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Abstract

Petersen’s theorem is a classic result in matching theory from 1891, stating that
every 3-regular bridgeless graph has a perfect matching. Our work explores efficient
algorithms for finding perfect matchings in such graphs. Previously, the only relevant
matching algorithms were for general graphs, and the fastest algorithm ran in (’)(n3/2)
time for 3-regular graphs. We have developed an O(nlog?n)-time algorithm for per-
fect matching in a 3-regular bridgeless graph. When the graph is also planar, we have
as the main result of our paper an optimal O(n)-time algorithm. We present three
applications of this result: terrain guarding, adaptive mesh refinement, and quadran-
gulation.
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1 Introduction

In 1891, Petersen [36] published a pioneering paper in matching theory, and he is now
considered one of the two principal founders of matching theory [28, p. xi]. In the paper, he
proved what is now known as Petersen’s theorem: “Ein primitiver graph vom dritten Grade
muss wenigstens drei Blatter haben.”! In modern terminology (see Section 2), the theorem
implies that every 3-regular bridgeless graph has a perfect matching.

Petersen’s original proof is very complicated. The American school of topologists recog-
nized the importance of the theorem [3], and two members of that school, namely Brahana
in 1917 [7] and Frink in 1926 [16], published simplified proofs. The interested reader can
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find extracts from Frink’s paper [16] and Petersen’s paper [36] in [3]. Frink’s proof contained
a slight flaw which was later corrected by Konig [25] in the first textbook on graph theory
ever written [28, p. xvi|]. Independently, Errera [13] published another proof of Petersen’s
theorem. Petersen’s theorem is now usually known as a simple corollary of the theorem of
Tutte [28, 44] characterizing the existence of perfect matchings in general graphs.

The goal of this paper is to find an efficient algorithm for Petersen’s theorem, that is, to
construct efficiently a perfect matching in a 3-regular bridgeless graph.

The first polynomial-time maximum matching algorithm for general graphs was discov-
ered by Edmonds [11]. His method, using augmenting paths and “blossoms,” is the basis
for several faster algorithms; see [28]. The ultimate work in this direction to date is the
algorithm of Micali and Vazirani [30, 37, 46], with a running time of O(m+/n), where n and
m are the numbers of vertices and edges, respectively. Devising a faster matching algorithm
for general graphs using augmenting paths and blossoms seems difficult, and no alternatives
have been discovered.

We are interested in 3-regular graphs. Here m = %n, so the algorithm mentioned above
runs in O(n?/2) time. We develop an algorithm to find a perfect matching in a 3-regular
bridgeless graph with time complexity O(nlog® n), using recent results on dynamic mainte-
nance of 2-edge-connectivity information [22]. In our main applications of Petersen’s theo-
rem, the graph is also planar. In this case we obtain an optimal O(n)-time algorithm, which
is self-contained in that it does not rely on results on dynamic maintenance of 2-edge connec-
tivity information. Our algorithms are not based on the ideas of Edmonds’ algorithm we
go back in time, past Edmonds’ algorithm, past Tutte’s theorem, back to the early proofs of
Petersen’s theorem. It is tantalizing to imagine a faster general matching algorithm based
on alternatives to augmenting paths, but we have nothing to suggest along these lines.

The class of planar 3-regular bridgeless graphs, to which our linear-time algorithm ap-
plies, is quite rich. This class is exactly the class of duals of planar triangulations in which the
outside face is a triangle. A perfect matching in a 3-regular planar graph gives us a pairing of
triangles in the dual graph such that every triangle has a unique partner. Section 1.1 shows
how such a pairing gives a good heuristic for placing guards to watch a triangulated terrain.
Pairings are also important for adaptive refinement of triangular meshes in numerical simu-
lations and for converting triangulations into quadrangulations, as described in Sections 1.2
and 1.3, respectively.

There have been a few matching algorithms for other specialized classes of graphs with
running times faster than that of the best general matching algorithm. Schrijver [40] gives an
O(km)-time algorithm for finding a perfect matching in a k-regular bipartite graph, which
is guaranteed to exist by a theorem of Konig from 1916. Schrijver’s method also deviates
from the standard approach of augmenting paths; instead, it repeatedly finds an arbitrary
cycle, doubling every second edge in the cycle, and removing the remaining edges in the
cycle. Gabow, Kaplan, and Tarjan [17] give an O(m log® n)-time algorithm to test whether
a general graph has a unique perfect matching, using a theorem of Kotzig from 1959 that
characterizes such graphs in terms of bridges. Like our algorithm for nonplanar graphs, their
algorithm is based on the recent data structure for maintaining 2-edge-connectivity [22]. In
addition, using Edmonds’ blossom-shrinking approach, they give an O(m)-time algorithm
to test whether a given perfect matching is unique. Thurston [43] describes O(n)-time



algorithms, based on group-theoretic techniques developed by Conway, for testing for perfect
matchings in finite subgraphs of the planar square grid or hexagonal grid in which every face
(except the outside face) is an equilateral triangle or square. Hansen and Zheng [20] give
another O(n)-time algorithm for the hexagonal case. Kenyon and Rémila [24] give an O(n)-
time algorithm for the analogous problem on the planar triangular lattice.

The rest of this paper is organized as follows. This section continues with applications
of algorithms for Petersen’s theorem. Section 2 defines our terminology. In Section 3, we
describe a simple O(n?)-time algorithm based on Frink’s proof of Petersen’s theorem [16],
and show how to improve it to O(nlog® n) time. Section 4 presents an O(n)-time algorithm
for planar graphs. Some corollaries are given in Section 5, before we conclude in Section 6.

1.1 Application to Terrain Guarding

A classic problem in computational geometry is the problem of illuminating or guarding
an object, using as few guards as possible. Our results on perfect matchings provide an
improvement in the time complexity needed to find good guard placements in terrains, as
we explain in this subsection.

Much of the research in the area of illumination has been carried out in two dimensions
(see [34, 41, 45] for overviews). A step towards the corresponding problems in three dimen-
sions is the study of polyhedral terrains, i.e., polyhedral surfaces that intersect every vertical
line in at most a single point. The problem of guarding a polyhedral terrain was investigated
by De Floriani et al. [15] who showed that the minimum number of guards needed to see the
entire terrain can be found using a set covering algorithm. Cole and Sharir [10] subsequently
showed that the problem is NP-hard. Goodchild and Lee [19] and Lee [27] presented some
heuristics for placing guards at a subset of the vertices of a terrain.

Most of the work to date on guarding triangulated polyhedral terrains has focused on
the underlying combinatorial problem of guarding a triangulated plane graph. A plane
graph is guarded by a set of guards (placed on vertices or edges) if at least one guard is
incident to every face of the graph. The relation between the geometric and underlying
combinatorial problems is based on the observation that the visible region associated with a
guard contains the union of all faces incident to that guard, and that this is all it contains
when the underlying polyhedral terrain is convex. Therefore, upper bounds on the number
of guards needed to guard a plane graph provide upper bounds on the number of guards
needed to guard polyhedral terrains.

Bose, Shermer, Toussaint and Zhu [5] showed that |n/2] vertex guards are always suffi-
cient and sometimes necessary to guard an n-vertex triangulated polyhedral terrain. With
respect to edge guards (guards free to patrol an entire edge of the terrain), they established
that at least |(4n — 4)/13] edge guards are necessary in the worst case to guard the surface
of an n-vertex triangulated polyhedral terrain. The complementary result that [n/3] edge
guards are always sufficient was proved by Everett and Rivera-Campo [14]. Both sufficiency
results apply to arbitrary triangulated polyhedral terrains and are based on the Four-Color
Theorem, for which practical algorithms are not known to exist.

Recently, Bose, Kirkpatrick and Li [4] presented O(n?/?)-time algorithms to guard an n-
vertex triangulation with |n/2]| vertex guards or |n/3| edge guards. The key behind these



algorithms is to avoid the use of the Four-Color Theorem by relying instead on matchings.

Specifically, because the dual graph of the triangulation is 3-regular and bridgeless, it
has a perfect matching. Removing the edges in the primal graph that correspond to the
matched edges in the dual graph makes the primal graph bipartite, and thus yields a vertex
2-coloring of the triangulation. The authors show that using this K3-free 2-coloring, one can
obtain guard placements with [n/2] vertex guards or [n/3| edge guards.

The time complexity of these algorithms is dominated by the time to find the perfect
matching in a planar 3-regular bridgeless graph. Therefore, with our results these algorithms
can be implemented in optimal O(n) time.

The first use of matchings in terrain guarding was by Griinbaum and O’Rourke in
1983 [35], who proved that |(2F — 4)/3] vertex guards suffice (and are sometimes neces-
sary) to guard a conver polyhedron with F' faces. They used a theorem by Nishizeki [33]
that bounds the size of maximum matchings in a graph with vertex degrees > 3. It would
be interesting to know whether a matching achieving these bounds can be found in such a
graph in linear time.

1.2 Application to Adaptive Mesh Refinement

Many numerical simulations involve the solution of continuous (e.g., partial differential)
equations in some domain, which for our purposes is just a polygon. One typically discretizes
this problem to a finite mesh (i.e., subdivision) of the domain. In general, the more detailed
the mesh, the more accurate the simulation. However, the areas of the domain that require
the most accuracy are often difficult to predict before simulation, and may vary over time.
One can solve this problem by adaptively refining the mesh where the most error occurs.

One method for adaptive refinement of triangular meshes is newest-vertez bisection [31,
32]. In this method, each triangle has one vertex marked as the newest vertex, denoted
in our figures by a small circle near the vertex. The neighbor of a triangle is the triangle
incident to the opposite edge of the newest vertex. A triangle is compatible if either it has
no neighbor or its newest vertex opposes its neighbor’s newest vertex, that is, the neighbor
relation is symmetric. To refine two compatible triangles, we bisect each triangle from its
newest vertex to the midpoint of the opposite edge (see Figure 1), and assign the vertices at
the midpoint to be the newest vertices of the new triangles.

Figure 1: Two iterations of uniform newest-vertex bisection applied to a pair of triangles
with opposing newest vertices.

For newest-vertex bisection to be applied effectively, we must first assign the newest
vertices such that every triangle is compatible (a compatible assignment). Refinement from
such a state has several important properties. For example, if triangles are refined uniformly
as above, then compatibility is maintained. A simple generalization of the above refinement



scheme allows refining the mesh by varying amounts in different regions. Because we start
from a compatible assignment, we can bound the number of extra triangles introduced in
the transition between a coarse region and a refined region. Throughout this process, the
quality of triangles is preserved: newest-vertex bisection only introduces eight equivalence
classes of congruent triangles.

It remains to show how to find a compatible assignment of newest vertices. Conceptually,
we need a perfect pairing of triangles; then we can assign newest vertices to make each pair
of triangles neighbors. However, any number of boundary triangles can “pair with the
boundary.” Consider a modified dual graph, in which a “boundary vertex” is created for
every boundary edge in the primal (see Figure 2). Then any perfect matching in this graph
results in a compatible assignment of newest vertices. Furthermore, this graph is always
3-regular and bridgeless [31], so by Petersen’s theorem it has a perfect matching.
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Figure 2: The relationship between perfect matchings and pairings in triangulations. We show
(from left to right) a triangulation with a modified dual graph, a perfect matching in this dual
graph, and the resulting compatible assignment of newest vertices in the triangulation.

The time complexity of assigning the newest vertices is thus dominated by the time to
find the perfect matching in a planar 3-regular bridgeless graph. With our results this can
be implemented in optimal linear time.

1.3 Application to Quadrangulation

In a variety of numerical simulations, such as those involving the flow of incompressible
fluid, triangulations can be inappropriate meshes. This is because triangles are rigid and
can lock (become unable to move), effectively halting the simulation. In such cases, it is
preferable to use a quadrangulation, that is, a subdivision of the domain into quadrangles
(quadrilaterals). There are many other applications in which quadrangles have advantages
over triangles, including scattered bivariate data interpolation [26] and elasticity analysis [1].

In contrast with triangulations, which have been studied for several decades [2], relatively
little is known about quadrangulations. For this reason, several people have considered the
problem of converting triangulations to quadrangulations, most recently in a computational-
geometry setting [39].

We obtain an immediate result in this area using the modified dual graph described in
the previous section. By deleting the duals of matched edges, except those on the boundary
or the outside face, we obtain a weak quadrangulation, that is, a mesh that has quadrangles
except for some triangles along the boundary. Weak quadrangulations are usually acceptable
for numerical simulations. By our results, this weak quadrangulation can be found in optimal
linear time.



2 Terminology

This section defines the graph-theory terminology used in this paper.

Maximum matching is a classic problem in graph theory with many practical applica-
tions [28]. Briefly, let G = (V, E) denote a graph with vertex set V' and edge multiset F,
where each edge e € F is a set (v, w) of two vertices v,w € V. We use n and m to denote
|V| and | E|, respectively. Unless we specify that G is simple, we allow it to have multi-edges
and loops. Edges with multiplicity one, two, and three will be called simple, double, and
triple edges, respectively. Two edges are called incident if they share an endpoint.

A matching in G is a subset M of edges such that for every vertex v, at most one edge e
in M covers v, that is, satisfies v € e € M. An edge e is called matched if it is contained in
the matching, and unmatched otherwise. A maximum matching is a matching with largest
possible cardinality. A perfect matching (or 1-factor) is a matching such that every vertex is
covered. Given a matching of a graph, an alternating cycle is a cycle (a closed path that does
not repeat any vertices) every second edge of which is matched. Reversal of an alternating
cycle (that is, switching matched and unmatched edges), yields another matching of the
same cardinality. An augmenting path is a path (without repeated vertices) between two
uncovered vertices on which every second edge is matched.

A graph is k-regular if every vertex has degree k, that is, k incident edges. Such a graph
satisfies m = gn An edge cut in a graph G is a subset C' of edges such that G — C has more
connected components than (G, that is, there are vertices v and w that are connected by a
path in G but not in G — C. G is k-edge connected if all edge cuts in G have cardinality at
least k. A bridge in a graph G (also called a cut edge or isthmus) is an edge cut of cardinality
one. We call a graph bridgeless if it has no bridges, that is, it is 2-edge connected.

A graph is called planar if it can be drawn in the plane without edge crossings. A specific
planar embedding is given by the clockwise circular order of edges around each vertex. A
planar drawing subdivides the plane into regions called faces; these faces are determined by
the planar embedding alone. Whenever we speak of a planar graph, we assume that some
(arbitrary) planar embedding has been fixed beforehand; this can be computed in linear
time [6, 23, 29]. The dual graph G* of a planar graph G is obtained by creating a vertex
in G* for every face in G, and adding an edge (Fi, Fy) in G* for every edge e in G that
is incident to the two faces Fy and Fy; (Fi, Fy) is called the dual edge of e. The planar
embedding of the dual graph is determined by the embedding of the primal graph.

3 Nonplanar Case

3.1 Frink’s Proof of Petersen’s Theorem

In this section, we overview Frink’s proof of Petersen’s theorem, which is the basis for our
algorithms. Frink’s original proof [16] is available in [3]. It contains a slight flaw which
was corrected in Konig’s detailed version of the proof [25]. As we will see, the proof is
constructive, leading to a simple O(n?)-time algorithm.

The proof is by induction on n. Let G be a bridgeless 3-regular graph. Note that because



the reductions to come do not preserve simplicity, we cannot assume that G is simple.?
However, (G cannot have loops, because any loop in a 3-regular graph is incident to a bridge.
In the base case, the graph only has triple edges. Pick one of the three edges in each
connected component to obtain a perfect matching.

Assuming we are not in the base case, the graph has an edge that is not a triple edge.
By 3-regularity, either this edge or one incident to it must be a simple edge e = (v, w). Call
e the reduction edge. Let a, b, and w be the three neighbors of v, and let ¢, d, and v be
the three neighbors of w (see Figure 3). By our assumption that e is simple, a,b # w and
¢,d # v, but we may have some of a, b, ¢, and d being equal.

a b

Figure 3: The straight and crossing reductions in Frink’s proof.

Reduce the graph by removing the vertices v and w, and interconnecting a, b, ¢, and d
with two new edges called reduced edges. There are two possible reductions (see Figure 3):
either connect a to ¢ and b to d, called the straight reduction; or connect a to d and b to c,
called the crossing reduction.® Clearly both reductions lead to 3-regular graphs.

Lemma 3.1 [25, p. 182] One of the reductions results in a bridgeless graph with the same
number of connected components as the original graph.

As a result of this lemma, one reduced graph satisfies the conditions of Petersen’s theorem.
(In fact, we did not need the number of connected components to be preserved, and we will
exploit this freedom later.) By induction, find a perfect matching in this reduced graph. To
complete the proof, this matching must be extended to a perfect matching in the original
graph. This operation is purely local if at most one of the two reduced edges is in the
matching of the reduced graph (see Figure 4 for the case of the straight reduction).

If both reduced edges are matched, then reverse an alternating cycle containing one of
the reduced edges. If the other reduced edge was in the alternating cycle as well, then
now neither of the reduced edges is matched; otherwise, exactly one of the reduced edges is
matched. In either case, extend the matching as in Figure 4. This argument relies on the
following lemma.

Lemma 3.2 [16] [25, p. 187] Given any perfectly matched 3-regular bridgeless graph and
some edge e in the graph, there exists an alternating cycle that includes e.

2Indeed, this was Frink’s error, to assume that the graph was simple.

3In the nonplanar case, where the drawing of the graph is arbitrary, these names effectively mean “one
reduction” and “the other.” We use this terminology to be consistent with the planar case, where these
names gain significance, assuming that the planar embedding is as in Figure 3.



Figure 4: FExtending to a perfect matching in Frink’s proof. Matched edges are drawn thick,
and unmatched edges are drawn hollow.

Converting induction into recursion, we have a simple algorithm for Petersen’s theorem.
Each step of the recursion consists of checking for the base case, finding an edge of multiplicity
one, picking and applying an appropriate reduction, and possibly finding and reversing an
alternating cycle. All of these operations are easy to perform in O(n) time, except for finding
an alternating cycle which is somewhat more difficult.

Lemma 3.3 Given any perfectly matched 3-reqular bridgeless graph and some edge e in the
graph, an alternating cycle including e can be found in O(n) time.

Proof: We show how finding an alternating cycle reduces to finding an augmenting
path, which can be done in O(m) time for general graphs with m edges (see e.g. [42]) using
the Gabow-Tarjan set-union algorithm [18].

We distinguish two cases. If e = (v, w) is matched, then delete e and find an augmenting
path in the resulting graph. By Lemma 3.2, there is an alternating cycle through e in
the original graph, and thus there exists an augmenting path from v to w in the modified
graph. Furthermore, such an augmenting path must be found, because all other vertices
have an incident matched edge. We can complete this augmenting path to an alternating
cycle through e.

If e is not matched, then let e; and e; be the other two edges incident to v. One of
them, say e;, must be matched because we have a perfect matching. No alternating cycle
can contain both unmatched edges e and es, so the alternating cycle containing e is also an
alternating cycle in GG — e;. We can find this alternating cycle by finding an augmenting path
in G — {e1,e2}. This path must connect v and the other endpoint of e; (all other vertices
have an incident matched edge). Because e is the only edge incident to v, this augmenting
path must contain e, and thus e; completes it to an alternating cycle containing e. O

As a consequence, each step in the recursion takes O(n) time, and hence the matching
algorithm takes O(n?) time.

3.2 Improving the Time Complexity

The two main bottlenecks in reducing the time complexity are (a) determining which of the
two reductions results in a bridgeless graph with the same number of connected components,
and (b) finding an alternating cycle. In this section, we show how to avoid the necessity of



finding alternating cycles, hence removing bottleneck (b), and how to solve bottleneck (a)
in O(log® n) time, reducing the overall complexity to O(nlog*n) time.

We can remove the use of alternating cycles in Frink’s proof by entirely avoiding the case
in which both reduced edges are matched. To do this, we strengthen Petersen’s theorem to
the following: every 3-regular bridgeless graph has a perfect matching not using a particular
edge e called the nonmatching edge. This result follows immediately from Lemma 3.2,
but makes the induction easier and the resulting algorithm faster.

Note that in Frink’s proof the choice of the reduction edge e was arbitrary; now choose
one of the edges incident to eN™. Assume for now that there exists a simple edge e that is
incident to eNM; with respect to the labeling of Figure 3, "M = (a, v) (say) and e = (v, w).
Reduce as before, and define the new nonmatching edge to be the reduced edge that is
incident to one of the ends of e, thus either (a,c) or (a,d) depending on the reduction.
In the resulting graph, compute a perfect matching that does not use the new nonmatching
edge. As a consequence of this restriction, at most one of the reduced edges is matched, so
the matching can be extended as in Figure 4, without the need for alternating cycles. Note
that neither extension causes e = (a,v) to be matched, as required.

Unfortunately, all edges incident to eN™ may be double edges, but the reduction edge e is
not allowed to be a double edge. In this case, perform a different reduction: pick some double
edge incident to e™ and reduce this double edge and the two other incident edges (one
of which is e™) down to a single nonmatching edge (see Figure 5). Recursively compute
a perfect matching in the resulting 3-regular bridgeless graph, and extend it to a perfect
matching of G by adding one side of the double edge to the matching.

%O_<—>>:<—>/>:</—>>:©:</

Figure 5: Reduction and extension for a double edge incident to the nonmatching edge eN™.

The nonmatching edge is drawn hollow.

In this algorithm, each step in the recursion takes constant time except for determining
the correct reduction (if e is simple). This amounts to testing whether one of the reductions
results in a bridgeless graph with the same number of connected components. If not, the other
reduction must have this desired property by Lemma 3.1. By Menger’s theorem, a graph
is bridgeless precisely if there are two edge-disjoint paths between any pair of vertices. A
reduction can only potentially destroy this property between pairs from a, b, ¢, d that are not
connected by a reduced edge [25, p. 182]. As a consequence, testing whether the resulting
graph is bridgeless reduces to testing the existence of two edge-disjoint paths between a
constant number of pairs of vertices.

Thus we want to maintain a dynamic graph subject to insertion and deletion of edges,
and support queries that ask whether a pair of vertices are connected by two edge-disjoint
paths. This 2-edge-connectivity problem has a fairly long history. It was a long-standing
open problem whether deterministic polylogarithmic update time was possible. Previously,
the best worst-case result was O(y/n) update time [12], and the best randomized result
was O(log® n) expected update time [21]. Recently, Holm, de Lichtenberg, and Thorup [22]
developed a data structure with O(log4 n) worst-case update and query time.



Therefore, we can find perfect matchings in 3-regular bridgeless graphs in O(nlog* n)
time, which is asymptotically smaller than the previous best algorithm running in O(n%/?)
time [30].

Theorem 1 Let G be a 3-reqular bridgeless graph, and let €™ be an edge of G. Then there
exists a perfect matching of G that does not contain ™, and it can be found in O(n log* n)
time.

We note that the same 2-edge-connectivity data structure has been used to test whether
a general graph has a unique perfect matching in O(nlog®n) time [17].

4 Planar Case

Because our interest in perfect matchings arose from applications with planar graphs, we
would like to improve the time complexity even further in this case. This section describes an
algorithm for finding perfect matchings in planar 3-regular bridgeless graphs in O(n) time,
which is optimal.

For planar graphs we avoid using a dynamic 2-edge-connectivity data structure and
instead read the required information from the dual graph, using the property that a bridge
in the primal graph is a loop in the dual graph. So fix a planar embedding (if not given
already), compute the dual graph, update the dual graph throughout the changes to the
primal graph, and test for loops as needed. The main impediment to this plan is that the
crossing reduction used in the previous section does not preserve the planar embedding, or
even planarity (see Figure 6).

Figure 6: Applying the crossing reduction to a planar 3-reqular bridgeless graph can introduce
a K373.

To remedy this we exploit the remaining freedom in the choice of the reduction edge.
In particular, we choose among the potential reduction edges adjacent to the nonmatching
edge eMM| searching for a straight reduction that maintains bridgelessness. In this way we
avoid the crossing reduction entirely.

We begin by describing the main reduction. The following section formulates and imple-
ments the necessary primal and dual graph operations, and the last section gives the details
of the algorithm.
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4.1 The Main Reduction

Assume that e and all its incident edges are simple; all other cases will be treated in
Section 4.3. Let e™ = (v, w), and let x; and z, be the two other vertices adjacent to w in
counterclockwise order after v (see Figure 7). By assumption these four vertices are distinct.
Define F; to be the face incident to (v, w) and (w,x;), F, to be the face incident to (v, w)
and (w,z,), and H to be the face incident to (w,z;) and (w,z,). Let G, denote the face
other than F; and H that is incident to z;, and G, denote the face other than F, and H that
is incident to z,.
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Figure 7: Definitions of vertex and face names, and the resulting faces if we reduce edges
(w,x,) and (w, x;), respectively.

Note that any two faces with a common edge are distinct because the graph is bridgeless,
but we may have F, = GG}, F; = G,., or G; = (G,.. Here we discuss the case GG; # G,; the other
case is again left to Section 4.3. We want to apply the straight reduction to either (w,z;) or
(w,x,) (see Figure 7), and have to show that one of them leads to a bridgeless graph.

Lemma 4.1 If G; # G, then either applying the straight reduction to (w,z;) or applying it
to (w, z,) results in a bridgeless graph. The correct reduction can be found by testing whether
F, is adjacent to GGy or by testing whether Fj is adjacent to G,.

Proof: Suppose we are about to apply the reduction to the edge (w, z;). In the dual graph,
this corresponds to identifying the faces F, and G, after deleting the edges (F, F,.), (F,., H),
and (H, F}) (see Figure 8).

Assume the primal graph will contain a bridge after the reduction; this corresponds to
a loop appearing in the dual graph. The incident vertex of this loop must be the combined
vertex formed by contracting F, and G;, because the primal graph is bridgeless before the
reduction, and no edges will be added to the dual graph during the reduction. Hence, if the
primal graph will have a bridge after the reduction, then F, and GG; must be adjacent before
the reduction.

Now if G; # G,., we claim that at most one of (F,, G;) and (F}, G,) is an edge in the dual
graph before the reduction. Assume to the contrary that they were both edges in the dual
graph. Because the primal graph is bridgeless, the dual graph has no loops. In particular,
the edges (F,, G;) and (F}, G,) in the dual graph must have distinct endpoints, i.e., F,. # G,
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Figure 8: The straight reduction of (w,x;), and corresponding changes to the dual graph.
Stars and dashed lines denote vertices and edges in the dual graph, respectively.

and F; # G,. In the dual graph a triangle is formed by H, F,., F;. Add a new dual vertex 1" to
the middle of this triangle, and join T" to H, F,., and F; (see Figure 9). Clearly this maintains
planarity. However, there is a K33 formed by the dual vertices T'. G,,G; and F,, F;, H, and
these are six distinct vertices because GG, # (. This is a contradiction, because no planar
graph can contain a K3 3.

Figure 9: If G, # G, then not both (F},G,) € E(G*) and (F,,G)) € E(G*); otherwise we
have a planar Ks 3.

Thus, if F,. and G; are adjacent, then F; and G, cannot be adjacent, and reducing edge
(w,x,) yields a bridgeless graph; otherwise, reducing edge (w, z;) yields a bridgeless graph.
Alternatively, the correct reduction can be found by testing whether Fj is adjacent to G,. O

Note that this lemma allows the graph to become disconnected (in the case F, = G)),
unlike Frink’s lemma (Lemma 3.1).

4.2 Data Structure

We now formulate and implement the dynamic graph operations needed to perform reduc-
tions. Refer to Figure 8 for the main reduction.

Consider first the update operations. In the primal graph we want to delete isolated
vertices, and to delete and insert edges. These edge operations correspond in the dual graph
to contracting two vertices and to splitting a vertex, respectively. We avoid some of these
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operations by not keeping the primal and dual graphs in lock-step, but rather performing a
small sequence of operations in the primal graph and a small sequence of operations in the
dual graph, obtaining once more a pair of dual planar graphs. It is the responsibility of the
main algorithm, not the update operations in this section, to maintain the correspondence
between the primal and dual graphs. For update operations in the dual graph, we will make
do with the ability to delete edges and contract pairs of vertices. We have already seen that
these suffice in the main reduction.

As for queries, we want to list the vertices and edges incident to a vertex in the primal
graph, and we want to be able to find the dual of an edge in either graph; note that this
allows us to find the incident faces of edges and vertices as well. Finally, to decide on the
correct reduction, we want to answer adjacency queries of the form, “Are F; and F; adjacent
vertices in the dual graph?”

To solve this dynamic-graph problem we use incidence lists to store edges in cyclic order
around the vertices, both in the primal and the dual graph. Every edge refers to both its
entries in the incidence lists, and to the dual edge in the other graph. Because the maximum
degree of the primal graph is three, this allows us to perform the operations in the primal
graph and to find the dual of an edge in constant time.

However, the operations in the dual graph in general take more than constant time,
because the maximum degree is not bounded. To remedy this problem, we will narrow our
sights and limit the dual operations.

For our main reduction, observe that we only need to contract a vertex to F; or F,, and
we only need to query whether a vertex is adjacent to Fj or F,; in fact, queries to just one of
these suffice, as shown in Lemma 4.1. Call the nonmatching edge ™ the special edge. One
of the two faces incident to it will be maintained as a special face; in the dual graph we call
it the special vertex. The special vertex will be one of F; or F,, not always the same one; we
can find out which one by storing a flag. The other of Fj, F, will be called the sibling of the
special vertex.

The main reduction (see Figure 8) disconnects the primal graph if F, = G}, so we must
deal with a nonmatching edge in each connected component. Thus the special edge will
change as the algorithm progresses. However, the special vertex will retain its identity; only
its sibling may change, and this can happen only after the old sibling is contracted into the
special vertex.

We verify in the next section that the following dual operations are sufficient to determine
which reduction should be done, and to perform the reduction.

e Query whether a vertex v in the dual graph is incident to the special vertex.
e Delete an edge e in the dual graph.

e Contract a vertex v of the dual graph with the special vertex or its sibling. The
contracted vertices share a face in the dual graph, and this face is known at the time
of the contraction.

To implement the queries, we store with every dual vertex v an integer v, that specifies
the number of edges between v and the special vertex. To answer the adjacency query for
v, test whether v, > 0, which takes constant time.
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To delete an edge e = (v, w) in the dual graph, decrement v, if w is special, decrement
wy if v is special, and delete e in the incidence lists of v and w. This takes constant time.

To contract v into x, where x is the special vertex or its sibling, merge the incidence
lists of v and x at the location indicated by the face containing both v and x; this takes
constant time. For each neighbor w of v, update the endpoints of edge (v, w) to (z,w), and
in addition, if = is special, increment w,. This takes more than constant time for a single
contraction, and we account for the work by charging it to the edges that are updated. For
an edge e in the dual graph, let e, denote the number of endpoints of e (0, 1, or 2) that
are the special vertex or its sibling. Note that every edge updated during a contraction
increases e, for some edge e, because we only contract to the special vertex or its sibling.
The only way e, could decrease would be if one endpoint of e were deleted, or if the two
endpoints of e were contracted. But we only delete isolated vertices, and we never contract
adjacent vertices, because this would create a loop in the dual graph and thus a bridge in
the primal graph. Hence e, never decreases, which implies that endpoints of e are updated
during contractions at most twice during the lifetime of e. Therefore the total time spent
during contractions is O(n).

Finally, in order to deal with many connected components in the primal graph, we keep a
stack consisting of one nonmatching edge from each connected component. We pop the stack
to obtain the current special edge, implicitly determining the current connected component.
In order to preserve the identity of the special vertex, we maintain the invariant that if e is
the top edge on the stack (i.e., e belongs to the next connected component to be handled)
then in the planar embedding there exists a face incident to e and at least one edge of the
current component. This means that when the current component is deleted, the special
face becomes incident to e, the new special edge. See the next section for details.

4.3 Algorithm

With our dual graph operations in hand, we now explain the details of the reduction to find a
perfect matching. We distinguish cases by the multiplicity of the nonmatching edge eN™. The
cases of multiplicity more than one are easy to deal with; most of this section is concerned
with the case of multiplicity one. Recall that the subcase in which G; # G, was already
overviewed in Section 4.1.

In each case, there are three main steps. First, we reduce the graph to a smaller graph by
applying the operations supported by the data structure described in the previous section.
Second, we update the stack while maintaining the stack invariant. At this point, we recur-
sively find a perfect matching in the reduced graph. Finally, we must extend this matching
to a perfect matching in the original graph.

4.3.1 ™ has Multiplicity Three

If the special edge eM has multiplicity three, then its connected component C is a triple
edge (see Figure 10). We add one of the other two edges to the matching, and are done with
C. If the stack is empty, we are done. Otherwise, delete the three edges of C' and their dual
edges. Contract the dual vertices of the three faces in C' into one dual vertex; the special
vertex has then absorbed its sibling. Pop the stack to obtain the new special edge. By the
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stack invariant, the special face is incident to this new special edge. The other incident face
of this edge is the new sibling.

Figure 10: The case where we transit from one connected component to the next. The special
dual vertex and its sibling are circled.

4.3.2 ™ has Multiplicity Two

If the multiplicity of eNM is two, reduce the edges incident to eN™ down to a single non-

matching edge (see Figure 11). The dual graph can be updated by deleting three edges and
contracting two vertices. Recursively compute a perfect matching in the resulting graph,
and extend it by adding the other side of the double edge eNM.

\@:9/
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Figure 11: The case where the nonmatching edge is a double edge.

4.3.3 "M has Multiplicity One

Assume henceforth that e has multiplicity one. If there is a double edge incident to
MM reduce the edges incident to the double edge down to a single nonmatching edge (see
Figure 12). The dual graph can be updated by deleting three edges and contracting two
vertices. Recursively compute a perfect matching in the resulting graph, and extend it by
adding one of the sides of the double edge.

So assume from now on that eN and all incident edges are single edges. Let eM = (v, w),
and define =, z,, F}, F., G;, G,, and H as in Section 4.1 (see Figure 7). Let us first consider
the case where G; = G,.. We have two subcases, depending on whether x; and z, are adjacent.

If G) = G, and z; and x, are adjacent, i.e., if H is a triangle, then reduce H to a single
vertex (see Figure 13). In the dual graph, this corresponds to deleting the three incident
edges of H, and then deleting H. Recursively compute a perfect matching of the resulting

graph, and extend it by adding the edge of the triangle {w,z;, z,} that is not incident to a
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Figure 12: The case where the nonmatching edge is incident to a double edge.

Figure 13: The case where Gy = G, and H is a triangle.

matched edge yet. Note that such a “triangle reduction” would be possible at any triangle
and even in a nonplanar graph, but we apply it only in this case.

If G; = G, but H is not a triangle, then there is an edge cut of cardinality two, say
{c1, 2} (see Figure 14). In this case, delete ¢; and cp; contract ;, w, and x, to one vertex
w'; and connect the two vertices of degree two with a new edge e. In the dual graph, this
corresponds to deleting three edges incident to H.

Figure 14: The case where G, = G, and H is not a triangle, so (G,, H) is a multi-edge in the
dual graph. We split the graph into two connected components using the edge cut {c1,ca}.

The current connected component C' has now split in two, the component C’ containing
"M and the component C, containing the new edge e, which we want to be a nonmatching
edge. Push e (the nonmatching edge in the new component C,) onto the stack, and continue

working on the other component C’. To prove that the stack invariant still holds, consider
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three moments in time: %y is the time before the reduction, ¢; is the time just after the
reduction when we push e onto the stack, and ¢, is the time when we pop e from the stack.
The stack invariant held at time ¢y, and it still holds at time t;, because the face G; = G,
is incident to both e and C’. We claim that it will also hold at time ¢,. Let e* be the edge
below e on the stack. By the stack invariant, at time ¢, there was a face F' common to e*
and C, which at time t; is part of C' or C, or both. If F'is part of C, at time t;, then it is
also part of C, at time t5, and therefore the stack invariant holds at ¢,. If F'is part of C’ at
time 1, then at time f, the component C’ has been deleted, so face F' has been expanded
into the face common to e and C’, and has thus become incident to component C,. So again
the stack invariant holds at time ¢5.

Recursively compute a perfect matching in the resulting graph, and extend it by adding
an edge incident to w that is not incident to a matched edge yet (see Figure 15).

Figure 15: The case where G; = G, and (G,., H) is a multi-edge in the dual graph. We show
how to extend the recursively computed perfect matching to a perfect matching of G.

This leaves the case GG; # G, which has already been treated in Section 4.1. Determine
whether the special dual vertex is F; or F,, test adjacency of the special vertex to G, or
G, respectively, and apply the straight reduction to the appropriate edge, either (w,z,) or
(w, x;), as described in the proof of Lemma 4.1.

If, say, we reduce edge (w,z,), and if F, and G, are identical, then the primal graph
becomes disconnected. Declare the other reduced edge to be a nonmatching edge, and
push it onto the stack. The stack invariant holds because the face F, = (G, is incident to
both nonmatching edges. An argument similar to the one used before shows that the stack
invariant still holds when this newly created component is popped off the stack.

Note that we can use the data structure of the dual graph to test for distinctness, and
for adjacency because F, or Fj is special. Hence choosing the correct reduction edge, and
adding entries to the stack, if necessary, takes constant time. Recursively compute a perfect
matching in the resulting graph, and extend it as in Figure 4.

This finishes the discussion of all cases. As we saw in the discussion of the data structure,
the total time for all of the reductions is O(n). The final detail is how the recursion unwinds
to recover a matching in the original graph. There are two possibilities. The first option is
that we could undo each reduction as we go up the recursion stack, but only maintain the
primal graph and the matching in that graph. The dual graph was only needed to detect
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bridges, and hence we do not need to maintain it in this recovery phase. The second option
is that whenever we delete edges in the primal graph, we only unlink them from the rest
of the graph, and leave them allocated. This allows us to store the perfect matching in the
graph at any step of the recursion, without explicitly maintaining the entire graph at each
level. Either way, we obtain the following theorem.

Theorem 2 Let G be a planar S-reqular bridgeless graph, and let eN™ be an edge of G. Then
there exists a perfect matching of G that does not contain ™, and it can be found in O(n)
time.

5 Extensions

This section describes some corollaries of the fact that we can efficiently compute a perfect
matching of a 3-regular bridgeless graph that does not contain a specified edge eN™.

5.1 Avoiding Two Edges

Assume that we are given not one, but two edges ef™ and el™ that should not be in
the perfect matching. We claim that such a perfect matching exists and can be found in
O(nlog*n) time.

Specifically, subdivide the edges e and Y™, and add a new edge €M connecting the
two subdivision vertices (see Figure 16). Compute a perfect matching M in the resulting
3-regular bridgeless graph in O(nlog*n) time. Now force eM to be matched: if it is not,
reverse an alternating cycle including it. By Lemma 3.2, this takes O(n) time. The edges
that are part of e and el therefore are now unmatched. Undo the modification of the
graph to obtain a perfect matching that does not contain eX™ and eY™.

M

Figure 16: We can find a matching that does not contain two specified edges by modifying the
graph and revising an alternating cycle, if necessary, to force the new edge into the matching.

We do not know whether it is possible to find this matching in linear time for planar
graphs, because introducing the new edge may destroy planarity.

5.2 DPetersen’s Original Theorem

The blocktree of a graph is the tree of 2-edge-connected components, whose edges corre-
spond to bridges in the graph. Petersen’s original theorem in fact says that every 3-regular
graph whose blocktree has at most two leaves (i.e., whose blocktree is a path) has a perfect
matching. We can compute this matching in O(nlog*n) time as follows.
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Let GG be the graph. Remove all bridges of G, and obtain the connected components
G1,...,G, of the resulting graph. For i = 1,...,s, G; has up to two vertices of degree two
(if there were more, then there would be a vertex of degree three in the blocktree). Remove
these vertices of degree two; connect the loose ends of their incident edges; and mark these
newly added edges as nonmatching edges.

This results in a graph G’ with up to two nonmatching edges. Compute a perfect match-
ing of this graph using the method in the previous section. Combining the perfect matchings
of G, i =1,...,s, and adding the bridges to the matching, we obtain a perfect matching of

B - D - G=00

Figure 17: If the graph has bridges, but the blocktree is a path, then we can compute a perfect
matching by computing a matching in each 2-edge-connected component.

6 Conclusion and Open Problems

It has been known for over a century that a perfect matching always exists in a 3-regular
bridgeless graph, but until now, no efficient algorithm was known to find one. Our algorithms
take O(nlog®n) time for nonplanar graphs, and optimal O(n) time for planar graphs. As
a consequence, we reduce to linear time the complexity of algorithms in three application
areas: terrain guarding, adaptive mesh refinement, and quadrangulation.

Several algorithmic questions about matchings in special graphs remain.

1. Can we find a perfect matching in a nonplanar 3-regular bridgeless graph in O(n) time?

2. How quickly can we find a maximum matching in a 3-regular graph that has bridges?
Does planarity help?

3. Plesnik [38] generalized Petersen’s theorem to arbitrary regularity as follows: any r-
regular (r — 1)-edge-connected graph with an even number of vertices has a perfect
matching not using » — 1 given edges. In particular, for any e € FE, there is a per-
fect matching M with e € M (we say that the graph is matching covered). Further
generalizations are also known [8, 9]. How quickly can these matchings be found?
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