1) [20 pts] Consider the following matrix

\[A = \begin{bmatrix} 1 & 2 & 1 & 3 \\ 2 & 3 & 1 & 5 \\ 3 & 4 & 1 & 7 \end{bmatrix} \]

as a linear transformation from \(\mathbb{R}^4 \) to \(\mathbb{R}^3 \).

(a) Let \(\text{Col}(A) \) denote the range of \(A \). That is, \(\text{Col}(A) = \{Ax\} \) where \(x \) runs over all vectors in \(\mathbb{R}^4 \). Determine a basis for \(\text{Col}(A) \) and find the dimension of \(\text{Col}(A) \).

(b) Let \(S = \text{Col}(A)^\perp \) be the subspace of \(\mathbb{R}^3 \) orthogonal to the range of \(A \). Find a basis for \(S \). What is the dimension of \(S \)?

(c) Find a basis for the row space of \(A \).

2) [20 pts] Let \(L \) be the linear transformation from \(\mathbb{R}^2 \) to \(\mathbb{R}^3 \) given by the following equation:

\[L(x, y)^T = (x + y, x - y, y - x)^T. \]

(a) Let \(M \) denote the matrix of \(L \) with respect to the standard bases for \(\mathbb{R}^2 \) and \(\mathbb{R}^3 \). Determine the matrix \(M \).

(b) Let \(E = [u_1, u_2] = [(1, 1)^T, (1, -1)^T] \) be a new basis for \(\mathbb{R}^2 \) and let \(F = [b_1, b_2, b_3] = [(1, 1, 1)^T, (1, 1, 0)^T, (1, 0, 0)^T] \) be a new basis for \(\mathbb{R}^3 \). Find the matrix \(A \) for \(L \) with respect to these bases.

3) [20 pts] Let \(V \) be the space of real-valued differentiable functions of the variable \(x \) spanned by \(\{e^x, xe^x\} \). Let \(D : V \to V \) be the linear transformation \(d/dx \) (derivative with respect to \(x \)).

(a) Show that \(\{e^x, xe^x\} \) are linearly independent in \(V \). Note that \(V \) is a subspace of the space of all differentiable functions of a real variable \(x \). Addition in \(V \) is addition of functions. Scalar multiplication is the multiplication of a function by that scalar.

(b) By part (a), \(\{e^x, xe^x\} \) is a basis for \(V \). Find the matrix of \(D \) with respect to this basis.
4) [20 pts] Let $L : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ be the linear transformation whose matrix in the standard basis is
$$A = \begin{bmatrix} 1 & -2 \\ 1 & 4 \end{bmatrix}.$$
(a) $v_1 = (2, -1)^T$ and $v_2 = (1, -1)^T$. Verify that $E = [v_1, v_2]$ is a basis for \mathbb{R}^2.
(b) Find the matrix $B = [L]_E^E$. This is the matrix for L in the basis E. Check your answer.

5) [20 pts] (a) Let Π be the plane in \mathbb{R}^3 defined by the equation $x + y + z = 0$. Find a general formula for the distance of a point $P = (x, y, z)^T$ to the plane. Use your formula to find the distance from $(1, 1, 1)^T$ to the plane.
(b) Let u, v and w be three non-zero vectors in \mathbb{R}^3 such that each pair $\{u, v\}$, $\{u, w\}$ and $\{v, w\}$ is orthogonal. Show that $[u, v, w]$ is a basis for \mathbb{R}^3. Verify this using only the properties given for these vectors. Do not use specific numerical examples.