Problem 1: Use the Reduced Row-Echelon form to find all solutions of the equations

\[
\begin{align*}
 x + 3y + z &= 3 \\
 2x + 5y + z &= 8 \\
 3x + 8y + 2z &= 11
\end{align*}
\]

You must show all your steps and work for credit.

Problem 2: Find the general solution of

\[
\begin{bmatrix}
 1 & 3 & 3 \\
 2 & 6 & 9 \\
 -1 & -3 & 1
\end{bmatrix}
\begin{bmatrix}
 x \\
 y \\
 z
\end{bmatrix} =
\begin{bmatrix}
 1 \\
 5 \\
 5
\end{bmatrix}
\]

Problem 3: (a) Find the row-reduced echelon form of

\[
\begin{bmatrix}
 1 & 2 & 3 \\
 4 & 5 & 6 \\
 7 & 8 & 9
\end{bmatrix}
\]

(b) What are the solutions of the system? Indicate which are the free variables, which are the dependent variables.

Problem 4: Given the two equations

\[
\begin{align*}
 x + 2y + 3z - 3w &= 1 \\
 4x + 5y + 6z - 6w &= 1 \\
 7x + 8y + 9z - 8w &= 1
\end{align*}
\]

(a) Give the Reduced Row-Echelon form of the associated augmented matrix.

(b) Which are the free variables? Which are the dependent variables?

(c) Give the general solution of the system of equations.

Problem 5: Given the two equations

\[
\begin{align*}
 x + 2y + 3z - 4w &= 2 \\
 2x + 4y + 3z + w &= 5
\end{align*}
\]

Use the method of row reduction to solve the system. Indicate which are the free variables, which are the dependent variables, and the geometric interpretation of the solution.

Problem 6: Let \(a, b, c \) be constants, and consider the system of equations

\[
\begin{align*}
 3x + 3y + z &= a \\
 x + y + 2z &= b \\
 5x + 5y &= c
\end{align*}
\]

Find the equation that the constants \(a, b, c \) must satisfy so that these equations are consistent.

Gaussian Elimination and Row-Echelon Form
Matrix Algebra and Manipulating Matrices

Problem 1: In each case, give an example of a matrix which is
• not the identity matrix
• not the zero matrix,
and satisfies:

\(A \) is a \(2 \times 2 \) diagonal matrix
\(B \) is a \(2 \times 2 \) orthogonal matrix
\(C \) is a \(2 \times 2 \) symmetric matrix with no inverse.
\(D \) is a \(2 \times 2 \) matrix with rank 1.
\(E \) is a \(2 \times 2 \) diagonal matrix with an inverse.

\(A \) is a \(2 \times 2 \) diagonal matrix which is

not the zero matrix
not the identity matrix

Problem 1: In each case, gives an example of a matrix which is

Matrix Determinants

Problem 2: Find the determinant of the matrix

\[
\begin{bmatrix}
1 & 1 & 1 \\
1 & 2 & 4 \\
1 & 3 & 8
\end{bmatrix}
\]

Problem 3: Calculate the determinant of the matrix

\[
\begin{bmatrix}
3 & 1 & 0 & 1 \\
6 & 1 & 0 & 1 \\
6 & 1 & 0 & 0 \\
2 & 3 & 1 & 0
\end{bmatrix}
\]

Problem 4: Find the determinant of the matrix

\[
\begin{bmatrix}
5 & 1 \\
6 & 2
\end{bmatrix}
\]

Problem 5: Given the matrices \(A \), \(B \), \(C \), and \(D \):

\[
\begin{bmatrix}
4 & 5 \\
6 & 8
\end{bmatrix} = C,
\begin{bmatrix}
5 & 0 \\
6 & 7
\end{bmatrix} = D,
\begin{bmatrix}
1 & 3 & 2 \\
2 & 3 & 1
\end{bmatrix} = A
\]

Problem 1: Calculate the following determinants:

\[|A|, |B|, |C| \]
Problem 6:

(a) Find the determinant of the matrix
\[
\begin{bmatrix}
111 \\
124 \\
137 \\
\end{bmatrix}
\]

(b) Use the solution to part (a) to explain how many solutions the equation \(Ax = b \) has, where \(b = Ax \).

(c) Find the determinant of the matrix
\[
\begin{pmatrix}
2 & 3 & 1 \\
4 & 2 & 1 \\
1 & 1 & 1 \\
\end{pmatrix}
\]

(d) Find the determinant of the matrix
\[
\begin{pmatrix}
|A^T - v| \ (g) \\
|1 - v^T A| \ (i) \\
|1 - v \cdot v| \ (e) \\
|\bar{B} \cdot v| \ (d) \\
|\bar{B} \cdot \bar{v}| \ (c) \\
\end{pmatrix}
\]
Matrix Inverses

Problem 1:
(a) Find the inverse (by any method) of
\[
\begin{bmatrix}
1 & 2 \\
3 & 5
\end{bmatrix}
\]
(b) Use the above to express the solutions of \(AX = \vec{b} \) in terms of the constants \(b_1 \) and \(b_2 \).

Problem 2:
Give the formula for the inverse of
\[
\begin{bmatrix}
a & b \\
c & d
\end{bmatrix}
\]

Problem 3:
Use the method of Gaussian Elimination to find the inverse for
\[
\begin{bmatrix}
1 & 2 & 3 \\
2 & 3 & 4 \\
3 & 9 & 12
\end{bmatrix}
\]

Problem 4:
Use the method of Cofactors to find the inverse for
\[
\begin{bmatrix}
-1 & 2 & 1 \\
2 & -1 & 2 \\
1 & 2 & -1
\end{bmatrix}
\]

Problem 5:
(a) Find the inverse of the following matrices: (and check your answers.)
(b) Do not use a calculator – you will be required to show all your work and computations.

Problem 6:
For what values of the variable \(\lambda \) does the matrix \(D \) below have an inverse?

\[
\begin{bmatrix}
3 & -1 & 0 \\
-\lambda & 3 & 1 \\
0 & 2 & -\lambda
\end{bmatrix}
\]

Problem 7:
Let \(A \) be an \(n \times n \) matrix. Suppose that the system of equations \(AX = \vec{0} \) has a unique solution. Explain why the inverse \(A^{-1} \) must exist.
Vector Spaces and Subspaces

Problem 1: Consider the subset of vectors in \(\mathbb{R}^2 \) given by
\[
S = \{ (x, x^2) \mid x \text{ is any real number} \}
\]
Is \(S \) a vectors subspace? Justify your answer carefully.

Problem 2: Let \(A \) be a square matrix with \(n \) rows and \(n \) columns. What are the four fundamental subspaces associated to \(A \)?

Problem 3: Let \(V \) be the space of all real-valued functions of \(x \). Show the solution set of the equation
\[
f'(x) = xf(x)
\]
is a subspace of \(V \).

Problem 4: Let \(V \) be the space of all real-valued functions of \(x \). Let \(W \) be the subset of all functions \(f \) which are solutions of the differential equation \(f'' + 5f = 0 \). Show that the solution set \(W \) is a subspace of \(V \).

Problem 5: Let \(A \) be an \(m \times n \) matrix with \(m \) rows and \(n \) columns. What are the four fundamental subspaces associated to \(A \)? Give the definition of each of the following:

- \(\text{Col}(A) \): the column space of \(A \)
- \(\text{Row}(A) \): the row space of \(A \)
- \(\text{Null}(A) \): the null space of \(A \)
- \(\text{Conull}(A) \): the conull space of \(A \)

\[
(x)f = (x)f
\]
Problem 1: Find a basis for the subspace of \(\mathbb{R}^3 \) spanned by the vectors \(\vec{u}_1 = \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix} \), \(\vec{u}_2 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \), \(\vec{u}_3 = \begin{bmatrix} 1 \\ 4 \\ 5 \end{bmatrix} \).

Problem 2: In the space \(\mathcal{P}_3 \) of polynomials of degree 2 or less, are the "vectors" \(\{1+x, 1-x, 1+x+x^2\} \) linearly dependent or independent?

Problem 3:

(a) For \(A = \begin{bmatrix} 1 & 0 & 2 \\ 1 & 3 & 1 \\ 3 & 1 & -1 \end{bmatrix} \) find a basis for the row space and the column space.

(b) Is \(A \vec{x} = \vec{b} \) solvable for all \(\vec{b} \)?

Problem 4: For the vectors \(\vec{w}_1 = \begin{bmatrix} -1 \\ 2 \\ 3 \end{bmatrix} \), \(\vec{w}_2 = \begin{bmatrix} 3 \\ 4 \\ 2 \end{bmatrix} \), and \(\vec{x} = \begin{bmatrix} -9 \\ -2 \\ 5 \end{bmatrix} \) is \(\vec{x} \) in the span of \(\{\vec{w}_1, \vec{w}_2\} \)? If so, write \(\vec{x} \) as a linear combination of \(\{\vec{w}_1, \vec{w}_2\} \).

Problem 5: Is \([1, 2, 3]^T \) in the span of \([4, 0, 5]^T \) and \([6, 0, 7]^T \)?

Problem 6:

(a) Find a basis for the subspace of \(\mathbb{R}^4 \) spanned by the vectors \(\vec{v}_1 = \begin{bmatrix} 1 \\ 2 \\ -1 \\ 0 \end{bmatrix} \), \(\vec{v}_2 = \begin{bmatrix} 2 \\ 5 \\ -3 \\ 2 \end{bmatrix} \), \(\vec{v}_3 = \begin{bmatrix} 2 \\ 4 \\ -2 \\ 0 \end{bmatrix} \), \(\vec{v}_4 = \begin{bmatrix} 3 \\ 8 \\ -5 \\ 4 \end{bmatrix} \).

(b) What is the dimension of the span of the vectors \(\{\vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4\} \)?

Problem 7: Do the "vectors" \(\{x+1, x-1, x^2+1, x+1\} \) span the space of polynomials of degree at most 2?

Problem 8: Find a basis for the subspace of \(2 \times 2 \) matrices that span the space of polynomials of degree \(\leq 1 \) in the variables \(x \).

Problem 9: In the space of polynomials of degree at most 2, are the vectors \(\{x^2, x, 1\} \) linearly dependent or independent?
Problem 1: Let A be an $m \times n$ matrix. Let

- $\text{Col}(A)$ denote the column space of A.
- $\text{Row}(A)$ denote the row space of A.
- $\text{Null}(A)$ denote the null space of A.
- $\text{Conull}(A)$ denote the co-null space of A.

For each of the following questions, your answer should be one of the above 4 spaces. Justify your answer by stating why you think it is correct.

(a) The set of vectors perpendicular to the column space of A is what space?

(b) The vector equation $A\vec{x} = \vec{b}$ has a unique solution if what space is $\{0\}$?

(c) The set of vectors perpendicular to the null space of A is what space?

(d) The vector equation $A\vec{x} = \vec{b}$ has a solution if what subspace of A is contained in \vec{b}?

Problem 2: Give a basis for the column space, row space and null space of the matrix

$$A = \begin{bmatrix} 1 & 2 & 2 & 1 \\ 3 & 4 & 0 & 1 \\ 2 & 4 & 2 & 2 \\ 3 & 2 & 1 & 1 \end{bmatrix} = B$$

Problem 3: Find a basis for the null space of the matrix

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 6 & 7 \end{bmatrix} = B$$

Problem 4: a) Find a basis for the column space of A.

b) Find a basis for the perpendicular space $\text{Col}(A)^\perp$.

c) Find a basis for $\text{Conull}(A)$.

Problem 5: Let B be the matrix

$$B = \begin{bmatrix} 1 & 2 \\ -1 & 1 \\ 1 & 1 \\ 2 & 4 \end{bmatrix}$$

Find a basis for the four fundamental spaces of B: the column space, the row space, the null space and the co-null space ($\text{Null}(B^T)$).
Problem 6:
Given the system of equations

\[\begin{align*}
 x + y + z &= c_1 \\
 x + 2y + 2z &= c_2 \\
 x + 3y + 3z &= c_3
\end{align*} \]

(a) For what values of \(\vec{c} = \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix} \) does the system have a solution?

(b) If there exists a solution for a given \(\vec{c} \), how many are there?

(c) Find the basis for the null-space of the matrix associated to the system of equations above.

(d) What is the dimension of the null-space \(N(A) \) and the column space \(C(A) \) of the matrix \(A \)?

(e) Find a basis for the null-space of the matrix \(A \).

\[\begin{bmatrix} 6 & 3 & 9 \\ 4 & 6 & 2 \\ 0 & 3 & 2 \end{bmatrix} \]

Problem 7:
\(A \) is a 3 \(\times \) 5 matrix and \(L: \mathbb{R}^5 \rightarrow \mathbb{R}^3 \) is defined by \(L(\vec{v}) = A \cdot \vec{v} \). Suppose that \(A \) has rank 3.

(a) What is the dimension of the kernel of \(L \)?

(b) What is the dimension of the range of \(L \)?

(c) Explain your answers in terms of how you would find bases of these spaces if the matrix of \(A \) were given.

\[\begin{align*}
 \text{Problem 8:} \ Let \
 \begin{bmatrix} 2 & 1 & 3 & 0 \\ 4 & 2 & 6 & 2 \\ 6 & 3 & 9 & 3 \end{bmatrix} \]
\]

(a) Give the Reduced Row Echelon form of the matrix \(A \).

(b) Find a basis for the null-space of the matrix \(A \).

(c) Find a basis for the column space of the matrix \(A \).

(d) What is the dimension of the null-space \(N(A) \) and the column space \(C(A) \)?

(e) Answer True or False, and explain your answer:

\[\begin{align*}
 \text{The equation } A\vec{x} = \vec{b} \text{ has a solution for every vector } \vec{b} \in \mathbb{R}^3. \]
\]
Change of Basis and Coordinates

Problem 1: Find the coordinates of \(\vec{p} = \begin{bmatrix} 1 \\ 3 \end{bmatrix} \) with respect to the basis \(\vec{u}_1 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}, \vec{u}_2 = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \).

Problem 2: Find the new coordinates \([a, b, c]_T\) of the point \(\vec{x} = [7, 5, 6]_T \) with respect to the basis for \(\mathbb{R}^3 \) given by the vectors \(\vec{v}_1 = \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix}, \vec{v}_2 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \vec{v}_3 = \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix} \).

Problem 3: Given the vectors in \(\mathbb{R}^2 \)

(a) Find the transition matrix \(S \) corresponding to change of basis from \(\{\vec{v}_1, \vec{v}_2\} \) to \(\{\vec{u}_1, \vec{u}_2\} \).

(b) Find the coordinate expression of \(\vec{p} = 3\vec{v}_1 - \vec{v}_2 \) with respect to the basis \(\{\vec{u}_1, \vec{u}_2\} \).
Problem 1: Let P_3 be the space of polynomials of degree 2. Show that the map $L: P_3 \to P_3$ given by

$$L(p(x)) = p(x) - x \cdot p'(x)$$

is linear. (Here, $p'(x)$ denotes the first derivative of the polynomial $p(x)$.)

Problem 2: Find the matrix, in the standard basis for \mathbb{R}^3, for the linear transformation $L: \begin{bmatrix} x \\ y \\ z \end{bmatrix} \mapsto \begin{bmatrix} 2x - y - z \\ x - 2y + z - x + 3y + 2z \end{bmatrix}$.

Problem 3: Define the linear transformation $L: P_3 \to P_3$ by

$$L(p(x)) = xp''(x) - 2xp'(x) + p(x)$$

Find the matrix representing L with respect to the basis $\{1, x, x^2\}$ of P_3.

Problem 4: Find the matrix representation for the linear transformation $L: \begin{bmatrix} x \\ y \end{bmatrix} \mapsto \begin{bmatrix} 4x - y - x + 4y \end{bmatrix}$ with respect to the basis $\vec{v}_1 = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$ and $\vec{v}_2 = \begin{bmatrix} -1 \\ 3 \end{bmatrix}$.

Problem 5: Let V be the space of functions with basis $\{\sin(x), \cos(x), \sin(2x), \cos(2x)\}$. Define the linear transformation $L: V \to V$ by

$$L(f) = f'' + f' - 4f$$

(a) Find the matrix representing L with respect to the given basis.

(b) Find the kernel of L.

Problem 6: Let a linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ be defined by

$$T(v_1, v_2, v_3) = (3v_1 + 2v_2 + v_3, 2v_1 + v_2, v_2)$$

Give the matrix (in the standard basis) for T.

Problem 7: Let V be the space spanned by the functions $\{e^x, e^{2x}, e^{3x}\}$, and let $L: V \to V$ be the linear transformation defined by $L(f) = f' - 2f$. Find the matrix of L with respect to the basis $\{e^x, e^{2x}, e^{3x}\}$ of V.

(a) Find the matrix representing L with respect to the basis $\{e^x, e^{2x}, e^{3x}\}$ of V.

(b) Find the kernel of L.

Problem 8: Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be defined by

$$(x, y) \mapsto A \begin{bmatrix} x \\ y \end{bmatrix}$$

where $A = \begin{bmatrix} 2 & -1 \\ -1 & 3 \end{bmatrix}$. Find the matrix of T with respect to the new basis $\vec{v}_1 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ and $\vec{v}_2 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$.
Problem 1: The linear transformation $L : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ has matrix $A = \begin{bmatrix} 2 & -1 \\ -1 & 3 \end{bmatrix}$ with respect to the standard basis $\{ \vec{e}_1, \vec{e}_2 \}$ of \mathbb{R}^2. Find the matrix of L with respect to the new basis $\vec{v}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $\vec{v}_2 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$.

Problem 2:

a) Find the matrix representation A with respect to the standard basis $\{ \vec{e}_1, \vec{e}_2 \}$ of \mathbb{R}^2 for the linear transformation $L : (x, y) \mapsto (4x - y - x + 4y)$.

b) Find the matrix representation B of L with respect to the basis $\vec{v}_1 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$ and $\vec{v}_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$.

Problem 3:

Let $L : \mathbb{R}^3 \rightarrow \mathbb{R}^3$ be the linear transformation given by $L \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 4y + 6z - 2x - 3y \\ x \\ x + 2y + z \end{bmatrix}$.

a) Find the matrix representing L with respect to the standard basis $\{ \vec{e}_1, \vec{e}_2, \vec{e}_3 \}$ of \mathbb{R}^3.

b) Use the answer to part a) to find the matrix representing L with respect to the new basis $\vec{v}_1 = \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix}$, $\vec{v}_2 = \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}$, $\vec{v}_3 = \begin{bmatrix} 2 \\ -2 \\ 1 \end{bmatrix}$.

Problem 4:

a) Given the vectors in \mathbb{R}^2 $\vec{u}_1 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$, $\vec{u}_2 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$, $\vec{v}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $\vec{v}_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, find the transition matrix S corresponding to change of basis from $\{ \vec{v}_1, \vec{v}_2 \}$ to $\{ \vec{u}_1, \vec{u}_2 \}$.

b) The linear transformation $L : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ has a matrix representation $A = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$ with respect to the basis $\{ \vec{u}_1, \vec{u}_2 \}$. Find the matrix representation B of L with respect to the basis $\{ \vec{v}_1, \vec{v}_2 \}$.

Problem 5:

For the vectors $\vec{v}_1 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$, $\vec{v}_2 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$, $\vec{v}_3 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$, find the transition matrix S corresponding to change of basis from the standard basis $\{ \vec{e}_1, \vec{e}_2, \vec{e}_3 \}$ of \mathbb{R}^3 to the new basis $\{ \vec{v}_1, \vec{v}_2, \vec{v}_3 \}$.

b) Let $L : \mathbb{R}^3 \rightarrow \mathbb{R}^3$ be the linear transformation defined by $L \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} z + \frac{1}{2}y + x \\ \frac{1}{2}y - xz + z + y \\ 2y + 2y \end{bmatrix}$. Find the matrix representing L with respect to the standard basis $\{ \vec{e}_1, \vec{e}_2, \vec{e}_3 \}$ of \mathbb{R}^3.
Problem 6:

(a) Let \(\{ \vec{v}_1, \vec{v}_2 \} \) be a basis for \(\mathbb{R}^2 \), and let \(L \) be a linear transformation of \(\mathbb{R}^2 \) so that

\[L(c_1 \vec{v}_1 + c_2 \vec{v}_2) = (c_1 + 3c_2) \vec{v}_1 + (2c_1 + 4c_2) \vec{v}_2. \]

Find the matrix representing \(L \) with respect to the basis \(\{ \vec{v}_1, \vec{v}_2 \} \).

(b) Suppose that \(\vec{v}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \) and \(\vec{v}_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix} \). Find the matrix representing \(L \) with respect to the standard basis of \(\mathbb{R}^2 \).

Problem 7:

Let \(A = \begin{bmatrix} 7 & -2 \\ 15 & -4 \end{bmatrix} \). Define the linear map \(L : \mathbb{R}^2 \to \mathbb{R}^2 \) by \(L(\vec{x}) = A\vec{x} \).

(a) Find the matrix \(B \) for the linear map \(L \) with respect to the new basis \(\vec{u}_1 = \begin{bmatrix} 2 \\ 5 \end{bmatrix} \) and \(\vec{u}_2 = \begin{bmatrix} 1 \\ 3 \end{bmatrix} \).

(b) Suppose that \(\vec{p} \) has coordinates \(\begin{bmatrix} 3 \\ -1 \end{bmatrix} \) with respect to the basis \(\{ \vec{u}_1, \vec{u}_2 \} \). Find \(L(\vec{p}) \) with respect to the basis \(\{ \vec{u}_1, \vec{u}_2 \} \).

(c) Suppose that \(\vec{p} = \vec{u}_2 \). Find \(L^{100}(\vec{u}_2) = L(\cdots(L(\cdots(L(\vec{u}_2))))) \) (\(n \) times).

\(\cdot \) \(\cdot \) \(\cdot \)
Problem 1: Find the eigenvalues and corresponding eigenvectors for
\[
\begin{bmatrix}
1 & 2 & 0 \\
3 & 2 & 0 \\
0 & 0 & 3
\end{bmatrix}
\]

Problem 2: Let \(A \) be symmetric. Find an orthogonal matrix \(S \) with \(S^{-1}AS \) diagonal.

(a) Find the eigenvalues for these eigenvalues.

(b) Find the eigenvectors and corresponding eigenvectors for \(A \).

Problem 3: Given the differential equations with initial conditions
\[
\begin{align*}
x' &= 3x + 4y; \\
y' &= -2x - 3y;
\end{align*}
\]

(a) Find the general solution of the differential system.

(b) Given the particular solution when \(y(0) = 3 \) and \(y(0) = 1 \).

Problem 2: a) Find the eigenvectors for these eigenvalues.

b) Note \(A \) is symmetric. Find an orthonormal matrix \(S \) with \(S^{-1}AS \) diagonal.

Problem 1: Given the differential equations with initial conditions

\[
\begin{bmatrix}
3 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{bmatrix}
\]

Eigenvalues, Eigenvectors and Eigenspaces
Problem 1:

For the matrix

\[
A = \begin{bmatrix}
1 & -1 \\
0 & 2
\end{bmatrix}
\]

(a) Find 2 \times 2 matrices \(S\) and \(D\) such that \(A = S \cdot D \cdot S^{-1}\).

(b) Use your answer to part (a) to calculate \(A^{10}\).

(c) Find the eigenvalues and eigenvectors for \(A\).

Problem 2:

For \(A = \begin{bmatrix}
1 & -1 \\
0 & 2
\end{bmatrix}\), find the matrix \(e^{A}\). (Your answer should be a 2 \times 2 matrix.)

Problem 3:

For \(A = \begin{bmatrix}
1 & 2 \\
-1 & 4
\end{bmatrix}\), find the 2 \times 2 matrix \(e^{tA}\).

Problem 4:

For \(A = \begin{bmatrix}
1 & 1 \\
0 & 1
\end{bmatrix}\),

(a) Calculate \(A^2, A^3, A^4, A^5\).

(b) Find the eigenvalues and eigenvectors for \(A\).

(c) Use your answer to part (b) to calculate \(A^{10}\).

(d) Use your answer to part (b) to get a formula for \(A^n\) when \(n\) is a positive integer.