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Abstract: This essay is a discussion of  the concept of reflexivity and its 
relationships with self-reference, re-entry, eigenform and the foundations of physics. 
 
I. Introduction 
Reflexive is a term that refers to the presence of a relationship between an entity and 
itself. One can be aware of one's own thoughts. An organism produces itself through 
its own action and its own productions. A market or a system of finance is composed 
of actions and individuals, and the actions of those individuals influence the market 
just as the global information from the market influences the actions of the 
individuals. Here it is the self-relations of the market through its own structure and 
the structure of its individuals that moves its evolution forward. Nowhere is there a 
way to effectively cut an individual participant from the market and make him into 
an objective observer. His action in the market is concomitant to his being 
reflexively linked with that market. Just so for theorists of the market for their 
theories, if communicated become part of the action and decision-making of the 
market. Social systems partake of this same reflexivity, and so does apparently  
objective science and mathematics. In order to see the reflexivity of the practice of 
physical science or mathematics, one must leave the idea of an objective domain of 
investigation in brackets and see the enterprise as a large conversation among a 
group of investigators. Then, at once, the process is seen to be a reflexive interaction 
among the members of this group. Mathematical results, like all technical inventions, 
have a certain stability over time that gives them an air of permanence, but the 
process that produces these novelties is every bit as fraught with circularity and 
mutual influence as any other conversation or social interaction. 
 
How then, shall we describe a reflexive domain? It is the purpose of this paper to 
give a very abstract definition that nevertheless captures, what I believe to be the 
main conceptual feature of reflexivity. We then immediately prove that eigenforms, 
fixed points of transformations, are present for all transformations of the reflexive 
domain. This will encourage us and it will give us pause. 
 
The existence of eigenforms will encourage us, for we have previously studied them 
with the notion that "objects are tokens for eigenbehaviour".  Eigenforms are the 
natural emergence of those tokens by way of recursion. So to find the eigenforms 
dictated by a larger concept is pleasing. But we shall also need to pause. 
 
For the existence of fixed points for arbitrary transformations will show us that the 
domain we have postulated is indeed very wide.  
 



It is not an objectively existing domain. It is a clearing in which structures can arise 
and new structures can arise. A reflexive domain is not an already-existing structure. 
Not at all. To be what it claims to be, a reflexive domain must be a combination of 
existing structure and an invitation to create new structure and new concepts. The 
new will become platforms from which further flights of creativity can be made. 
Thus in the course of examining the concept of reflexivity we will find that the 
essence of the matter is an opening into creativity, and that will become the actual 
theme of this paper. 
 
We are particularly interested in the way these concepts of reflexivity affect 
fundamentals of topology and fundamentals of physics. The last parts of this essay 
are a reformulation of elementary mathematics of matrices, complex numbers and 
exponentials in terms of process, reflexivity and eigenform. 
 
We then show how quantum mechanics and discrete physics acquire a new point of 
view in the light of these interpretations. The reader may wish to skip directly to 
Section XII to see how this part of the argument proceeds. 
 
Our  essay begins with explication of the notion of eigenform as pioneered by Heinz 
von Foerster in his papers [4, 5,6,7] and explored in papers of the author [11, 12]. In 
[5] The familiar objects of our existence can be seen to be nothing more than tokens 
for the behaviors of the organism, creating apparently stable forms. Such an attitude 
toward objects makes it impossible to discriminate between the object as an element 
of a world and the object as a token or symbol that is simultaneously a process.    
 
The notion of an eigenform is inextricably linked with  second order cybernetics. 
One starts on the road to such a concept as soon as one begins to consider a pattern 
of patterns, the form of form or the cybernetics of cybernetics. Such concepts appear 
to loop around upon themselves, and at the same time they lead outward to new 
points of view.  Such circularities suggest a possibility of transcending the 
boundaries of a system within.  When the circular concept is called into being, the 
boundaries turn inside out.   
 
An object , in itself , is a symbolic entity, participating in a network of interactions, 
taking on its apparent solidity and stability from these interactions. We ourselves are 
such objects, we as human beings are "signs for ourselves",  a concept originally due 
to the American philosopher C. S. Peirce [10]. Eigenforms are mathematical 
companions to Peirce's work.   
  
In an observing system, what is observed is not distinct from the system itself, nor 
can one make a separation between the observer and the observed. The observer and 
the observed  stand together in a coalescence of perception. From the stance of the 
observing system all objects are non-local, depending upon the presence of the 
system as a whole. It is within that paradigm that these models begin to live, act and 
enter into conversation with us.   
 
After this journey into objects and eigenforms, we take a wider stance and consider 
the structure of spaces and domains that partake of the reflexivity of object and 



process. We make a definition of a reflexive domain  (compare [1] and [18]). Our 
definition populates a space (domain) with entities that could be construed as objects, 
and we assume that each object acts as a transformation on the space. Essentially this 
means that given entities A and B, then there is a new entity C that is the result of A 
and B acting together in the order AB (so that one can say that "A acts on B" for AB 
and one can say "B acts on A" for BA). This means that the reflexive space is 
endowed with a non-commutative  and non-associative algebraic structure. The 
reflexive space is expandable in the sense that whenever we define a process, using 
entities that have already been constructed or defined, then that process can take a 
name, becoming a new entity/transformation of a space that is expanded to include 
itself.. Reflexive spaces are open to evolution in time, as new processes are invented 
and new forms emerge from their interaction.  
 
Remarkably, reflexive spaces always have eigenforms for every 
element/transformation/entity in the space! The proof is simple but requires 
discussion.  
 

Given F in a reflexive domain, define G by Gx = F(xx). 
Then GG = F(GG) and so GG is an eigenform for F.  

 
Just as promised, in a reflexive domain, every entity has an eigenform. From this 
standpoint, one should start with the concept of reflexivity and see that from it 
emerge eigenforms.  Are we satisfied with this approach? We are not satisfied. For in 
order to start with reflexivity, we need to posit objects and processes. As we have 
already argued in this essay, objects are tokens for eigenbehaviours. And a correct or 
natural beginning is process where objects are seen as tokens of processes.   
 
By now the reader begins to see that the story we have to tell is a circular one. We 
give a way to understand this circularity with Section X where we discuss creativity 
in recursive process and the emergence of novelty. 
 
The reader will see that we have woven a tale the goes back and forth between 
recursion and idealized eigenforms. This means that we are sometimes considering 
abstractions such as reflexive domains and their algebraic properties and we are 
sometimes looking at the particulars of recursions directly related to automata or to 
specific complex numbers. Here follows a précis of the paper from the point of view 
of both the algebras and the physics. 
 
This paper explores the analogies of fixed points, observations and observables, 
eigenvectors and recursive processes in relation to foundations of physics. In 
particular we shall re-open the books on the complex numbers and view them in 
terms of recursion and reflexivity, finding new and natural ways to think about their 
roles in physical theory (Section XIII).  
 
To give a hint, think of the oscillatory process generated by R(x) = -1/x. The fixed 
point is i with i2 = -1, but the processes generated over the real numbers must be 
directly related to the idealized i. We shall let I{+1,-1} stand for an undisclosed 
alternation or ambiguity between +1 and -1 and call I{+1,-1} an iterant. There are 



two iterant views: [+1,-1] and [-1,+1]. These, seen as points of view of alternating 
process will become the square roots of negative unity. We introduce a temporal shift 
operator η  such that  
 

[a,b]η  = η [b,a]  and  ηη   = 1   
 

so that concatenated observations can include a time step of one-half period of the 
process ...abababab... . We combine iterant views term-by-term as in [a,b][c,d] = 
[ac,bd]. Then we have,  with i = [1,-1]η   (i is view/operator), 
 

ii = [1,-1]η  [1,-1]η   = [1,-1][-1,1]η  η   = [-1,-1] = -1. 
 
This gives rise to a new process-oriented construction of the complex numbers, 
quaternions,  and in fact of all of matrix algebra. 
 
We relate this point of view to thinking about the role of complex numbers in 
quantum mechanics and the role of temporal shift operators in discrete physics, that 
begins with the understanding that temporal shift operators  allow  discrete calculus 
to be represented in a non-commutative (Lie algebraic) context where all derivatives 
are represented by commutators. (Section XIV.) 
 
We also relate these ideas of reflexivity and fixed points to left or right distributive 
non-associative algebras and their relationships with knot theory in Section VI. We 
relate this with approaches to wholeness in physics and philosophy such as the work 
of Barbara Piechosinska [16]. A magma is a non-associative algebra with a single 
binary operation that is left-associative:  
 

a*(b*c) = (a*b)*(a*c). 
 

Note that this axiom says that every element A of the magma is a structure 
preserving mapping of the magma to itself:  
 

A(x*y) = (A*x)*(A*y).  
 

The notion of a magma is another view of what should be a self-reflexive domain. 
We raise questions about the relationship of magmas and reflexive domains and, in 
Section VI,  illustrate the remarkable and deep relationships among magmas and 
knots and braids.  
 
II. Objects as Tokens for Eigenbehaviours  
In his paper "Objects as Tokens for Eigenbehaviours" [5] von Foerster suggests that 
we think seriously about the mathematical structure behind the constructivist 
doctrine that perceived worlds are worlds created by the observer.  At first glance 
such a statement appears to be nothing more than solipsism.  At second glance, the 
statement appears to be a tautology, for who else can create the rich subjectivity of 
the immediate impression of the senses? At third glance, something more is needed.  
In that paper he suggests that the familiar objects of our experience are the fixed 
points of operators.  These operators are the structure of our perception. To the 



extent that the operators are shared, there is no solipsism in this point of view.  It is 
the beginning of a mathematics of second order cybernetics. 
 
Consider the relationship between an observer O and an "object" A. The key point 
about the observer and the object is that "the object remains in constant form with 
respect to the observer". This constancy of form does not preclude motion or change 
of shape.  Form is more malleable than the geometry of Euclid.  In fact, ultimately 
the form of an "object" is the form of the distinction that "it" makes in the space of 
our perception.  In any attempt to speak absolutely about the nature of form we take 
the form of distinction for the form. (paraphrasing Spencer-Brown [3]). It is the form 
of distinction that remains constant and produces an apparent object for the observer. 
How can you write an equation for this?  The simplest route is to write 
 

O(A) = A. 
 

The object  A is a fixed point for the observer O.  The object is an eigenform.  We 
must emphasize that this is the most schematic possible description of the condition 
of the observer in relation to an object A.  We only record that the observer as an 
actor (operator) manages through his acting to leave the (form of) the object 
unchanged.  This can be a recognition of the symmetry of the object but it also can 
be a description of how the observer, searching for an object, makes that object up 
(like a good fairy tale) from the very ingredients that are the observer herself.  This is 
the situation that Heinz von Foerster has been most interested in studying.  As he 
puts it, if you give a person an undecideable problem, then the answer that he gives 
you is a description of himself.  And so, by working on hard and undecideable 
problems we go deeply into the discovery of who we really are.  All this is 
symbolized in the little equation  O(A) = A. 
 
And what about this matter of the object as a token for eigenbehaviour?  This is the 
crucial step. We forget about the object and focus on the observer.  We attempt to 
"solve" the equation O(A) = A with A as the unknown. Not only do we admit that 
the "inner" structure of the object is unknown, we adhere to whatever knowledge we 
have of the observer and attempt to find what such an observer could observe based 
upon that structure. 
 
We can start anew from the dictum that the perceiver and the perceived arise together 
in the condition of observation. This is a stance that insists on mutuality  (neither 
perceiver nor the perceived causes the other). A distinction has emerged and with it  
a world with an observer and an observed. The distinction is itself an eigenform.  
 
III. Compresence and Coalescence 
We, identify the world in terms of how we shape it. We shape the world in response 
to how it changes us. We change the world and the world changes us. Objects arise 
as tokens of  a behavior that  leads to seemingly unchanging forms.  Forms are seen 
to be unchanging through their invariance under our attempts to change, to shape 
them. 



 
For an observer there are two primary modes of perception -- compresence and 
coalesence.  Compresence connotes the coexistence of separate entities together in 
one including space. Coalesence connotes the one space holding, in perception, the 
observer and the observed, inseparable in an unbroken wholeness. Coalesence is the 
constant condition of our awareness. Coalesence is the world taken in simplicity. 
Compresence is the world taken in apparent multiplicity. 
  
This distinction of compresence and coalesence, drawn by Henri Bortoft [2], can act 
as a compass in traversing the domains of object and reference. Eigenform is a first 
step towards a mathematical description of coalesence.  In the world of eigenform 
the observer and the observed are one in a process that recursively gives rise to each. 
 
 
IV. The Eigenform Model 
We have seen how the concept of an object has evolved to make what we call objects 
(and the objective world) processes that are interdependent with the actions of 
observers. The notion of a fixed object has become a notion of a process that 
produces the apparent stability of the object. This process can be simplified in a 
model to become a recursive process where a rule or rules are applied time and time 
again.  The resulting object of such a process is the eigenform of the process, and the 
process itself is the eigenbehaviour.  
 
In this way we have a model for thinking about object as token for eigenbehaviour.   
This model examines the result of a simple recursive process carried to its limit. For 
example, suppose that 

 
 
That is, each step in the process encloses the results of the previous step within a 
box. Here is an illustration of the first few steps of the process applied to an empty 
box X:  
 

 
 
If we continue this process, then successive nests of boxes resemble one another, and 
in the limit of infinitely many boxes, we find that  

F(X) = X

X F(X) F(F(X)) F(F(F(X)))



 
 
the infinite nest of boxes is invariant under the addition of one more surrounding 
box. Hence this infinite nest of boxes is a fixed point for the recursion. In other 
words, if X denotes the infinite nest of boxes, then 
 

X = F(X). 
 
This equation is a description of a state of affairs.  The form of an infinite nest of 
boxes is invariant under the operation of adding one more surrounding box. The 
infinite nest of boxes is one of the simplest eigenforms. 
 
In the process of observation, we interact with ourselves and with the world to 
produce stabilities that become the objects of our perception. These objects, like the 
infinite nest of boxes, may go beyond the specific properties of the world in which 
we operate. They attain their stability through the limiting process that goes outside 
the immediate world of individual actions. We make an imaginative leap to complete 
such objects to become tokens for eigenbehaviours. It is impossible to make an 
infinite nest of boxes. We do not make it. We imagine it. And in imagining that 
infinite nest of boxes, we arrive at the eigenform.  
 
The leap of imagination to the infinite eigenform is a model of the human ability to 
create signs and symbols. In the case of the eigenform X with X = F(X), X can be 
regarded as the name of the process itself or as the name of the limit process. Note 
that if you are told that  
 

X = F(X), 
 
then substituting F(X) for X, you can write 
 

X = F(F(X)). 
 
Substituting again and again, you have 
 

...X=F(F(F(...)))=

...F(X) = = X



X = F(F(F(X))) = F(F(F(F(X)))) = F(F(F(F(F(X))))) = ... 
  
The process arises from the symbolic expression of its eigenform. In this view the 
eigenform is an implicate order for the process that generates it.  
 
Sometimes one stylizes the structure by indicating where the eigenform X reenters its 
own indicational space by an arrow or other graphical device. See the picture below 
for the case of the nested boxes. 

 
 
Does the infinite nest of boxes exist? Certainly it does not exist in this page or 
anywhere in the physical world with which we are familiar. The infinite nest of 
boxes exists in the imagination.  It is a symbolic entity. 
 
Eigenform is the imagined boundary in the reciprocal relationship of the object (the 
"It") and the process leading to the object (the process leading to "It").  In the 
diagram below we have indicated these relationships with respect to the eigenform of 
nested boxes. Note that the "It" is illustrated as a finite approximation (to the infinite 
limit) that is sufficient to allow an observer to infer/perceive the generating process 
that underlies it. 
 

... =



 
 
Just so, an object in the world (cognitive, physical, ideal,...) provides a conceptual 
center for the exploration of a skein of relationships related to its context and to the 
processes that generate it.  An object can have varying degrees of reality just as does 
an eigenform. If we take the suggestion to heart that objects are tokens for 
eigenbehaviours, then an object in itself is an entity, participating in a network of 
interactions, taking on its apparent solidity and stability from these interactions.  
 
An object is an amphibian between the symbolic and imaginary world of the mind 
and the complex world of personal experience.  The object, when viewed as process, 
is a dialogue between these worlds. The object when seen as a sign for itself, or in 
and of itself, is imaginary. 
 
Why are objects apparently solid? Of course you cannot walk through a brick wall 
even if you think about it differently.  I do not mean apparent in the sense of thought 
alone. I mean apparent in the sense of appearance.  The wall appears solid to me 
because of the actions that I can perform. The wall is quite transparent to a neutrino, 
and will not even be an eigenform for that neutrino. 
 
This example shows quite sharply how the nature of an object is entailed in the 
properties of its observer. 
 

The It

The Process leading to It.

...



The eigenform  model can be expressed  in quite abstract and general terms.  
Suppose that we are given a recursion  (not necessarily numerical) with the equation 
 

X(t+1) = F(X(t)). 
 

Here X(t) denotes the condition of observation at time t.  X(t) could be as simple as a 
set of nested boxes, or as complex as the entire configuration of your body in relation 
to the known universe at time t. Then F(X(t)) denotes the result of applying the 
operations symbolized by F to the condition at time t. You could, for simplicity, 
assume that F is independent of time. Time independence of the recursion F will 
give us simple answers and we can later discuss what will happen if the actions 
depend upon the time. In the time independent case we can write 
 

J = F(F(F(...))) 
 

the infinite concatenation of F upon itself.  Then  
 

F(J) = J 
 

since adding one more F to the concatenation changes nothing. 
 
Thus J, the infinite concatenation of the operation upon itself leads to a fixed point 
for F. J is said to be the eigenform for the recursion F. We see that every recursion 
has an eigenform. Every recursion has an (imaginary) fixed point. 
 
We end this section with one more example. This is the eigenform of the Koch 
fractal [14]. In this case one can write  symbolically the eigenform equation 
 

K = K{ K K }K 
 
to indicate that the Koch Fractal reenters its own indicational space four times (that 
is, it is made up of four copies of itself, each one-third the size of the original.  The 
curly brackets in the center of this equation refer to the fact that the two middle 
copies within the fractal are inclined with respect to one another and with respect to 
the two outer copies.  In the figure below we show the geometric  configuration of 
the reentry. 
 



 
 
In the geometric recursion, each line segment at a given stage is replaced by four line 
segments of one third its  length, arranged  according to the pattern of reentry as 
shown in the figure above.  The recursion corresponding to the Koch eigenform is 
illustrated in the next figure. Here we see the sequence of approximations leading to 
the infinite self-reflecting eigenform that is known as the Koch snowflake fractal. 

K = K { K K } K



 
 
Five stages of recursion are shown. To the eye, the last stage vividly  illustrates how 
the ideal fractal form contains four copies of itself, each one-third the size of the 
whole. The abstract schema 
 

K = K { K K } K 
 
for this fractal can itself be iterated to produce a "skeleton" of the  geometric 
recursion: 
 

K = K { K K } K 
= K { K K } K  {  K { K K } K  K { K K } K  } K { K K } K 

= ... 
 
We have only performed one line of this skeletal recursion. There are sixteen K's in 
this second expression just as there are sixteen line segments in the second stage of 
the geometric recursion. Comparison with this symbolic recursion shows how 
geometry aids the intuition. The interaction of eigenforms with the geometry of 



physical, mental, symbolic and spiritual landscapes is an entire subject that is in need 
of deep exploration.  
 
It is usually thought that the miracle of recognition of an object arises in some simple 
way from the assumed existence of the object and the action of our perceiving 
systems.  This is a fine tuning to the point where the action of the perceiver and the 
perception of the object are indistinguishable. Such tuning requires an intermixing of 
the perceiver and the perceived that goes beyond description.  Yet in the 
mathematical levels, such as number or fractal pattern, part of the process is slowed 
down to the point where we can begin to apprehend the process.   There is a stability 
in the comparison, in the correspondence that is a process happening at once in the 
present time. The closed loop of perception occurs in the eternity of present 
individual time. Each such process depends upon linked and ongoing 
eigenbehaviours and yet is seen as simple by the perceiving mind. The perceiving 
mind is itself an eigenform. 
 
Mirror-Mirror 
In the next figure we illustrate how an eigenform can arise from a process of mutual 
reflection. The figure shows a circle with a an arrow pointing to a rectangle and a 
rectangle with an arrow pointing  toward a circle. For this example, we take the rule 
that an arrow between two entities  (P -----> Q) means that the second entity  will 
create  an internal image of the first entity (Q will make  an image of P). If P -----> Q 
and Q ------> P, then each entity makes an image of the other. A recursion will ensue. 
Each of P and Q generates  eigenforms in this mutuality.  

 
 

then

then

then



 
In this example we can denote the initial  forms by C (for circle) and B (for box).  
We have C -----> B and B -----> C. The rule of imaging is (symbolically):  
 

If P -----> Q then P -----> QP. 
If P < ------ Q, then PQ <------ Q. 

 
We start with the mutual reference C < -----> B. This condition of mutual mirroring 
can be described by two operators C and B:  
 

C(P)= CP corresponds to C -----> P. 
B(Q) = BQ corresponds to Q < ----- B. 

 
We are solving the eigenform equations 
 

C(Y) = X, 
B(X) = Y. 

 
We have the mirror-mirror solution 
 

X = BCBCBCBC..., 
Y = CBCBCBCB..., 

 
just as in the Figure. 
 
We are quite familiar with this form of mutual mirroring in  the physical realm where 
one can have two facing mirrors, and in  the realm of human relations where the 
complexity of exchange (mutual mirroring) between two individuals leads to the 
eigenform of their relationship.  
 
 
V. Reflexive Domains 
A reflexive domain D is an arena where actions and processes that transform the 
domain can also be seen as the elements that compose the domain.  Every element of 
the domain can be seen as a  transformation of the domain to itself. 
 
In actual practice an element of a domain may be a person or company (collective of 
persons) or a physical object or mechanism that is seen to be in action.  In actual 
practice we must note that what are regarded as objects or entities depends upon the 
way in which observers inside or outside the domain divide their worlds. 
 
It is very difficult to make a detailed mathematical model of such situations.  Each 
actor is an actor in more than one play. His actions undergo separate but related 
interpretations, depending upon the others with whom he interacts. Mutual feedback 
of a multiplicity of ongoing processes is not easily described in the Platonic terms of  
pure mathematics. 
 



Nevertheless, we take as a general principle for a mathematical model that D is a 
certain set (possibly evolving in time), and we let [D,D] denote a selected collection 
of mappings from D to D.  An element F of [D,D] is a mapping  F:D ----->D.  
 
We shall assume that there is a 1-1 correspondence I:D -----> [D,D].  This is the 
assumption of reflexivity. Every element of the reflexive domain is a transformation 
of that domain. Each denizen of the reflexive domain  has a dual role of actor and 
actant. 
 
Given an element g in D,  I(g):D ----> D is a mapping from D to D,  and for every 
mapping  F:D ----> D, there is an element g in D such that I(g) = F. The reflexive 
domain embodies a perfect correspondence between actions, and entities that are the 
recipients of these actions. 
 
An important precursor to this notion of reflexive domain in mathematics is the 
notion of Goedel numbering of texts. One chooses a method to encode a text as a 
specific natural number (a certain product of prime powers). Then texts that speak 
about numbers can, in principle speak about other texts and even about themselves. 
If a text is seen as a transformation on the field of numbers, then that text is itself a 
number (its Goedelian code) and so can be transforming itself. The precision of this 
idea enabled Goedel to construct mathematical systems that could talk about their 
own properties without contradiction and he showed that all sufficiently rich 
mathematical systems have this property. In this way, these systems become self-
limiting due to the possibility of statements whose coded meaning becomes "This 
statement has no proof in the system of mathematics in which it is written," while the  
surface meaning of the same statement is a discussion of the properties of certain 
numerical relations. The domain of numerical  relations appears innocuous, and yet it 
sows the seeds of its own limitations through this ability to reflect itself through the 
mirror of the Goedel coding. 
 
The Goedelian example is not just a piece of mathematics. It is a reflection with 
mathematical precision of the condition of our language, thought and action. We are 
always equipped to comment on our own doings and in so doing to create new 
language about our old language and new language about our worlds. All our 
apparent  well-thought-out and directed actions in worlds that seem to extend 
outward from us in an objective way are fraught with the circularity not just of our 
meta-comments, but  also with the circular return of the consequences of those 
actions and the influence of our very theories of the world on the properties of that 
world itself. 
 
We now prove a fundamental theorem about reflexive domains. We show that every 
mapping F:D -----> D has a fixed point p, an element p in D such that F(p) = p. What 
does this mean? It means that there is another way, in a reflexive domain, to 
associate a point to a transformation. The point can be seen as the fixed point of a 
transformation and in that way, the points of the domain disappear into the self-
referential nature of the transformations. 
 



Let me tender persuasions. Suppose that p = F(p). Then we can regard this equation 
as an expression of p in terms of F and itself and write 
 
p  = F(p) 

= F(F(p) 
= F(F(F(p))) 
=F(F(F(F(p)))) 

 
and continue in this fashion until the appearance of p on the right hand side is lost in 
the depths of the composition of F upon itself. 
 

p = F(F(F(F(F(F(F(F(F(F(F(F(F(F(F(F(F(F(F(F(...))))))))))))))))))). 
 
The infinite composition of F upon itself is invariant under one more composition 
with F and so F(p) = p is consistent with this process. 
 
To show that an entity p is a fixed point for a process F is to show  that p can be 
confused with the infinite concatenation of F upon itself. This is an image of the way 
objects become tokens for eigenbehaviours in the language of Heinz von Foerster [ ]. 
Later in  this paper we will discuss the production of many examples of such  
eigenforms, fixed points of repeated transformations. For now, here is the proof of 
the fixed point theorem for reflexive domains. 
 
Fixed Point Theorem.  Let D be a reflexive domain with actor/actant correspondence 
F:D -----> [D,D]. Then every F in [D,D] has fixed point. That is, there exists a p in 
D such that F(p) = p. 
 
Proof.  Define G:D ----> D by the equation 
Gx = F(I(x)x)for each x in D.  
Since I:D -----> [D,D] is a 1-1 correspondence, 
we know that G = I(g) for some g in D.  
Hence Gx = I(g)x = F(I(x)x) for all x in D.  
Therefore, letting x = g,  
I(g)g = F(I(g)g) and so p = I(g)g is a fixed point for F.  
Q.E.D. 
 
We shall discuss this proof and its meaning right now in a series of remarks, and 
later in the paper in regard to examples that will be constructed. 
 
Remark1. 
Suppose that we reduce the notational complexity of our description of the reflexive 
domain by simply saying that for any two entities g and x in the domain there is a 
new entity gx that is the result of the  interaction of g and x. (We think of gx as I(g)x 
= I(g) applied to x.) In mathematical terms, we define 
 

gx = I(g)x. 
 



Then the proof of the fixed point theorem appears in a simpler form: We define Gx = 
F(xx) and note that GG = F(GG). Thus GG is the fixed point for F! 
 
I like to call G  " F's Gremlin". 
 
According to Webster [Webster's New Collegiate Dictionary , G. C. Merriam 
Publishers (1956)] a gremlin is "One of the impish foot-high gnomes whimsically 
blamed by airmen for interfering with motors, instruments, machine guns, etc.; hence 
any like disruptive elf." 
 
This is an apt description of our G. At first G looks  quite harmless. Applying G to 
any A we just apply A to itself and apply F to the result. GA = F(AA). The 
dangerous mixture is comes when it is possible to apply G to itself! Then GG = 
F((GG) and GG is sitting right in there surrounded by F and you cannot stop the 
action. Off goes the recursion 
 
GG = F(GG) 
      = F(F(GG)) 
      = F(F(F(F(GG)))) 
      = F(F(F(F(F(F(F(F(GG)))))))) 
 
The diabolical nature of the Gremlin is that  he represents a process that once started, 
is hard to stop. Such are the processes by which we make the world into a field of 
tokens and symbols and forget the behaviours and processes and reflexive spaces 
from which they came. Fixed points and self-references are the unavoidable fruits of 
reflexivity, and reflexivity is the natural condition in a universe where there is no 
complete separation of part from the whole.  
 
Remark 2. 
A reflexive domain is a place where actions and events coincide.  An action as a 
mapping of the whole space,  because there is no intrinsic separation of the local and 
the global.  Feedback is an attempt to handle the lack of separation of part and whole 
by describing their mutual influence. 
 
When we define a new element g of D via gx = F(x) for any mapping F:D---->D, and 
we have a notion of combination of elements of D: a,b -----> ab, then we can define 
gx = F(xx) and so get gg = F(gg). Here we have not made a big separation between 
the elements of D and the mappings, since each element g of D gives the mapping 
I(g)x = gx. But in fact, we could define ab = I(a)b in a reflexive domain. 
 
Whenever anyone comes up with a transformation, we make that transformation into 
an element of the domain by the definition gx = F(x). We transmute verbs to nouns. 
The reflexive domain evolves. 
 
The space is not given a priori. The space evolves in relation to actions and 
definitions. The road unfolds before us as we travel. 
 
 



Remark 3. 
 
We create languages for evolving concepts.  The outer reaches of set theory (and 
category theory ) lead to clear concepts, but these concepts are not themselves sets or 
categories. A good example is the famous Russellian concept of sets that are not 
members of themselves. Russell's concept is not a set. Another example is the 
concept of set itself. There is no set that is the set of all sets. This very limitation on 
the notion of set is its opening. It shows us that set theory is an evolving language. 
 
Language and concepts expand in time. 
 
Here is a transformation on sets: F(X) = {X}. The transform of  a set X is the 
singleton set whose member is X. If  X  is not a member of itself, then F(X) is also 
not a member of itself.  But a fixed point of the transformation F is an entity  U such 
that {U} = U.  We have shown that within the domain of sets that are not members of 
themselves, there is no fixed point for the transformation X -----> {X}. This 
fragment of set theory (sets that are not members of themselves) is not yet a reflexive 
domain. We shall at least allow sets that are members of themselves if we wish to 
have a set theory with reflexivity. 
 
Remark 4. 
 
Transcendence 
 
The leap to infinity via self-reference.  
The production of the finity of a new level of infinity.  
The completion of an incompletion. 
The emergence of eternity from the world of time. 
 
How then is observation different from action? If observation is a form of recursion 
coupled with the production of the finity of the limiting form, then observation is a 
transcendence to a new level. The model of observation as simple eigen-vector must 
be shifted to observation as the production of eigenform. It is not enough to produce 
eigenform. The fixed point is itself an  active element and can itself engage in 
transformation 
  
In the creation of spaces of conversation for human beings, we partake of a 
reflexivity of action and apparent object, where it is seen that every local 
manifestation of process, every seemingly fixed entity in a moving world is an 
indicator of global transformation. The local and the global intertwine in a reflexive 
and cybernetic unity.  
 
Retuning (returning/tuning/retuning) to thoughts of reflexivity. 
One creates by going outside oneself, but the creation returns in the form of a 
conversation with one's self. There is a feedback loop between the person/designer 
and the world that she makes. Each acts in the creation of the other. Priorities may be 
assigned, but it is the loop that interests us, and the possibility of stability (or at least 
temporal persistence) of what is created in that loop.  



 
VI. Knot Sets, Topological Eigenforms, Quandles and  Right and Left 
Distributivity 
We shall use knot and link diagrams to represent sets.  More about this point of view 
can be found in the author's paper "Knot Logic" [9].   In this notation the eigenset Ω 
satisfying the equation 

Ω= {Ω} 
 

is a topological curl. If you travel along the curl you can start as a member and find 
that after a while you have become the container. Further travel takes you back to 
being a member in an infinite round. In the topological realm Ω does not have any 
associated paradox. This section is intended as an introduction to the idea of 
topological eigenforms, a subject that we shall develop more fully elsewhere. 
 
Set theory is about an asymmetric relation called membership.  We write a ε S to say 
that a is a member of the set S.   In this section we shall diagram the membership 
relation as follows: 

 
 
This is knot-set notation. In this notation, if b goes once under a, we write a={b}. If b 
goes twice under a, we write a={b,b}. This means that the "sets" are multi-sets, 
allowing more than one appearance of a member. For a deeper analysis of the knot-
set structure see [ KL]. 
 
This knot-set notation allows us to have sets that are members of themselves, 
 

 
 
and sets can be members of each other. 

a
b

a
a b!

!" "

" = {"}

"



 
 
Here a mutual relationship of a and b is diagrammed as topological linking.  
 

 
 
Here are the Borromean Rings. The Rings have the property that if you remove any 
one of them, then the other two are topologically unlinked.  They form a topological 
tripartite relation. Their knot-set is described by the three equations in the diagram. 
Thus we see that this representative knot-set is a "scissors-paper-stone" pattern.  
Each component of the Rings lies over one other component, in a cyclic pattern.  
 
To go beyond this first level of knot set theory we need to examine the formal 
structure of the relationships among the arcs on a link diagram. 
 
Quandles and Colorings of Knot Diagrams 
There is an approach to studying knots and links that is very close to our knot sets, 
but starts from a rather different premise. In this approach each arc of the diagram 
receives a label or "color". An arc of the diagram is a continuous curve in the 
diagram that starts at one undercrossing and ends at another undercrossing.  For 
example, the trefoil diagram below has three arcs. 
 

a

b
a={b}
b={a}

a

bc

a = {b,b}
b = {c,c}
c = {a,a}



 
 
Each arc corresponds to an element of a "Trefoil Color Algebra"  IQ(T) where T 
denotes the trefoil knot. We have that IQ(T) is generated by colors a,b and c with the 
relations 
 

a*a = a, 
b*b = b, 
c*c = c, 

a*b = b*a = c, 
b*c = c*b = a, 
a*c = c*a = b. 

 
Each of these relations in the diagram above  is a description of one of the crossings 
in T. The full set of relations describes the coloring rules for an algebra that contains 
these relations and allows any two elements to be combined to a third element. This 
three-element algebra is particularly simple. If two colors are different, they combine 
to form the remaining third color. If two colors are the same, they combine to form 
the same color. 
 
When we take an algebra of this sort, we want its coloring structure to be invariant 
under the Reidemeister moves (illustrated below).  This means that when you make a 
new diagram from the old diagram by a topological move, the resulting new diagram 
inherits a unique coloring from the old diagram. Then one can see from this that the 
trefoil must be knotted since all diagrams topologically equivalent to it will carry 
three colors, while an unknotted diagram can carry only one color. 
 
As the next diagram shows, invariance of the coloring rules under the Reidemeister 
moves implies the  following global relations on the algebra: 
 

x*x = x 
(x*y)*y = x 

(x*y)*z = (x*z)*(y*z) 
  

a

b

cT

b = a*c
c = b*a
a = c*b

x
y

z

z=x*y



for any x, y and z in the algebra (set of colors) IQ(T). 
 
An algebra that satisfies these rules is called an Involutory Quandle [9], hence the 
initials IQ. Perhaps the most remarkable property of the quandle is its right-
distributive law corresponding to the third Reidemeister move, as illustrated below. 
The reader will be interested to observe that in a multiplicative group G, the 
following operation satisfies all the axioms for the quandle: g*h = hg-1h. 
 
In an additive and commutative version of this axiom we can write a*b = 2b - a. 
Here the models that are most useful to the knot theorist are to take a and b to be 
elements of the integers Z or elements of the modular number system Z/dZ = Zd for 
some appropriate modulus d. The knot being analyzed restricts the modular 
possibilities. In the case of the trefoil knot the only possibility is d = 3, and in the 
case of the Figure Eight  knot (shown after the Reidemeister moves below) the only 
possibility is d = 5. 
 
This analysis then shows that there cannot be any sequence of Reidemeister moves 
connecting the Trefoil and the Figure Eight. They are distinct knot types. 
 



 
 

I.

II.

III.

x

xx*x

x

x

x*x=x

(x*y)*y

x*y y x
y

x

x

(x*y)*y = x

y z

x*y
(x*y)*z

y*z

x

x
y z

(x*z)*(y*z)

x*z y*z

(x*y)*z = (x*z)*(y*z)



Here is the example for the Figure Eight Knot. 

 
 
We have shown how an attempt to label the arcs of the knot according to the quandle 
rule  

 
 
a*b = 2b -a, leads to a labeling of the Figure Eight knot in  Z/5Z. In our illustration 
we have shown that there is a compatible coloring using four out of the five elements 
of Z/5Z. If you apply Reidemeister moves to the diagram for the Figure Eight knot 
you will see that other versions of the knot require all five colors. It is interesting to 
prove that there is no diagram of the Figure Eight knot that can be colored in less 
than four colors. 
 
It should be noted that the knot diagrams give a remarkable picture of non-
associative algebra structure and that each arc-label a in a diagram is both an element 
of the algebra and a transformation of the algebra to itself via the mapping Oa(x) = 
x*a .  Note that the right distributivity of this operation has the equation 
 

Oa(x*y) = (x*y)*a = (x*a)*(y*a) = Oa(x)*Oa(y) 
 

That is, we have 
 

Oa(x*y) = Oa(x)*Oa(y). 
 
The right distributive law tells us that each quandle operation is a quandle 
homomorphism. That is, each quandle operation is a structure preserving mapping of 
the quandle to itself. This is an underlying algebraic meaning of the third 
Reidemeister move. Since the mappings  Oa  are invertible, we see that any quandle 
Q is in  1-1 correspondence with a certain collection of automorphisms of itself. In 

0

1 2

3

5

2 x 1 -0 = 1
2 x 2 -1 = 3
2 x 3 - 1 = 5
-> 0 = 5

Z/5Z = {0,1,2,3,4} with 0 = 5.

a

b

c = 2b -a = a*b



this sense a quandle is a reflexive domain with a limitation on the allowable 
collection of self-mappings. In fact we have a very simple fixed point theorem for 
quandles since  
 

Oa(a) = a*a = a. 
 

Every element of the quandle is fixed by its own automorphism. Since we take [Q,Q] 
to be the set of mappings of Q to itself of the form Oa(x) = x*a, we see that any 
quandle is a reflexive domain of a restricted sort. (Not every set theoretic mapping of 
Q to Q is realized in the above manner.) 
 
How far is the quandle from being a reflexive space in the full sense of the word? 
Lets look at the fixed point construction. We define G(x) = (x*x)*F for a given 
element F of the quandle .  Is it then the case that (x*x)*F = x*g for some g in the 
quandle?  The answer is yes, but for very simple reason:  We have x*x = x so that 
(x*x)*F = x*F and  consequently (F*F)*F = F*F. In fact F*F = F so F is already its 
own fixed point. We see therefore that in a quandle the fixed point theorem is 
satisfied automatically due to the axiom x*x = x for all x.  
 
On the other hand if F:Q ---->Q is an arbitrary mapping from Q to Q, then we 
cannot expect that F will have a fixed point. Suppose, for example, we define  F(x) = 
(x*(a*x) and use the Trefoil quandle. Then  
 

F(a) = (a*(a*a)) = a,  
F(b) = (b*(a*b)) = b*c = a, 
F(c) = (c*(a*c)) = c*b = a.  

 
Thus F has no fixed point, verifying that  the Trefoil quandle is not a full reflexive 
domain. 
 
Left Distributivity 
We have written the quandle as a right-distributive structure with inveritible 
elements. It is mathematically equivalent to use the formalism of a left  distributive 
operation. In left distributive formalism we have A*(b*c) = (A*b)*(A*c).  This  
corresponds exactly to the interpretation that each element A in Q is a mapping of Q 
to Q where the mapping A[x] = A*x is a structure preserving mapping from Q to Q. 
 

A[b*c] = A[b]*A[c]. 
 

We can ask of a domain that every element of the domain is itself a structure 
preserving mapping of that domain. This is very similar to the requirement of 
reflexivity and, as we have seen in the case of quandles, can often be realized for 
small structures such as the Trefoil quandle.   
 
We call a domain M with an operation * that is left distributive a  magma. Magmas 
are more general than the link diagrammatic quandles. We take only the analog of 
the third Reidemeister move and do not assume any other axioms. Even so there is 



much structure here. A magma with no other relations than left-distributivity is 
called a free magma.  
 
The search for structure preserving mappings can occur in rarefied contexts. See for 
example the work of Laver and Dehornoy [9] who studied mappings of set theory to 
itself that would preserve all definable structure in the theory. Dehornoy realized that 
many of the problems he studied in relation to set theory were accessible in more 
concrete ways via the use of knots and braids. Thus the knots and braids become a 
language for understanding for formal properties of self-embedded structure.  
 
Structure preserving mappings of set theory must begin as the identity mapping since 
the relations of sets are quite rigid at the beginning. (You would not be able to map 
an empty set to a set that was not empty for example, and so the empty set would 
have to go to itself.) The existence of non-trivial structure preserving mappings of set 
theory  questions the boundaries of definability and involves the postulation of sets 
of very large size. See [16] for a good exposition of the philosophical issues about 
such embeddings and for an approach to wholeness in physics that is based on these 
ideas. 
 
It is worth making a remark here about sets. Consider the collection  Aleph of all sets 
whose members are themselves sets and such that any investigation into membership 
will just reveal more sets as members. Typical elements of Aleph are the empty set  
{ }, the set whose member is the empty set { { } } and of course various curious 
constructs that have infinitely many members such as 
 

{ { } , {{ }}, {{{ }}}, {{{{ }}}}, ... } 
 
and we may even consider sets that are members of themselves (eigen-sets!) such as 
 

{ { { { { ... } } } } }. 
 
The key thing to understand about Aleph as a class of sets is that  any member of 
Aleph is, by definition, a subset of Aleph. And any subset of Aleph is by definition a 
member of Aleph. This is a beautiful property of the class Aleph, and it is a 
paradoxical property if we imagine that Aleph is a set! For if Aleph is a set, then we 
have just shown that Aleph is in 1-1 correspondence with the set of subsets P(Aleph) 
of Aleph. If X is any set then we denote the set of subsets of X by P(X). Cantor's 
Theorem (proved here in Section VIII and related in that section o the fixed point 
theory of reflexive domains) tells us that  for any set X, P(X) is larger than X. 
 
This means that there cannot be a 1-1 correspondence between Aleph and P(Aleph) 
if Aleph is a set.  
 
We can only conclude that Aleph is not a set. It is a class, to give it a name. It is an 
unbroken wholeness whose particularities we can always consider, but whose totality 
will always elude us. The way that the totality of Aleph eludes us is right before our 
eyes. Any particular element of Aleph is a set and it is a collection of sets as well. 
But we cannot complete Aleph. Any attempt to approximate Aleph as a set will 



always have some subsets that have not been tallied inside itself and so the set of 
subsets of the approximation will grow beyond that approximation to a new and 
larger domain of sets. Philosophically, this observation of the unreachability of 
Aleph, the set of all sets, as a set itself is very interesting and important. We see here 
how a perfectly clear mathematical concept may always remain outside the bounds 
of the formalities to which it refers and yet that concept is indeed composed of these 
formalities. It is the leading presence of the ultimately huge and unattainable Aleph 
that leads us to consider exceeding large sets in the pursuit of a flexibility in self-
embeddings of set theory. At the end of Section VIII we take an alternative view of 
Aleph and consider what would have to change if Aleph were admitted to be a set. 
 
Enough said about the abstract reaches of the magma. We should not expect that any 
given structure is a reflexive space. But it is possible to create languages that can 
expand indefinitely and thus partake of the ideal of reflexivity. 
 
VII. Church and Curry 
In this section we point out how the notion of a reflexive domain first appeared in the 
work of  Alonzo Church and Haskell Curry [1] in the 1930's.  This method is 
commonly called the "lambda calculus".  The key to lambda calculus is the 
construction of a self-reflexive language, a language that can refer and operate upon 
itself. In this way eigenforms can be woven into the context of languages that are 
their own metalanguages, hence into the context of natural language and observing 
systems. 
 
In the Church-Curry language (the lambda calculus), there are two basic rules: 
 
1. Naming. If you have an expression in the symbols in lambda calculus then there is 
always a single word in the language that encodes this expression. The application 
of this word has the same effect as the application of the expression itself.   
 
2. Reflexivity. Given any two words A and B in the lambda calculus, there is 
permission to form their concatenation AB, with the interpretation  that  A operates 
upon  or qualifies B. In this way, every word in the lambda calculus is both an 
operator and an operand. The calculus is inherently self-reflexive.  
 
 
Here is an example.  Let GA denote the process that creates two copies of A and puts 
them in a box. 
 

 
 
In lambda calculus we are allowed to apply G to itself. The result is two copies of G 
next to one another, inside the box. 

AAGA = 



 
 
This equation about GG exhibits  GG directly as a solution to the eigenform 
equation 

 
 
thus producing the eigenform without an infinite limiting process. 
 
 
More generally, we wish to find the eigenform for  a process F. We want to find a J 
so that  F(J) = J.  We create an operator G with the property that  
 

GX = F(XX)   
 

for any X. When G operates on X, G makes a duplicate of X and allows X to act on 
its duplicate.  Now comes the kicker.  Let G act on herself and look! 
 

GG = F(GG) 
 
So GG is a fixed point for F.  
 
We have solved the eigenform problem without the excursion to infinity.  If you 
reflect on this magic trick of Church and Curry you will see that it has come directly 
from the postulates of Naming and Reflexivity that we have discussed above. These 
notions, that there should be a name for everything, and that words can be applied to 
the description and production of other words, allow the language to refer to itself 
and to produce itself from itself. The Church-Curry construction was devised for 
mathematical logic, but it is fundamental to the logic of logic, the linguistics of 
linguistics and the cybernetics of cybernetics.   
 
I like to call the construction of the intermediate operator G, the "gremlin" (See 
[10].)  Gremlins seem innocent. They just duplicate entities that they meet, and set 
up an operation of the duplicate on the duplicand. But when you let a gremlin meet a 
gremlin then strange things can happen. It is a bit like the story of the sorcerer's 
apprentice. A recursion may happen whether you like it or not. 
 
An eigenform must be placed in a context in order for it to have human meaning. 
The struggle on the mathematical side is to control recursions, bending them to 
desired ends. The struggle on the human side is to cognize a world sensibly and 
communicate well and effectively with others. For each of us, there is a continual 
manufacture of eigenforms (tokens for eigenbehaviour). Such tokens will not pass as 

GG = GG

X = X



the currency of communication unless we achieve mutuality as well. Mutuality itself 
is a higher eigenform.  As with all eigenforms, the abstract version exists. 
Realization happens in the course of time. 
 
 
VIII. Cantor's Diagonal Argument and Russell's Paradox 
Let AB mean that B is a member of A. 
 
Cantor's Theorem. Let S be any set (S can be finite or infinite). 
Let P(S) be the set of subsets of S. Then P(S) is bigger than S in the sense that for 
any mapping F: S -----> P(S) there will be subsets C of S (hence elements of F(S)) 
that are not of the form F(a) for any a in S. In short ,the power set P(S) of any set S 
is larger than S. 
 
Proof. Suppose that you were given a way to associate to each element x of a set S a 
subset F(x) of S. Then we can ask whether x is a member of F(x). Either it is or it 
isn't.  So lets form the set of all  x such that x is not a member of F(x). Call this new 
set C. We have the defining equation for C : 
 

Cx = ~F(x)x. 
 

Is C = F(a) for some a in S? 
If C = F(a) then for all x we have 
F(a)x = ~F(x)x. 
Take x = a. Then  
F(a)a = ~F(a)a. 
 
This says that a is a member of F(a) if and only if a is not a member of F(a).  This 
shows that indeed C cannot be of the form F(a), and we have proved that the set of 
subsets of a set is always larger than the set itself.  
 
Note that in the usual language,  
 

C = { x in X | x is not a member of F(x) }. 
 
Note the problem that the assumption that C = F(a) gave us. If C = F(a), then F(a)a 
= ~F(a)a. We would have a fixed point for negation. But there is no fixed point for 
negation in classical logic! If we had enlarged the truth set to   
 

{T, F, I}   
 
where ~I=I is an eigenform for negation, then F(a)a would have value I. What does 
this mean?  It means that the index  a of the set F(a) corresponding to it would have 
an oscillating  membership value.  The element a would be like Groucho Marx who 
declared that he would not join any club that would have him as a member.  We 
would be propelled into sets that vary in time.   
 



Note that our proof of Cantor's Theorem has exactly the same form as our earlier 
proof of the existence of fixed points for a reflexive space.  
 
he mapping F:X -----> P(X) takes the role of the 1-1 correspondence between D and 
[D,D]. The reader will enjoy thinking about this analogy.  In the Cantor Theorem we 
have used the non-existence of a fixed point for negation to deduce a difference 
between and set X and its powerset P(X). In the study of a reflexive domain we have 
shown the existence of fixed points, but we have seen that such domains must be 
open to new elements and new transformations. 
 
There are many points of view about Cantor's Theorem. Lets start again by 
considering the assemblage (we shall not call it a set) Aleph of all sets whose 
members are sets that are members of Aleph. That is, a set S is a member of Aleph if 
every member of  S is a set and when you look at the members of the members, they 
too are sets, and this process of finding sets continues to all depths. We allow the 
possibility of infinite depth of membership and hence the possibility of self-
membership for sets in Aleph. Note that Aleph is a natural concept - the concept of 
sets that are made up from sets. But by definition, any set S that is a member of 
Aleph is also a subset of Aleph. And by definition, any subset of Aleph is a member 
of Aleph! Thus Aleph is identical with P(Aleph). According to Cantor's Theorem, 
Aleph is not a set. 
 
What is the contradiction that Cantor's Theorem produces for Aleph?  Cantor forms 
C = {x in Aleph| x is not a member of x } since we can take F:Aleph -----> P(Aleph) 
to be the identity mapping. But is this a contradiction?! It would be a contradiction if 
we knew that C is a set. Then C would be a member of itself if and only if it was not 
a member of itself. 
 
But C is not a set! C is itself a contradiction. C is the Russell paradox. We have that 
C is a member of C if and only if C is not a member of C. Cantor's process applied 
to Aleph produces a set that is supposed to be a new subset of Aleph, but in fact it is 
a paradoxical set. We could take the point of view that this shows that there are cases 
where the Cantor definition C = {x in X| x is not in F(x)} leads to an undefined set, a 
set for which one cannot actually decide on the membership of certain elements.  In 
that viewpoint, Aleph may be considered an example of a set to which Cantor's 
Theorem does not apply. 
 
We say, how did this happen? Isn't it always clear whether or not  x is in F(x)? You 
would think so. But in the case at hand we have F(x) = x and the question becomes: 
does x belong to x? And then we see that as far as C itself is concerned this question 
creates an iterant, an oscillation, a paradox.  By applying Cantor's argument to 
Aleph, we have found iterants and imaginary values at the very heart of set theory. 
 
The notion that we can always specify a set by a definition in the form S = {x | P(x) } 
where P(x) is a logical proposition is naive. The propositional statement provides a 
criterion of distinction, but it is possible that this criterion will be circular or 
undecideable. So we have to keep attending to what we define, and find out when it 
makes the sense. Why should such things be automatic? 



IX. The Secret 
What is the simplest language that is capable of self-reference?  We are all familiar 
with the abilities of natural language to refer to itself. Why this very sentence is an 
example of self-referentiality. The American dollar bill declares "This bill is legal 
tender.". The sentence that you are now reading declares that you, the reader, are 
complicit in its own act of reference. But what is the simplest language that can refer 
to itself? 
 
The simplest language would have a simple alphabet. Let us say it has only the letter 
R. The words in this language will be  all strings of R's. Call the language LS. The 
words in LS are the following: 
 

R, 
RR, 

RRR, 
RRRR, 

and so on. 
 

Two words are equal if they have the same number of letter R's. Each word makes a 
meaningful statement of reference via the rule: 
 

If X is a word in LS, then RX refers to XX. 
RX refers to XX,  the repetition of X. 

 
Thus RRR refers to RRRR (not to itself), and R refers to the empty word.  
 
There is a word in LS that refers to itself. Can you find it? 
    
Lets see. 
RX refers to XX. 
So we need XX = RX  if  RX would refer to RX. 
If XX = RX, then X = R. 
So we need X = R. 
And RR refers to itself. 
 
The little language LS looks like a pedantic triviality, but it is actually at the root of 
reflexivity, Godel's incompleteness Theorem, recursion theory, Russell's paradox and 
the notion of self-observing and self-referring systems. It seems paradoxical that 
what looks like a trick of  repeating a symbol can be so important.  The trick is more 
than just a trick. 
 
Just to show you how this works, consider Russell's paradox again. Russell asks us to 
consider the set of all sets that are not members of themselves. Lets call this set B for 
"Bertrand Russell". Lets write YX to mean "X is a member of Y". And write ~YX to 
mean "X is not a member of Y". OK? 
 
Then Russell's set is defined by the equation 
 



BX = ~XX. 
 
(= means "if and only if" in a logical context) Read it out loud: 
 
"X is a member of B if and only if X is not a member of X". Exactly. What about B?  
Is B a member of B?  Try it.  Let X = B. Then 
 

BB = ~BB. 
 
"B is a member of B if and only if B is not a member of B." 
 
This is the Russell paradox. You see that in the form BX = ~XX the Russell paradox 
is an instance (in a slightly more complex language) of exactly our LS trick of self-
reference. 
 
The Russell paradox continues to act as a mystery at the center of our attempts to 
relate syntax and semantics. In that center is a little trick of syntactical repetition. I 
would like to think that when we eventually discover the true secret of the universe it 
will turn out to be this simple.   
 
The snake bites its tail. The Universe is constructed in such a way that it can refer to 
itself. In so doing, the Universe must divide itself into a part that refers and part to 
which it refers, a part that sees and a part that is seen. 
 
Let us say that R is the part that refers and U is the referent. The divided universe is 
RX and RX = U and RX refers to U (itself). Our solution suggests that the Universe 
divides itself into two identical parts each of which refers to the universe as a whole.  
This is 
 

RR. 
 
In other words, the universe can pretend that it is two and then let itself refer to the 
two, and find that it has in the process referred only to the one, that is itself. 
 
The Universe plays hide and seek with herself, pretending to divide herself into two 
when she is really only one. And that is the secret of the Universe and that is the 
universal source of our trick of self-reference. 
 
X. The World of Recursive Emergence and Creativity 
We have repeatedly insisted that a formal fixed point or eigenform is associated with 
any transformation T in any domain where infinite composition of transformations is 
possible. Thus we make E = T(T(T(T(T(...))))) and find that E = T(E). This is the 
symbolic fixed point that sometimes corresponds to a stability in the original domain 
of the recursion. We have also seen that one can take a seed z for the recursion and 
repeatedly form 

z, T(z), T(T(z)), T(T(T(z))), ... 
 



in a temporal sequence or recursive process. Then the finite products of this process 
can exhibit similarity to the infinite eigenform, and they can also exhibit novelty and 
emergence structure in ways that are most surprising. It is this appearance of 
creativity and novelty in recursive process that makes reflexivity more than abstract 
mathematics and more than a philosophical idea. 
 
The purpose of this last section is to exhibit an example involving cellular automata 
that illustrates these ideas and gives us a platform for thought. In this example, we 
are using an algorithm that I call  7-Life. It is a variant of the Life automaton of John 
H. Conway. Conway's automaton is governed by the rule B3/S23 which means that a 
white square in the grid is born (B) when it has 3 neighbors and it survives (S) when 
it has exactly 2 or 3 neighbors. Life has the property that there are many intriguing 
formations and processes, but statistically most configurations dies out to a collection 
of  isolated static patterns (still lifes) and oscillating patterns that do not grow or 
interact outside themselves.  
 
7-Life has the rule B37/S23 and has many of the properties of Life, plus the 
phenomenon that many starting configurations grow, self-interact and produce 
streams of  gliders. The gliders are five-square formations (occurring in Life as well) 
that occur spontaneously and regenerate themselves, appearing to move along 
diagonal directions in the process. The most striking property of 7-Life is the long 
term persistence of such self-interacting configurations, growing slowly in  
complexity over time. 
 
In the Figures 1,2, and 3 we indicate the result of applying  the 7-Life algorithm to a 
simple and not-quite symmetrical starting  configuration shown in Figure 1. In 
Figure 2 we see the result of  33911 iterations of the process. We now have a galaxy 
of complex interactions. The small entities radiating away from the galaxy are 
gliders, as described above, and if a reader were to watch the process using a 
computer program, he or she would see a teeming, seemingly random mass of 
activity. Then in Figure 3 we see that after 49281 iterations something new has 
emerged. It seems that a  highly patterned  dragon is emerging from the chaos of the 
complex process. The tip of this dragon moves forward relentlessly. The body of the 
dragon interacts with the glider radiation and begins to roil in the chaotic process. So 
far, the growing tip of the dragon has not interacted with any gliders.  
 



Figure 1. The Starting Configuration 
 
 

 
Figure 2.  After 33911 Iterations 
 



 
Figure 3.  After 49281 Iterations 
 



 
Figure 4. The Growing Tip 
 

 
 Figure 5. The Generating Tip GG 
 
Figures 4 gives closeups of the tip of the dragon and Figure 5 isolates the generator, 
GG, of the dragon itself. This configuration GG of 16 squares in mirror symmetry, 
when placed on an otherwise blank lattice will generate the dragon in the 7-Life 
algorithm.  
 
What has happened is that this  16-square generator GG has appeared the course of 
the complex interactions, and it has had enough room to move forward in its own 
pattern -- forming the dragon behind it and periodically regenerating itself. The 
generator of the dragon, GG, is not our invention. GG is a natural consequence of the 
complex process of  7-Life. GG emerges, but with much lower probability than the 
gliders. The result is an appearance of novelty and creativity in the complex process 



as it happens over time. We can only speculate what more complex entities would 
eventually emerge in 7-Life over many more iterations. 
 
Just so does DNA emerge from the complex process of the world of the earth and 
sun. 
 
We see from this example that eigenforms that are processes, such as the self-
generating GG, can and will emerge of their own accord from complex systems 
based on recursion. In this sense, such systems begin to generate their own reflexive 
spaces.  The novel and self-reproducing forms that emerge from them can be seen in 
a similar light.  
 
All these observations are made by an observer. The observer is clever only in the 
distinctions that he or she makes, and that is enough to found an entire universe. 
 
XI. In Zermelo's Bar 
The section is a multi-logue about the attempts to solve the equation of the observer 
in relation to his/her observation.  We first encounter Mr. D, who has solved his own 
equation in such a way that he has no head and instead has a great open space of 
possibility where his head was supposed to be.  This requires a drink to ingest and 
we go to Zermelo's Bar, where we find two mathematicians arguing over the solution 
to an equation whose solution is the Golden Ratio, a proportion well known to the 
Greeks.  The mathematicians are a little hard to follow, but their discussion turns on 
all the essential issues of recursion, reality  and infinity that we will need for this 
adventure.   Then Dr. Von F appears in the bar (we think you can guess who this is) 
and explains the nature of eigenforms.  He is followed by a character named Charlie 
and  Dr. CC, a linguist and logician, then by Dr. HM, a biologist.  Later there appears 
a physicist, Dr. JB and finally Dr. R himself, the source of the self-referential 
paradox.  We hope that you will join in on this discussion yourself. 
 
Infinite Recursion and Its Relatives 
Our problem is to solve the equation  
 

O(A) = A  
for A in terms of O.   
 
For example, suppose that the observer O is Mr. D, a man who insists that he has no 
head.  We interview him.  Well Mr. D, why do you say that you have no head?  Mr. 
D. replies.  Oh it is so simple, you will see at once what I mean.  In fact, consider 
what you yourself see.  Look directly around.  Do you see your head?  No. You see 
and feel a great open space of perception where your head is supposed to be, and a 
flow of thoughts and feelings.  But no head!  The body comes in. Shoulders, arms, 
legs, shoes  and the world. But no head. Instead of a head there is a great teeming 
void of perception. Once I realized this, I knew that the relationship of a self to 
reality was indeed deep and mysterious. 
 



As we can see, Mr. D has discovered that what is constant for his visual observer is a 
body without a head. He has solved the problem of finding himself as a solution of 
the equation of himself in terms of himself.  Perhaps we need a drink. 
 
We walk into Zermelo's Bar and two mathematicians appear on the scene.  One says 
to other:  How do you solve this equation? I want a positive real solution. 
  

1 + 1/A = A. 
 

The second one says: Nothing to it, we multiply both sides by the unknown A and 
rewrite as 
 

A + 1 = A2. 
 
Then, solving the quadratic equation, we find that  
 

A = (1 + √5)/2. 
    

The first mathematician says: Nice tricks you have there, but I prefer infinite reentry 
of the equation into itself. Look here:   
 
If   A = 1 + 1/A, then 
 

A =  
1 + 1/A = 

1+1/(1+1/A) =   
1+1/(1+1/(1+1/A)) =  

 1+1/(1+1/(1+1/(1+1/A)))  
 
and I will take this reentry process to infinity and obtain the form  
 

A = 1+ 1/(1+1/(1+1/(1+1/(1+ 1/(1+1/(1+... )))))). 
 
The second mathematician then says: Well I like your method. We can combine our 
answers and write a beautiful formula! 
 

(1+√5)/2  = 
 

 1+ 1/(1+1/(1+1/(1+1/(1+ 1/(1+1/(1+... )))))) 
 

Why do you like this formula?  says the second guy. Well, says the first guy, the left 
hand side is a definite irrational number and it is easy to see by squaring it that it 
satisfies the equation  A2 = A + 1 as we wanted it.  But irrational numbers have a 
curiously tenuous existence unless you know a way to calculate approximations for 
them. On the other hand, your right hand side can be regarded as the limit of the 
fractions 
 

1 = 1/1 



1+1/1 = 2/1 = 2 
1+1/(1+1/1) = 3/2 

1+1/(1+1/(1+1/1)) = 5/3 
1+1/(1+1/(1+1/(1+1/1))) = 8/5 

1+1/(1+1/(1+1/(1+1/(1+1/1)))) = 13/8 
1+1/(1+1/(1+1/(1+1/(1+1/(1+1/1))))) = 21/13 

 
with the first few terms of this limit being 
 

(1+√5)/2 = 1.618... 
 
On top of this your infinite formula actually does reenter itself as an infinite 
expression it really is of the form 
 

A = 1 + 1/A. 
 
The first guy comes back with: Well it sounds to me like you really believe in the 
"actual" infinity of the terms on the right-hand side. I also like to imagine that they 
are all there existing together in space with no time.  
 
Right ! says the second guy. We know that this is an idealization, but it lets us 
actually reason to correct answers and to put them in an aesthetically pleasing form. 
 
The bartender is listening to all of this, and he leans over and says: You guys have to 
meet a couple of others on this score.  There is Dr. Von F and Dr. CC.  They both 
have some ideas very similar to yours.  Hey, here is Dr. Von F now.   Dr. Von F, 
could  you tell these fellows about your eigenforms? 
 
Jah!  Of course!  It is all very simple.  We just combine this notion of recursion with 
the most general possible situation.  Suppose we have any observer  O and we wish 
to find a fixed point for her.  Well then we just let the observer act without limit as in  
 

A = O(O(O(O(O(O(O(O(...))))))). 
 
After infinity, one more application of O does not change the result and we have 
 

O(A) = A. 
 
This is very simple, no?  And it shows how we make objects. These objects are the 
tokens of our repeated behaviors in shaping a form from nothing but our own 
operations.  As I have said before, the human identity is precisely the fixed point of 
such a recursion.  "I am the observed link between myself and observing myself." [2] 
 
The first mathematician makes a comment:  What you are doing is a precise 
generalization of my infinite continued fraction!  If I had defined  
 

O(A) = 1 + 1/A 



 
then we would have 
 

O(O(O(...))) = 1+ 1/(1+1/(1+1/(1+...))). 
 
But  I am puzzled by your approach, for it would seem that you are willing that your 
solution A will have no relation with how the process starts, and also it may not 
related to the original domain in which it was constructed! For example, in my 
mathematics, I could consider the operator  
 

O(A) = -1/A 
 
and this operator does not have a fixed point in the real numbers, but if we take A=i 
where i2 = -1 (the simplest imaginary number), then O(i) = i.  Are you suggesting 
that  
 

i = -1/-1/-1/...    ? 
 
Dr. Von F replies:  Jah, Jah! This is very important!  The fixed point can be a 
construction that breaks ground into an entirely new domain!  Actually, I am mainly 
interested in those fixed points that do break new ground.  We are looking for the 
places where new structures emerge.  In your mathematics you have illustrated this 
in two ways. In the first recursion, the values converge to an irrational number (the 
golden ratio).  All the finite approximations are rational fractions (ratios of Fibonacci 
numbers) but in the limit of the infinite eigenform, you arrive at this beautiful new 
irrational number!  And in your second example all the finite approximations 
oscillate like a buzzer, or a paradox, between positive unity and negative unity, but 
the eigenform is a true representative of the imaginary square root on minus one!  
And don't forget that this "imaginary" quantity is fundamental to both logic and 
physics.  The fully general eigenforms are fundamental to the ontology of the world. 
 
Suddenly the door to Zermelo's Bar opens and in walks a  character that everyone 
calls "Charlie."  Charlie!  say the barkeep, where have you been?  We have a good 
discussion on signs going here.  You have to hear this stuff.  Charlie says,  Well I 
heard just about everything Dr. Von F said as I admit here to a bit of eavesdropping 
on the other side of the door!  These eigenforms of Von F are quite familiar to me as 
I have thought continuously along these lines for many years.  You see, any sign 
once you look at it in the context of its reference and the continuous expansion of its 
interpretant becomes a growing complex of signs referring to other signs, growing 
until the references close on themselves and, as Dr. Von F correctly describes, these  
closures are the eigenforms, the tokens for apparently stable behaviors.  As the 
complex of signs grows, the complex itself is a sign and as the closures occur, that 
sign becomes a sign for itself.  We humans are in our very nature such signs for 
ourselves. 
 
Dr. Von F says:  Well I always say that I am the observed link between  myself and 
observing myself.  I am a sign for myself! 
 



At this point Dr. CC chimes in:  But Dr. Von F and Charlie, this excursion to 
recursion and infinity seems quite excessive! It is all right for mathematicians to 
imagine such a thing, but we humans exist in language and the finiteness of 
expressions. Surely you do not suggest that this profligate composition of the 
operator  and expansion of sign complexes actually happens! 
 
Well, Dr. CC, says Von F, I am really a physicist and well aware of the speed of 
physical process in relation to the very slow pace of our verbal thought.  Surely you 
have stood between two facing mirrors and seen the near-instantaneous tunnel of 
reflections created by light bouncing back and forth between the mirrors. Yes, I am 
seriously suggesting that the self-composition of the observer is carried to high 
orders.  These orders are sufficiently large and accomplished with such a high speed 
that they appear infinite in the eyes of the observer.  Now you may detect the 
beginning of a paradoxical flight here.  The very observer who is too slow to detect 
the difference between a large number and infinity is yet so quick and subtle that 
he/she can produce this flight to infinity.  But I beg your pardon, this is still a matter 
of the interaction of slow thought and fast action.  Wave your arm back and forth 
rapidly in front of your eyes. For all practical purposes the arm appears to be in two 
places at the same time! You do not deny that it is "you" that  moves the arm, and it 
is "you" that perceives it. 
 
I simply go further and suggest that every perception is based on such an illusion of 
permanency, based on the self composition of your self. You do it all and you are 
surprised at the result. You do it all, but you can not perceive all that you do! 
 
Charlie adds:  I agree but do not have to rest on physics.  Our shortsighted view of 
our own nature arises from the difficulty in reckoning that our true nature is as signs 
for ourselves.  It is only at the limit of eigenbehaviours that such signs appear simple.  
We partake of the complexity of the universe. 
 
Dr CC replies:  Ah Charlie and Dr. Von F,  I have been working in the linguistic  and 
logical realm and you will see that our points of view are mutually supporting.  For I 
imagine the structure of the observer as a big network of communicating entities.  
These entities have so much interrelation among themselves that their identities 
begin to merge into one identity and that is the apparent identity of the self.   
 
Charlie interrupts with:  Yes!  That is the essence of continuity. 
 
Dr. CC continues. I agree! The infinity in my view is not with any one of them, but 
with the aggregate of them that has become so large as to begin to merge into a 
continuity.   
 
But let me explain:  If A and B are entities in my "community of the self", then they 
can interact with each other and with themselves.  These processes of interaction 
produce new entitles who exist at the same level as the original entities. Can you 
imagine this? Of course you can, you are such an entity.  For example, I suggest to 
you that you are the self that thinks kindly of others, that you satisfy the equation SX 
= KX where S is "you" and KX is the being "thinks kindly of X".  Then that entity S 



exists. In the world of language, every definable entity exists. The consequence is that 
S might even think kindly of herself as in SS = KS.  That S can think kindly of 
herself is, in this linguistic world, dependent on the condition that the kindly thinking 
observer is an observer at the same level as any other observer.  Now there are many 
such entities. Watch this magic trick.  Let  
 

GX = O(XX). 
 
The gentility G is the observer who observes an entity observing herself. What 
happens when G observes herself? Then G observes herself observing herself and we 
have a fixed point, an eigenform! 
 

GG = O(GG). 
 
I have constructed the eigenform without the infinite composition of the observer 
upon herself. Of course once this self-reflexive construction comes into the being of 
language then it runs automatically to the level of practical infinity and produces 
your recursion. 
 

GG = O(GG) = O(O(GG)) = O(O(O(GG))) = ... 
 
I believe my linguistic construction provides the context for your observer's self 
interaction.  The true infinity in my world is a distributed infinity of beings each 
coming into being as a name for a process of observation. This continues without end 
and is the basis of the coincidence of the language and the metalanguage in this 
world. 
 
At this point Dr. HM, a biologist, walks into the room. He remarks:  I see that you 
have been discussing the stability of perceptions from physical and linguistic 
principles. Let me tell you how I see these matters in my domain. The beings you 
talk about are biological, not just logical.  They exist in the evolutionary flow of 
coordinations of coordinations that give rise to the mutual patternings that you call 
"language" and "thought".  It is not at all surprising that each such being, coordinated 
with the others in the deep flow of its history in biological time will appear layered 
like an onion with the actions of each on each.  The long time history of mutual 
interaction and coordination will generate the appearance of the eigenforms.  But 
there is no "disembodied observer" who generates these forms from some abstract 
place.  In biology there is no problem of mind (abstract observer) and body.  They 
are one.  Mind and observer both refer to the conversational domain that arises in the 
construction of the coordination of coordinations that is language. The disembodied 
observer  is a fantasy that is convenient for the mathematician or the physicist.  In the 
biological realm all forms are generated through time in an organic way. 
 
And finally, Dr. JB enters the room, a very theoretical physicist.  He says:  Ah it is 
not surprising, but you all have the business of objects and eigenforms quite wrong. 
Let me start with the views of the biologist Dr. HM.  You see, there is no time. None. 
Time is an illusion. Of course in order to tell you about this insight I shall have to use 



words that appear to describe states in time. That is my fate to be so projected into 
language. You must forgive me. 
 
Each moment of being is eternal, beyond time. I prefer to call such moments "time 
capsules."  Each moment contains that possibility that it can be interpreted in terms 
of a "history", a story of events leading up to the "present moment" that constitutes 
the time capsule as a whole. But this history is a pattern in eternity.  That the history 
can be told with some coherence and that we manage to  tell the story of "past 
events" leads us to believe that these past events "actually happened".  But in fact 
what has happened is happening now and only now in the eternity of the time 
capsule whose richness derives from the superposition of its quantum states. 
 
At this point the bartender chimes in:  I'll drink to that.  Time is a grand illusion and 
a wee scotch from my bar will convince ye o' that in less time than it takes to wink 
an eye! 
 
All well and good, says Dr. R, who just walked into the bar, but as I was telling my 
friend Frege, if there is one thing that will give us trouble it is this notion of eternity 
and the non-existence of time.  For as I told Gottlob just the other day, you have only 
to imagine the timeless reality of the set of all sets that are not members of 
themselves and you will have to leave logic behind!  I gave up long ago my travails 
on this issue with Professor Whitehead. We tried to make logic go first and it was a 
disaster. Now I let logic run along behind and there is no problem at all. As far as 
fixed points are concerned my favorite is Omega, the set whose only member is 
Omega herself.  You see that the act of set formation is nothing but an act of 
reflection. Omega finds herself in reflecting on herself.  
 
Dr.  CC retorts:  Well, Russell, I hardly expected you to capitulate your position on 
logic. Your Type is hardly likely to just slip away.  I prefer to make a specimen of 
your famous set in the following way.  I let AB mean that "B is a member of A".  
Then I define your set of all sets that are not members of themselves"  by the 
equation 
 

Rx = ~xx. 
 
Then we can pin the specimen to the board by substituting R for x as in  
 

RR = ~RR. 
 
This RR is a fixed point for negation. It is neither true nor false. I do not leave logic 
behind. I imagine new states of logical discourse that are beyond the true and the 
false. Your set performs this transition to imaginary Boolean values.  
 
Now Dr. HM says:  Well I see you fellows are beginning to foment an argument.  I 
feel that I must point out to you that logical paradox occurs only in the domain of 
language.  There is no such matter as the paradox of the Russell set in the natural 
domain.  In the natural domain, all apparent contradictions are only antimonies in the 
eyes of some observer. Nature herself runs in the single valued logic of the 



evolutionary flow. This is why I emphasize that it is only in the linguistic domain of 
coordinations of coordinations that the eigenforms arise. At the biological level there 
are processes that can be seen as recursions, but this seeing is already at the level of 
the coordinations. There is no mystery in this, but it is necessary to round out the 
mathematical models with the prolific play and dynamics of the underlying biology. 
In this sense biology is prior to physics as well as cognition.  
 
At this point a tremor shakes the bar and the lights go out.  I am sorry folks, the 
bartender says from the darkness, but this is another one of our natural events in the 
single valued logical flow of biological time -- a small earthquake.  I will have to ask 
you to leave now for your own safety.  And so the discussion ended, unfinished but 
perhaps that was for the best. 
 
A Remark 
The story in this section presents a number of different points of view about the 
cybernetics of fixed points. Fixed points can be produced by infinite recursion, by 
direct self-reference, through the linguistics of lambda calculus, and by 
approximation to infinites.  Mr. D is a fictionalized version of Douglas Harding the 
man who indeed realized that he did not have a head, and had the courage to write 
about it.  The good Drs. at the bar represent these points of view and are thinly 
disguised representatives of the viewpoints of Heinz von Foerster, Alonzo Church 
and Haskell Curry (Dr. CC), Humberto Maturana and the physicist Julian Barbour.  
Charlie represents the American mathematical philosopher Charles Sanders Peirce.  
All this is only the beginning. The most famous fixed point of them all is the 
Universe herself, acted here by the bartender. 
 
 
XII. Quantum Physics, Eigenvalue and Eigenform 
There are two reasons for including a discussion of quantum mechanics in this essay.  
On the one hand the quantum mechanics has been a powerful force in asking us to 
rethink our notions of objects and causality. On the other hand, von Foerster's notion 
of eigenform is an outgrowth of his background as a quantum physicist. We should 
ask what eigenforms might have to do with quantum theory and with the quantum 
world. 
 
In this section we  meet the concurrence of the view of object as token for 
eigenbehaviour and the observation postulate of quantum mechanics. In quantum 
mechanics observation is modeled not by eigenform but by its mathematical relative 
the eigenvector. The reader should recall that a vector is a quantity with magnitude 
and direction, often pictured as an arrow in the plane or in three dimensional space. 
 

 
 

A vector V
V



In quantum physics [11], the state of a physical system is modeled by a vector in a 
high-dimensional space, called a Hilbert space. As time goes on the vector rotates in 
this high dimensional space. Observable quantities correspond to (linear) operators H 
on these vectors v that have the property that the application of H to v results in a 
new vector that is a multiple of v by a real factor λ .  (An operator is said to be linear 
if H(av +w) = aH(v) + H(w) for vectors v and w, and any number a. Linearity is 
usually a simplifying assumption in mathematical models, but it is an essential 
feature of quantum mechanics.) 
 
In symbols this has the form 
 

Hv = λv. 
 

One says that v is an eigenvector for the operator H, and that λ  is the eigenvalue. 
The constant λ  is the quantity that is observed (for example the energy of an 
electron). These are particular properties of the mathematical context of quantum 
mechanics. The λ  can be eliminated by replacing H by G = H/λ  (when λ  is non 
zero) so that  
 

Gv = (H/λ)v = (Hv)/λ  = λv/k = v. 
 
Thus  
 

Gv = v. 
 
In quantum mechanics observation is founded on the production of eigenvectors  v 
with Gv = v where v is a vector in a Hilbert space and G is a linear operator on that 
space.  
 
Many of the strange and fascinating properties of quantum mechanics emanate 
directly from this model of observation.  In order to observe a quantum state, its 
vector is projected into an eigenvector for that particular mode of observation. By 
projecting the vector into that mode and not another, one manages to make the 
observation, but at the cost of losing information about the other possibilities 
inherent in the vector. This is the source, in the mathematical model, of the 
complementarities that allow exact determination of the position of a particle at the 
expense of nearly complete uncertainty about its momentum (or vice versa the 
determination of momentum at the expense of knowledge of the position). 
 
Observation and quantum evolution (the determinate rotation of the state vector in 
the high dimensional Hilbert space) are interlocked. Each observation 
discontinuously projects the state vector to an eigenvector. The intervals between 
observations allow the continuous evolution of the state vector. This tapestry of 
interaction of the continuous and the discrete is the basis for the quantum mechanical 
description of the world. 
 
The  theory of eigenforms is a sweeping generalization of quantum mechanics that 
creates a context for understanding the remarkable effectiveness of that theory. If 



indeed the world of objects is  a world of tokens for eigenbehaviours, and if physics 
demands forms of observations that give numerical results, then a simplest example 
of such observation is the observable in the quantum mechanical model.  
 
Is the quantum model, in its details, a consequence of general principles about 
systems? This is an exploration that needs to be made. We can only ask the question 
here. But the mysteries of the interpretation of quantum mechanics all hinge on an 
assumption of a world external to the quantum language. Thinking in terms of 
eigenform we can begin to look at how the physics of objects emerges from the 
model itself. 
 
Where are the eigenforms in quantum physics? They are in the mathematics itself. 
For example, we have the simplest wave-function  
 

ϕ (x,t) = ei(kx - ωt). 
 

Since we know that  the function E(x) = ex is an eigenform for  operation of 
differentiation with respect to x, ϕ (x,t) is a special  multiple eigenform from which 
the energy can be extracted by temporal differentiation, and the momentum can be 
extracted by  spatial differentiation.  We see in ϕ (x,t) the complexity of an  
individual who presents many possible sides to the world. ϕ (x,t) is an eigenform for 
more than one operator.  It is this internal complexity that is mirrored in the 
uncertainty relations of Heisenberg and the complementarily of Bohr. The 
eigenforms themselves, as  wave-functions, are inside the mathematical model, on 
the other side of that which can be observed by the physicist.  
 
We have seen eigenforms as the constructs of the observer, and in that sense they are 
on the side of the observer, even if the process that generates them is outside the 
realm of his perception. This suggests that we think again about the nature of the 
wave function in quantum mechanics. Is it also a construct of the observer?  To see 
quantum mechanics and the world in terms of eigenforms  requires a turning around, 
a shift of perception where indeed we shall find that the distinction between model 
and reality has disappeared into the world of appearance. 
 
This is a reversal of epistemology, a complete turning of the world upside down. 
Eigenform has tricked us into considering the world of our experience and finding 
that it is our world, generated by our actions. It has become objective through the 
self-generated stabilities of those actions.     
 
A Quick Review of Quantum Mechanics 
DeBroglie hypothesized two fundamental relationships: between energy and 
frequency, and between momentum and wave number. These relationships are 
summarized in the equations  
 

E = hw,  
P = hk,   

 



where E denotes the energy associated with a wave and p denotes the momentum 
associated with the wave. Here  h  = h/2π  where  h  is Planck’s constant.   
 
Schrödinger answered the question:  Where is the wave equation for DeBroglie’s 
waves? Writing an elementary wave in complex form  
 

ψ  = ψ(x,t) = exp(i(kx - wt)),  
 

we see that we can extract  DeBroglie’s energy and momentum by differentiating:   
 

 ih∂ψ /∂t = Eψ    and  -ih∂ψ /∂x = pψ .    
 

This led Schrödinger to postulate  the identification of dynamical variables with 
operators  so that the first equation ,  
 

ih∂ψ /∂t = Eψ ,   
 

is promoted to the status of an equation of motion  while the second equation 
becomes the definition of momentum as an operator:   
 

p = -ih∂/∂x .  
 

Once p is identified as an operator, the numerical value of momentum is associated 
with an eigenvalue of this operator, just as in the example above. In our example  pψ  
= hkψ . 
 
In this formulation, the position operator is just multiplication by  x  itself.  Once we 
have fixed specific operators for position and momentum, the operators for other 
physical quantities can be expressed in terms of them. We obtain the energy operator 
by    substitution of the momentum operator in the classical formula for the energy: 
 

E = (1/2)mv2  +  V  
E =  p2/2m  +  V  

E = -(h2/2m)∂2/∂x2  +  V. 
 
Here V is the potential energy, and its corresponding operator depends upon the 
details of the application. 
 
With this operator identification for E,  Schrödinger’s equation 
 

ih∂ψ /∂t = -(h2/2m)∂2ψ /∂x2  +  Vψ  
 
is an equation in the first derivatives of time and in second derivatives of space.  In 
this form of the theory one considers general solutions to the differential equation  
and this in turn leads to excellent results in a myriad of applications.  
 



In quantum theory, observation is modeled by the concept of  eigenvalues for 
corresponding operators.  The quantum model of an observation is a projection of the 
wave function into an eigenstate.   
 
An energy spectrum  {Ek}  corresponds to wave functions  ψ    satisfying the 
Schrödinger equation, such that  there are constants  Ek   with Eψ  = Ekψ .   An 
observable (such as energy)  E is a Hermitian operator on a Hilbert space of 
wavefunctions.  Since Hermitian operators have real eigenvalues, this provides the 
link with measurement  for the quantum theory.   
 
It is important to notice that there is no mechanism postulated in this theory for how 
a wave function is “sent” into an eigenstate by an observable. Just as mathematical 
logic need not demand causality behind an implication between propositions, the 
logic of quantum mechanics does not demand a specified cause behind an 
observation. This absence of an assumption of causality in logic does not obviate the 
possibility of causality in the world. Similarly, the absence of causality in quantum 
observation does not obviate causality in the physical world. Nevertheless, the debate 
over the interpretation of quantum theory has often led its participants into asserting 
that causality has been demolished in physics. 
 
Note that the operators for position and momentum satisfy the equation  xp - px = hi.  
This corresponds directly to the equation obtained by Heisenberg, on other grounds,  
that dynamical variables can no longer necessarily commute with one another.  In 
this way, the points of view of DeBroglie, Schrödinger and Heisenberg came 
together, and quantum mechanics was born.  In the course of this development,  
interpretations  varied widely.  Eventually, physicists came to regard the wave 
function not as a generalized wave packet, but as a carrier of information about 
possible observations.  In this way of thinking ψ∗ψ  (ψ∗  denotes the complex 
conjugate of ψ)  represents the probability of finding the “particle”  (A particle is an 
observable with local spatial characteristics.)  at a given point in spacetime. Strictly 
speaking, it is the spatial integral of  ψ∗ψ   that is interpreted as a  total probability 
with ψ∗ψ   the probability density. This way of thinking is supported by the fact that 
the total spatial integral is time-invariant as a consequence of Schrodinger's equation! 
 
XIII. Iterants, Complex Numbers and Quantum Mechanics 
We have seen that there are indeed eigenforms in quantum mechanics.  
 
The eigenforms in quantum mechanics  are the mathematical functions such as ex 
that are invariant under operators such as D = d/dx.  
 
But we wish to examine the possibly deep relationship between recursion, reflexive 
spaces and the properties of the quantum world. The hint we have received from the 
theory of the quantum is that we should begin with the mathematics which is replete 
with eigenforms. In fact, this hint seems very  rich when we consider that i, the 
square root of minus one, is a key eigenform in our panoply of eigenforms and it is a 
key ingredient in quantum mechanics. 
 



Lets begin by looking at the simpler case of differentiation. Consider an operator D 
that removes a box from around X.  
 

 
 
Our familiar infinite nest of boxes is an eigenform for the "differentiation" operator 
D. 
 
But we can go further. Consider an infinite series E of nested boxes as shown below. 
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Then extending D formally so that D(X + Y) = D(X) + D(Y), we see that D(E) = E 
since D shifts the first box to void, the second box to the first box, the third box to 
the second box and so on. 
 
Calculus and the Mathematics of Eigenforms 
The exponential function is invariant under differentiation. Thus it is an eigenform 
for the operator D=d/dt: 
 

D(exp(t)) = exp(t) where D=d/dt. 
 
In fact,  
 

exp(t) = 1 + t/1!  + t2/2!  + t3/3! + ... 
 
where 
 

D1 = 0, 
 

Dt(n+1)/(n+1)! = tn/n! 
 
from which it follows that  
 

D(exp(t)) = exp(t). 
 
If we think of the exponential function as a nest of boxes, each of which corresponds 
to one of the terms tn/n! , then we see that  the invariance of the nest of boxes E 
(above) under the formal differentiation operator has exactly the form of the 
invariance of exp(t) under differentiation in the calculus. 
 
Another simple example of this sort is the series 
 

S = 1 + x + x2 + x3 + x4 + x 5 + x 6 + ... 
 
Here we can write 
 

S = 1 + x(1 + x + x2 + x3 + x4 + x 5 + ...). 
 
Thus  
 

S = 1 + x S 
 
and so S is an eigenform for the operator 
 

T(A) = 1 + xA. 
 
Now i is a close relative of this operator. If we define 
 



R(A) = -1/A 
 

then R(i) = i since i2 = -1 is equivalent to i = -1/i. 
 
Using the infinite recursion we would then write (see the discussion in Zermelo's 
Bar) 
 

i = -1/-1/-1/-1/-1/... , 
 

making i an infinite reentry form for the operator R. Lets choose a notation for 
abbreviating such forms. We will write i = [-1/*] where * denotes the reentry of the 
whole form into that place in the right-hand part of the expression. Ok? 
 
Similarly, if  F(x) = 1 + 1/x, then the eigenform would be [1 + 1/*] and we could 
write  
 

(1+√5)/2  = [1 + 1/*]. 
 
With this in place we can now consider wave functions in quantum  mechanics such 
as 

ψ(x,t) = exp(i(kx - wt)) = exp([-1/*] (kx - wt)) 
 
and we can consider classical formulas in mathematics such as Euler's formula 
 

exp([-1/*]ϕ) = cos(ϕ ) + [-1/*] sin(ϕ ) 
 
in this light. Really, we must start here with Euler's formula, for this formula is the 
key relation between complex numbers, i and waves and periodicity. 
 
We have to return to the finite nature of  [-1/*]. This eigenform is an oscillator 
between -1 and +1. It is only i in its idealization or in its appropriate synchronization 
that it has the property that  i = -1/i. As a real oscillator, the equation R(i) = -1/i tells 
us that when i is 1, then i is transformed to -1 and when i is -1 then i is transformed 
to +1. There is no fixed point in the real domain. The eigenform is achieved by 
leaving the real domain for a new and larger domain. We know that this larger 
domain can be conceptualized as the plane with Euclidean rotational geometry, but 
we want to here explore the larger domain in terms of eigenforms. 
 
We are now going to do this exploration, but we have to warn the reader: We find 
that i itself is a fundamental example of a discrete physical process, and it is in the 
"microworld" of such discrete physical processes that not only quantum mechanics, 
but also classical mechanics is born.  
 
Iterants and Iterant Views 
In order to think about i, consider an infinite oscillation between +1 and -1: 

 
... -1,+1,-1,+1,-1,+1,-1,+1,... 

 



This oscillation can be seen in two distinct ways. It can we seen as [-1,+1] (a 
repetition in this order) or as [+1,-1] (a repetition in the opposite order). This 
suggests regarding an infinite alternation such as  
 

... a,b,a,b,a,b,a,b,a,b,a,b,a,b,... 
 

as an entity that can be seen in two possible ways, indicated by the  ordered pairs 
[a,b] and [c,d]. We shall call the infinite alternation of a and b the iterant of a and b 
and denote it by I{a,b}. Just as with a set {a,b}, the iterant is independent of the order 
of a and b. We have I{a,b} = I{b,a}, but there are two distinct views of any iterant 
and these are denoted by [a,b] and [b,a].   
 
The key to iterants is that two representatives of an iterant can  by themselves appear 
identical, but taken together are seen to be different. For example, consider  
 

... a,b,a,b,a,b,a,b,a,b,a,b,a,b,... 
 
and also consider 
 

...b,a,b,a,b,a,b,a,b,a,b,a,b,a,... 
 

There is no way to tell the difference between these two iterants except by a direct 
comparison as shown below 
 

... a,b,a,b,a,b,a,b,a,b,a,b,a,b,... 

... b,a,b,a,b,a,b,a,b,a,b,a,b,a,... 
 

In the direct comparison we see that if one of them is [a,b], then the other one should 
be [b,a]. Still, there is no reason to assign one of them to be [a,b] and the other [b,a]. 
It is a strictly relative matter. The two iterants are entangled (to borrow a term from 
quantum mechanics) and if one of them is observed to be [a,b], then the other is 
necessarily observed to be [b,a]. 
 
Lets go back to the square root of minus one as an oscillatory eigenform. 
 

... -1,+1,-1,+1,-1,+1,-1,+1,... 
 
What is the operation R(x) = -1/x in this case? We usually think of a starting value 
and then the new operation shifts everything by one value with R(+1) = -1 and R(-1) 
= +1. Thus would suggest that 
  

R(... -1,+1,-1,+1,-1,+1,-1,...) = ... +1,-1,+1,-1,+1,-1,+1,... 
 
and these sequences will be different when we compare, them even though they are 
identical as individual iterants. 
 

... -1,+1,-1,+1,-1,+1,-1,+1,... 

... +1,-1,+1,-1,+1,-1,+1,-1,... 



 
However, we would like to take the eigenform/iterant concept and make a more 
finite algebraic model by using the iterant views  [-1,+1] and [+1,-1]. Certainly we 
should consider the transform P[a,b] = [b,a]  and we take  
 

-[a,b] = [-a, -b], 
so that  

-P[a,b] = [-b,-a].  
Then  

-P[1,-1] = [1,-1].  
 

In this sense the operation -P has eigenforms [1,-1] and [-1,1]. You can think of P as 
the shift by one-half of a period in the process  
 

...ababababab.... . 
 

Then [-1,1] is an eigenform for the operator that combines negation and shift. 
 
We will take a shorthand for the operator P via  
 

P[a,b] = [a,b]' = [b,a]. 
 

If x=[a,b] then x' = [b,a]. 
 
We can add and multiply iterant views by the combinations 
 

[a,b][c,d] = [ac,bd], 
[a,b] + [c,d] = [a+c, b+ d], 

k[a,b] = [k,a,k,b] when k is a number. 
 

We take 1 = [1,1] and -1 = [-1,-1].  This is a natural algebra of iterant views, but note 
that  [-1,+1][-1,+1] = [1,1] = 1, so we do not yet have the square root of minus one. 
 
Consider [a,b] as representative of a process of observation of the iterant I{a,b}.  
[a,b] is an iterant view.  We wish to combine [a,b] and [c,d] as processes of 
observation.  Suppose that observing I{a,b} requires a step in time. That being the 
case, [a,b] will have shifted to [b,a] in the course of the single time step. We need an 
algebraic structure to handle the temporality. To this end, we introduce an operator  
η  with the property that  
 

[a,b]η= η [b,a] with η2 = ηη  = 1  
 

where 1 means the identity operator. You can think of  η  as a temporal shift 
operator that can act on a sequence of individual observations.  The algebra 
generated by iterant views and the operator η  is taken to be associative. 
 



Here the interpretation is that XY denotes "first observe X, then observe Y". Thus 
XηYη  = XY'ηη  = XY' and we see that Y has been shifted by the presence of the 
operator η , just in accord with our temporal interpretation above. 
 
We can now have a theory where i and its conjugate -i correspond to the two views 
of the iterant  I{-1,+1}.  Let i = [1,-1]η   and  -i = [-1,1]η  .  We  get a square roots of 
minus one: 
 

ii = [1,-1]η [1,-1]η  = [1,-1][-1,1]ηη  = [-1,-1] = -[1,1] = -1. 
 
The square roots of minus one are iterant views coupled with temporal shift 
operators. Not so simple, but not so complex either! If e = [1,-1] then e' = [-1,1] = -e 
and ee = [1,1] = 1 with  ee' = -1. 
 

i = eη  
ii = eηeη  = ee'ηη  = ee' = -1 

 
With this definition of i, we have an algebraic interpretation of complex numbers that 
allows one to think of them as observations of discrete processes.   
 
This algebra contains more than just the complex numbers.   With x = [a,b] and y = 
[c,d], consider the products (xη )(yη ) and (yη )(xη ): 
 

(xη )(yη ) = [a,b]η [c,d]η  = [a,b][d,c] = [ad,bc] 
 

(yη )(xη ) = [c,d]η [a,b]η  = [c,d][b,a] = [cb,da]. 
 

Thus  
(xη )(yη ) - (yη )(xη )  
= [ad-bc, -(ad-bc)]  

= (ad -bc)[1,-1]. 
 
Thus  

xηyη  - yηxη  = (ad -bc)i η . 
 
We see that, with temporal shifts, the algebra of observations is non-commutative. 
Note that for these processes, represented by vectors [a,b], the commutator xηyη  - 
yηxη  = (ad -bc)iη  is given by the determinant of the matrix corresponding to two 
process vectors, and hence will be non-zero whenever the two process vectors are 
non-zero and represent different spatial rays in the plane. 
 
There is more. The full algebra of iterant views can be taken to be generated by 
elements of the form  
 

[a,b] + [c,d]η  
 



and it is not hard to see that this is isomorphic with 2 x 2 matrix algebra with the 
correspondence given by the diagram below. 

                
 
We see from this excursion that there is a full interpretation for the complex numbers 
(and indeed matrix algebra) as an observational system taking into account time 
shifts for underlying iterant processes. 
 
Let A = [a,b] and B = [c,d] and let C = [r,s], D = [t,u]. With  A' = [b,a], we have  
 

(A + Bη )(C + Dη ) = (AC + BD') + (AD + BC')η . 
 

This writes 2 x 2 matrix algebra in the form of a hypercomplex number system. From 
the point of view of iterants, the sum [a,b] + [b,c]η  can be regarded as a 
superposition of two types of  observation of the iterants I{a,b} and I{c,d}. The 
operator-view [c,d]η  includes the shift that will move the viewpoint from  [c,d] to 
[d,c], while [a,b] does not contain this shift. Thus a shift of viewpoint on [c,d] in this 
superposition does not affect the values of [a,b]. One can think of the corresponding 
process as having the form shown below. 
 

... a a a a a a a a a a a a a a a ... 
... c d c d c d c d c d c d c d ... 

... b b b b b b b b b b b b b b ... 
 
The snapshot [c,d] changes to [d,c] in the horizontal time-shift while the vertical 
snapshot [a,b] remains invariant under the shift. It is interesting to note that in the 
spatial explication of the process we can imagine the horizontal oscillation 
corresponding to [c,d]η  as making a boundary (like a frieze pattern), while the 
vertical iterant parts a and b mark the two sides of that boundary. 
 
Returning to Quantum Mechanics 
You can regard  ψ(x,t) =exp(i(kx - wt)) as containing a micro-oscillatory system 
with the  special synchronizations of the iterant view  i = [+1,-1]η . It is these 
synchronizations that make the big eigenform of the exponential ψ(x,t) work 
correctly with respect to differentiation, allowing it to create the appearance of 
rotational behavior, wave behavior and the semblance of the continuum. Note that 
  

exp(iϕ) = cos(ϕ ) + i sin(ϕ )  
 

in this way of thinking is an infinite series involving powers of i.  The exponential is 
synchronized via i to separate out its classical trigonometric parts. In the parts we 
have cos(ϕ ) + i sin(ϕ ) = [cos(ϕ ), cos(ϕ )] + [sin(ϕ ), -sin(ϕ )]η , a superposition of 
the constant cosine iterant and the oscillating sine iterant. Euler's formula is the result 
of a synchronization of iterant process. One can blend the classical geometrical view 

[a,b] + [c,d] a   c
d   b

!



of the complex numbers with the iterant view by thinking of a point that orbits the 
origin of the complex plane, intersecting the real axis periodically and producing, in 
the real axis, a periodic oscillation in relation to its orbital movement in the higher 
dimensional space. 
 

 
 
The diagram above is the familiar depiction of a vector in the complex plane that 
represents the phase of a wave-function. I hope that the reader can now look at this 
picture in a new way, seeing i = [+1,-1]η  as a discrete oscillation with built-in time 
shift and the exponential as a process oscillating between  cos(kx-wt) + sin(kx-wt) 
and cos(kx-wt)-sin(kx-wt).  The exponential function takes the simple oscillation 
between  +(kx-wt) and -(kx-wt) and converts it by a complex of observations of this 
discrete process to the trigonometric wave-forms. All this goes on beneath the 
surface of the Schrodinger equation. This is the production of the eigenforms from 
which may be extracted the energy, position and momentum. 
 
Higher Orders of Iterant Structure. What works for 2 x 2 matrices generalizes to n 
x n matrix algebra, but then the operations on a vector [x1,x2,...,xn] constitute all 
permutations of n objects. That is a generating element of iterant algebra is now of 
the form x σ  = [x1,x2,...,xn]σ  where  σ  is an element of the symmetric group Sn. 
The iterant algebra is the linear span of all elements x σ , and we take the rule of 
multiplication as 
 

x σ  y τ  = xyσ  στ     
 
where  yσ   denotes the vector obtained from y by permuting its coordinates via σ  ; 
xy is the vector whose k-th coordinate is the product of the k-th coordinate of x and 
the k-th coordinate of y ; στ is the composition of the two permutations  σ  and τ  .  
 
Hamilton's Quaternions 
Here is an example. Hamilton's Quaternions are generated by the iterant views 
 

I = [+1,-1,-1,+1]σ  
J= [+1,+1,-1,-1]λ  
K= [+1,-1,+1,-1]τ  

+1-1

i

-i

exp(i(kx-wt)) = cos(kx-wt)+isin(kx-wt)



 
where  
 

σ  = (12)(34) 
λ  = (13)(24) 
τ  = (14)(23). 

 
Here we represent the permutations as products of transpositions. One can verify that  
 

I2 = J2 = K2 = IJK = -1. 
 
For example, 
 

I2 = [+1,-1,-1,+1]σ  [+1,-1,-1,+1]σ  
= [+1,-1,-1,+1][-1,+1,+1,-1]σ  σ   

= [−1,−1,−1,−1]  
= −1. 

 
and 
 

IJ = [+1,-1,-1,+1]σ  [+1,+1,-1,-1]λ  
= [+1,-1,-1,+1][+1,+1,-1,-1] σ  λ  

= [+1,−1,+1,−1] (12)(34)(13)(24) 
= [+1,−1,+1,−1] (14)(23) 

= [+1,−1,+1,−1] τ .  
 
In a sequel to this paper, we will investigate this iterant approach to  the Quaternions 
and other algebras related to fundamental physics. For now it suffices to point out 
that the quaternions of the form a + bI + cJ + dK with a2 + b2 + c2 + d2 = 1 (a,b,c,d 
real numbers) constitute the group SU(2), ubiquitous in physics and fundamental to 
quantum theory. Thus the formal structure of all processes in quantum mechanics 
can be represented as actions of iterant viewpoints. 
 
Nevertheless, we must note that making an iterant interpretation of an entity like I = 
[+1,-1,-1,+1]σ   is a conceptually natural departure from our original period two 
iterant notion. Now we are considering iterants such as I{+1,-1,-1,+1} where the 
iterant is a multi-set and the permutation group acts to produce all possible orderings 
of that multi-set. The iterant itself is not an oscillation. It represents an implicate 
form that can be seen in any of its possible orders. Once seen, these orders are 
subject to permutations that produce the possible views of the iterant. Algebraic 
structures such as the quaternions appear in the explication of such implicate forms. 
 
The reader will also note that we have moved into a different conceptual domain 
from the original emphasis in this paper on eigenform in relation to recursion. 



Indeed, each generating quaternion is an eigenform for the transformation R(x) = -
1/x. 
 
The richness of the quaternions arises from the closed algebra that arises with its 
infinity of eigenforms that satisfy this equation, all of the form U = aI + bJ + cK 
where a2 + b2 + c2  = 1. This kind of significant extra structure in the eigenforms 
comes from paying attention to specific aspects of implicate and explicate structure, 
relationships with geometry and ideas and inputs from the perceptual, conceptual and 
physical worlds. Just as with our earlier examples (with cellular automata) of 
phenomena arising in the course of the recursion, we see the same phenomena here 
in the evolution of mathematical and theoretical physical structures in the course of 
the recursion that constitutes scientific conversation. 
 
Quaternions and SU(2) Using Complex Number Iterants 
Since complex numbers commute with one another, we could consider iterants 
whose values are in the complex numbers. This is just like considering matrices 
whose entries are complex numbers. For this purpose we shall allow given  a version 
of i that commutes with the iterant shift operator η . Let this commuting i be denoted 
by ι  (iota). Then we are assuming that  
 

ι2 = −1  
η  ι  = ι  η  
η2 = +1. 

 
We then consider iterant views of the form [a + bι , c + dι] and [a + bι  , c + dι  ]η  
= η  [c + dι  , a + bι  ]. In particular, we have e = [1,-1], and i = eη   is quite distinct 
from ι  . Note, as before, that eη   = −η  e and that e2 = 1. Now let 
 

I = ιe  
J = eη    

 K = ιη  .   
 
We have used the commuting version of the square root of minus one in these 
definitions, and indeed we find the Quaternions once more.  
 

I2  = ιe ιe = ι  ι  e e = (-1)(+1) = -1, 
J2  = eη  eη   = e (-e) ηη  = −1, 
Κ2 = ιη  ιη   =  ι  ι  ηη   = −1, 

IJK = ιe eη   ιη   = ι  1 ι  η  η  = ι  ι   = −1. 
 
Thus 

I2 = J2 = K2 = IJK = -1. 
 



This must look a bit cryptic at first glance, but the construction shows how the 
structure of the quaternions comes directly from the non-commutative structure of 
our period two iterants. In other, words, quaternions can be represented by 2 x 2 
matrices. This is the way it has been presented in standard language. The group 
SU(2) of 2 x 2  unitary matrices of determinant one is isomorphic to the quaternions 
of length one. 

 
 
In the equation above, we indicate the matrix form of an element of SU(2) and its 
corresponding complex valued iterant. You can easily verify that 
 

1: z = 1, w = 0, 
I: z = ι ,  w = 0, 
J: z = 0, w = 1, 
K: z = 0, w = ι . 

 
This gives the generators of the quaternions as we have indicated them above and 
also as generators of SU(2). 
 
Similarly, H = [a,b] + [c + di, c-di]η  represents a Hermitian 2 x 2  matrix and hence 
an observable for quantum processes mediated by SU(2). Hermitian matrices have 
real eigenvalues. It is curious how certain key iterant combinations turn out to be 
essential for the relations with quantum observation.  
 
 
XIV. Time Series and Discrete Physics 
In this section we shall use the convention (outside of iterants) that successive 
observations, first A and then B will be denoted BA rather than AB. This is to follow 
previous conventions that we have used. We continue to interpret iterant observation 
sequences in the opposite order as in the previous section. This section is based on 
our work in [20] but takes a different interpretation of the meaning of the diffusion 
equation in relation to quantum mechanics. 
 
We have just reformulated the complex numbers and expanded the context of matrix 
algebra to an interpretation of i as an oscillatory process and matrix elements as 
combined spatial and temporal oscillatory processes (in the sense that [a,b] is not 
affected in its order by a time step, while [a,b]η  includes the time dynamic in its 
interactive capability, and 2 x 2 matrix algebra is the algebra of iterant views [a,b] + 
[c,d]η ). We now consider elementary discrete physics in one dimension. Consider a 
time series of positions x(t), t = 0, Δt, 2Δt, 3Δt,  ... . We can define the velocity v(t) 
by the formula v(t) = (v(t + Δ) - v(t))/Δt = Dx(t) where D denotes this discrete 
derivative. In order to obtain v(t) we need at least one tick Δt of the discrete clock.  
Just as in the iterant algebra, we need a time-shift operator to handle the fact that 

z w
zw-

z z w w-= [     ,     ]+[     ,     ]!



once we have observed v(t), the time has moved up by one tick. Thus we shall add 
an operator J that in this context accomplishes the time shift: 
 

x(t)J = Jx(t+Δt). 
 

We then redefine the derivative to include this shift: 
 

Dx(t) = J(x(t+Δ) - x(t))/Δt .  
 

The result of this definition is that a successive observation of the form x(Dx) is 
distinct from an observation of the form (Dx)x. In the first case, we observe the 
velocity and then x is measured at t + Δt . In the second case, we measure x at t and 
then  measure the velocity. Here are the two calculations: 
 
 

x(Dx) = x(t) (J(x(t + Δ) - x(t))/Δt ) 
= (J/Δ)(x(t + Δt))(x(t + Δt) - x(t)) 

= (J/Δt)(x(t + Δt)2  - x(t+ Δt)x(t)). 
 

(Dx)x = (J(x(t + Δt) - x(t))/Δt )x(t) 
=  (J/Δt)(x(t + Δt)x(t) - x(t)2). 

 
We measure the difference between these two results by taking a commutator [A,B] 
= AB - BA and we get the following formula where we write  Δx = x(t+ Δt) - x(t). 
 

[x,(Dx)] = x(Dx) - (Dx)x  
= (J/Δt)(x(t + Δt) - x(t))2  

= J (Δx)2/Δt 
  
This final result is worth marking: 
 

[x,(Dx)] = J (Δx)2/Δt. 
 

From this result we see that the commutator of x and Dx will be constant if (Δx)2/Δt 
= K is a constant. For a given time-step,  this means that (Δx)2 = K Δt  so that  Δx =  
+ √(K Δt ) or  - √(K Δt ). In other words,  
 

x(t + Δt ) = x(t) +  √(K Δt )   or  x(t) - √(K Δt ). 
 
This is a Brownian process with diffusion constant equal to K. 
 
Digression on Browian Processes and the Diffusion Equation 
Assume, for the purpose of discussion that in the above process, at each next time, it 
is equally likely to have + or - in the formulas  
 



x(t + Δt ) = x(t) +  √(K Δt )    or  x(t) - √(K Δt ). 
 
Let P(x,t) denote  the probability of the particle being at the location x at time t in 
this process. Then we have 
 

P(x, t + Δt ) = (1/2)(P(x - Δx) + P(x + Δx)). 
 
Hence 
 

(P(x, t + Δt ) - P(x,t))/Δt)  
= ((Δx)2/2Δt)(P(x - Δx) - 2P(x,t) + P(x + Δx,t))/(Δx)2) 

= (K/2)(P(x - Δx) - 2P(x,t) + P(x + Δx,t))/(Δx)2). 
 
Thus we see that P(x,t) satisfies the a discretization of the diffusion equation 
 

∂ P/∂t = (K/2)∂2 P/∂x2. 
 

Of course, this demands comparison with the Schrodinger equation in the form (with 
zero potential) shown below. 
 

ih∂ψ /∂t = -(h2/2m)∂2ψ /∂x2 
 

In the Schrodinger equation we see that we can rewrite it in the form 
 

∂ψ /∂t = i(h/2m)∂2ψ /∂x2 
 
Thus, if we were to make a literal comparison with the diffusion equation we would 
take K = i(h/m) and we would identify 
 

(Δx)2/Δt  = i(h/m). 
 
Whence 
 

Δx  = ((1+i)/√2) √[(h/m)Δt]   
 
and the corresponding Brownian process is 
 

x(t + Δt) = x + Δx or x - Δx. 
 
The process is a step-process along a diagonal line in the  complex plane. We are 
looking at a Brownian process with complex values! What can this possibly mean? 
Note that if we take this point of view, then x is a complex variable and the partial 
derivative with respect to x is taken with respect to this complex variable. In this 
view of a complexified version of the Schrodinger equation, the solutions for Δx as 
above are real probabilities. We shall have to move the x variation to real x to get the 



usual Schrodinger equation, and this will result in complex valued wave functions in 
its solutions. 
 
In our context, the complex numbers are themselves oscillating and synchronized 
processes. We have i = [1,-1]η  where η  is a shifter satisfying the rules of the last 
section, and [1,-1] is a view of the iterant that oscillates between plus and minus one. 
Thus we are now observing that solutions to the Schrodinger equation can be 
construed as Brownian paths in a more complicated discrete space that is populated 
by both probabilistic and synchronized oscillations. This demands further discussion, 
which we now undertake. 
 
The first comment that needs to be made is that since in the iterant context Δx is an 
oscillatory quantity it does make sense to  calculate the partial derivatives using the 
limits as Δx and Δt approach zero, but this means that the interpretation of the 
Schrodinger equation as a diffusion equation and the wave function as a probability 
is dependent on this generalization of the derivative. If we take Δx  to be real, then 
we will get complex solutions to Schrodinger's equation. In fact we can write 
 

ψ(x, t + Δt) = (1 - i)ψ(x, t) + (i/2)ψ(x - Δx) + (i/2)ψ(x + Δx) 
 
and then we will have, in the limit, 
 

∂ψ /∂t = i(h/2m)∂2ψ /∂x2  
 
if we take (Δx)2/Δt  = (h/m). 
 
It is interesting to compare these two choices. In one case we took 
 

(Δx)2/Δt  = i(h/m) 
 

and obtained a Brownian process with imaginary steps. 
 
In the other case we took 

(Δx)2/Δt  = (h/m) 
 

and obtained a real valued process with imaginary  probability weights. These are 
complementary points of view about the same structure.   
 
With (Δx)2/Δt  = (h/m), ψ(x, t) is no longer the classical probability for a simple 
Brownian process. We can imagine that the coefficients (1-i) and (i/2) in the 
expansion of ψ(x, t + Δt) are somehow analogous to probability weights, and that 
these weights would correspond to the generalized Brownian process where the real-
valued particle can move left or right by Δx or just stay put. Note that we have  
 

(1 - i) + (i/2) + (i/2) = 1, 
 



signaling a direct analogy with probability where the probability values are 
imaginary. But this must be explored in the iterant epistemology! 
  
Note that 1-i = [1,1] -[1,-1]η   and so at any given time represents either [1,1] - [1,-
1] = [0,2] or [1,1] - [-1,1] = [2,0]. It is very peculiar to try to conceptualize this in 
terms of probability or amplitudes. Yet we know that in the standard interpretations 
of quantum mechanics one derives probability from the products of complex 
numbers and their conjugates. To this end it is worth seeing how the product 
of a+bi and a-bi works out: 
 

(a + bi)(a - bi) = aa + bia + a(-bi) + (bi)(-bi) 
= aa + abi - abi - bbii 

= aa  - bb(-1)  
= aa + bb. 

 
It is really the rotational nature of exp(it) that comes in and makes this work. 
exp(it)exp(-it) = exp(it - it) = exp(0) = 1 The structure is in the exponent. The 
additive combinatory properties of the complex numbers are all under the wing of 
the rotation group. 
 
A fundamental symmetry is at work, and that symmetry is a property of the 
synchronization of the periodicities of underlying process. The fundamental iterant 
process of i disappears in the multiplication of a complex number by its conjugate. In 
its place is a pattern of apparent actuality. It is actual just to the extent that one 
regards i as only possibility. On making a reality of i itself we have removed the 
boundary between mathematics and the reality that "it" is supposed to describe. 
There is no such boundary. 
 
 
XV. Epilogue 
The problem that we have resolved in this paper is the problem to understand the 
nature of observation in quantum mechanics. In fact, we hope that the problem is 
seen to disappear the more we enter into the present viewpoint. A viewpoint is only 
on the periphery. The iterant from which the viewpoint emerges is in a superposition 
of indistinguishables, and can only be approached by varying the viewpoint until one 
is released from the particularities that each point of view contains. 
 
It is not just the eigenvalues of Hermitian operators that are the structures of the 
observation, but rather the eigenforms that populate the mathematical models at all 
levels. These forms are the indicators of process. Mathematics, instead of being a 
descriptive symbol system for various algorithms, comes alive as an interrelated 
orchestration of processes. It is these processes that become the exemplary operators 
and elements of the mathematics that are put together to form the physical theory. 
We hope  that the reader will be unable, ever again, to look at Schrodinger's equation 
the same way, after reading this argument.  
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