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I. Introduction
This paper is a quick introduction to key relationships between the
theories of knots,links, three-manifold invariants and the structure
of quantum mechanics. In section 2  we review the basic ideas and
principles of quantum mechanics.  Section 3 shows how the idea of a
quantum amplitude is applied to the construction of invariants of
knots and links. Section 4 explains how the generalisation of the
Feynman integral to quantum fields leads to invariants of knots,
links and three-manifolds.  Section 5 is a discussion of a general
categorical approach to these issues. Section 6 is a brief discussion
of the relationships of quantum topology to quantum computing. This
paper is intended as an introduction that can serve as a springboard
for working on the interface between quantum topology and quantum
computing. Section 7 summarizes the paper. 

This paper is a thumbnail sketch of recent developments in low
dimensional topology and physics. We recommend that the interested
reader consult the references given here for further information, and
we apologise to the many authors whose significant work was not
mentioned here due to limitations of space and reference.

II. A Quick Review of Quantum Mechanics
To recall  principles of quantum mechanics it is useful to have a
quick historical recapitulation. Quantum mechanics really got
started when DeBroglie introduced the fantastic notion that matter
(such as an electron) is accompanied by a wave that guides its
motion and produces interference phenomena just like the waves on
the surface of the ocean or the diffraction effects of light going
through a small aperture.  

DeBroglie’s idea was successful in explaining the properties of



atomic spectra. In this domain, his wave hypothesis led to the
correct orbits and spectra of atoms, formally solving a puzzle that
had been only described in ad hoc terms by the preceding theory of
Niels Bohr. In Bohr’s theory of the atom, the electrons are restricted
to move only in certain elliptical orbits.  These restrictions are
placed in the theory to get agreement with the known atomic
spectra, and to avoid a paradox!  The paradox arises if one thinks of
the electron as a classical particle orbiting the nucleus of the atom.
Such a particle is undergoing acceleration in order to move in its
orbit. Accelerated charged particles emit radiation. Therefore the
electron should radiate away its energy and spiral into the nucleus!
Bohr commanded the electron to only occupy certain orbits and
thereby avoided the spiral death of the atom - at the expense of
logical consistency.

DeBroglie hypothesized a wave associated with the electron and he
said  that an integral multiple of the length of this wave must match
the circumference of the electron orbit. Thus, not all orbits are
possible, only those where the wave pattern can “bite its own tail”.
The mathematics works out, providing an alternative to Bohr’s
picture.

DeBroglie had waves, but he did not have an equation describing the
spatial distribution and temporal evolution of these waves.  Such an
equation was discovered by Erwin Schrodinger. Schrodinger relied on
inspired guesswork, based on DeBroglie’s hypothesis and produced a
wave equation, known ever since as the Schrodinger equation.
Schrodinger’s equation was enormously successful, predicting fine
structure of the spectrum of hydrogen and many other aspects of
physics. Suddenly a new physics, quantum mechanics, was born from
this musical hypothesis of DeBroglie.

Along with the successes of quantum mechanics came a host of
extraordinary problems of interpretation.  What is the status of this
wave function of Schrodinger and DeBroglie.  Does it connote a new
element of physical reality?  Is matter “nothing but” the patterning
of waves in a continuum? How can the electron be a wave and still
have the capacity to instantiate a very specific event at one place
and one time (such as causing a bit of phosphor to glow there on your
television screen)?   It came to pass that Max Born developed a



statistical interpretation of the wave-function wherein the wave
determines a probability for the appearance of the localised
particulate phenomenon that one wanted to call an “electron”.  In
this story the wavefunction ψ takes values in the complex numbers
and the associated probability is ψ* ψ, where ψ* denotes the
complex conjugate of ψ.  Mathematically, this is a satisfactory
recipe for dealing with the theory, but it leads to further questions
about the exact character of the statistics.  If quantum theory is
inherently statistical, then it can give no complete information
about the motion of the electron.  In fact, there may be no such
complete information  available even in principle. Electrons
manifest as particles when they are observed in a certain manner
and as waves when they are observed in another, complementary
manner.  This is a capsule summary of the view taken by
Bohr,Heisenberg and Born. Others, including DeBroglie, Einstein and
Schrodinger, hoped for a more direct and deterministic theory of
nature.

As we shall see, in the course of this essay, the statistical nature
of quantum theory has a formal side that can be exploited to
understand the topological properties of such mundane objects as
knotted ropes in space and spaces constructed by identifying the
sides of polyhedra.  These topological applications of quantum
mechanical ideas are exciting in their own right. They may shed light
on the nature of quantum theory itself.   

In this section we review a bit of the mathematics of quantum
theory.   Recall the equation for a wave: 

f(x,t) = sin((2 π�πππ/ λ
�
λλλ)(x-ct)). 

With x interpreted as the position and t and as the time, this
function describes a sinusoidal wave travelling with velocity c .  We
define the wave number  k= 2π�πππ/ λ

�
λλλ and   the frequency  w = ( 2π�πππc / λ

�
λλλ)

where λλλλ is the wavelength.  Thus we can write  
f(x,t) = sin(kx - ωωωωt). 

Note that the velocity, c , of the wave is given by the ratio of
frequency to wave number, c =ωωωω/ k.

DeBroglie hypothesized two fundamental relationships: between
energy and frequency, and between momentum and wave number.
These relationships are summarised in the equations 



E = hωωωω,
p=hk, 

where E denotes the energy associated with a wave and p denotes
the momentum associated with the wave. Here  h = h/2 π� π�ππ where h
is Planck’s constant (The relation E = hω originates with Max Planck
in the context of black-body radiation.) 

For DeBroglie the discrete energy levels of the orbits of electrons in
an atom of hydrogen could be explained by restrictions on the
vibrational modes of waves associated with the motion of the
electron.  His choices for the energy and the momentum in relation
to a wave are not arbitrary.  They are designed to be consistent with
the notion that the wave or wave packet moves along with the
electron. That is, the velocity of the wave-packet is designed to be
the velocity of the “corresponding” material particle.

It is worth illustrating how DeBroglie’s idea works.  Consider two
waves whose frequencies are very nearly the same. If we
superimpose them (as a piano tuner superimposes his tuning fork
with the vibration of the piano string), then there will be a new
wave produced by the interference of the original waves. This new
wave pattern will move at its own velocity, different (and generally
smaller) than the velocity of the original waves.  To be specific,
let   f(x,t) = sin(kx - ωωωωt)  and g(x,t) = sin(k’x - ωωωω’t). Let 
h(x,t) = sin(kx - ωωωωt) + sin(k’x - ωωωω’t) = = f(x,t) + g(x,t).

A little trigonometry shows that 

h(x,t) = cos(((k-k’)/2)x -((ω- ω’)/2)t)sin(((k+k’)/2)x -((ω+ω’ ) /2 ) t ) .

If we assume that k and k’ are very close and that w and w’ are very
close, then  (k+k’)/2 is approximately k, and (ω+ω’ ) /2 is
approximately w.  Thus h(x.t) can be represented by 

H(x.t) = cos(( δδδδk/2)x -(δδδδωωωω/2) t )  f (x, t )

where δk=(k-k’)/2 and δω=(ω- ω’)/2.  This means that the



superposition, H(x,t), behaves as the waveform f(x,t) carrying a
slower-moving “wave-packet”  

G(x, t )=cos(( δδδδk/2)x -(δδδδωωωω/ 2 ) t ) .
See Figure 1.

Figure 1

Since the wave packet (seen as the clumped oscillations in Figure1)
has the equation G(x, t )=cos(( δδδδk/2)x -(δδδδωωωω/ 2 ) t ), we see that that
the velocity of this wave packet is  v g =   dωωωω/ d k . Recall that wave

velocity is the ratio of frequency to wave number.  Now according to
DeBroglie, E = hωωωω and p=hk , where E and p are the energy and
momentum associated with this wave packet. Thus we get the
formula



v g = dE/dp .  In other words, the velocity of the wave-packet is the

rate of change of its energy with respect to its momentum.  Now
this is exactly in accord with the well-known classical laws for a
material particle!  For such a particle,

E = mv2 / 2 and p=mv .  Thus E=p2 / 2 m and dE/dp = p/m = v .
It is this astonishing concordance between the simple wave model
and the classical notions of energy and momentum that initiated the
beginnings of quantum theory.   

Schrodinger’s Equation
Schrodinger answered the question: 
Where is the wave equation for DeBroglie’s waves?
Writing an elementary wave in complex form 

ψ� ψ�ψ�ψ� = ψ� ψ�ψ�ψ� (x,t) = exp(i(kx - ωωωωt ) ), 

we see that we can extract  DeBroglie’s energy and momentum by
di f ferent iat ing:

i hdψ� ψ�ψ�ψ� /dt = Eψ� ψ�ψ�ψ� and  - ihdψ� ψ�ψ�ψ� /dx = p ψ� ψ�ψ�ψ� .  

This led Schrodinger to postulate the identification of dynamical
variables with operators   so that the first equation , 

i hdψ� ψ�ψ�ψ� /dt = Eψ� ψ�ψ�ψ� ,  

is promoted to the status of an equation of motion  while the second
equation becomes the definition of momentum as an operator: 

p = -ihd / d x . 

Once p is identified as an operator, the numerical value of
momentum is associated with an eigenvalue of this operator, just as
in the example above. In our example  pψ� ψ�ψ�ψ� = hk ψ� ψ�ψ�ψ� .

In this formulation, the position operator is just multiplication by
x itself.  Once we have fixed specific operators for position and
momentum, the operators for other physical quantities can be
expressed in terms of them. We obtain the energy operator by
substitution of the momentum operator in the classical formula for



the energy:

E = (1/2)mv2 +  V 

E =  p2 /2m  +  V 

E = -(h2 / 2 m ) d2 / d x2 +  V.

Here V is the potential energy, and its corresponding operator
depends upon the details of the application.

With this operator identification for E,  Schrodinger’s equation

i hdψ� ψ�ψ�ψ� /dt = -(h2 / 2 m ) d2 ψ� ψ�ψ�ψ� / d x2 +  Vψ� ψ�ψ�ψ�

is an equation in the first derivatives of time and in second
derivatives of space.  In this form of the theory one considers
general solutions to the differential equation  and this in turn leads
to excellent results in a myriad of applications. 

In quantum theory, observation is modelled by the concept of
eigenvalues for corresponding operators. The quantum model of an
observation is a projection of the wave function into an eigenstate.
An energy spectrum  {Ek } corresponds to wave functions ψ� ψ�ψ�ψ�

satisfying the Schrodinger equation, such that  there are constants
Ek with Eψ� ψ�ψ�ψ� = Ekψ� ψ�ψ�ψ� .   An observable (such as energy)  E is a Hermitian

operator on a Hilbert space of wavefunctions.  Since Hermitian
operators have real eigenvalues, this provides the link with
measurement  for the quantum theory.  

It is important to notice that there is no mechanism postulated in
this theory for how a wave function is “sent” into an eigenstate by
an observable. Just as mathematical logic need not demand causality
behind an implication between propositions, the logic of quantum
mechanics does not demand a specified cause behind an observation.
The absence of an assumption of causality in logic does not obviate
the possibility of causality in the world. Similarly, the absence of
causality in quantum observation does not obviate causality in the
physical world. Nevertheless, the debate over the interpretation of
quantum theory has often led its participants into asserting that



causality has been demolished in physics.

Note that the operators for position and momentum satisfy the
equation xp - px = hi . This corresponds directly to the equation
obtained by Heisenberg, on other grounds,  that dynamical variables
can no longer necessarily commute with one another.  In this way,
the points of view of DeBroglie, Schrodinger and Heisenberg came
together, and quantum mechanics was born.  In the course of this
development,  interpretations  varied widely.  Eventually, physicists
came to regard the wave function not as a generalised wave packet,
but as a carrier of information about possible observations.  In this
way of thinking ψ� ψ�ψ�ψ� * ψ� ψ�ψ�ψ� (ψ� ψ�ψ�ψ� * denotes the complex conjugate of ψ� ψ�ψ�ψ� .)
represents the probability of finding the “particle”  (A particle is an
observable with local spatial characteristics.)  at a given point in
spacetime.

Dirac Brackets
We now discuss Dirac’s notation,  <b|a>,  [D58].  In this notation  <a|
and |b> are covectors and vectors respectively.    <b|a> is the
evaluation of  |a> by <b|,  hence it is a scalar, and in ordinary
quantum mechanics it is a complex number.   One can think of this as
the amplitude for the state to begin in “ a ” and end in “ b ” .   That is,
there is a process that can mediate a transition from state a t o
state b .  Except for the fact that amplitudes are complex valued,
they obey the usual laws of probability.  This means that if the
process can be factored into a set of all possible intermediate
states  c 1 , c2 , ..., cn ,  then the amplitude  for a - - - > b is the sum

of the amplitudes for 
a - - - > ci - - - > b.   Meanwhile, the amplitude for a - - - > ci - - - > b is the

product of the amplitudes of the two subconfigurations a - - - > ci
and c i - - - > b.   Formally we have

<b|a>  =  ΣΣΣΣ i <b|c i ><ci |a>

where the summation is over all the intermediate states i=1, ..., n .

In general, the amplitude for mutually disjoint processes is the
sum of the amplitudes of the individual processes.  The amplitude



for a configuration of disjoint processes is the product  of their
individual amplitudes.

Dirac’s division of the amplitudes into bras <b| and kets |a> i s
done mathematically by taking a vector space  V (a Hilbert space,
but it can be finite dimensional) for the kets:  |a> belongs to V .
The dual space  V * is the home of the bras.   Thus <b| belongs to
V * so that  <b| is a linear mapping  
<b|:V -----> C where C denotes the complex numbers. We
restore symmetry to the definition by realising that an element of a
vector space V can be regarded as a mapping from the complex
numbers to V .  Given  |a>: C -----> V,  the corresponding element
of V is the image of 1 (in C)  under this mapping.  In other words,
|a>(1) is a member of V . Now we have   |a> :C -----> V and <b| :
V -----> C. The composition <b| |a> = <b|a> : C -----> C i s
regarded as an element of C by taking  the specific value <b|a>(1).
The complex numbers are regarded as the “vacuum”, and the entire
amplitude  <b|a> is a “vacuum to vacuum”  amplitude for a process
that includes the creation of the state a , its transition to b , and the
annihilation of b to the vacuum once more.  

Dirac notation has a life of its own.   
Let P =  |y><x| .   
Let  <x| |y> = <x|y> .
Then  PP =  |y><x| |y><x|   = |y> <x|y> <x|   =  <x|y> P .
Up to a scalar multiple,  P is a projection operator. That is, if we
let Q= P/<x|y>, then  
QQ = PP/<x|y><x|y> = <x|y>P/<x|y><x|y> = P/<x|y> = Q.
Thus QQ=Q.  In this language, the completeness of intermediate
states becomes the statement that a certain sum of projections is
equal to the identity:  
Suppose that  ΣΣΣΣ i | ci ><ci |   =  1 (summing over i)

with  <ci | ci >=1 for each i.   Then

<b|a>  
=  <b| |a> 
=  <b|  ΣΣΣΣ i | ci ><ci |  |a>  



=  ΣΣΣΣ i <b| |c i ><ci | |a>  

<b|a> =  ΣΣΣΣ i <b|c i ><ci |a>

Iterating this principle of expansion over a complete set of states
leads to the most primitive form of the Feynman integral [Fey65].
Imagine that the initial and final states  a  and b  are points on the
vertical lines  x=0  and x=n+1 respectively in the x-y plane, and that
(c(k)i ( k ) , k)  is a given point on the line  x=k  for 0<i(k)<m.  Suppose

that   the sum   of projectors for each intermediate state is
complete.  That is, we assume that following sum is equal to one,
for each k  from 1 to n-1: 

| c (k )1 ><c(k)1 | + ... + |c(k) m><c(k)m|  = 1.

Applying the completeness iteratively, we obtain the following
expression for the amplitude   <b|a>:

<b|a>  =
ΣΣΣΣΣΣΣΣ.... .... ....ΣΣΣΣ <b|c(1) i ( 1 )><c(1)i ( 1 )| c ( 2 )i ( 2 )> ... <c(n) i ( n ) |a>

where the sum is taken over all  i(k) ranging between  1  and m,  and
k  ranging  between  1  and  n.   Each term in this sum can be



construed as a combinatorial path from  a  to  b  in the two
dimensional space of the x-y plane.     Thus the amplitude for going
from  a to b   is seen as a summation of contributions from all the
“paths”  connecting  a to b.   

Feynman used this description to produce his famous path integral
expression for  amplitudes in  quantum mechanics.  His path integral
takes the form

SSSSdP exp(iS)

where  i  is the square root of minus one,  the integral is taken over
all paths from  point  a to point b,  and   S  is the action for a
particle to travel from  a to b along a given path.   For the quantum
mechanics associated with a classical (Newtonian) particle  the
action  S is given by  the integral along the given path from a to b
of the difference T - V where T is the classical kinetic energy and
V is the classical potential energy of the particle.   

The beauty of Feynman’s approach to quantum mechanics is that it
shows the relationship between the classical and the quantum in a
particularly transparent manner.  Classical motion corresponds to
those regions where all nearby paths contribute constructively to
the summation.  This classical path occurs when the variation of the
action is null.  To ask for those paths where the variation of the
action is zero  is a problem in the calculus of  variations, and it
leads directly to Newton’s equations of motion.   Thus with the
appropriate choice of action, classical and quantum points of view
are unified.

The drawback of this approach lies in the unavailability at the
present time of an appropriate measure theory to support all cases
of the Feynman integral. 

On the other hand it is easy to see that a discretization of the
Schrodinger equation leads to a sum over paths that is an exact
solution to the discretization.  To see this first write the time
derivative as a difference quotient and get



ψ� ψ�ψ�ψ� ( x , t +∆∆∆∆t) = (1 - (i/h) ∆∆∆∆t E )ψ� ψ�ψ�ψ�

where E = -(h2 / 2 m ) d2 / d x2 +  V.

Now approximate d2 ψ� ψ�ψ�ψ� / d x2 by  

( ψ� ψ�ψ�ψ� ( x -∆∆∆∆x,t) -2ψ� ψ�ψ�ψ� (x,t) + ψ� ψ�ψ�ψ� ( x +∆∆∆∆x , t ) ) / (∆∆∆∆x )2 .

Putting this into the equation, we get a temporal recursion of the
fo rm

ψ� ψ�ψ�ψ� (x, t + ∆∆∆∆t) = Aψ� ψ�ψ�ψ� ( x -∆∆∆∆x,t) + B ψ� ψ�ψ�ψ� (x,t) + A ψ� ψ�ψ�ψ� ( x +∆∆∆∆x , t )

where 

A= i h ∆t / (∆x )2 and   B= 1 - iV(x)/h - 2 ih ∆t / (∆x )2.

If we take ψ(x,t) to be the sum over all lattice paths (in the
spacetime lattice with steps ∆x and ∆t) where each path receives a
product of weights A and B as defined above, then the recursion
equation for the next time step of ψ is a tautology. In this sense it is
easy to see that the discretized Schrodinger equation has a discrete
path integral as its solution. Note that these lattice paths have
exactly three possibilities entering (x, t+∆t) from the past, namely
( x -∆x,t), (x,t) and (x+∆x,t). Thus the “particle” travelling on the x-
axis is executing a one-step random walk.



It is also worth noting that the equation

ψ� ψ�ψ�ψ� ( x , t +∆∆∆∆t) = (1 - (i/h) ∆∆∆∆t E )ψ� ψ�ψ�ψ�

is the infinitesimal step of the formal equation 

ψ� ψ�ψ�ψ� (x,t) = e- iht Eψ� ψ�ψ�ψ� 0 ,

describing the wave function at later times as the result of a
unitary evolution from an initial time. In devising algorithms for
quantum computing the condition of unitary state evolution is the
primary constraint that must be obeyed. 

To summarize, Dirac notation shows at once how the probabilistic
interpretation for amplitudes is tied with the vector space
structure of the space of states of the quantum mechanical system.
Our strategy for bringing forth  relations between  quantum theory
and topology is to pivot on the Dirac bracket. The Dirac bracket
intermediates between notation and linear algebra. In a very real
sense, the connection of quantum mechanics with  topology is an
amplification of Dirac notation.

The next two sections discuss how topological invariants in low
dimensional topology are related to amplitudes in quantum
mechanics.  In these cases the relationship with quantum mechanics



is primarily mathematical. Ideas and techniques are borrowed. It is
not yet clear what the effect of this interaction will be on the
physics itself.

III. Knot Amplitudes
At the end of section1 we said: the connection of quantum
mechanics with  topology is an amplification of Dirac notation.

Consider first a circle in a spacetime plane with time represented
vertically and space horizontally.

The circle represents a vacuum to vacuum process that includes the
creation of two “particles”,

and their subsequent annihilation.



In accord with our previous description, we could divide the circle
into these two parts (creation(a)  and annihilation (b)) and
consider the amplitude   <b|a>.  Since the diagram for the creation of
the two particles ends in two separate points, it is natural to take a
vector space of the form  V V as the target for the bra and as the
domain of the ket.  

We imagine at least one particle property being catalogued by each
dimension of V .  For example, a basis of  V could enumerate the
spins of the created particles.  If { ea} is a basis for V then 

{ ea eb} forms a basis for V V . The elements of this new basis

constitute all possible combinations of the particle properties.
Since such combinations are multiplicative, the tensor product is
the appropriate construction.

In this language the creation ket is a map  cup ,  

cup = |a> : C -----> V V ,

and the annihilation bra is a mapping  cap ,  

cap= <b| : V V ----->  C.

The first hint of topology comes when we realise that it is possible
to draw a much more complicated simple closed curve in the plane
that is nevertheless decomposed with respect to the vertical
direction into many cups and caps.  In fact, any non-selfintersecting
differentiable curve can be rigidly rotated until it is in general
position with respect to the vertical.  It will then be seen to be
decomposed into these minima and maxima.   Our prescriptions for
amplitudes suggest that we regard any such curve as an amplitude



via its description as a mapping from   C to C.

Each simple closed curve gives rise to an amplitude,  but any simple
closed curve in the plane is isotopic to a circle, by the Jordan Curve
Theorem.  If these are topological amplitudes,  then they should all
be equal to the original amplitude for the circle.   Thus the question:
What condition on creation and annihilation will insure topological
amplitudes?  The answer derives from the fact that all isotopies of
the simple closed curves are generated by the cancellation of
adjacent  maxima and minima as illustrated below.

In composing mappings it is necessary to use the identifications
(V V) V = V (V V)  and 

V k=k V=V. 
Thus in the illustration above, the composition on the left is given

by

V = V k  --1 cup-->  V (V V) = (V V) V  --cap 1-->  k V = V.

This composition must equal the identity map on V (denoted 1 here)
for the amplitudes to have a proper image of the topological
cancellation.

This condition is said very simply by taking a matrix representation
for the corresponding operators.



Specifically,  let  { e1 , e2 , ..., en} be a basis for  V .  Let  

eab = ea eb denote the elements of the tensor basis for  

V V .  Then there are matrices  Mab and  Mab such that  

cup(1)  =  ΣΣΣΣMabeab with the summation taken over all values of a

and b from 1 to n.  Similarly,  cap is described by    

cap(eab) = Mab.   Thus the amplitude for the circle is  

cap[cup(1)]  =  cap ΣΣΣΣ Mabeab = ΣΣΣΣ MabMab.   In general, the value

of the amplitude on a simple closed curve is obtained by translating

it into an “abstract tensor expression”  in the Mab and Mab, and

then summing over these products for all cases of repeated indices.  

Returning to the topological conditions we see that they are just

that the matrices  (Mab)  and  (Mab)  are inverses in the sense that

ΣΣΣΣMa iM
i b = Ia

b and   ΣΣΣΣMa iMi b =  Iab are the identity matrices:

In the illustration above, we show the diagrammatic representative

of  the equation  ΣΣΣΣMa iM
i b = Ia

b.



In the simplest case  cup and cap  are represented by  2 x 2 matrices.
The topological condition implies that these matrices are inverses
of each other. Thus the problem of the existence of topological
amplitudes is very easily solved for simple closed curves in the
plane.

Now we go to knots and links.   Any knot or link can be represented
by a picture that is configured with respect to a vertical direction
in the plane.  The picture will decompose into minima (creations)
maxima (annihilations)  and crossings of the two types shown below.
(Here I consider knots and links that are unoriented.  They do not
have an intrinsic preferred direction of travel.) See Figure 2. In
Figure 2, next to each of the crossings we have indicated mappings

of  V V to itself ,  called   R and R- 1 respectively.  These
mappings represent the transitions corresponding to these
elementary configurations.  

Figure 2

That R and R- 1 really must be inverses follows from the isotopy



shown below  (This is the second Reidemeister move.)

We now have the vocabulary of cup,cap,  R and R- 1.   Any knot or
link can be written as a composition of these fragments, and
consequently a choice of such mappings determines an amplitude for
knots and links.  In order for such an amplitude to be topological
we want it to be invariant under the list of local moves on the
diagrams shown in Figure 3.  These moves are an augmented list of
the Reidemeister moves, adjusted to take care of the fact that the
diagrams are arranged with respect to a given direction in the plane.
The equivalence relation generated by these moves is called regular
isotopy.  It is one move short of the relation known as ambient
isotopy.  The missing move is the first Reidemeister move shown
below.



In the first Reidemeister move, a curl in the diagram is created or
destroyed.  Ambient isotopy (generated by all the Reidemeister
moves) corresponds to the full topology of knots and links embedded
in three dimensional space. Two link diagrams are ambient isotopic
via the Reidemeister moves if and only if there is a continuous
family of embeddings in three dimensions leading from one link to
the other.  The moves give us a combinatorial reformulation of the
spatial topology of knots and links.

By ignoring the first Reidemeister move, we allow the possibility
that these diagrams can model framed links, that is links with a
normal vector field or,equivalently, embeddings of curves that are
thickened into bands. It turns out to be fruitful to study invariants
of regular isotopy. In fact, one can usually normalise an invariant of
regular isotopy to obtain an invariant of ambient isotopy. We shall
see an example of this phenomenon with the bracket polynomial in a
few paragraphs.

As the reader can see, we have already discussed the algebraic
meaning of moves  0. and 2.  The other moves translate into very
interesting algebra.  Move 3., when translated into algebra, is the
famous Yang-Baxter equation.    The Yang-Baxter equation occurred
for the first time in problems related to  exactly solved models in
statistical mechanics (See [KA96].). All the moves taken together
are directly related to the axioms for a quasi-triangular Hopf
algebra (aka quantum group).  We shall not go into this connection
here.   

There is an intimate connection between knot invariants and the
structure of generalised amplitudes, as we have described them in
terms of vector space mappings associated with link diagrams.  This
strategy for the construction of  invariants is directly motivated by



the concept of an amplitude in quantum mechanics.  It turns out that
the invariants that can actually be produced by this means (that is
by assigning finite dimensional matrices to the caps, cups and
crossings) are incredibly rich.  They encompass, at present,  all of
the known invariants of polynomial type  (Alexander polynomial,
Jones polynomial and their generalisations.).  

Figure 3



It is now possible to indicate the construction of the Jones
polynomial via the bracket polynomial as an amplitude, by specifying
its matrices.   

The cups and the caps are defined by  (Mab) = (Mab) = M where  M

is the 2 x 2 matrix  
(with ii=-1)

Note that  MM = I where  I is the identity matrix.   Note also that
the amplitude for the circle is  

ΣΣΣΣ MabMab = ΣΣΣΣMabMab = ΣΣΣΣ (Mab) 2

=  (iA)2 +  (-iA- 1) 2 =  - A2 - A- 2.

The matrix   R is then defined by the equation

Rab
cd =  AMabMcd +  AIac I b

d , 

or symbolically by

For example, we have the specific evaluation

Since, diagrammatically,  we identify  R with a (right handed)
crossing, this equation can be written diagrammatically as



Taken together with the loop value of  - A2 -  A- 2, 

These equations can be regarded as a recursive algorithm for
computing the amplitude.

This algorithm is the bracket state model for the (unnormali

sed)  Jones polynomial  [KA87].  This model can be studied on its own

grounds.  We end this section with some comments about this

algorithm and its properties.

The Bracket Model
If we were to start with just the calculational formulas as
indicated above but with arbitrary coefficients A and B for the two
smoothings, and an arbitrary loop value d, then it is easy to see that
the resulting method of calculating a three variable polynomial (in
the commuting variables A,B and d)  from a link diagram is well-
defined, although not necessarily invariant under the Reidemeister
moves.  It is then an interesting exercise to see that asking for
invariance under just the second Reidemeister move essentially

forces   B=A-1 and 

d=-A2- A- 2.  Thus the parameters arising from the algebra that we



have sketched actually come directly from the topology. It is equally
easy to see the the resulting Laurent polynomial is a well defined
invariant of regular isotopy. Lets denote that invariant by <K>, the
(unnormalised) bracket polynomial of K.  In this version of the

bracket we have  <O> = -A2- A-2 where  O  denotes a circle in the

plane.  If we define  fK(A) = (-A3)-w(K)<K>/<O> where w(K) denotes

the sum of the signs of the crossings in an oriented link K (See
[KA87] or [KA91].), then  fK(A)  is an invariant of ambient isotopy and

the original Jones polynomial [JO86], VK(t)  is given by the formula 

VK(t) = fK( t- 1 / 4) .

The bracket model for the Jones polynomial is quite useful both
theoretically and in terms of practical computations. One of the
neatest applications is to simply compute fK(A) for the trefoil knot

T

and determine that fK(A) is not equal to fK(A- 1).  This shows that

the trefoil is not ambient isotopic to its mirror image, a fact that is
quite tricky to prove by classical methods.

IV. Topological Quantum Field Theory - First Steps
In order to further justify this idea of the amplification of Dirac
notation, consider the following scenario.  Let M be a 3-dimensional
manifold.   Suppose that F is a closed orientable surface inside M
dividing  M into two pieces  M1 and M2 .  These pieces are 3-

manifolds with boundary.  They meet along the surface F.  Now
consider an amplitude   <M2 |M1 > =  Z(M).   The form of this

amplitude generalises our previous considerations, with  the surface
F constituting the distinction between the “preparation”  M1 and 



the “detection” M2 .   This generalisation of the Dirac amplitude

<b|a> amplifies the notational distinction consisting in the vertical
line of the bracket to a topological distinction in a space M.   The
amplitude  Z(M) will be said to be a topological amplitude for M i f
i t is a topological invariant of the 3-manifold M.   Note that a
topological amplitude does not depend upon the choice of surface F
that divides M. 

From a physical point of view the independence of the topological
amplitude on the particular surface that divides the 3-manifold is
the most important property.  An amplitude arises in the condition
of one part of the distinction carved in the 3-manifold acting as
“the observed”  and the other part of the distinction acting as  “the
observer”.   If the amplitude is to reflect physical  (read
topological) information about the underlying manifold, then it
should not depend upon this particular decomposition into observer
and observed.  The same remarks  apply to 4-manifolds and interface
with ideas in relativity.  We mention 3-manifolds  because it is
possible to describe many examples of topological amplitudes in
three dimensions.  The matter of 4-dimensional amplitudes is a
topic of current research.   The notion that an amplitude be
independent of the distinction producing it is prior to topology.



Topological invariance of the amplitude is a convenient and
fundamental way to produce such independence.

This sudden jump to topological amplitudes has its counterpart in
mathematical physics.  In [WIT89]  Edward Witten proposed a
formulation of a class of 3-manifold invariants as generalised
Feynman integrals taking the form Z(M) where  

Z(M) = SSSSdAexp[( ik /4p)S(M,A) ] .  

Here  M denotes a 3-manifold without boundary and A is a gauge
field  (also called a qauge potential or gauge connection)  defined on
M. The gauge field is a one-form on M with values in a
representation of a  Lie algebra. The group corresponding to this Lie
algebra is said to be the gauge group for this particular field.  In
this integral the “action”   S(M,A) is taken to be the integral over
M of the trace of the Chern-Simons three-form    

CS = AdA + (2/3)AAA.
(The product is the wedge product of differential forms.) 

Instead of integrating over paths, the integral Z(M) integrates over
all gauge fields modulo gauge equivalence.   This generalisation from
paths to fields is characteristic of quantum field theory.  Quantum
field theory was designed in order to accomplish the quantisation of
electromagnetism.  In quantum electrodynamics the classical entity
is the electromagnetic field.  The  question posed  in this domain is
to find the value of an amplitude for starting with one field
configuration and ending with another. The analogue of all paths
from point a to point b is “all fields from field A to field B”. 

Witten’s integral  Z(M) is, in its form,  a typical integral in
quantum field theory.  In its content  Z(M) is highly unusual.   The
formalism of the integral, and its internal logic supports  the
existence of a large class of topological invariants of 3-manifolds
and associated invariants of knots and links in these manifolds. 

Invariants of three-manifolds were initiated by Witten as functional
integrals in [WIT89] and at the same time defined in a combinatorial
way by Reshetikhin and Turaev in [RT91].  The Reshetikhin-Turaev



definition proceeds in a way that is quite similar to the definition
that we gave for the bracket model for the Jones polynomial in
section 2. It is an amazing fact that Witten’s definition seems to
give the very same invariants. We are not in a position to go into the
details of this correspondence here. However, one theme is worth
mentioning: For k large, the Witten integral is approximated by those
gauge connections A for which S(M,A) has zero variation with
respect to change in A.  These are the so-called flat connections.  It
is possible in many examples to calculate this contribution via both
the functional integral and by the combinatorial definition of
Reshetikhin and Turaev.  In all cases, the two methods agree (See e.g.
[GF91]).  This is one of the pieces of evidence in a puzzle that
everyone expects will eventually justify the formalism of the
functional integral.  Note how this case corresponds exactly to the
relation of classical and quantum physics as it was discussed in 
Section 1.

In order to obtain invariants of knots and links from Witten’s
integral, one adds an extra bit of machinery to the brew. The new
machinery is the Wilson loop. The Wilson loop is an exponentiated
version of integrating the gauge field along a loop  K. We take this
loop K in three space to be an embedding (a knot) or a curve with
transversal self-intersections. It is usually indicated by the
symbolism

t r (Pexp (SSSSKA)) .

Here the P denotes  path ordered integration -  that is we are
integrating and exponentiating matrix valued functions, and one
must keep track of the order of the operations.  The  symbol  t r
denotes the trace of the resulting matrix.

With the help of the Wilson loop function on knots and links,  Witten
[WIT89] writes down a functional integral for link invariants in a 3-
manifold  M:

Z(M,K) = SSSS dAexp[(ik/4p)S(M,A)] tr(Pexp( SSSSKA ) ) .

Here S(M,A) is the Chern-Simons Lagrangian, as in the previous



discussion.

If one takes the standard representation of the Lie algebra of  SU(2)
as 2x2 complex matrices then it is a fascinating exercise to see

that the formalism of Z(S3 ,K ) (S3 denotes the three-dimensional
sphere.) yields up the original Jones polynomial with the basic
properties as discussed  in section 1.  See Witten’s paper or [WIT89]
or [KA91],[KA95] for discussions of this part of the heuristics. 

This approach to link invariants crosses boundaries between

different methods.  There are close relations between Z(S3 ,K) and
the invariants defined by Vassiliev (See [BAR95],[KA95].), to name
one facet of this complex crystal.

This deep relationship between topological invariants in low
dimensional topology  and quantum field theory in the sense of
Witten’s functional integral is really still in its infancy.  There will
be many surprises in the future as we discover that what has so far
been uncovered is only the tip of an iceberg.

V. Categorical Physics
We have seen that in quantum topology and topological quantum field
theory, the Dirac notational viewpoint on quantum mechanics has
become amplified into a framework that embraces amplitudes
associated with topological spaces and with embeddings of one
space within another (e.g. knots and links in three dimensional
space).  The brackets, kets and bras are generalized to become maps
of vector spaces associated with these topological spaces in a
category that allows tensor products (Thus we associated many
tensor products of a single vector space V with itself in analyzing
knots).  The correct formal notion is that of a tensor category, but I
will omit the precise definition in this informal discussion. On the
other hand, the notion of category is worth examining in this
context.

A category is a set with two types of elements called objects and
morphisms. A morphism f  is associated with two objects A and B
and is written



f: A -----> B
where we say that f  is a morphism from A to B. In a category if
there is a morphism f:A -----> B and a morphism g:B----->C,  then
there is a morphism gf:A----->C called the composition of f and g.
Composition of morphisms is associative and every object A has a
morphism I(A):A----->A such that if f:A----->B is any other
morphism then I(B)f = fI(A) = f. These properties comprise the
definition of a category.

Given a category C and another category C’ we say that 
F:C---->C’ is a functor from C to C’ if F takes objects to objects,
morphisms to morphisms, F applied to an identity morphism in C is
an identity morphism in C’ and F applied to a composition of
morphisms in C is equal to the composition of the corresponding
morphisms in C’. In other words, F(I(A)) = I(F(A)) for any object A in
C, and F(ab) = F(a)F(b) for any composable morphisms a and b in C.  A
functor is a structural mapping from one category to another.

The morphisms in a category are not necessarily functions from
some set to another set.  Rather they are directed structural
relations that are of significance in a particular domain. A case in
point is our discussion of knots where we associated linear
mappings to cups, caps, crossings and compositions of these forming
all sorts of knots and tangles. The cups, caps and crossings can be
regarded by themselves as the generating morphisms for a tensor
category whose objects are just ordered collections of points
(including the empty collection!) corresponding to the endpoints of
arcs. Composition of morphisms corresponds to attaching endpoints
together in the fashion that we described in that section.  We call
this category the (unoriented) tangle category. The association of
linear mappings to elements in the tangle category that we so
carefully described in our section on knots and links comprises a
functor from the tangle category to the category of vector spaces
and linear mappings.

Quantum amplitudes are calculated in the vector space category.
The functor that we described from tangles to vector spaces tells us
how to do “quantum mechanics” on the tangle category.
But this quantum mechanics is a generalization of the usual quantum
mechanics. The underlying topological spaces (here the knots and



links) have quantum states, but they themselves are classical (at
least in the sense that our abstraction of a knot from the physical
rope embodies properties from classical physics).  These same
issues necessarily come up when trying to marry quantum mechanics
and relativity theory since one wants to bring an underlying
topological manifold (with changing topology and metric) into the
discussion.

Furthermore, the issue of measurement is directly related to cutting
the spaces apart or making distinctions in the underlying space. Thus
in our example with three manifolds in the last section we divided
the three manifold into parts M1 and M2 and then looked at the

amplitude <M2| M1>.  In this view either half of the manifold can be

regarded as an observer of the other half.  

This description of states of affairs is very similar to the time-
honored discussion of the relationship of ordinary language and the
classical description of measuring apparatus in relation to quantum
mechanical calculations.  Thus we could begin to formalize quantum
mechanics as a special sort of functor whose domain category is a
classical category analogous to knots, links and manifolds, and
whose range category is an appropriate tensor category where
amplitudes and observables can be computed.  The classical category
then gets structured in a non-classical way by this functor.

Here is another example of a structure of the sort that I just
described.  Consider the set of finite directed multi-graphs.  Call a
node in a graph G an input node if it has exactly one directed edge
emanating from it and no edges entering it. Call a node an output
node if it has exactly one edge entering it and no edges leaving it.
Let DG(n) denote the set of digraphs of this kind that have n inputs
and n outputs. Further assume that each such graph is equipped with
an ordering of its inputs and an ordering of its outputs.  Thus G in
DG(n) will have inputs labelled 1,2,3,..., n and outputs labelled
1,2,3,...,n.   Given G and H in DG(n) we define their composition GH by
attaching the  kth output of G to the  kth input of H (by removing
corresponding nodes and amalgamating the two directed edges at
those nodes to a single edge).  As shown below, the graph I
consisting of n parallel edges is an identity for this composition. 



The upshot is that G(n) is a category where the digraphs are
the morphisms and the one object is the ordered set {1,2,...,n}.
Juxtaposition of graphs gives a tensor structure and a mapping 
DG(n) x DG(m) -----> DG(n+m). With a little work, all the DG(n)’s can
be put together in one category DG. When n=0, we have digraphs
without inputs or outputs, analogous to knots and links. Clearly the
categories DG(n) are analogous to n-strand tangles as we have
discussed them in the section on knot amplitudes.

A functor on DG(n) that takes the category to vector spaces and
linear maps can be constructed by associating a linear mapping or
matrix to each different species of directed node in the graphs under
consideration.  Then compostion  of graphs will correspond to matrix
multiplication in much the same manner as our discussion for knots
and links. To give a simple example, lets work in DG(1).  Then each
graph has one input and one output. Then we regard the input line of
the graph as corresponding to the left index of a matrix and the
output line as corresponding to the right index of a matrix. If G is
the graph and F(G) the corresponding matrix then GH corresponds to
F(G)F(H) if we regard the tying of the output line of G to the input
line of H as connoting summation over all possibilities for the
common index and take the sum of the products of the matrix entries
for F(G) and F(H).   This defines a functor from DG(1) to the category



of matrices where the morphisms are the matrices and  composition
is the matrix product.

In multiplying matrices M and N we have (MN)i j = Sk Mi kNk j.

In the graph category, the internal edge corresponds to the index
susceptible to summation.

With this interpretation, many elementary formulas and patterns of
quantum mechanics become simple matters of diagrammatics.     For
example, if we are computing  tr(MP)  (tr denotes trace) where P is a
projection operator P=|A><A|, then it is easy to see in the graph
category that tr(MP) = <A|M|A>.

This example also indicates how to conceptualize measurement 
in the graph category.   An elementary measurement consists in
inserting a projector P into a link in the graph. The effect of such an
insertion is non-local since the amplitudes are computed via the
functor to the matrix category and conseqently involve summations
over all states of the graph (where a state consists in assignments
of indices to all the internal lines of the graph and the amplitude is
computed by summing over all the products of the resulting matrix
elements).  



The graph is a classical but abstract description of a set of
relationships. The functor that computes amplitudes from the graph
does a non-local computation involving the graph as a whole. If we
imagine that the universe is a large network analogous to such a
graph then it will be neccessary to understand how one part of the
network becomes an observable for the rest and how this classical
level of description intertwines with the quantum amplitude
functor. 

VI. Speculations on Quantum Computing 
In this paper I have concentrated on giving a picture of the general
framework of quantum topology and how it is related to a very
general, in fact categorical, view of quantum mechanics.
Many algorithms in quantum topology are configured without regard
to unitary evolution of the amplitude since the costraint has been
topological invariance rather than conformation to physical reality.
This gives rise to a host of problems (that we shall discuss
elsewhere) of attempting to reformulate topological amplitudes as
quantum computations. A particular case in point is the bracket
model for the Jones polynomial.  It would be of great interest to see
a reformulation of this algorithm that would make it a quantum
computation in the strict sense of quantum computing.  

There are other ideas in the topology that deserve comparison with
the quantum states.  For example, topological entanglement in the
sense of linking and braiding is intuitively related to the
entanglement of quantum states. This is actually the case for the
quantum topological states associated with the bracket polynomial,
and undoubtedly would figure strongly in a quantum computing model
of this algorithm.   For this and many other reasons it is worthwhile
to make the comparison between quantum computing and quantum
computation.

VII. Summary
We have, in this short paper,  given an almost unbroken line of
argument from the beginnings of quantum mechanics to the
construction of topological quantum field theories and link
invariants associated with quantum amplitudes.   



One of the most exciting prospects for these new invariants is the
possibility of their application in quantum gravity. See [BAE94] for
an account of these developments.  Many other applications are
possible, and the subject is just beginning.  For a survey of past and
present applications of knots and links we refer the reader to
[KAU95] [KA98],[KAU98]. 

For a good survey of quantum computing we recommend  [AH98] and
for another view of topological issues see [FR98].
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