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Abstract. This paper presents a mathematical view of aspects of physics, showing how the forms of
gauge theory, Hamiltonian mechanics and quantum mechanics arise from a non-commutative framework
for calculus and differential geometry. This work is motivated by discrete calculus, as it is shown that
classical discrete calculus embeds in a non-commutative context. It is shown how various processes are
modeled by non-commutative discrete calculus, and how aspects of differential geometry, such as the
Levi-Civita connection, arise naturally from commutator equations and the Jacobi identity. A new and
generalized version of the Feynman-Dyson derivation of electromagnetic equations is given, with
corresponding discrete models.
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1. Introduction

We present a view of aspects of mathematical physics, showing how the forms of gauge theory, Hamiltonian mechanics and quantum
mechanics arise from a non-commutative framework for calculus and differential geometry.

We assume that all constructions are performed in a Lie algebra . One may take  to be a specific matrix Lie algebra, or abstract
Lie algebra. If  is taken to be an abstract Lie algebra, then it is convenient to use the universal enveloping algebra so that the Lie
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product can be expressed as a commutator. In making general constructions of operators satisfying certain relations, it is understood
that we can always begin with a free algebra and make a quotient algebra where the relations are satisfied.

We build a variant of calculus on  by defining derivations as commutators (or more generally as Lie products). That is, if for a
fixed N in  we define  by the formula

then ∇ is a derivation. Note that ∇ satisfies the formulae

1.  
∇(F  +  G)  =  ∇(F)  +  ∇(G),

2.  
∇(FG)  =  ∇(F)G  +  F∇(G).

There are many motivations for replacing derivatives by commutators, or more generally by the derivations induced by multiplication
in a Lie algebra. In section 2 we give a new motivation [1] in terms of the structure of classical discrete calculus. The idea behind
this motivation is very simple. If f(x) denotes (say) a function of a real variable x, and  for a fixed increment h,

then we can define the discrete derivative Df by the formula D , and one finds that in this classical discrete

calculus the Leibniz rule is not satisfied. Instead, one has the basic formula for the discrete derivative of a product:

We correct this deviation from the Leibniz rule by introducing a new non-commutative operator J with the property that

and we define a new discrete derivative in an extended algebra by the formula

It follows at once that

and note that

In the extended algebra, discrete derivatives are represented by commutators, and naturally satisfy the Leibniz rule. This mode of
translation shows that we can regard models based on discrete calculus as a significant subset of non-commutative calculus based on
commutators.

In  there are as many derivations as there are elements of the algebra, and these derivations behave quite wildly with respect to one
another. If we have the abstract concept of curvature as the non-commutation of derivations, then  is a highly curved world
indeed. Within  we shall build, in a natural way, a tame world of derivations that mimics the behaviour of flat coordinates in
Euclidean space. We will then find that the description of the structure of  with respect to these flat coordinates contains many of
the equations and patterns of mathematical physics.

Note that for any A, B, C in  we have the Jacobi identity

Suppose that {∇i} is a collection of derivations on , represented respectively by {Ni} so that ∇i(F)  =  [F, Ni] for each F in .
We define the curvature of the collection {∇i} to be the collection of commutators {Rij  =  [Ni, Nj]}.

Proposition. Let the family {∇i} be given as above with ∇i(F)  =  [F, Ni]. Then

for all F in . Hence the curvature of {∇i} measures the deviation of the concatenations of these derivations from commutativity.
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Proof. Firstly,

Hence

Whence

This proves the proposition.  

In the following sections we will see how these patterns interact with concepts of calculus and differential geometry, and with
physical models. Section 2 shows how multivariable discrete calculus can be reformulated as a calculus of commutators. Section 3
discusses the case of one-variable and shows how Brownian walks and the diffusion constant for a Brownian walk appear naturally
from the commutator equation , where J is the shift operator described above,  as above with

temporal increment τ,  and k is a constant. We find that for scalar X the time series executes constant step motion with diffusion
constant k/2. This shows that the diffusion constant of a Brownian process is a structural property of that process, independent of
considerations of probability and continuum limits. Section 3 also discusses the relationship of a Brownian process and the
Schrödinger equation. The section ends with a discussion of other solutions to the equation , where the elements X,
X ', X '',  ... of the time series do not commute with one another.

Section 4 sets up a general format for non-commutative calculus, and shows that in this format (made as flat as possible), Hamilton's
equations are naturally satisfied. This gives a new way to look at the source of this structure, and we discuss the relationship with the
classical derivation of Hamilton's equations from Newtonian physics. The section goes on to discuss curvature in terms of
commutators, as described above. Section 5 discusses general equations of motion in this context. We take the general dynamical
equation in the form

where  is a collection of elements of . We choose to write  relative to the flat coordinates via 
. This is a definition of Ai and ∂F/∂Xi  =  [F, Pi]. The formalism of gauge theory appears naturally. In particular, if

then we have the curvature

This is the well-known formula for the curvature of a gauge connection. Section 5 goes on to discuss how other aspects of geometry
arise naturally in this context, including the Levi-Civita connection (which is seen as a consequence of the Jacobi identity in an
appropriate non-commutative world). The section includes a discussion of the relationships of these structures with classical physics
and the Poisson bracket.

Section 6 takes up the theme of the consequences of the commutator  that we have already seen to produce the

Levi-Civita connection for the generalized metric gij. Here we carry out a sharpening of the work of Tanimura [12], deriving that

where Gr is the analogue of a scalar field, Frs is the analogue of a gauge field and Γrst is the Levi-Civita connection associated with
gij. This decomposition of the acceleration is uniquely determined by the given framework.

Section 7 revisits the Feynman-Dyson derivation of electromagnetism from commutator equations, showing that most of the
derivation is independent of any choice of commutators, but highly dependent upon the choice of definitions of the derivatives
involved. Without any assumptions about initial commutator equations, but taking the right (in some sense simplest) definitions of
the derivatives we prove a significant generalization of the result of Feynman-Dyson. See theorem 7.5.

We then apply this result to produce many discrete models of the theorem. These models show that, just as the commutator
 describes Brownian motion in one dimension, a generalization of electromagnetism describes the interaction of
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triples of time series in three dimensions.

Section 8 is a discussion of the Jacobi identity. We devote part of this section to a proof that general Poisson brackets (not assuming
Hamilton's equations) satisfy the Jacobi identity. This is part of the thematic structure of this paper. We are investigating the
relationship of physics and its variables. When the variables are commutative it is a classical matter to have precise locations and
standard coordinates. When the `variables' are non-commutative one gives up the notion of location in varying degrees, and gets the
benefit of the extra mathematical structures in non-commutative worlds. The Poisson bracket is singular in that it is a way to produce
a Lie algebra structure from the algebra of derivations of a commutative algebra. Thus the Poisson bracket is a key link between
commutative and non-commutative worlds. This section is intended to make our story complete and to raise the question of how this
connection really comes about. Section 9 is a diagrammatic extension of section 8. We show how, in a diagrammatic framework, the
Jacobi identity can be articulated, and how it can arise from purely combinatorial grounds. These are hints of further discrete
physics. Section 10 is an epilogue, discussing the themes of the paper.

Remark. This paper is essentially self-contained, and hence it is written in an elementary style. While there is a large literature on
non-commutative geometry, emanating from the idea of replacing a space by its ring of functions, this paper is not written in that
tradition. Non-commutative geometry does occur here, in the sense of geometry occurring in the context of non-commutative
algebra. Derivations are represented by commutators. There are relationships between the present work and the traditional non-
commutative geometry, but that is a subject for further exploration. In no way is this paper intended to be an introduction to that
subject.

The following references in relation to non-commutative calculus are useful in comparing with our approach [2]-[5]. Much of the
present work is the fruit of a long series of discussions with Pierre Noyes (see [1] and [25]-[31]), and we will be preparing
collaborative papers on it. I particularly thank Eddie Oshins for pointing out the relevance of minimal coupling. The paper [6] also
works with minimal coupling for the Feynman-Dyson derivation. The first remark about the minimal coupling occurs in the original
paper by Dyson [7], in the context of Poisson brackets. The paper [8] is worth reading as a companion to Dyson. In the present paper
we generalize the minimal coupling to contexts including both commutators and Poisson brackets. It is the purpose of this paper to
indicate how non-commutative calculus can be used in foundations.

2. Discrete derivatives become commutators

Consider a discrete derivative Df  =  (f(x  +  Δ)  -  f(x))/Δ. It is easy to see that D does not satisfy the Leibniz rule. In fact, if

then

and one calculates that

In the limit as Δ goes to zero,  approaches f and the Leibniz rule is satisfied. Now define a shift operator J that satisfies the

equation

or equivalently

Note that the existence of J is accomplished by taking the commutative algebra  that we started with, and extending it to the free
product of  with an algebra generated by the symbol J, modulo the ideal generated by  for all f in .

Setting

we have

Hence

The adjusted derivative ∇ satisfies the Leibniz rule.
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In fact, this adjusted derivative is a commutator in the algebra of functions , extended by the operator J:

Hence

Note however that

Thus ∇(x)  =  J. This underlines the fact that these derivatives now take values in a non-commutative algebra. Note however that, if

then

Hence we can proceed in calculations with power series just as in ordinary discrete calculus, keeping in mind powers of J that are
shifted to the left. That is, a typical power series should be expressed in terms of the falling powers x(n). We would define

and find that

The price paid for having the Leibniz rule restored and the derivatives expressed in terms of commutators is the appearance factors of
J on the left in final expressions of functions and derivatives.

Note that we have

and that this writes discrete calculus in terms that satisfy the Leibniz rule with a step of size Δ. It would be convenient to have an
operator P such that [x, P]  =  1. Then [f, P] would formally mimic the usual derivative with respect to x, and we would have

Of course, we can simply posit such a P, but in fact, we can redefine J so that

where

Then

and we can take

In this interpretation, [f, P]  =  JDf  =  ∇f where

This double readjustment of the discrete derivative allows us to transfer standard calculus to an algebra of commutators. For physical
applications however, there remains a difficulty in adding in a time variable t and allowing that all the other elements of the algebra
should be functions of time. If the derivative with respect to time is represented by commutation with H, then we cannot assume that
H commutes with x. For this reason we will not proceed in the rest of the paper via this method of double readjustment.
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The cost for the double readjustment is that we must have a collection of functions in the original algebra  such that one can
sensibly define . Polynomial and power series functions have such natural extensions. For other function

algebras it will be an interesting problem in analysis, and algebra, to understand the structure of such extensions of commutative
rings of functions to non-commutative rings of functions.

3. Time, discrete observation, Brownian walks and the simplest commutator

For temporal discrete derivatives there is a very neat interpretation of the shift operator of the previous section. Consider a time
series {X, X ', X '',  ...} with commuting scalar values. Let

where τ is an elementary time step. (If X denotes a times series value at time t, then X ' denotes the value of the series at time t  +  τ.)
The shift operator J is defined by the equation XJ  =  JX ' where this refers to any point in the time series so that X(n)J  =  JX(n + 1)

for any non-negative integer n. Moving J across a variable from left to right, corresponds to one tick of the clock. We already know
that this discrete, non-commutative time derivative satisfies the Leibniz rule.

This derivative D also fits a significant pattern of discrete observation. Consider the act of observing X at a given time and the act of
observing (or obtaining) DX at a given time. Since X and X ' are ingredients in computing (X '  -  X)/τ, the numerical value associated
with DX, it is necessary to let the clock tick once. Thus, if we first observe X and then obtain DX, the result is different (for the X
measurement) if we first obtain DX, and then observe X. In the second case, we shall find the value X ' instead of the value X, due to
the tick of the clock.

1.  
Let  denote the sequence: observe X, then obtain .

2.  
Let  denote the sequence: obtain , then observe X.

We then see that the evaluation of these expressions in the non-commutative calculus parallels the observational situation:

The numerical evaluations for two such orderings are obtained by moving all occurrences of J all the way to the left. Thus we could
write

for an expression where A has no appearance of J. Then

Elsewhere [1] we have called this interpretation of the temporal discrete derivative the `discrete ordered calculus' or DOC for short.

The commutator  expresses the difference between these two orders of discrete measurement. In the simplest case, where the
elements of the time series are commuting scalars, we have

Thus we can interpret the equation

(k a constant scalar) as

This means that the process is a walk with constant spatial step

where k is a constant. In other words, we have

http://www.iop.org/EJ/article/1367-2630/6/1/173/njp4_1_173.html#nj177084bib1
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We have shown that a walk with spatial step size Δ and time step τ will satisfy the commutator equation above exactly when the
square of the spatial step divided by the time step remains constant. This means that a given commutator equation can be satisfied by
walks with arbitrarily small spatial step and time step, just so long as these steps are in this fixed ratio.

Remarkably, we can identify the constant k/2 as the diffusion constant for a Brownian process. To make this comparison, let us recall
how the diffusion equation usually arises in discussing Brownian motion. We are given a Brownian process where

so that the time step is τ and the space step is of absolute value Δ. We regard the probability of left or right steps as equal, so that if
P(x, t) denotes the probability that the Brownian particle is at point x at time t then

From this equation for the probability we can write a difference equation for the partial derivative of the probability with respect to
time:

The expression in brackets on the right-hand side is a discrete approximation to the second partial of P(x, t) with respect to x. Thus if
the ratio C  =  Δ2/2τ remains constant as the space and time intervals approach zero, then this equation goes in the limit to the
diffusion equation

C is called the diffusion constant for the Brownian process.

The appearance of the diffusion constant from the observational commutator shows that this ratio is fundamental to the structure of
the Brownian process itself, and not just to the probabilistic analysis of that process.

3.1. Planck's numbers, Schrödinger's equation and the diffusion equation

First recall the Planck numbers.  is Planck's constant divided by 2π. c is the speed of light. G is Newton's gravitational constant. The
Planck length will be denoted by L, the Planck time by T and the Planck mass by M. Their formulae are

These portions of mass, length and time are constructed from the values of fundamental physical constants. They have roles in
physics that point to deeper reasons than the formal for introducing them. Here we shall see how they are related to the Schrödinger
equation.

Recall that Schrödinger's equation can be regarded as the diffusion equation with an imaginary diffusion constant. Recall how this
works. The Schrödinger equation is

where the Hamiltonian H is given by the equation H  =  p2/2m  +  V, where V(x, t) is the potential energy and  is
the momentum operator. With this we have . Thus with V(x, t)  =  0, the equation becomes

 which simplifies to

Thus we have arrived at the form of the diffusion equation with an imaginary constant, and it is possible to make the identification
with the diffusion equation by setting

where Δ denotes a space interval, and τ denotes a time interval as explained in the last section about the Brownian walk. With this we
can ask: what space interval and time interval will satisfy this relationship? Remarkably, the answer is that this equation is satisfied
when m is the Planck mass, Δ is the Planck length and τ is the Planck time. For note that

What does all this say about the nature of the Schrödinger equation itself? Interpreting it as a diffusion equation with imaginary
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constant suggests comparing with the DOC equation

for a real constant k. This equation implicates a Brownian process where X '  =  X ± Γ, where Γ2/τ  =  ik. We can take 

where Δ is a real step-length. This gives a Brownian walk in the complex plane with the correct DOC diffusion constant. However,
the relationship of this walk with the Schrödinger equation is less clear because the ψ in that equation is not the probability for the
Brownian process. To see a closer relationship we will take a different tack.

Consider a discrete function ψ(x, t) defined (recursively) by the following equation:

In other words, we are thinking here of a random `quantum walk' where the amplitude for stepping right or stepping left is
proportional to i while the amplitude for not moving at all is proportional to (1  -  i). It is then easy to see that ψ is a discretization of

Just note that ψ satisfies the difference equation

This gives a direct interpretation of the solution to the Schrödinger equation as a limit of a sum over generalized Brownian paths with
complex amplitudes. We can then reinterpret this in DOC terms by the equation  or , each of

these contingencies happening probabilistically. For a different (and deeper) relationship between Brownian motion and quantum
mechanics see [9].

3.2. DOC chaos

Along with the simple Brownian motion solution to the one-dimensional commutator equation, there is a hierarchy of time series that
solve this equation, with periodic and chaotic behaviour. These solutions can be obtained by taking

where Y is a numerical scalar, and taking the commutator equation to be

where k is a scalar. Expanding this equation, we find

This last equation expresses the time series recursively where Y refers to the value of the series that is n time steps back from Yn. The
first case of this recursion is

The next case is

These recursions depend critically on the value of the parameter k. In the first case one sees periodic oscillations that (for appropriate
values of k) destabilize and blow up, alternating between an unbounded phase and a bounded semi-periodic phase. In figures 1 and 2
we illustrate the case of the equation

http://www.iop.org/EJ/article/1367-2630/6/1/173/njp4_1_173.html#nj177084bib9
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for k  =  0.0001 in figure 1 (a bounded phase) and k  =  0.009 in figure 2 (an unbounded phase). There is an intricate recursive
structure in this hierarchy and it deserves further study.

Figure 1. Y ''  =  (0.0001  -  Y ''Y)/(Y ''  -  2Y).

Figure 2. Y ''  =  (0.009  -  Y 'Y)/(Y '  -  2Y).

4. Non-commutative calculus and Hamilton's equations

We now set up a framework for non-commutative calculus in an arbitrary number of dimensions. We shall assume that each
derivative is represented by a commutator, and that the basic space and time derivatives commute with one another as is customary
for the flat space of standard multi-variable calculus. This production of a flat space for calculus forms a reference domain within the
containing Lie algebra .

Since all derivatives are represented by commutators, this includes the time derivative as well. We shall assume that there is an
element H in  representing the time derivative. This means that

for any A in . Note that it follows at once from this choice that H itself is time independent, since dH/dt  =  [H, H]  =  0. We shall
see that H behaves formally like the Hamiltonian operator in classical mechanics.

We will assume that there is a set of coordinates {X1,  ..., Xd} that are as flat as possible. It is assumed that the Xi all commute with

http://www.iop.org/EJ/article/1367-2630/6/1/173/njp4_1_173.html#nj177084fig1
http://www.iop.org/EJ/article/1367-2630/6/1/173/njp4_1_173.html#nj177084fig2
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one another, and that the derivatives with respect to them commute with one another. The partial derivatives with respect to Xi will
be represented by a set of elements {P1,  ..., Pd} with

for any F in . Since we want the equation

we need the equation

Since we want

and since (as we compute in section 1 and in the next section)

we see that these partial derivatives will commute with one another exactly when [Pi, Pj] belongs to the centre of the algebra  for
all choices of i and j.

For simplicity, we shall assume that

With these choices the flat coordinates satisfy

Note that we also have

so that

and

This formalism looks like bare quantum mechanics and can be so interpreted (if we take  and H the
Hamiltonian operator). But these coordinates can also be viewed as the simplest flat set of coordinates for referring the description of
temporal phenomena in a non-commutative world. There are various things to note. For example

Thus

These are exactly Hamilton's equations of motion. The pattern of Hamilton's equations is built into the system!

4.1. Hamilton's equations in classical mechanics

It is worth recalling how Hamilton's equations appear in classical mechanics. For simplicity, we shall restrict to one spatial variable q
(the analogue of the operator X) and one momentum variable p (the analogue of the operator P). In classical mechanics in one space
and one time dimension, we have the equations

http://www.iop.org/EJ/article/1367-2630/6/1/173/njp4_1_173.html#nj177084s1
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where the first equation is the definition of momentum of a particle of mass m, the second equation is the expression for the energy of
the system as the sum of the kinetic energy p2/2m and the potential energy V(q). The third equation is Newton's law of motion.

We see that

and

Thus

These are Hamilton's equations of motion.

Hamilton went on to observe that for any function F of q and p,

Thus

where {F, H} is the Poisson bracket defined by the equation

Remarkably, the Poisson bracket satisfies the Jacobi identity, and hence gives a Lie algebra structure on the commutative space of
functions of position and momentum. We have shown in this section that the pattern of Hamilton's equations is inherent in the Lie
algebra context. We shall have more to say about Poisson brackets and Hamilton's equations in section 5.

4.2. Curvature

Note that for any A, B, C in  we have the Jacobi identity

Suppose that {∇i} is a collection of derivations on , represented respectively by {Ni} so that ∇i(F)  =  [F, Ni] for each F in .
We define the curvature of the collection {∇i} to be the collection of commutators {Rij  =  [Ni, Nj]}.

Proposition 4.1. Let the family {∇i} be given as above with ∇i(F)  =  [F, Ni]. Then

for all F in . Hence the curvature of ∇i measures the deviation of the concatenations of these derivations from commutativity.

Proof. First,

Hence

Whence

This proves the proposition.  

This elementary notion of curvature for a collection of derivations just measures the extent to which they do not commute with one

http://www.iop.org/EJ/article/1367-2630/6/1/173/njp4_1_173.html#nj177084s5
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another. We have a collection  of elements X of the algebra, and corresponding derivations ∇X where ∇XZ  =  [Z, PX] for a
corresponding set of elements PX representing these derivations. This is exactly the situation of the main framework of this section
where

so that

In this case we have ∇iZ  =  [Z, Pi], and the curvature of the collection is the collection of commutators {Rij  =  [Pi, Pj]}. More
generally, the elements of the collection  may not commute with one another. In this case, we shall define the curvature as an
operator R(X, Y) defined on  by the equation

in direct analogy with the usual definition in standard differential geometry. However, in order to do this we shall need a collection
 closed under the commutator, so that ∇[X,Y] is defined. The following paragraphs outline one way to accomplish this end.

We will build the notion of curvature in terms of a general concept of covariant differentiation. Let  denote a specific collection of
elements of the algebra  that we shall refer to as the variables in . We include in  a notion of time in the sense that there is
the temporal derivative  and we designate a single special variable T to correspond to this temporal derivative. In
general, to each variable X there is associated a derivative ∇X with associated action

where PX represents this derivative. (Thus we take PT  =  H.) In this generality, we make no assumptions about the commutativity of
the variables or of the corresponding elements that represent the derivatives.

We define the following set  of `scalar functions over ':

That is,  is a set of elements f that commute with each other and with all the elements of . We then consider the closure of 
under addition and multiplication by elements of . Call this closure . Define PX  +  f  Y  =  PX  +  fPY for .

For  and , define  by the formula

Note that even though f commutes with all the elements of , it can still have non-trivial derivations with respect to these variables.

Lemma 4.2. We have the following properties:
1.  

For all .

2.  
For all  and .

3.  
For all  and .

Proof. For the first property, note that

For the second property, we have

For the third property, note that
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This completes the proof.  

Definition. We define the curvature as a function  by the formula

Thus for given elements , the curvature operator R(X, Y) measures the non-commutativity of the operators ∇X and ∇Y
in relation to the non-commutativity of X and Y. If X and Y commute, then

and we are returned to our initial definition of curvature for a collection of derivations.

5. General equations of motion

Given a set of coordinates {X1, X2,  ..., Xd} and dual coordinates {P1, P2,  ..., Pd} as in the previous section, a general description of
dXi/dt takes the form of a system of equations

where  is a collection of elements of . If we choose to write  relative to the flat coordinates via
 (this is a definition of Ai) then the formalism of gauge theory appears naturally. For example, if

then we have the curvature

where

This is the well-known formula that expresses the gauge field as the curvature of the gauge connection. From this point of view
everything comes naturally from the assumption that all derivatives are represented by commutators, and that one refers all equations
to the flat background coordinates.

5.1. Curvature and connection at the next level

The dynamical law is

This gives rise to new commutation relations

where this equation defines gij, and

We define the `covariant derivative'

while we can still write

It is natural to think that gij is analogous to a metric. This analogy is strongest if we assume that
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By assuming that the spatial coordinates commute with the metric coefficients we have that

Hence

Here, we shall let

not assuming this commutator to vanish. Then

A stream of consequences then follows by differentiating both sides of the equation

We will detail these consequences in section 6. For now, we show how the form of the Levi-Civita connection appears naturally in
this context. In the following we shall use D as an abbreviation for d/dt.

The Levi-Civita connection

associated with gij comes up almost at once from the differentiation process described above. To see how this happens, view the
following calculation where

We apply the operator  to the second time derivative of Xk.

Lemma 5.1. Let Γkji  =  (1/2)(∇igjk  +  ∇jgik  -  ∇kgij). Then

where .

Proof. Note that by the Leibniz rule

we have

Therefore

This completes the proof.  

http://www.iop.org/EJ/article/1367-2630/6/1/173/njp4_1_173.html#nj177084s6
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It is remarkable that the form of the Levi-Civita connection comes up directly from this non-commutative calculus without any a
priori geometric interpretation.

The upshot of this derivation is that it confirms our interpretation of

as an abstract form of metric (in the absence of any actual notion of distance in the non-commutative world). This calls for a re-
evaluation and reconstruction of differential geometry based on non-commutativity and the Jacobi identity. This is differential
geometry where the fundamental concept is no longer parallel translation, but rather a non-commutative version of a physical
trajectory. This approach will be the subject of a separate paper.

At this stage we face the mystery of the appearance of the Levi-Civita connection. There is a way to see that the appearance of this
connection is not an accident, but rather quite natural. We shall explain this point of view in the next subsection where we discuss
Poisson brackets and the connection of this formalism with classical physics. On the other hand, we have seen in this section that it is
quite natural for curvature in the form of the non-commutativity of derivations to appear at the outset in a non-commutative
formalism. We have also seen that this curvature and connection can be understood as a measurement of the deviation of the theory
from the `flat' commutation relations of ordinary quantum mechanics. Electromagnetism and Yang-Mills theory can be seen as the
theory of the curvature introduced by such a deviation. On the other hand, from the point of view of metric differential geometry, the
Levi-Civita connection is the unique connection that preserves the inner product defined by the metric under the parallel translation
defined by the connection. We would like to see that the formal Levi-Civita connection produced here has this property as well.

To this end let us recall the formalism of parallel translation. The infinitesimal parallel translate of A is denoted by A '  =  A  +  δA
where

Here we are writing in the usual language of vectors and differentials with the Einstein summation convention for repeated indices.
We assume that the Christoffel symbols satisfy the symmetry condition Γk

ij  =  Γk
ji. The inner product is given by the formula

Note that here the bare symbols denote vectors whose coordinates may be indicated by indices. The requirement that this inner
product be invariant under parallel displacement is the requirement that δ(gijAiAj)  =  0. Calculating, one finds

Hence

From this it follows that

Note that the above Γijk corresponds to Γijk in the notation of lemma 5.1. Certainly these notions of variation can be imported into
our abstract context. The question remains how to interpret the new connection that arises. We now have a new covariant derivative
in the form

The question is how the curvature of this connection interfaces with the gauge potentials that gave rise to the metric in the first place.
The theme of this investigation has the flavour of gravity theories with a qauge theoretic background. We will investigate these
relationships in a sequel to this paper.

5.2. Poisson brackets and commutator brackets

Dirac [10] introduced a fundamental relationship between quantum mechanics and classical mechanics that is summarized by the
maxim replace Poisson brackets by commutator brackets. Recall that the Poisson bracket {A, B} is defined by the formula

http://www.iop.org/EJ/article/1367-2630/6/1/173/njp4_1_173.html#nj177084pro9
http://www.iop.org/EJ/article/1367-2630/6/1/173/njp4_1_173.html#nj177084bib10
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where q and p denote classical position and momentum variables respectively.

In our version of discrete physics the non-commuting variables are functions of time, with the time derivative itself a commutator.
With

it follows that

for any expressions A, B in our Lie algebra. A corresponding Leibniz rule for Poisson brackets would read

However, here there is an easily verified exact formula:

This means that the Leibniz formula will hold for the Poisson bracket exactly when

This is an integrability condition that will be satisfied if p and q satisfy Hamilton's equations

This means that q and p are following a principle of least action with respect to the Hamiltonian H. Thus we can interpret the fact
D([A, B])  =  [DA, B]  +  [A, DB] in the non-commutative context as an analogue of the principle of least action. Taking the non-
commutative context as fundamental, we say that Hamilton's equations are motivated by the presence of the Leibniz rule for the
discrete derivative of a commutator. The classical laws are obtained by following Dirac's maxim in the opposite direction! Classical
physics is produced by following the correspondence principle upwards from the discrete.

In making this backwards journey to classical physics we see how our earlier assertion that bare mechanics of commutators can be
regarded as the background for the coupling with other fields (as in the description of formal gauge theory), fits with Poisson
brackets. The bare Poisson brackets satisfy

In our previous formalism, we would identify Xi as the correspondent with qi and Pj as the correspondent of pj. And, given a
classical vector potential A, we could write the coupling dqi/dt  =  pi  -  Ai to describe the motion of a particle in the presence of an
electromagnetic field. Similar remarks apply to the analogues for gauge theory and curvature. In particular, it is of interest to see that
our derivation of the Levi-Civita connection corresponds to the motion of a particle in generalized coordinates that satisfies
Hamilton's equations. The fact that such a particle moves in a geodesic according to the Levi-Civita connection is a classical fact.
Our derivation of the Levi-Civita connection, interpreted in Poisson brackets, reproduces this result.

To see how this works, let ds2  =  gij dxi dxj denote the metric in the generalized coordinates xk. Then the velocity of the particle has
square . The Lagrangian for the system is the kinetic energy .

Then the canonical momentum is , and with qi  =  xi we have the Poisson brackets

Taking m  =  1 for simplicity, we can rewrite this bracket as

This, in Poisson brackets, is our generalized equation of motion.

The classical derivation applies Lagrange's equation of motion to the system. Lagrange's equation reads

Since this equation is equivalent to Hamilton's equation of motion, it follows that the Poisson brackets satisfy the Leibniz rule. With
this, we can proceed with our derivation of the Levi-Civita connection in relation to the acceleration of the particle. In the classical
derivation, one writes out the Lagrange equation and solves for the acceleration. The advantage of using only the Poisson brackets is
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that it shows the relationship of the connection with the Jacobi identity and the Leibniz rule.

This discussion raises further questions about the nature of the generalization that we have made. Originally, Hermann Weyl [11]
generalized classical differential geometry and discovered gauge theory by allowing changes of length as well as changes of angle to
appear in the holonomy. Here we arrive at a similar situation via the properties of a non-commutative discrete calculus of
observations.

6. Consequences of the metric

In this section we shall follow the formalism of the metric commutator equation

very far in a semi-classical context. That is, we shall set up a non-commutative world, and we shall make assumptions about the
non-commutativity that bring the operators into close analogy with variables in standard calculus. In particular, we shall regard an
element F of the Lie algebra to be a `function of the Xi ' if F commutes with the Xi, and we shall assume that if F and G commute
with the Xi, then F and G commute with each other. We call this the principle of commutativity. With these background assumptions,
it is possible to get a very sharp result about the behaviour of the theory. In particular, the results of this section sharpen the work
in [12], where special orderings and averages of orderings of the operators were needed to obtain analogous results.

We assume that

We assume that there exists a gij with

We also assume that if

for all i, then

for all expressions A and B in the algebra under consideration. To say that [A, Xi]  =  0 is to say the analogue of the statement that A
is a function only of the variables Xi and not a function of the . This is a stong assumption about the algebraic structure, and it

will not be taken when we look at strictly discrete models. It is, however, exactly the assumption that brings the non-commutative
algebra closest to the classical case of functions of positions and momenta.

The main result of this section will be a proof that

and that this decompositon of the acceleration is uniquely determined by the given framework. Since

we can regard this result as a description of the motion of the non-commutative particle influenced by a scalar field Gr, a gauge field
Frs, and geodesic motion with respect to the Levi-Civita connection corresponding to gij. Let us begin.

Note that, as before, we have that gij  =  gji by taking the time derivative of the equation [Xi, Xj]  =  0. Note also that the Einstein
summation convention (summing over repeated indices) is in effect when we write equations, unless otherwise specified.

As before, we define

We also make the definitions

Note that we do not assume the existence of a variable Xj whose time derivative is . Note that we have

http://www.iop.org/EJ/article/1367-2630/6/1/173/njp4_1_173.html#nj177084bib11
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Note that it follows at once that

by differentiating the equation [Xi, gjk]  =  0.

We assume the following postulate about the time derivative of an element F with [Xi, F]  =  0 for all k:

This is in accord with the concept that F is a function of the variables Xi. Note that in one interpretation of this formalism, one of the
variables Xi could be itself a time variable. In the next section, we shall return to three dimensions of space and one dimension of
time, with a separate notation for the time variable. Here there is no restriction on the number of independent variables Xi.

We have the following lemma.

Lemma 6.1. 
1.  

.

2.  
∂r(gij)gjk  +  gij∂r(gjk)  =  0.

3.  
[Xr, ∂igjk]  =  0.

Proof.  

The second part of the proposition is an application of the Leibniz rule:

Finally,

This completes the proof of the lemma.  

It follows from this lemma that ∂i can be regarded as ∂/∂Xi. We have seen that it is natural to consider the commutator of the
velocities  as a field or curvature. For the present analysis, we would prefer the field to commute with all the

variables Xk in order to identify it as a `function of the variables Xk'. We shall find, by a computation, that Rij does not so commute,
but that a compensating factor arises naturally. The result is as follows.

Proposition 6.2. Let  and . Then

1.  
Frs and Frs commute with the variables Xk.

2.  
Frs  =  grigsjFij.

Proof. We begin by computing the commutator of Xi and  by using the Jacobi identity.
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Note also that

Hence

Therefore

This, and a similar computation that we leave for the reader, proves the first part of the proposition. We prove the second part by
direct computation. Note the following identity:

Using this identity we find

This completes the proof of the proposition.

We now consider the full form of the acceleration terms . We have already shown that

Letting

we defineGr by the formula

Proposition 6.3. Let Γrst and Gr be defined as above. Then both Γrst and Gr commute with the variables Xi.

Proof. Since we know that [Xl, ∂igjk]  =  0, it follows at once that . It remains to examine the commutator [Xl,
Gr]. We have

(since Frs and Γrst commute with Xl). Note that
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and that

Thus

It is easy to see that . Hence

On the other hand,

Hence

Therefore

(since ). Hence

This completes the proof of the proposition.  

We now know that Gr, Frs and Γrst commute with the variables Xk. As we now shall see, the formula

allows us to extract these functions from  by differentiating with respect to the dual variables. We already know that

and now note that

We see now that the decomposition

of the acceleration is uniquely determined by these conditions. Since

we can regard this result as a description of the motion of the non-commutative particle influenced by a scalar field Gr, a gauge field
Frs, and geodesic motion with respect to the Levi-Civita connection corresponding to gij. The structural appearance of all of these
physical aspects is a mathematical consequence of the choice of non-commutative framework.

Remark. It follows from the Jacobi identity that

satisfies the equation
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identifying Fij as a non-commutative analogue of a gauge field. Gi is a non-commutative analogue of a scalar field. The derivation in
this section generalizes the Feynman-Dyson derivation of non-commutative electromagnetism [7] where gij  =  δij. In the next
section we will say more about the Feynman-Dyson result. The results of this section sharpen considerably an approach of
Tanimura [12]. In Tanimura's paper, normal ordering techniques are used to handle the algebra. In the derivation given above, we
have used straight non-commutative algebra, just as in the original Feynman-Dyson derivation.

Remark. It is interesting to note that we can rewrite the equation

as

(Just substitute the expression for Frs and recollect the terms.) The reader may enjoy trying her hand at other ways to reorganize this
data. It is important to note that in the first form of the equation, the basic terms Gr, Frs and Γrst commute with the coordinates Xk.
It is this decomposition into parts that commute with the coordinates that guides the structure of this formula in the non-commutative
context.

7. An abstract version of the Feynman-Dyson derivation

In this section we assume that specific time-varying coordinate elements X1, X2, X3 of the algebra  are given. We do not assume
any commutation relations aboutX1, X2, X3. We define the field

The field H is an analogue of the magnetic field in electromagnetic theory and should not be confused with our earlier notation for
the Hamiltonian.

In this section we no longer avail ourselves of the principle of commutativity that is behind the original Feynman-Dyson derivation.
(See the last section.) We do not base the derivation to follow on any particular commutation relations about the variables Xi, but we
do take the definitions of the derivations that we use from that previous context. Surprisingly, the result is very similar to the one of
Feynman and Dyson, as we shall see.

Here A × B is the non-commutative vector cross product:

(We will drop this summation sign for vector cross products from now on.) Then

We define the field E by the equation

We will see that E and H obey a generalization of the Maxwell equations, and that this generalization describes specific discrete
models. The reader should note that this means that a significant part of the form of electromagnetism is the consequence of choosing
three coordinates of space, and the definitions of spatial and temporal derivatives with respect to them. The background process that
is being described is otherwise aribitrary, and yet appears to obey physical laws once these choices are made.

Remarks. 
1.  

Since we do not assume that , nor do we assume [Xi, Xj]  =  0, it will not follow that E and H commute with

the Xi.

2.  
We continue to define

http://www.iop.org/EJ/article/1367-2630/6/1/173/njp4_1_173.html#nj177084bib7
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and the reader should note that these spatial derivations are no longer flat in the sense of section 4 (nor were they in the
original Feynman-Dyson derivation).

3.  
We define ∂t  =  ∂/∂ t by the equation

for all elements or vectors of elements F. We take this equation as the global definition of the temporal partial derivative, even
for elements that are not commuting with the Xi. This notion of temporal partial derivative ∂t is the least relation that we can
write to describe the temporal relationship of an arbitrary non-commutative vector F and the non-commutative coordinate
vector X.

4.  
In defining

we are using the definition itself to obtain a notion of the variation of F with respect to time. The definition itself creates a
distinction between space and time in the non-commutative world.

5.  
The reader will have no difficulty verifying the following formula:

This formula shows that ∂t does not satisfy the Leibniz rule in our non-commutative context. This is true for the original
Feynman-Dyson context, and for our generalization of it. All derivations in this theory that are defined directly as commutators
do satisfy the Leibniz rule. Thus ∂t is an operator in our theory that does not have a representation as a commutator.

6.  
We define divergence and curl by the equations

We now prove a few useful formulae about the vector products. Firstly, we have the basic identity about the epsilon.

Lemma 7.1. Let εijk be the epsilon tensor taking values 0, 1 and  - 1 as follows. When ijk is a permuation of 123, then εijk is equal to
the sign of the permutation. When ijk contains a repetition from {1, 2, 3}, then the value of epsilon is zero. Then ε satisfies the
following identity in terms of the Kronecker delta:

The proof of this identity is left to the reader. The identity itself will be referred to as the epsilon identity. The epsilon identity is a
key structure in the work of this section, and indeed in all formulae involving the vector cross product.

Lemma 7.2. Let A, B, C be vectors of elements of the algebra . Then

Proof. Note that

This completes the proof of the lemma.  
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Lemma 7.3. Let A be any vector of three elements of the algebra . Then

Proof. We shall use the summation convention for repeated indices in this calculation.

This completes the proof of the lemma.  

Lemma 7.4. For A and B any elements in the algebra ,

where

Proof.  

This completes the proof of the lemma.  

Remark. This lemma, and the observation that the formula in the lemma works in the non-commutative context is due to the author
and Keith Bowden in conversations around 1999. See [13]. We now give the generalization of the Feynman-Dyson result in this
formalism.

Theorem 7.5. With the above definitions of the operators, and taking

we have

1.  

2.  
∇ ·H  =  0,

3.  
∂tH  +  ∇ × E  =  H × H,

4.  
.

Remark. Note that this theorem is a non-trivial generalization of the Feynman-Dyson derivation of electromagnetic equations. In the
Feynman-Dyson case, one assumes that the commutation relations

are given, and that the principle of commutativity is in place, so that if A and B commute with the Xi then A and B commute with
each other. One then can interpret ∂i as a standard derivative with ∂i(Xj)  =  δij. Furthermore, one can verify that Ej and Hj both
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commute with the Xi. From this it follows that ∂t(E) and ∂t(H) have standard intepretations and that H × H  =  0. The above
formulation of the theorem adds the description of E as , a non-standard use of ∂t in the original context of Feyman-Dyson,

where ∂t would only be defined for those A that commute with Xi. In the same vein, the last formula
 gives a way to express the remaining Maxwell equation in the Feynman-Dyson context.

Proof. We begin by calculating

Hence

This follows from lemma 7.1. Hence

But

hence

Thus

This completes the proof of the first part.

since it is easy to verify that (A × B) ·C  =  A· (B × C) for the non-commutative vector cross product.

Since

we have

Now, using the formula for ∇ × (A × B), we obtain

http://www.iop.org/EJ/article/1367-2630/6/1/173/njp4_1_173.html#nj177084pro20
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Note that  and that ∇ ·H  =  0. Thus

Now note that

Therefore

Now consider

Hence

The last part of the theorem follows immediately from this formula. This completes the proof.

Remark. Note the role played by the epsilon tensor εijk throughout the construction of generalized electromagnetism in this section.
The epsilon tensor is the structure constant for the Lie algebra of the rotation group SO(3). If we replace the epsilon tensor by a
structure constant fijk for a Lie algebra  of dimension d such that the tensor is invariant under cyclic permutation (fijk  =  fkij), then
most of the work in this section will go over to that context. We would then have d operator/variables X1,  ..., Xd and a generalized
cross product defined on vectors of length d by the equation

The Jacobi identity for the Lie algebra  implies that this cross product will satisfy

where

This extension of the Jacobi identity holds as well for the case of a non-commutative cross product defined by the epsilon tensor. The
reader will enjoy looking back over this section and seeing that we can still carry theorem 7.5 up to the following conclusion with E
defined by the second equation below. We can no longer take , as this depends upon the specific properties of the epsilon.

1.  
Assume .

2.  
Assume .

3.  
Then ∇ · H  =  0.

4.  
Then .
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It is therefore of interest to explore the structure of generalized non-commutative electromagnetism over other Lie algebras (in the
above sense). This will be the subject of another paper.

7.1. The original Feynman-Dyson derivation and its gauge-theoretic context

The original Feynman-Dyson derivation [1], [6]-[8] assumes that we have three variables {X1, X2, X3} and the commutation
relations

It is also assumed that if A and B commute with the Xi, then A and B commute with each other. That is, A and B are then `functions of
Xi '. We have called this the principle of commutativity.

With these assumptions one proves that with

(non-commutative vector cross product) and E defined by

then E and H satisfy the Maxwell equations in the sense that

1.  
E and H commute with the Xi;

2.  
∇ · H  =  0;

3.  
∂tH  +  ∇ × E  =  0;

these differential operators have been described in detail (in the non-commutative framework) in this section. A key to the original
demonstration is the principle of commutativity, providing a compass for comparing the results with the context of classical calculus.
In this section we have seen that an abstraction of the Feynman-Dyson argumemt provides a serious generalization that encompasses
a number of discrete models (to be discussed below). In this subsection, we compare the Feyman-Dyson framework with our
already-constructed formality of non-commutative gauge theory.

We use the dynamics

as before. We restrict to the case where [Xi, Aj]  =  0 so that

This is the domain to which the original Feynman-Dyson derivation applies. We then have

and

Note that even under these restrictions we are still looking at the possibility of a non-abelian gauge field. The pure electromagnetic
case is when the commutators of Ai and Aj vanish. In the Feynman-Dyson context, this commutator does vanish, since it is given that
[Xi, Aj]  =  0 for all i and j, and the principle of commutativity applies.

With this interpretation, E is defined by the Lorentz force law

where H represents the magnetic field. To see how this works, suppose that  and suppose that Ei and Fij

commute with Xk. Then we can compute

http://www.iop.org/EJ/article/1367-2630/6/1/173/njp4_1_173.html#nj177084bib8
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This implies that

since . It is then easy to verify that the Lorentz force equation is satisfied with Hk

 =  εijkRij and that in this case [Ai, Aj]  =  0 leads directly to standard electromagnetic theory when the bracket is a Poisson bracket.
When this bracket is not zero but the potentials Ai are functions only of the Xj we can look at a generalization of gauge theory where
the non-commutativity comes from internal Lie algebra parameters. This shows how a shift of the original Feynman-Dyson
derivation supports generalizations of classical electromagnetism.

7.2. Discrete thoughts

In the hypotheses of the above theorem, we are free to take any non-commutative world, and the theorem will be satisfied in that
world. For example, we can take each Xi to be an arbitrary time series of real or complex numbers, or bit strings of zeroes and ones.
The global time derivative is defined by

where FJ  =  JF '. This is the non-commutative discrete context discussed in sections 2 and 3. We will write

where Δ(F) denotes the classical discrete derivative

With this interpretation, X is a vector with three real or complex coordinates at each time, and

while

Note how the non-commutative vector cross products are composed through time shifts in this context of temporal sequences of
scalars. The advantage of the generalization now becomes apparent. We can create very simple models of generalized
electromagnetism with only the simplest of discrete materials. In the case of the model in terms of triples of time series, the
generalized electromagnetic theory is a theory of measurements of the time series whose key quantities are

and

It is worth noting the forms of the basic derivations in this model. We have, assuming that F is a commuting scalar (or vector of
scalars) and taking Δi  =  Xi '  -  Xi,

and for the temporal derivative we have

where Δ  =  (Δ1, Δ2, Δ3).

7.2.1. Discrete classical electromagnetism. It is of interest to compare these results with a direct discretization of classical
electromagnetism. Suppose that X, X ', X '', X '' ',  ... is a time series of vectors in R3 (where R denotes the real numbers). Let

 be the usual discrete derivative (with time step equal to one for convenience). Let A · B denote the usual inner
product of vectors in three dimensions.

Assume that there are fields E and H such that

http://www.iop.org/EJ/article/1367-2630/6/1/173/njp4_1_173.html#nj177084s3
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(the Lorentz force law). Assume that E and H are perpendicular to the velocity vector , and that E is perpendicular to H.

Then we have

Since E is perpendicular to  we know there is a λ such that  and we have  since H is
perpendicular to . Therefore

so that

Now using Δ  =  Δ(X), we get

and

The formula for H is in exactly the same pattern as the formula for H in the discrete model for generalized electromagnetism as
described in this subsection. Up to the time-shifting algebra and a proportionality constant, the expressions are the same. The
expression for E is similar, but involves different time-shift structure. Clearly more work is needed in comparing classical discrete
electromagnetism with the results of a discrete analysis of this generalized Feynman-Dyson derivation.

7.3. More discrete thoughts

In the Feynman-Dyson derivation of electromagnetic formalism from commutation relations [1] one uses the relations

where k is a scalar. In this subsection we shall use

as we did in analysing the one-dimensional case. We shall take

with

taking the time-step equal to one for convenience. This allows us to have scalar evolution of the time series, but changes the issues
in the original Feynman-Dyson derivation due to the presence of the non-commutative operator J in the second equation. These
issues are handled by the more general formalism that we discussed in this section. We aim to see to what extent one can make
simple models for this version of the Feynman-Dyson relations. Models of this sort will be another level of approximation to discrete
electromagnetism.

Writing out the commutation relation , and not making any assumption that X ' commutes with X, we find

http://www.iop.org/EJ/article/1367-2630/6/1/173/njp4_1_173.html#nj177084bib1


12/16/08 4:26 PMNon-commutative worlds

Page 29 of 37http://www.iop.org/EJ/article/1367-2630/6/1/173/njp4_1_173.html

Thus the commutation relation  becomes the equation

By a similar calculation, the equation  becomes the equation

These equations are impossible to satisfy simultaneously for k ≠ 0 if we assume that X and X ' commute and that X and Y ' commute
and that . For then we would need to solve:

with the first two equations implying that (X  -  X ') and (Y  -  Y ') are each non-zero, and the third implying that their product is equal
to zero. In other words, the equations below cannot be satisfied if the time series are composed of commuting scalars:

In order to make such models we shall have to introduce non-commutativity into the time series themselves.

Here is an example of such a model. Return to the equations

expressing the behaviour for two distinct variables X and Y. If [X, X ']  =  0, then we have (X '  -  X)2  =  k so that

In order for the second equation to be satisfied, we need that

where the ambiguity of sign is linked with the varying signs in the temporal behaviour of X and Y. We will make the sign more
precise in a moment, but the radical part of this suggestion is that for two distinct spatial variables X and Y, there will be a
commutation relation between one and a time shift of the other.

If the space variables are labelled Xi, then we can write

where εi
n  =  ± 1. Thus each space variable performs a walk with the fixed step-length k. We shall write informally

where it is understood that the epsilon without the superscript connotes the sign change that occurs in this juncture of the process. We
then demand the commutation relations

Each Xi is a scalar in its own domain, but does not commute with the time shifts of the other directions. We then can have the full set
of commutation relations:

In this system, the elements of a given time series Xi, Xi ', Xi '',  ... commute with one another. The basic field element in the
generalized Feynman-Dyson setup is the magnetic field H defined by the (non-commutative) vector cross product

Here we have

Thus
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where ε  =  (ε1, ε2, ε3) and ε ' denotes this vector of signs at the next time step. In this way we see that we can think of each spatial
coordinate as providing a long temporal bit string and the three coordinates together give the field in terms of the vector cross product
of their temporal cross sections at neighbouring instants. It is interesting to compare this model with the colour algebra in [14].

8. The Jacobi identity and Poisson brackets

It is worth thinking through the message of the non-commutative world in respect to the existence of the Poisson brackets and their
connection with continuous differentiation and the commutative world of topology and differential geometry from which the
classical and the quantum models of physics are derived. In the classical world there are specific point locations, and the notion of a
trajectory is given in terms of a continuous sequence of such locations. But there is no inherent operational structure intrinsic to the
space. There is great freedom in the world of commutative and continuous calculus, a freedom that allows the construction of many
models of temporal evolution. Yet we have seen that non-commutative worlds have built-in laws, and built-in patterns of evolution.
These patterns of evolution do not lead directly to trajectories but rather to patterns of concatenations of operators. At first sight it
would seem that there could be no real connection between these worlds. The Poisson bracket and the reformulation of mechanics in
Hamiltonian form shows that this is not so. There is a special non-commutativity inherent in the continuous calculus, via the Poisson
bracket.

It is easy to see the truth of the Jacobi identity for commutators. It is just a little harder to see the Jacobi identity of Poisson brackets.
It is the purpose of this section to recall these verifications and to discuss the nature of the identity.

Firstly, let [A, B]  =  AB  -  BA. Then

So

This is the Jacobi identity.

More generally, a Lie algebra is an algebra  with a (non-associative) product ab, not necessarily a commutator, that satisfies

1.  
Jacobi identity (ab)c  +  (bc)a  +  (ca)b  =  0 and

2.  
ba  =   - ab.

It follows that if we define  by the equation ρa(x)  =  ax for each a in , then

so that products go to commutators naturally in the left-regular representation of the algebra upon itself.

Here is another point of view. We have the following equivalent form of the Jacobi identity (when ab  =   - ba for all a and b):

for all a, x and y in the algebra. This identity says that each element a in the algebra acts, by left multiplication, as a derivation on the
algebra. In this way, we see that Lie algebras are the natural candidates as contexts for non-commutative worlds that contain an
image of the calculus.

8.1. Proving the Jacobi identity for Poisson brackets

There are examples of Lie algebras where the non-associative product is not a commutator, the most prominent being the Poisson
bracket. Here we start with a commutative algebra  with two (or more) derivations on . Let there be operators  and 

acting on  (ab is the commutative multiplication) such that these operators satisfy the Leibniz rule and commute with one
another:

http://www.iop.org/EJ/article/1367-2630/6/1/173/njp4_1_173.html#nj177084bib14
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for all elements of . Then we define the Poisson bracket on  by the formula

We wish to see that this product satisfies the Jacobi identity. In order to do this we first prove a lemma about the Jacobi identity for
commutators in a non-associative algebra. We then apply that lemma to the specific non-associative product

Suppose that * denotes a non-commutative and non-associative binary operation. We want to determine when the commutator [A, B]
 =  A * B  -  B * A satisfies the Jacobi identity. We first prove a lemma about the Jacobi identity for commutators in a non-associative
algebra. Let  be a non-associative linear algebra with multiplication denoted by * as above. Let

and call this the Jacobi sum of a, b and c. We say that the Jacobi identity is satisfied for all elements  if J(a, b, c)
 =  0 for all . We define the associator of elements a, b, c by the formula

Let σ be an element of the permutation group S3 on three letters, acting on the set {a, b, c}. Let aσ, bσ, cσ be the images of a, b, c
under this permutation. Let sgn(σ) denote the sign of the permutation.

Lemma 8.1. Let  be a non-associative algebra as above, then the Jacobi sum J(a, b, c)  =  [[a, b], c]  +  [[c, a], b]  +  [[b,
c], a], for any elements a, b, c ∈ A is given by the formula

Thus the Jacobi identity is satisfied in  iff the following identity is true for all .

Proof. For the duration of this proof we shall write ab for a * b. Then

Hence

This completes the proof.  

Remark. We discovered this lemma in the course of the research for this paper. Gregory Wene pointed out to us that a version of the
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lemma can be found in [15]. We now apply this result to prove that Poisson brackets satisfy the Jacobi identity.

Theorem 8.2. Let there be operators  and  acting on a commutative algebra  (ab is the commutative multiplication) such

that these operators satisfy the Leibniz rule and commute with one another:

for all elements of . Define a non-associative algebra  with product

Then the commutator in this algebra [a, b]A  =  a * b  -  b * a will satisfy the Jacobi identity. Note that this commutator is the
Poisson bracket with respect to the above derivations in the original commutative algebra:

This result implies that Poisson brackets satisfy the Jacobi identity.

Proof. Consider the associator in the non-associative algebra defined in the statement of the theorem:

Note that an expression of the form

will return zero when averaged in the summation

since  (the underlying algebra is commutative) and these terms will appear with opposite signs in the

summation. Therefore we find that Jac(a, b, c)  =  0 for all a, b, c in R. This completes the proof.

9. Diagrammatics and the Jacobi identity

We have seen that a commutative world equipped with distinct derivations that commute with one another is sufficient to produce a
non-commutative world (via the Poisson brackets) that is strong enough to support our story of physical patterns. Many
combinatorial patterns mimic the Jacobi identity, and hence provide fuel for further study. In order to illustrate these connections, we
give in this section a diagrammatic version of the Jacobi identity and an interpretation in terms of graph colouring. We will initially
work in a Lie algebra  whose product ab satisfies ba  =   - ab and the Jacobi identity a(bc)  =  (ab)c  +  a(bc). In figure 3 we show
a diagrammatic interpretation of multiplication, consisting in a trivalent vertex labelled with a, b, and ab. As one moves around the
vertex in the plane, clockwise, one encounters first a, then b, and then ab.

Figure 3. Diagrammatic multiplication.

In figure 4 we illustrate the Jacobi identity in the form
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Figure 4. Diagrammatic Jacobi identity.

To illustrate how this pattern can occur in a different context, consider diagrams D of intersecting chords on a circle as shown in
figure 5. By a circle we mean a curve in the plane without self-intersections, which is a topological circle. By a chord, we mean an
arc without self-intersections that is embedded in the interior of the circle, touching the circle in two distinct points. Let us suppose
that we wish to colour the chords from a set of q colours such that if two chords intersect in an odd number of points, then they
receive different colours. Let  denote the number of distinct colourings of the chords of the diagram D, as a function of q.
Call such a diagram of intersecting chords an intersection graph. We extend such diagrams by allowing internal trivalent vertices as
illustrated in the abstract by diagram D '' in figure 4 and by the diagram with the same label, D '', in figure 5. Interpret the trivalent
vertex as an instruction that all chord lines meeting at a trivalent vertex receive the same colour. The diagrammatic Jacobi identity of
figure 4 corresponds directly to the logical colouring identity that says that if we have three diagrams D, D ', D '' with two chords
touching in an odd number of points in D, one point removed in D ', and the two chords fused by a trivalent vertex in D '' so that they
must receive the same colour, then the number of colourings of D is the number of colourings of D ' minus the number of colourings
of D ''. This is just the colouring version of the logical identity

For graph colouring problems, this identity was first articulated by Whitney [16]. In formulae, we have

Figure 5. Intersection graphs.

The convention that we have adopted here - that two chords are coloured differently if and only if they intersect in an odd number of
points, makes a demand on the interpretation of the trivalent nodes. All arcs entering a given node must receive the same colour.
After more nodes are added we will have connected components of the resulting graph that contain nodes (the outer circle is not
regarded as part of the graph). Call such a connected component a web in a given diagram. Each web is coloured by a single colour.
We regard a chord without nodes as a (degenerate) web. We take the convention that if the total number of intersections between two
distinct webs is odd, then they must receive different colours. Of course, a web may have self-intersections; we define the sign of the
colouring of a given web to be  - 1 if it has an odd number of self-intersections and  + 1 if it has an even number of self-intersections.
The sign of the colouring of a diagram is the product of the signs of its component webs. Note the sign of a chord is positive. With
these conventions, the formulas in figures 4 and 5 match perfectly and can be understood as indicating parts of larger diagrams that
differ only as indicated. We see, as in figure 6, that an extra self-intersection added to a trivalent vertex changes the sign of its web.
This corresponds to the algebraic interpretation of such a vertex as ab  =   - ba. See figure 3.
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Figure 6. Verifying the twist identity for colour diagrams.

In figure 6 we illustrate how these sign conventions are consistent with the colouring formula/Jacobi identity. In this figure, we begin
with the Jacobi identity with a twist (crossing) added to each diagram. The original diagram with one crossing now has two, and
hence is equivalent to a diagram with none (no local requirement of difference). The original diagram with no crossing now has one,
and is interpreted as a requirement of difference. Rearranging, we find the Jacobi identity again, but with an extra crossing and
change of sign for the noded diagram. The conclusion is that adding a crossing to a node changes the sign of its diagram.

We see that the patterns of counting colourings of chord diagrams correspond formally to the axioms for a Lie algebra. This example
indicates how a combinatorial context can lead to the very formalism on which this paper is based, but though different structures
than one could have initially visualized. Diagrammatic Lie algebras similar to this example feature prominently in the theory of
Vassiliev invariants [17, 18] of knots and links, and may form the basis for new models for the structures that we have discussed in
this paper.

We have concentrated in this section on a colouring example not only because the occurrence of the Jacobi identity in this context
may appear startling, but also because there is a more direct relationship with colouring in regard to the fundamental Lie algebra of
SU(2) (or equivalently SO(3)) that underlies the structures we have discussed in this paper. The Lie algebra of SO(3) has structure
constant the alternating epsilon symbol εijk that we have used again and again in section 7 for the generalization of the Feynman-
Dyson derivation. This epsilon can be expressed diagrammatically as a trivalent vertex. The basic epsilon identity

can be written diagrammatically, and it leads at once to a diagrammatic Jacobi identity. See figure 7 for the diagrammatic form of the
epsilon identity. The epsilon itself is closely related to colouring (see [19]-[21]), but that is another story and we shall stop here.
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Figure 7. The epsilon identity in diagrammatic form.

10. Epilogue

We have sought in this paper, to begin in an algebraic framework that naturally contains the formalism of the calculus, but not its
notions of limits or constructions of spaces with specific locations, points and trajectories. It is remarkable that so many patterns of
physical law fit so well such an abstract framework. We believe that this is indicative of the secondary nature of point sets,
topologies and classical differential geometries in physics (compare [22]). In this paper we have dispensed with spacetime and
replaced it by algebraic structure. But behind that structure, the space stands ready to be constructed, by discrete derivatives and
patterns of steps, or by starting with a discrete pattern in the form of a diagram, a network, a lattice, a knot, or a simplicial complex,
and elaborating that structure until the specificity of spatio-temporal locations appear.

There are many ideas for producing location. Poisson brackets allow us to connect classical notions of location with the non-
commutative algebra used herein. Below the level of the Poisson brackets is a treatment of processes and operators as though they
were variables in the same context as the variables in the classical calculus. In different degrees we let go the notion of classical
variables and yet retained their form, as we made a descent into the discrete.

In order for locations to appear from process, one may need an appropriate degree of recursiveness. Lie algebras begin the process
with their fully self-operant structure of derivations. It is just such bootstrapping that fits into the basis of our concerns and produces
the ways to make spaces emerge, through process, from the abstract algebra.

Acknowledgments

Most of this effort was sponsored by the Defense Advanced Research Projects Agency (DARPA) and Air Force Research Laboratory,
Air Force Material Command, USAF, under agreement F30602-01-2-05022. The US Government is authorized to reproduce and
distribute reprints for Government purposes notwithstanding any copyright annotations thereon. The views and conclusions contained
herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either
expressed or implied, of the Defense Advanced Research Projects Agency, the Air Force Research Laboratory, or the US
Government. (Copyright 2004.) It gives the author great pleasure to acknowledge support from NSF Grant DMS-0245588, and to
give thanks to the University of Waterloo and the Perimeter Institute in Waterloo, Canada for their hospitality during the preparation
of this research.

References

http://www.iop.org/EJ/article/1367-2630/6/1/173/njp4_1_173.html#nj177084bib22


12/16/08 4:26 PMNon-commutative worlds

Page 36 of 37http://www.iop.org/EJ/article/1367-2630/6/1/173/njp4_1_173.html

[1]
Kauffman L H and Noyes H P 1996 Proc. R. Soc. Lond. A 452 81  
Order from Infotrieve

[2]
Connes A 1990 Non-commutative Geometry  (New York: Academic) 

[3]
Dimakis A and Müller-Hoissen F 1992 Phys. Lett. B 295 242  
CrossRef Link |  Inspec Abstract |  Order from Infotrieve

[4]
Forgy E A 2002  PhD Thesis University of Illinois at Urbana-Champaign

[5]
Müller-Hoissen F 1998 Proc. 2nd Mexican School on Gravitation and Mathematical Physics
(Kostanz)  http://kaluza.physik.uni-konstanz.de/2MS/mh/mh.html 

[6]
Montesinos M and Perez-Lorenzana A 1999 Preprint quant-phy/9810088 v217

[7]
Dyson F J 1990 Am. J. Phys. 58 209  
CrossRef Link |  Inspec Abstract |  Order from Infotrieve

[8]
Hughes R J 1992 Am. J. Phys. 60 301  
CrossRef Link |  Inspec Abstract |  Order from Infotrieve

[9]
Nelson E 1967 Dynamical Theories of Brownian Motion, Math. Notes  (Princeton, NJ: Princeton University Press) 61 

[10]
Dirac P A M 1968 Principles of Quantum Mechanics  (Oxford: Oxford University Press) 

[11]
Weyl H 1922 Space-Time-Matter  (London: Methuen) 

[12]
Tanimura S 1992 Ann. Phys. 220 229  
CrossRef Link |  Inspec Abstract |  Order from Infotrieve

[13]
Kauffman L H and Bowden K 2004 in preparation

[14]
Wene G P 1982 Am. Math. Monthly 89 417  
CrossRef Link |  Order from Infotrieve

[15]
Myung H C 1986 Malcev-Admissible Algebras  (Basel: Birkhäuser) 

[16]
Whitney H 1937 Bull. Am. Math. Soc.  38 572  
CrossRef Link |  Order from Infotrieve

[17]
Bar-Natan D 1995 Topology 34 423  
CrossRef Link |  Order from Infotrieve

[18]
Lieberum J 2000 Math. Ann. 317 459  
CrossRef Link |  Order from Infotrieve

[19]
Penrose R 1971 Quantum Theory and Beyond ed T Bastin (Cambridge: Cambridge University Press) pp 151-80 

[20]
Penrose R 1971 Combinatorial Mathematics and Its Applications ed D J A Welsh (New York: Academic) 

[21]
Kauffman L H 1991 Knots and Physics  (Singapore: World Scientific) (2nd edn, 1994; 3rd edn, 2001) 

[22]
Crane L and Sheappard M 2004 in preparation

[23]
Kauffman L H and Noyes H P 1996 Phys. Lett. A 218 139  
CrossRef Link |  Inspec Abstract |  ChemPort Abstract |  Order from Infotrieve

[24]
Kauffman L H and Noyes H P 2004 in preparation

[25]
Kauffman L H 1996 Twistor Newslett. No. 41 

[26]
Kauffman L H 1998 Physica D 120 125  
CrossRef Link |  Inspec Abstract |  Order from Infotrieve

[27]
Kauffman L H 1998 Int. J. Gen. Syst. 27 241  
CrossRef Link |  Order from Infotrieve

[28]
Kauffman L H 1999 Aspects II - Proc. ANPA 20 215  

http://www.iop.org/EJ/ref/-prog=article/-target=infotrieve/1367-2630/6/1/173/1
http://www.iop.org/EJ/ref/-prog=article/-target=inspec/1367-2630/6/1/173/3
http://www.iop.org/EJ/ref/-prog=article/-target=doi/1367-2630/6/1/173/3
http://www.iop.org/EJ/ref/-prog=article/-target=infotrieve/1367-2630/6/1/173/3
http://kaluza.physik.uni-konstanz.de/2MS/mh/mh.html
http://www.iop.org/EJ/ref/-prog=article/-target=infotrieve/1367-2630/6/1/173/7
http://www.iop.org/EJ/ref/-prog=article/-target=inspec/1367-2630/6/1/173/7
http://www.iop.org/EJ/ref/-prog=article/-target=doi/1367-2630/6/1/173/7
http://www.iop.org/EJ/ref/-prog=article/-target=inspec/1367-2630/6/1/173/8
http://www.iop.org/EJ/ref/-prog=article/-target=infotrieve/1367-2630/6/1/173/8
http://www.iop.org/EJ/ref/-prog=article/-target=doi/1367-2630/6/1/173/8
http://www.iop.org/EJ/ref/-prog=article/-target=inspec/1367-2630/6/1/173/12
http://www.iop.org/EJ/ref/-prog=article/-target=doi/1367-2630/6/1/173/12
http://www.iop.org/EJ/ref/-prog=article/-target=infotrieve/1367-2630/6/1/173/12
http://www.iop.org/EJ/ref/-prog=article/-target=infotrieve/1367-2630/6/1/173/14
http://www.iop.org/EJ/ref/-prog=article/-target=doi/1367-2630/6/1/173/14
http://www.iop.org/EJ/ref/-prog=article/-target=infotrieve/1367-2630/6/1/173/16
http://www.iop.org/EJ/ref/-prog=article/-target=doi/1367-2630/6/1/173/16
http://www.iop.org/EJ/ref/-prog=article/-target=infotrieve/1367-2630/6/1/173/17
http://www.iop.org/EJ/ref/-prog=article/-target=doi/1367-2630/6/1/173/17
http://www.iop.org/EJ/ref/-prog=article/-target=doi/1367-2630/6/1/173/18
http://www.iop.org/EJ/ref/-prog=article/-target=infotrieve/1367-2630/6/1/173/18
http://www.iop.org/EJ/ref/-prog=article/-target=doi/1367-2630/6/1/173/23
http://www.iop.org/EJ/ref/-prog=article/-target=coi/1367-2630/6/1/173/23
http://www.iop.org/EJ/ref/-prog=article/-target=infotrieve/1367-2630/6/1/173/23
http://www.iop.org/EJ/ref/-prog=article/-target=inspec/1367-2630/6/1/173/23
http://www.iop.org/EJ/ref/-prog=article/-target=infotrieve/1367-2630/6/1/173/26
http://www.iop.org/EJ/ref/-prog=article/-target=doi/1367-2630/6/1/173/26
http://www.iop.org/EJ/ref/-prog=article/-target=inspec/1367-2630/6/1/173/26
http://www.iop.org/EJ/ref/-prog=article/-target=doi/1367-2630/6/1/173/27
http://www.iop.org/EJ/ref/-prog=article/-target=infotrieve/1367-2630/6/1/173/27


12/16/08 4:26 PMNon-commutative worlds

Page 37 of 37http://www.iop.org/EJ/article/1367-2630/6/1/173/njp4_1_173.html

Order from Infotrieve
[29]

Kauffman L H 2003 Boundaries - Scientific Aspects ANPA 24 73  
Order from Infotrieve

[30]
Kauffman L H 2003 Cybernet. Human Knowing 10 73  
Order from Infotrieve

[31]
Noyes P 2001 Bit String Physics ed H P Noyes and J C van den Berg (Singapore: World Scientific) 

This volume  | Abstract 

 
  Full Search
  Help

New Journal of Physics

Author:  Vol/Year:  Issue/Month:  Page/Article No:    Find 

IOP Journals Home |  IOP Journals List |  EJs Extra |  This Journal |  Search |  Authors |  Referees |  Librarians |  User Options |  Help |  Recommend this journal
Copyright © 1998-2008 Deutsche Physikalische Gesellschaft & Institute of Physics

 

 

http://www.iop.org/EJ/ref/-prog=article/-target=infotrieve/1367-2630/6/1/173/28
http://www.iop.org/EJ/ref/-prog=article/-target=infotrieve/1367-2630/6/1/173/29
http://www.iop.org/EJ/ref/-prog=article/-target=infotrieve/1367-2630/6/1/173/30
http://www.iop.org/EJ/abstract/1367-2630/6/1/173
http://www.iop.org/EJ/toc/1367-2630/6/1
http://www.iop.org/EJ/help/-topic=select/article/1367-2630/6/1/173/njp4_1_173.html
http://www.iop.org/EJ/search/1367-2630
http://www.iop.org/EJ/help/-topic=article/article/1367-2630/6/1/173/njp4_1_173.html
http://www.iop.org/EJ/options/1367-2630
http://www.iop.org/EJ/
http://authors.iop.org/atom/usermgmt.nsf/Authors?openform&ISSN=1367-2630
http://www.iop.org/EJ/journal/1367-2630
http://www.iop.org/EJ/referees/1367-2630
http://www.iop.org/EJ/librarians/1367-2630
http://journals.iop.org/
http://www.iop.org/EJ/recommend/-rec=journal/1367-2630
http://www.iop.org/EJ/ejs_extra
http://www.iop.org/EJ/search/1367-2630
http://banners.iop.org/Banners/jump/-placement=p0000309/-banner=1424/iop:/EJ/S/R/article/nj

