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NETWORK SYNTHESIS AND VARELA’S CALCULUS
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Network models are given for self-referential expressions in the calculus of indications (of G. Spencer Brown). A precise
model is presented for the behavior of such expressions in time. The extension of Brown's calculus by F. Varela is then
shown to describe behavior invariant properties of these networks, Network design is discussed from this viewpoint.

INDEX TERMS Self-reference, networks, calculus of indications, calculus for sell-reference.

“A man sets himself the task of portraying the world. Through the years he peoples a space with
images of provinces. kinpdoms, mountains. bays. ships. islands, fishes. rooms, instruments, stars,
horses, and people. Shortly before his death he discovers that the patient labyrinth of lines traces the

image of his face.”

1 INTRODUCTION

Starting with the notion of distinction, G. Spencer
Brown in his book Laws of Form' develops a
calculus of indications through which one may
contemplate the genesis of form and the play of
paradox. In perfect balance there is no distinction.
That which acts and that which is acted upon are
one. If this be paradox, then it had best be faced in all
of its irreducibility. Brown teases apart this state of
condensation until his language is sophisticated
enough to mirror the antinomy within itself, In
words it is the paradox of self-reference: I am that.

More concretely, Brown allows self-referential
expressions in a Boolean algebra and suggests that
rather than generating paradox they generate time!
In other words, he suggests that such expressions
make sense when interpreted as indicating processes
occurring in time. This calls up an analogy with
electrical circuits with feed-back. The circularities
predispose behavior (memory, oscillation, . . .) and
paradox never enters. The form of this circularity
becomes a symbol not of contradiction, but of a self-
sustaining whole with new properties to be observed
and appreciated.

Francisco Varela in his paper A calculus for self-
reference® develops an algebraic approach that
avoids mention of time or sequence. In this paper we

TThis paper was written in 1976/77 when the author was
visiting the Department of Mathematics of the University of
Michigan in Ann Arbor, Michigan. The research reported in this
paper was partially supported through NSF Grant No. 76—
07187.

K

179

Borpes,

return to the temporal viewpoint. Self-referential
expressions will be considered as networks. A
network is an interconnected collection of elements
(Brownian operators, cells, observers, atoms, . . .)
each receiving information from the others. In a
balanced state no information moves in the net:
delicate poise. A slight disturbance creates con-
ditions of local imbalance through the net. The net
preserves itself by correcting these imbalances, but
in the process may create further disturbance. We
make no a priori conditions on how or in what order
the balances are restored; a set of transition rules
simply states that restoration occurs by some choice
again and again. A net whose eventual behavior is
independent of such choice is called determined.

Using this description of behavior for a net we are
able to discuss the design of modulation as in
Chapter 11 of Laws of Form'. We believe that our
approach lends clarity to this aspect of Brown’s
work. Furthermore, Varela’s calculus is intimately
related to our approach. His calculus for self-
reference provides an algebra for relating nets with
the same behavior (Section 5). This relationship is
remarkable, particularly since it gives tractable
procedures for transforming networks locally, with-
out changing their global properties.

While we hope that the ideas discussed here may
be useful in many areas, the networks we use are
very special. Composed of Brownian “marks”, they
are a mathematical abstraction of digital networks
consisting entirely of “nor” gates. For digital
networks this is not a fundamental restriction since
other standard elements are logically equivalent to
appropriate combinations of nor gates. Qur meth-




777777777 1 T1==3 expresses the redundancy of naming

180 L. H.KAUFFMAN

ods are useful for the synthesis and simplification of
hazard-free digital networks.

Nevertheless, I believe that these Brownian
networks are potentially valuable in contexts wider
than the analysis of digital circuitry. They provide a
metaphor for the creation of numbers (counting,
modulation, . . .) from processes of indication and
self-indication. There is some value in letting
Boolean algebra turn on itself.

The author wishes to thank David Solzman, Jerry
Swatez, Paul Uscinski and all the members of the
Chicago, Laws of Form, group for many con-
versations.

2 RECOLLECTION OF THE
CALCULUS OF INDICATIONS

The calculus of indications® is based on one symbol,
1. As a shorthand for [], the mark makes a
distinction in the plane on which it is scribed. It may
also be seen as the name of the outside (unbounded)
part of this division or as an instruction to change
state, to cross from the state indicated within. Thus

allowed no arithmetic solution without the collapse
of indication to void. If we must persist, an extension
is required. Brown posits an imaginary value for 7

In Varela’s notation? one writes f = ] such that TJ|
=L ; the little hook indicates that f reenters its
own space. Thus [] is a Boolean counterpart of
JL

Note that from a formal viewpoint, if we set []]
=[], then we must sacrifice the rule 7] f = 7 since

Af="=0d="=00="=0=".

Strictly speaking, we would need to sacrifice either
ff = [ or f1f="1. A new algebraic investigation is
suggested. This has been elegantly done by Fran-
cisco Varela.® We shall have more to say about his
work later,

Yet f = f] describes itself and in so doing leads to
a temporal interpretation. If marked, it flips to the

twice, while J1 = (unnamed) says that to cross from
the marked state is to enter the unmarked state.
Hence 7 has dual roles of operator and operand.
Acting upon itself it generates an arithmetic of forms
with injtials 7 7="1and 9 =

One might suspect that this confusion of roles
would lead to contradiction. Not so! There is a
unique reduction of any concatenated expression to
either the marked or unmarked state. Even the
simplest equations are sensible under role exchange.
For example 71 = —1 may be read: To cross from the
unmarked state is to arrive at the marked state.

This primary arithmetic of forms is then seen to

satisfy various general patterns (8] =a,ma="1,...)

and an algebra (basically Boolean) is born. Its
axioms are

J1. @l al=

J2. arl brll=d] b r

(plus implicit commutativity and associativity). The
algebra is complete: any arithmetical identity is a
consequence of the axioms.

Just as arithmetic examining itself has borne
algebra, the algebra may also look inward and find
its own equations thus: f = f). This equation can be

unmarked state and vice versa, so on and forever. 1t
isa prototype for condensation of active and passive
modes. First it names its interior space by reentry;
then it becomes an operator and cancels itself, but .
not quite. Ready to indicate, it jumps up from the
void state only to fall, again and again.

For more complicated situations it is helpful to
think of Brownian expressions as modifiers of
signals or as functions of their variables. For this, a
graphical notation due to Brown is convenient.

Let —|— stand for 1 as an operator. The left side
of the vertical line denotes the interior space of the
mark; the right side stands for the exterior space.
Lines (leads) going to the left side of a mark
designate variables or expressions in the interior
space. Leads emanating from the right side indicate
spaces where the mark is placed. The examples in
Figure 1 should suffice to make this clear.

Algebraic Graphic
al =x a—— x

F1B0 =y a:}—f—v
: b

f=1l=1 ap
h =Talbl = Tzib] ﬁb
a b

FIGURE 1 Examples of algebraic and graphic notation.
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Computations may be performed graphically
according to the following two rules:

a
{1) >—ab
b

(2) a—-7J— 7l
Thus

corresponds to Nl =al for a= ]. During a com-
putation accounts may not be settled across a mark,
but in the end matters must balance according to (1)
and (2). Here f = f] is never balanced but g=E1 has

two distinct balanced states:

Thus g = T represents a simple memory function. If
one considers h= [al b], it is natural to consider the
behavior as aand b change. Thusifa= — and b= 3
then h=h -l = -1. What happens if a changes to
T?1tis clear from the graph that changing a to the
unmarked state leaves the expression balanced in
state (ii). Hence it remembers (g, b) = (71, =)

In the next sections these ideas about balance and
transition will be made more precise.

3 BALANCE AND TIME

Let N be any network as described in the last
section, Suppose that N has n marks; label the right
hand sides of these marks by letters XpXay s,
Algebraic variables in a corresponding expression
correspond to letters ay, a,, . . ., a, with leads
connecting them to the left sides of certain marks,

We make the following assumptions about N':

i) Leads may come together only when leaving
or entering a mark or a variable g,. Thus the vertices
of the nefwork are the variables a, ... a and the
marks x;, x,,..., X,.

ii) Alead issaid to be an entry lead if it begins at
the right side of a mark and terminates at the left
side of another mark. Only such entries are
allowed.

Note that these stipulations forbid certain com-
mon nets, For example

d

e
is not allowed since these two leads do not terminate
at a mark. We make this restriction primarily for
ease of description. In fact, we may regard all
expressions on the page as standing under an
unwritten cross (variously interpreted as the obser-
ver or reader). Extending the network in this way
and allowing no re-entry from the unwritten cross

back into the network on the page, then lets us use
networks of the above type.

Let an equation of the form x;=y,y,. .yl be
associated to each mark in the net. The ¥;’s denote
the exit points of the leads terminating at the mark
labeled x,. ‘

For example, the network below has equations

CH a;

Specifying such a set of equations is equivalent to
specifying the network.

Suppose that specific values for Xy, .. X, and
ay, . .., a, have been chosen. We say that the net
is balanced at the ith mark if these values satisfy the
equation for that mark. The net is balanced if it is
balanced at each mark.

We now seek behavior. Suppose the net is
balanced and then some of the g, are changed and
held at their new values. If one imagines that each
mark has a certain reaction time to imbalance and
that information is transmitted between marks
instantaneously, then the behavior may be com-
puted, but it is dependent upon specific choices of
reaction time. A discrete analog of this will now be
given with the choices made as arbitrary as possible.
Every time the net reacts we shall assume that all
marks must react within a certain discrete time
period. This time period (B below) is arbitrarily
chosen. We shall be particularly interested in nets
that have behavior independent of such choices.
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The transition rules will be given as a program of
steps to be carried out. This sequence may terminate
in a balanced state, or it may cycle forever. By a
transition we mean a pair ((a, x), @’) where a=
(@, ... a) x=(x;,... x,)is a balanced state for
the network N and 4’ is a new choice for some or
all of the variables g,.

Transition Rules: Let a transition ((a, x), a’) for a
network N be given. Suppose that in (a’, x) the net is
unbalanced at a subset of the marks corresponding
to S={1,2,..,n}

i) Choose one positive integer B and label each
mark with B (call this the rag of the mark).

ii) Choose T<S$. All marks in S with tag=0
must be included in T.

iii) Change all x; for ie T. (That is, replace x, by 7

%)

iv) Set the tags of all marks in T back to B.
Subtract I from the tags of all marksin §— T,

Simplified Transition Rules: Let the notation be the
same as that given for the regular transition rules.

i) ChooseieS5.
i) Replace x, by ﬂ .

iii) There will now be a new subset S’ at which the
net is unbalanced. If S is empty, stop and let
x'be the vector of present mark values. If §' is
not empty, replace S by S’ and repeat steps (i)
and (ii).

Under the simplified rules only one mark resets at
any given time. We mention these rules because they
provide a very instructive solitaire game that can be
played to illustrate network properties. The game is
played by placing tokens on the marks of a circuit
diagram to indicate marked and unmarked states. A
transition can then be played through to its
conclusion by simply changing tokens on the game
board. Balanced and unbalanced states are ap-
parent to visual inspection.

v) There will now be a new subset §'c{1, 2,.. .,
n} at which the net is unbalanced. If §’ is
empty, stop and let x' be the vector of present
mark values. If §'is not empty, replace Sby S
and repeat steps (ii) to (v).

If a transition ((a, x), a’) always leads to the same
balanced state (a’, x') independent of the choices in
(i) and (ii) we say that the transition is determined
and write (g, x)—(a’, x’). A network is said to be
determined if every transition is determined.

In undetermined situations, the choices involved
may or may not lead to a balanced state. For

example, let /' =a] a]so that x, =%X7a@)and x, =%;4
are the network equations. Then a= T1=x, =x,
=7 so that both equations become unbalanced
under a: 71=»"1L So §={1, 2}. If T={1, 2} then we
reset x; =x, = ] and the net is still unbalanced. If T
={1) then we set x,="1, x,="1 and this is

balanced. If T={2} we set x, =7, x,="1 and
again the net is balanced. Thus depending upon the
choices, the net can go to either of its two stable
states or it can oscillate. In practice, oscillation
is very unlikely here since no two marks should be
expected to have precisely the same reaction time.

In the light of this last remark, it is interesting to

formulate a simpler set of transition rules as follows:

These definitions apply perfectly well to ex-
pressions without re-entry. Such expressions are
determined (since the simplification of an arithmetic
expression is unique (see [1] p. 14)).

Return to the example H =@l al. The transition
a: =7 is ill-determined. Imagine an observer
who prejudices the choice, with appropriate timing.
Let the expression be expanded to include the
ohserver, thus:

17K H
a 1 }

(8)

Ifa="thenK =H="1,hence J="1.1fa: 71—
then the expression is unbalanced only at H(J = 7,

K =1 is unbalanced). Thus by (iii) we set H = .
Then only J is unbalanced and setting J = ] leaves
the expression balanced at a= 9, J = T, K=, H

= 71. Thus the new expression is determined.

One can often transform an indeterminate ex-
pression to a determined expression by adding new
markers who observe the original expression and

s L Giog e teaootado
prejudice the choice in transition.
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4 MODULATION

In this section we outline the design of a self-
referential expression E that modulates an input. E
will have one variable, 4, and four balanced states,
two for each value of a, A€ a changes, the expression
E will cyclically pass”through the four states in a
determined manner. We begin with the expression

below.
e P >

This expression has exactly four balanced states as
given by the chart in Figure 2.

Al x vz 0w/l
i e s I I Y
a1 9 3 39 s
O e e e s 0 O §
Jl3 3 7 ¢

FIGURE 2 A list of balanced states.

Let these states be labeled «, 8, y and 8.

As it stands, the expression is not determined.
States o and f# may fall to either y or 6 when a
changes from 77 to <. On the other hand, y does
become f when a: =1 1. Thus we might try to
obtain the transition sequence awsy~rfurd—sa.

To accomplish oy, expand the expression so
that it sees Z = 71 (identifying state a): This can be
done by a re-entry from Z to the left side of Y.

Ix Y iz W

To accomplish f~+5 we recognise by X =Y =Z
=", and for 6~ we recognize § by X =Z=W
=T. Thus, encoding these self-observations, we
obtain

The mark J recognizes state 8 and prejudices the
transition f-+4. The mark K recognizes state & and
prejudices §~+o.

Hence if we tabulate W as a changes and begin in
o, we have

ala 9 2 3 3 g 4
wla a5 3 9

or

a LML e
w LT -

This expression is one of Brown’s modulators (see
[1] p. 68); our description of its behavior coincides
with his.

Note that one really should check this new
expression against our description of transitions to
see that it indeed behaves properly. This is easily
done. (For example, use black and white markers
placed on the circuit diagram and play through the
transitions.)

Itisstriking to observe how closely the creation of
this modulator parallels one’s own experience. For
example, try simultaneously beating the rhythms of
a and W and note how the process is learned and
stabilized by self-observations insuring the desired
transitions,

5 NETWORK SIMPLIFICATION
AND VARELA'S CALCULUS
FOR SELF-REFERENCE

Francisco Varela® has constructed a calculus that

incorporates the imaginary value . He begins with

arithmetical rules D=7, TJ] =7, and 7 O
=7 (along with =l=, =1 7="). Then an

algebra consonant with these rules is developed; its
initials are ' ‘

AL Plqlp=p
A2 P E=palr
43 peERweE pU=p pal

Certain consequences in the calculus of in-
dications are not allowed here. For example, @b
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=ablb is false in Varela’s arithmetic since — 3

=" while 8 ] =1{J=[7. He then assumes
that all self-referential expressions satisfy these
axioms and he derives certain simplification rules.
The calculus for self-reference is complete with
respect to the arithmetic including .

To see the relationship between Varela’s calculus
and our considerations note that the network for X

=] g pis given by

q

This may occur inside a larger network as indicated
schematically in Figure 3.

Similarly p7] g =71 q] r allows replacements of

type specified in Figure 5.
LT 1B f i ;
A ; :v i 3 A ; B

N N'

FIGURE 5 Replacement of pr| gi| by 7] 41| r-

Here the reasoning is as follows: In the expression
on the left a change in r may unbalance both x and y,
However, resetting either x or y will have the same
effect on z. Thus there is no essential difference
between the transition behaviors of the left and right
networks.

Case 3 (43) says that if a given line is known to be
always off balance (symbolized by {7) then

iy

FIGURE 3 Network containing 7] g] p.

This larger network (call it N) consists of two parts
A and B with some marks in B (re)entering marks in
A (via shaded arrow 1). There may also be other
channels from A4 to B (shaded arrow 2). Suppose
that we are analyzing the behavior of N. Then we
can reason as follows: X is certainly opaque to
changes in g. Hence if g changes during a transition
process this change cannot be transmitted along the
lines corresponding to X =3 ] p. Even if q never
stops changing it is possible that other parts of the
network will go into a useful stable balance. Thus
this particular instance of g can be eliminated
without changing the behavior of the network in
parts 4 and B. The network N may be replaced by
N'"asshown in Figure 4.

] X
A" B
e R

FIGURE 4 Pl gl pisreplaced by p.

T his is an etvor.
dsfc._y cond F+|-OH-S-

) a=a

o g=x.

can be replaced by

p

A
o

Thus Varela’s calculus gives a system of allowable
transformations that can be performed on parts of a
network without disturbing the behavior of the rest.

We sum this up in the following theorem.

THEOREM Let N be a network containing a
subnetwork (without re-entries) of the form f
=fl(ay,...a.%,,...,x,) where f is an expression in
primary algebra. If f=f" is an equivalence in the
calculus for self-reference, then f* may be substituted
Jor f inthe network N without changing the behavior
of the rest of N.

This theorem contains wonderful possibilities for
simplifying networks. Its power rests on the
completeness of Varela's calculus. One may always
refer to the extended arithmetic to see whether a
given substitution is valid. Thus the apparently very
difficult problem of discovering valid network
transformations is reduced to calculations in a 3-
valued logic.

Invalid substitutions arise if one makes unre-

stricted use of Brown’s algehra. Thus g="a] al and

=Zlb lQ_. <ad Transmt siynels From b winder
One 2lgebre “+hat does *his job 2 a2
Teanspesition elgebra, with /nitiels : o ,

" sk

I} ZeWc=z=tbell |
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g=gTlal have different behavior. Yet such sub-
stitutions can sometimes be made. If the network
has the form shown in Figure 6 and the inputsto f
aIe opaque to transmission from B, then we may
substitute f* for f whenever f= S' in Brown's
algebra.

- AB

FIGURE 6 Brown's calculus applies under conditions of
opacity.

Thus simplification involves recognition of poss-
ible substitutions, use of Varela’s calculus and/or
recognition of opacity and the use of Brown’s
calculus,

In the next section we shall apply these principles
to the design and simplification of Brown’s other
modulator.,

6 ANOTHER MODULATOR

In this section we show how to design a modulator
with behavior given by the chart below:

S T By W I T

e T o T o
This time the design idea is as follows. The value of f
will be stored in a memory of type f= _Ié E 4
Another memory m will, in conjunction with g, tell f
when to change. Note that if f= "1 we change it by
setting f= "7, and if { = we change it by setting

=],
Let m contain the next value of /- Thus we have
the chart given in Figure 7.

FOTS TR JRN  R  Js [ [
I P R
-'-_I_I_!_I_I=|_I._I3

FIGURE 7 Modulaor chart.

The value of f changes whenever g becomes
marked. Since we wish f to change to m we must set

a=alml| and B=77 ml (refer to Figure 7 to see this).
Similarly, the equations for m are m = E?] ﬂ'i where o
=af|and f'=a f]|.

If, at this point, we translate these equationsinto a
network we obtain the following list of network
equations:

F=T7H J'=fal m=m'p’
m=ma u=a M] B=aml
«'=af] ' =aF] a'=7l
M=m] F=T]

Thus eleven marks seem to be required. However,
simplifications can be made.

In the first place one can see by inspection that f
and f' are never both marked and that f" =]
(similarly for m and m'). To see this in the context of
Varela's calculus, we have the followin glemma.

MEMORY LEMMA Let g=gX] Y] where X = afi|
and Y =a . Let g =gX]. Then g'=glinthe calculus
Jor self-reference.

Proof In what follows we shall use CSR as an
abbreviation for the calculus for self-reference. Note

that a 7] all=a hl is a CSR identity. Hence Y] X|
oAl ahl=aWaM=aF=¥ Thus Txl=¥
ThereforegX:W X=ﬁ X =gXx] Yl xi
(using 42. for CSR). Thus we conclude that gx
=gX] Y|=g. Hence g'=gX]=g|, proving the

lemma.

Thus, by the memory lemma, we may eliminate
the variables M and F, thereby reducing the list by
two marks,

A further simplification results from the CSR

identity X] Yl Z=XZ] Y] Z. For =B |=am|f]
=a@mf=af ml f'l= Fmlr]. Similaly, /=]

(using M =ml =m’). Thus we may replace § by B.
=PB'm]and replace & by 4 =&m’]. This leads to a new
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list of network equations as follows:

f=7TBl f'=7dl m=wmf] m'=mal
A=d'n] B=fml o' =af] B'=af"]

These equations give the eight mark net depicted
iu Figure 8. It is Brown’s other modulator (Laws aof
Form!, p. 67).

FIGURE & Modulator corresponding 1o Figure 7.

7 OTHER FREQUENCIES

undetermined transition is (g, b)=(7, 71)—=(7,
=0). This transition is automatically avoided in the
class of determined nets that we are about to discuss.

We let the network of Figure 9 be indicated by a
disk, and form a network G, from n of these disks as
shown in Figure 10. By using the transitions for the
special memory network it is not hard to work out
the behavior of G,.

In-doing this analysis, it is important to note the
re-setting effect of the feed-back from the last disk to
the first. The analysis (which we omit) shows that G,
is a determined modulator. In fact G, is identical (as
a net it is topologically identical) to the modulator
of Section 4. In general, G, divides frequency by
([n/2]+ 1) for n even, and by (([n—1/2])+1) for n
odd. Thus G counts to three, G counts to four, and
50 ON. -

We have exhibited two modulators that cut the
incoming frequency in half. There is a standard
method for using these to obtain frequency division
by powers of 2 (for digital applications the struc-
tures we have called modulators are usually called
frequency dividers). For example, let f denote the
modulator of Section 6 (with input a). Let this
circuit with its input a and output f be symbolized
by a diamond as follows:

a—-—@h»—f .

Then
EHM-*—@—H— aee -)-@Q—fk

(k diamonds) divides an incoming frequency by 2.
Its internal states can be used to count (in binary)
from 0 to 2¥—1.

Another method of making modulators stems
from the special memory network indicated in
Figure 9. This network is a modification of the net
discussed at the end of Section 3. The behavior of
this net is also indicated in Figure 9. When either a
or bis marked then the outputs 4 and B have strictly
determined values. When a and b are both
unmarked then the expression has two balanced
states and B=4l. Thus the interesting transitions
ocenr when a and b become un-marked, The only

FIGURE 10 A frequency divider.

& EXTENSIONS

There are a number of lines for further investigation
suggested by our study of self-reference. We have,
following Brown and Varela, regarded self-reference
as a natural extension of Boolean algebra. Qur
model for behavior is an abstraction of the behavior
of digital networks. This invites a more detailed
comparison with the existent methods for analyzing
such networks.

The major difference between our approach and
the usual approaches for digital nets lies in the
treatment of time delays. It is common to separate
the time delavs from the logic as a first approxi-
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mation to the circuit design. Thus one usesa lumped
time delay At and considers equations (in standard
Boolean algebra) of the form x(t+At) = Sla, x(t)).
This leads to an input-output matrix analysis and a
corresponding circuit which may contain various
hazards (race conditions and so on). The hazards
are then found and eliminated on an ad-hoc basis,

Our approach avoids this separation of time and
logic. Varela’s calculus provides a method for global
analysis of the network as it /actually behaves,
Nevertheless, this does not c/laange circuit design
from an art to a mechanical &xercise. Going from
desired behavior to a network realization remains in
the domain of invention. Minimization problems
are particularly subtle and should be attacked with
whatever techniques are available,

There are many other networks (biological,
physical, linguistic, geographical, mathematical)
that are characterized by a self-referential in-
terdependence of parts and the whole. The behavior
is a matter of balance among the parts and the
preservation of this balance under internal and
external perturbation. But what distinguishes parts
from the whole is a matter of choice on the partofan
observer. Thus one wants a logic that can deal with
the whole independent of any particular decom-
position into hierarchies of sub-assemblies. Our
admittedly abstract study of self-referential logic
may at least suggest some approaches to more
concrete problems.

There is one glaring difference that comes to light
when one compares our nets to biological systems.
Computer networks do not decay. They preserve
certain internal states, but the organization is given;
the active components of the network are not
processed from and returned to the environment.
Mathematical modelling of this aspect for
Brownian networks might shed light on many
real situations.

Another area of inquiry arises by analogy with
catastrophe theory.? In catastrophe theory ome

considers generic cases of transitions {discontinuous
change) and balance (stability) for systems that have
continuous parameters. This has led to the dis-
covery of basic cases (such as the cusp catastrophe)
that occur in many situations. The stable states of a
system are described by the extrema of a “potential
function™ ¥ (a, x) where a denotes a set of control
parameters and x a set of internal variables. [n our
situation we consider a Boolean function fla, x)
and the stable states are the fixed points x such that
x=f(a, x) for a given choice for a. What is a
topology appropriate for studying the qualitative
behavior of networks ? What networks are “generic”
in some fashion analogous to the stable unfoldings
of catastrophe theory?

9 EPILOG

A self-referential expression is a description describ-
ing itself. That is its form. If we desire its behavior,
this description unfolds the time-aspect of the
original expression. We have chosen specific rules
for the unfolding in time. They involve concepts of
balance, and choice in the correction of imbalance.
The moment choice enters we have expanded this
closed form to include an observer to perform the
choice. If, on the other hand, each point of
imbalance leads to a predictable conclusion, then we
observe a causal frame-work and so call the
expression determined.

We define the line between the human observer
and the network as automaton. Network synthesis
is the process of deciding that boundary. The
behavior is our behavior, the choice our own,
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