organic patterns can be generated by simple
equations that model bipolar and diverse opposition, suggesting hpW
synergic and conflictual interactions in nature may contribute to creative
evolution.
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Figure 9.

The generation of
organic forms by the
interaction of two
process equations.

X axis: A¢+1 =

At + OlBt sm(Bt)

Y axis: By =

B 4 0.01 A; cos(4y).
Initial values 4; =
6.3734761; By = 0.001.
The progressive
development of complex
pattern with iteration is
presented in the
sequence of XY graphs
A, B, C, and D. Note how
each larger pattern
contains and repeats at a
larger scale the previous
ones (fractality)
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