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1.  Introduction 
 
The old hats problem goes by many names (originally described by Montmort in 1713)  
but is generally described as:  
 

A group of n men enter a restaurant and check their hats.  The hat-checker 
is absent minded, and upon leaving, she redistributes the hats back to the 
men at random.  What is the probability Pn that no man gets his correct 
hat, and how does Pn behave as n approaches infinity? 

 
This problem is just a standard question about derangementsi.  Three solutions are 
presented in this paper. The first two apply standard approaches: 
 

• Using the inclusion-exclusion principle, and 
• Using the recurrence relation Pn   =  Pn-1   - 1/n (Pn-1 - Pn-2 )ii. 

 
Finally, the main point of interest in this paper is a relatively different approach using the 
technique of binomial inversion.  In this presentation, we will also solve the related 
question: What is the expected value of the number of men who receive their correct 
hats?  We conclude the paper with a derivation of the binomial inversion formula itself. 
 
2.   Solution Using the Inclusion-Exclusion Principle 
 
Let N denote the total number of permutations of n hats. To calculate the number of 
derangements, Dn, we want to exclude all permutations possessing any of the attributes  
a1, a2, ….., an  where ai is the attribute that man i gets his correct hat for .1 ni !!   Let 
N(i) denote the number of permutations possessing attribute ai (and possibly others), 
N(i,j) the number of permutations possessing attributes ai and aj (and possibly others), 
etc. Then the inclusion-exclusion principle states that 
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By symmetry, N(1) = N(2) =  …= N(i),  N(1,2) = N(1,3) = …. =N(i,j), and so on. 
 
 
So we have 
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Now, N(1), the number of permutations where man 1 gets his correct hat, is simply (n-
1)!, since the remaining hats can be distributed in any order.  Similarly, N(1,2)=(n-2)!, 
N(1,2,3)=(n-3)!, and so forth.  Therefore 
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Replacing N, the total permutations for n hats by n!, and simplifying the above 
expression, we obtain: 
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To generate Pn, the probability of a derangement occurring for n hats, we simply divide 
the total number of derangements Dn by the total permutations of the n hats, n!, to get: 
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We easily recognize this series as approaching 1/e as n approaches infinity. 
 
 
3. Solution Using a Recurrence Relation 
 
In this section we derive the formula for Dn using a recurrence relation, as follows.  If 
there is a derangement, then man #1 will not have his correct hat.  We begin by looking at 
the case where man #1 gets hat #2.  Note that this case can be broken down into two 
subcases:   
 

a)  man #2 gets hat #1, or 
b)  man #2 does not get hat #1. 

 
In case (a), for a derangement to occur, we need the remaining n-2 men to get the wrong 
hats.  Therefore, the total number of derangements in this subcase is simply Dn-2.   
 
In case (b), for a derangement to occur, man #2 cannot get hat #1 (that’s case a), man #3 
cannot get hat #3, man #i cannot get hat #i, etc.  In this subcase, the number of 
derangements is Dn-1.  The fact that in this subcase man #2 cannot get hat #1 rather than 
hat #2 is inconsequential. 



 
We can treat the cases where man #1 receives hat #3, or hat #4, or hat #i, in exactly the 
same way.  Therefore, to account for all possible derangements, there are n-1 such 
possibilities for all the different incorrect hats which man #1 can get.  So, 
 

Dn = (n-1) (Dn-1 + Dn-2) 
 
The probability of a derangement is again the number of derangements, Dn, divided by all 
possible outcomes, n!.  So,  
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Now, we know that P1= 0, and P2= 1/2.  So, using our formula, we can calculate 
successively 
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Once again, we recognize this as approaching 1/e as n approaches infinity. 
 



More formally, we can write 
 

P P
n
P P

n n n n
= ! !! ! !1 1 2

1
( )  

as 

P P
n
P P

n n n n
! = ! !! ! !1 1 2

1
( )  

If we let Q P Pn n n= ! !1  , then 

Q
n
Q

n n
Q

n n n
Q

n n n
Q

n n

n

n

n

= !

= !
!

!

"
#
$

%
&
'

= !
!

!

"
#
$

%
&
'

!

!

"
#
$

%
&
'

= = !
!

"
#
$

%
&
'

!

"
#
$

%
&
' (((

"
#
$
%
&
'

!

!

!

!

1

1 1

1

1 1

1

1

2

1
1 1

1

1

2

1

3

1

2

3

2

2

;

... ( )

 

 
Now, our base case is Q2, which equals P2-P1= 1/2-0 = 1/2.  Thus, 
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Now, we can set up a telescoping sum to calculate Pn: 
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Therefore, summing both sides, we get 
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4.  Solution by Binomial Inversion 



 
The old hats problem can also be solved by using binomial inversion.  Specifically, given 
that 
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we can retrieve the ai coefficients using the formula 
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This is the binomial inversion formula.  For now, we assume it to be true, and use it to 
solve our problem.  We will prove the formula using exponential generating functions in 
Section 6. 
 
The set of permutations of the hats can be expressed as the disjoint union of n+1 subsets 
A0, A1, A2,...,An, where Ai is the set of permutations where exactly n-i men receive their 
correct hats.  For instance, if only two of the men get their correct hat back, this would 
correspond to the set of permutations An-2. 
 
If we take as an example this subset An-2, we see that if the two men who get the correct 
hats are man #1 and man #2, then the number of possible arrangements is just Dn-2, the 
number of derangements for the remaining n-2 men.  However, there are 
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permutations in set An-2 is: 
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Proceeding with a similar logic, and using the fact that 
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We can now use binomial inversion to obtain Dn: 
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where each bi = i! .  Therefore,  
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Dividing by n!, letting  j = n-i , and reversing the order of summation, we get once again: 
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5.  The Expected Value of Correct Hats 
 
A nice application to show the utility of this “binomial” approach is the calculation of the 
expected value of the correct number of hats.  In other words, if n men walk into the 
restaurant and check their hats, and then walk out, receiving their hats at random, any 
number from 0 to n (with the exception of n-1) men may have their correct hat. If this 
experiment is repeated numerous times, how many men on average would have gotten 
their correct hat?  The answer to this question can be defined to be E(n), the expected 
number of correct hats for n men.  If we let Pj be the probability that when n leave the 
restaurant, j men have their correct hats, then  
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Let us use P2 as an example to better understand the form of  Pj. This is simply the 
number of ways in which two men may receive their correct hat, divided by the total 
number of possible arrangements of the hats, n!.  From the foregoing, we see that this can 
be written as 
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Proceeding analogously, we can then write 
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Now, if we let j=n-i, and recall that  !!
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When this is simplified, we get 
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Now, if we multiply both sides by (n-1)!, we get 
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Since the term in the summation will equal 0 for i=n, we can rewrite this equation as  
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Comparing this to our result from above, we recognize the right hand side of the equation 
immediately as )!1( !n , yielding the amazing result that E(n) = 1, and is independent of 
n. 
 
 
                  
6.  Derivation of the Binomial Inversion Formula 
 
We now derive the binomial inversion formula used in Section 4. 
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we wish to show that this can be inverted to retrieve the ai coefficients as follows: 
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This can be done by introducing exponential generating functions.  If 
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then substituting bk  from (1) into (4), we get 
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We now interchange the order of summation, still summing over the same half-plane. 
 
Hence, (8) can be rewritten as, 
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Since the terms indexed by i can be considered constant with respect to the summation 
over k, the equation can be rearranged as follows: 
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Letting  j = k-i, we can rewrite (10) as 
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The left-hand summation is recognized as A(x), while the right-hand summation is ex.      
 
Therefore, we can now write 
 

       B(x) = A(x) ex                     (12)         
 
 from which we get  that 
 
 

      A(x) = e-xB(x)                                     (13)       
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Becaues the indices are constant with respect to each other, we can write (14) as 
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Letting n = i + j, and once again re-indexing to change the order in which we sum over 
the i-j plane, we have 
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Now, we simplify, rearrange the variables, and multiply numerator and denominator by 
n! to get 
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This is again rearranged to give 
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Now, comparing (18) with (3),  
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(written with n instead of k as the summation label), we see that 
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