} CHAPTER VII

{c|lec encircles a white region in the diagram}.

cycle ¢ encircling
a white region

orient ¢ compatibly with the planar orientation C:)
Since FK’ has the homotopy type of the plane punc-
‘ed by the white regions, we see that rank Hl(FK’) .
:(white regions)-1. In counting, count all the bounded
te regions. Then to obtain Hl(FK)’ note that
Kk HI(FK) = rank HI(FK’)_k where k is the number of
cer circles. For example, in the figure on p. 185, we
‘e by this account p(FK) = p(FK,)—l and p(FK,) = 7.
refore p(FK) = 6. Note that tﬁis is in accord with the
mula of Proposition 7.2. In fact, Hl(FK) has as basis
cycles {cl,cz,cs,c4,c5,06,c7}. ¥We have added Cy
ce cl+c2+c3+c4 ® a (® denotes homology of cycles) and
bounds a disk in FK.
rcise. Explain how‘to obtain a basis for Hl(FK) in

general case of k tracer circuits al,a2,"~,ak.
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Give a procedure for deciding which white cycles to retain

or throw away.

SEIFERT PAIRING

We now define an algebraic method for measuring the
embedding of an orieﬁted surface F C SS. Given F C S3,
and a cycle a on F, let a* denote the result of push-
ing a a very small amount into Sa—F along the positive
normal direction to F. Using this, we define the Seifert
pairing 0 : Hl(F) x HI(F) —— Z by the formula
6(a,b) = lk(a*.b). “This is a well-defined, bilinear
pairing. It is an invariant of the aﬁbientvisotopy class
of the embedding F C SB.

Seifert invented a version of this pairing in [S]. He
used it to investigate branched covering spaces. It has

since proved to be extraordinarily useful in both classical

and higher-dimensional knot theory.

Example 7.h:

] a b
a|-1 1
b 0]-1
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The surface F is oriented so that the positive normal
points out of the page, toward the reader. For the self-
linking .e(a,a) = lk(a*,a). a* may be represented by a
parallel copy of a along the surface. Thus 6(a,a) can
be computed from a disk with bands, by counting curls with

sign.

Example 7.5°

Q Note: Z] a+b b
‘I" \ a+b 0 1
“ b 0 0

8(a+b,atb) = 9(a.a)+6(b,a)+6(b,b)

]
(=]

7))@

Thus these pairings are jsomorphic. In fact, these two

embeddings are isotopic:
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-l ~on-
o AN ~ (S

We can, if we want to do it, indicate a banded su

entirely in topological secript. Thus

represents the surf:
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Exercise. Determine the Seifert pairing for this sur—
face F.

SEIFERT PAIRING FOR THE SEIFERT SURFACE

Now let's work out an algorithm for computing the
Seifert pairing from a Seifert surface (without pushing it
into band-form). Recall that HI(FK) is generated by the
white cycles. (These are circles encircling white regions
in FK,.) Thus we must determine how each crossing in the

diagram contributes to the Seifert linking number 68{(a,b}.

Here is a positive crossing, with Seifert surface shaded,
and white regions a and b labelled. The cycles corre-—
sponding to these regions are labelled and drawn. Note
that the cycles must intersect in order to continue follow-—
ing their courses around the white regions. Let's write
6(a,b) and 6(b,a) for the local contribution of this

crossing. Then

CHAPTER VII

6(a,b) = +1

8(b,a) 0.

Note that a*b = +1 also, where x-+y denotes interse
number of cycles on the surface. (The signs reverse f¢
negative crossing.)

b

//

7,
/,////%’/

The self-linking contribution is 8(a,b) = —% = 6(b,b).

7
/7
7

(Note: The cycles bounding white regions are all orier
compatibly with an orientation for the white region

itself.)

A 7 4
Gk

b, 8(a,b) = +1
@ 4y 8(b,a) = 0
i 8(a,a) = 8(b,b) = -1/¢
! //'?ZW/‘;’//’/'////%
7 )
4/zﬁ222%%7
759’CB 7 6(a,b) = O
8(b,a) = ~1
6(a,a) = 8(b,b) = +1/2

4
/ Y O // //
g

7%
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For example:

2] 1 b
a -1 1
b 0 -1
Here a and b interact at only one crossing. But we

look at two crossings to compute 8(a,b) and 8(b,b).

Exercise. Compute the Seifert pairing for FK of Figure
7.1.
Exercise. Let x+y denote intersection number on the sur-

face F. Show that for all x,y € Hl(F),

8(x,y)-8(y,x) = x'y.

Hint: Do it for Seifert surface first. Then try the

general case. To do the general case it helps to have the

following description of linking numbers: Let o,B C S3

be two disjoint oriented curves. Let B be an oriented
surface bounding f. Isotope o SO that o intersects B

transversally. Then lk(ea,B) = a*B.
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B
X B=d=Lk(x,p)

S

[Why is this independent of the choice of B?]

Exercise. Prove, using Seifert (or spénning) surfaces,
that this description of linking implies our original
description. -

Now return to the formula 06(x,y)-8(y,x) = x-y,

contemplate

3B = boundary of B = x*—x*

0(x,y)-8(y.x) = Lk(x",y)-1k(y",x)
= 1k(y, <) -1k(y ", x)
= 1k(y,x ) -1k(y,%,)
= 1k(y.x -x,)
= y-B

= X*y.
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DIFFERENT SURFACES FOR ISOTOPIC KNOTS
A given knot or link can have many different spanning
surfaces. For -example, two isotopic diagrams will have
rather different Seifert surfaces. How are all the dif-
ferent surfaces spanning a knot related to one another?
The answer is, in principle, surprisingly simple.
Consider the following way to complicate a spanning sur-
face:
1) Cut out two discs, Dl’ D2‘
2) Take a tube S1 x I and embed it in S3 dis-
jointly from the surface, but with the tube bound-
ary attached to BDl and 6D2.

This is called doing a l-surgery to the surface.

F ~ F after surgery

The reverse operation consists in finding a curve a on F

such that a bounds a disk SB—F. Then cut out a x I

2
from F and cap off with two D7's.
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< XTI
([
\ \
1 1
¢ (0 0d
“;;ﬁ before after
This is a QO-surgery. It simplifies the surface (i.e.,

reduces genus).

These two surgery operations give us different sur-

faces with the same boundary.

DEFINITION 7.6. Let F and F’ be oriented surfaces u

boundary that are embedded in S3. ¥e say that F and

are S-equivalent (F g F’) if F’ may be obtained fro
F by a combinations of O-surgery, 'l-surgery and ambie

isotopy.

THEOREM 7.7 [L1]. Let F and F’ be connected, orient

spanning surfaces for ambient isotopic links L, L’ C S3

Then F and F’ are. S-equivalent.

Proof sketch: Let X = 83 x I and suppose that a:Sl x

— 33 is the ambient isotopy from L = a(SIXO) to

L = a(SIXI). Then we get an embedding of an annulus in
via a : S1 x I — X, a(Nt) = (e(N,t),t). If we form
M = (Fx0) U a(SlxI) u (lel), then this is a closed sur

face embedded in S3 x I. One then shows that M = 3¥

where W 1is a 3-manifold embedded in S3 x I. W can b
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arranged so that (S3Xt) N W has only Morse critical

points of type x2+y2—z2 or —22—y2+zz. These correspond

to the O-surgeries and l-surgeries we described earlier.

x2+v2-22 <0 2ey2-22 = 0

Remark: It may be of interest to look directly at the S-

equivalences between Seifert surfaces for diagrams that are

-

related by Reidemeister moves. For example,

Now consider the Seifert pairings for S-equivalent
surfaces. Suppose that F’ is obtained from F by adding

a tube. Then Hl(FI) = Hl(F) ® Z ® Z where these two
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extra factors are generated by a meridian for the tube

and an element b that passes once along the tube orier

so that a+*b = 1.

=

We then have 8(a,a) = 0, 6(a,b)

1, 6(b,a) = 0 and

8(a,x) = 8(x,a) = 0 for all x € HI(F)‘ Let 8 denot

the Seifert pairing for F. Then we have 6 = a
b B{O

(o]
(o]

where B is a row vector, and a 1is a column vector.

Because of the row (6,0,1), 6 becomes on change of ba
90 00
01
B

An enlargement of this kind is called an S-equivalence.
More generally, two matrices 8 and ¥ are said to be

S-equivalent if  can be obtained from 8 by a combin
tion of congruence (6 — P 6 P’ where P’ 1is the tran
pose of P, P invertible over Z. This corresponds to
basis change.) and enlargements and contractions (revers
of enlargement) as above. If 6 and ¢ are S-equiva-

lent, we write 8 3 ¥
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COROLLARY 7.8. Let K and K’ be ambient isotopic kno
or links with connected spanning surfaces F (for K)

F/ (for K’). Let 6 be the Seifert pairing for F a
¥y be the Seifert pairing for F’. Then 6 and V¥ are

S-equivalent.
INVARIANTS OF S-EQUIVALENCE

DEFINITION 7.9. Let F be a connected spanning surface
the knot or link K and 6 the Seifert pairing for F.
Define
(i) The determinant of K, D(K) = D(8+8’) wher
D denotes determinant.

- : -1
(ii) The potential function of K, QK(t) € Z[t

by the formula @ (t) = D(t '6-t0).

(iii) The signature of K, o(K) € Z, by
c(K) = Sign(8+6’) where Sign denotes the
signature of this matrix.

(See definition below.)

Of course the gadgets produced in this definition a
not going to change under S-equivalence! Hence they wi

be invariants of K.

90 00
0 01
a 00

For example, if 6 = then 6408/ =

and D(t le-t8’) = D(t7'6,-t84) because

ts
and

nd

fqr

e

W t]

Te

11
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For the signature, recall that a symmetric matrix
over Z can be diagonalized through congruence over Q
(the rationals) or over R. Let e, denote the number
positive diagonal entries, and e_ the number of negat
diagonal entries. The signature, Sign(M), 1is defined
the formula Sign(M) = e,~e_. It is an invariant of th
congruence class of M. (See [HNK].) Note in particul
that Sign[? é] = 0. From this it follows that Sign(0
is an invariant of its  S-equivalence class, hence an

invariant of K. We shall also show that o(K) is an

invariant of concordance.

The potential function provides a model for the Co-

polynomial:

THEOREM 7.10.
(i) If K and K’ are ambient isotopic orient
links, tﬁen QK(t) = QK,(t).
(ii) If K ~ O, then QK(t) = 1.
(iii) If links K, K and L are related as belo

-1
the.n QK—QK = (t-t )QL.

S A
S
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Proof: We have already proved (i) and (ii). Note that
QK = 0 if K 1is a split link. To see this, choose
disjoint spanning surfaces for two pieces of the link, and

connect these by a tube to form a connected spanning sur-

face F.

H - the tibe

If « 1is a meridian of this type, then
HI(F) = Hl(Fl) ® Hl(F2) 0 Z

where a generates fhe extra copy of Z. Since 0(a,x)
= 68(x,a) =0 V x € HI(F)’ it follows that QK(t) = 0.
We use this discussion as follows. Consider Seifert

surfaces for K, K and L. Locally, they appear as

Va
T /%
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We see that Hl(FK) and H (FK) will have one more
homology generator than FL, unless it should happen -
L is a split diagram. But in this case QL = 0 whilc
and FK are isotopic by a 2w twist. Thus QK—QE = (
= QL, proving (iii).

If L 1is not a split diagram, then the extra gene
ator may be represented as a on FK and a’ on F

a’) = 9(a,a)+1. Hence GK = [2 gL]'

[Eil—¥——4 with appropriate choice of bases. I-

now a straightforward determinant calculation to show

K.
see that 6(a’

-1
QK—QK' = (t—t )QL. ]

Remark: By our axiomatics, it follows that the Conway
polynomial and our potential function are related by tl

substitution =z = t-1/t. Thus QK(t) = VK(t-l/t). It

amusing to solve the reverse. Then
t = z+l/¢.
Hence
t = z+1
z+1
Zte o

Using the notation [z+%i> for the continued fraction

QK([z+iz) ). In particule

1]

z+1 , Wwe have VK(z)
z+1
Z1e -

Oy

VK(l) F%is].
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We shall return to this subject!

Example: Let T be a trefoil with 6 = [“é _i]. Then

This agrees with our previous calculations.

Example: Given a knot K, let K denote the numerator of
the tangle obtained by running a parallel copy of K with

opposite orientation. K 1is a link of two components.

Since K has a spanning surface that is an annulus, we see
N

that 8 = [—lk(ﬁ)] is a Seifert matrix for K. Therefore

QK = (t_l—t)(Hlk(ﬁ)) and hence g = 1k(K)z. Apparently,

in this case the Conway polynomial is much easier to com-
pute using the Seifert pairing. (Compare this discussion

with the last exercise of Chapter IV of these notes.)

TRANSLATING v AND Q.

Note that @ (t) = D(t 16-t6/). Therefore
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1

Q(t7) = D(t6-t ~6’)
= D(te'-t"lg)
(¢! = p(-(t7To-c0)).

Since 6 1is 2gx2g for knots, (2g+1)x(2g+1l) for 2-c
. -1 +1
ponent links, we conclude that Qp(t °) = (-1)¥ QK(t)
where p is the number of components of K.
To obtain a practical method of translation betwee
QK and Vg we need to write tn+(_1)nt—n = Tn in te
of =z = t—thl. Look at the pattern:

24172 2 (t—t_1)2+2 = 2242

tT -t = (t—t_1)3+3t—3t_1 = zs+32.

Exercise. Let Tn = tn+(—1)nt_n and 2z = t—t_l. Shov
that Tn+2 = ZTn+1+Tn for n » O.
-t = 2

t2+¢72 = 2249

£3-¢73 = 23432

et o 2%42240

t —t—s = 25+523+52

84¢78 & 284624402242,
Show that the coefficient of 22 in t:2n+t_2n is n2.

We can use this exercise to obtain a curious formu
for the second Conway coefficient a2(K). For let K

knot. Then K has potential function in the form
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2, .-2 4 -4 2n_.-2n
QK(t) = b0+b1(: +t )+b2(c —t )+---+bn(t +t ). It
follows from our exercise that
2
a2(K) = b1+4b2+9b3+16b4+ +n bn,
Exercise. Compute Seifert pairing, determinant, potential

function and signature for the torus knots and links of

type (2,n).

n_ Crossings

!
Exercise. Prove that o(K') = -o(K) when X is a knot
!
and K' is its mirror image. Calculate o(T) and thereby

show that T’ = CQD and T! CCD) are not ambient iso-

topic.

Exercise. Prove that for knots X, XK/,

o(K#K’) = o(K)+o(K').
Use this exercise and the previous exercise to distinguish

the granny and the square knot.

&~ P

square granny
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Exercise. Choose a knot or link and compute everything

can.

Exercise. Let K be a knot. Show that v, (2i)/|v,(2i
K K
- 17K}

Use this in conjunction with the (easily prov

. P
fact op ¢ op. ¢ 2+ op [ > t><:; ] to show ho

K+ K-
inductively calculate knot signatures using a skein dec
osition (see [C1], [G1]).
Apply this method to the knot 942 (see the end o
Section 19 of Chapter VI in these notes) to show that
has signature 2. This completes our‘earlier assertion

942 is not amphicheiral.
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THE ALEXANDER POLYNOMIAL AND THE ARF INVARIANT

Recall that we have defined, for a knot K, the
invariant A(K) € Z2 via A(K) = a2(K) (modulo-2) where
a2(K) is thé second Conway coefficient. And we showed
(Chapter V) that A(K) =0 for ribbon knots. In this
chapter we will show that A(K) 'is identical with the Arf
jnvariant, ARF(K), which is the Arf invariant of a mod-2

quadratic form related to K.

MOD-2 QUADRATIC FORMS

First recall that a mod-2 quadratic form q is a
mapping q : V — 22~ where V is a Z2—vector space
such that V has a bilinear symmetric pairing
(¢, )YV xV — 22. The mapping q must satisfy the

following property:
(*) a(x+y) = a(x)+a(y)+(x,y) for all x,y € V.
Remark: Over a field of characteristic # 2 quadratic

forms and symmetric bilinear forms are in 1-1 correspon-

dence. Thus if [ , ] : W x W — F is a symmetric

252
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bilinear form, and char F % 2, then we can define
Q(x) = tx,x]/2 and obtain:

Qx,¥) = E([x+y, x+

' 5 y. x+y])
1
= 5([x,x]1+2[x,y]+[v.y]1)

Q(x,y) = Q(x) + Q(y) + [x.,v¥].
In characteristic 2 the situation is subtler, and more ths
one quadratic form may correspond to a given bilinear forr

Classically, a quadratic form in two variables looks

like a quadratic polynomial,

L?eware the change of variables.

2 2
Q(x,y) = ax“+bxy+cy and if char # 2 then we can write
2.4 2 a b/2
ax"+bxy+cy” = (x,y) x and classify the farm
b/2 ¢ y
ax +bxy+cy by analyzing the congruence class of the
matrix a b/2 .
b/2 ¢
In characteristic = 2, there is still a symmetric

bilinear form associated with a quadratic polynomial, but
now it occurs because 2 = 0: If Q(x,y) = ax2+bxy+cy2

let v = (x,¥), vy = (x;,¥;), vy = (%5.¥5). Then

Qv +vy)

2
a(X1+X2) + b(x1+x2)(yl+y2) + c(y1+y2)2

2 2
_ _ 2 2
axy +axg + b(X ¥tV X yotx,y ) + eyy + oy,

Qvy) + Q(vy) + b(x;¥o+xoy;)

Q(vl) + Q(vz) + vl[g g]vé.
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The associated symmetric bilinear form has matrix

0 bl _ 4|9 1]. This should remind us of the mod-2
b Of 1 0

intersection form on the (punctured) torus:

DEFINITION 10.1. Let K C §° be a knot and F a con-

nected oriented spanning surface for K with Seifert
pairing 8 : HI(F) x HI(F) — Z. Let V = Hl(F) ® Z2I
=6 on V, and let ( , ) denote the mod-2 reduction
of the intersection form S on Hl(F)' The mod—-2

wadratic form of F is then defined by q(x) = 8(x,x)
guadratic

for all x € v. -

Note that

B(x+y, x+y)

q(x+y)
- B(x,x) + B(y.y) + 8(x,y) + B(y.%)

a(x) + a(y) + (8(x,y)-8(y,x)) (mod 2)

n

q(x) + a(y) + S(x.y) (mod 2)

1

a(x+y) = a(x) +a(y) + (x,y).

Thus the Seifert pairing produces a mod-2 quadratic form

that is naturally associated with any spanning surface. VWe-
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o
r4

see that with respect to the standard basis (symplectic
basis) for the surface it is easy to write the quadratic

polynomial that corresponds to the form. Thus:

W % o @

9o = *¥ %2 +xy xy+y” xZexy+y? = g

We know that the first three surfaces are isotopic, hence
the forms xy, x2+xy and xy+y2 must be isomorphic!
Indeed, this is the case. For example x2+xy = x(x+y) a
so is isomorphic to xy via the change of basis x’ = x,
vy’ = x#y.

These four forms are nondegenerate in the sense that

the associated bilinear form is nondegenerate. Here it i
in matrix form [? é]. Nondegeneracy of ( , ) means
that the matrix of ( , ) is nonsingular.

In fact, we have just shown that there are at most t
isomorphism classes of nondegenerate dimension-two wmod-2
forms: dp = Xy and q; = xzfxy+y2. It is easy to see
q, and q, are not isomorphic. For, if V = szZ
then q, takes a majority of elements to O, while a4y
takes a majority of elements to 1. Thus we have classifi

rank-2 forms over Z2.
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DEFINITION 10.2. Let V be a finite dimensional vector
space Over 22 and q : V — Z2 a nondegenerate quadratic
form. The Arf invariant ARF(q) € 22 is defined by the
formula ‘

0 if q takes a majority of elements to 0

1 if q takes a majority of elements to 1.

Certainly ARF is an invariant so long as it is well-
defined. Indeed it is well-defined, and this comes about
as follows:

(i) Symmetric bilinear forms over Z2 are all {when

nondegenerate) sums of forms of type [? é].
That is, there is a symplectic basis
{al."',ag,bl,"',bg} for V such that
(ai'bj) = 5ij’ (ai,aj) = (bi.bj) =0 for all i
and j. This, of course, is given geometrically in
our Seifert form case.

(ii) It follows from (i) that any nondegenerate mod-2
quadratic form is a direct sum of the two-dimen—

sional forms. Hence it is a direct sum involving

q, and a;-

(iii) q, ] a4 = a4 ® 45- This is the basic fact. You can

prove it by a basis-change, or you can see it geomet-

rically by taking the connected sum
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which has the form 9 ® q; and find the basis
change by topological script! Here we can use

mod—-2 script in the plane so that

aNATReNAY

These modifications do not change the wod-2

1

quadratic form of the corresponding surface.
You may also think of these script moves as equival

(o consequensas o1 /'/\\/7 - %/\

performed on the bands (compare with pass—equivalence,

Chapter V). For then
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q, B e B qy = ﬁo or
q, ® q, @ +-- @ qy = ﬂl.

It is then a counting matter to see that ARF (2
ARF(@I) =1.

0) = 0 and
Thus, we have classified all nondegenerate
mod-2 quadratic forms, and shown the utility of the ARF

invariant in the process.

(iv) It follows from what we have said, that q ® q’ h:

an Arf invariant whenever q and q’ have Arf

invariants. Furthermore,
ARF(q ® q’) = ARF(q) ® Arf(q‘).

(v) It can be shown that (do itt) if

{al,-'-,ag,bl,‘v-,bg} is a symplectic basis for V

q V- 22 a mod-2 quadratic form, then

g
ARF(q) = Ek . q(ak)q(bk). This gives an explicit

formula for ARF.

Let K C 8> be a knot. We now define ARF(K) € Z

2
y the formula ARF(K) = ARF(q) where q is the mod-2

uadratic form of any spanning surface for K. We leave i

§ an exercise in s-equivalence to see that this is an
riant of K.

~ ; a
Therefore q; ® q,; = qq4 ® 4q- [Some of us will go to gre

EM 10.3." If knots K and K are related by one
lengths to avoid a little algebra.]

i ing change, and L 1is the 2-component link obtained
As a result, any mod-2 form is of the form
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by splicing this crossing, then THEOREM 10.4 (Levine [L27). Let K C 83 be a knot. Let

AK(t) be the Alexander polynomial for K. Then

ARF(K) - ARF(K) = ak(L).
ARF(K) = 0 & AK(—I) = %1 (modulo 8)
j:><<i: j:><i; — ARF(K)} = 1 &= Ap(-1) = 3 (modulo 8).
K K L

Proof: AK(Z) denotes the Conway polynomial. We know

COROLLARY. Let A(K) be the mod-2 reduction of the (Proposition 9.3) that

icient ag(K). Then A(K) = ARF(K). ..
second Conway coefficien 2( ) AK(J? o AK(t)'

Proof: Exercise. Hence AK(Zi) = AK(—I) where i = {-1. Now, for a knot,
AK(z) = 1+a222+a4z4+~°°. Hence AK(Zi) = 1—4a2(K) (mod 8
Proof of Theorem. Also an exercise. Compare on a spanning Since a2(K) = ARF(K) (mod-2), the theorem follows immed

surface with the curve «a depicted to ately from this. -
the left as part of a symplectic basis.
Note that you can assume that this Remark: 32 =1 (modulo 8).

dppears as part of a band, and that the

the dual curve B 1is on another band so In order to get a taste of the power of Levine's

that the simplest picture gives: result for calculating: Arf invariants, we now give a
brief introduction to Fox's Free Differential Calculus, a

.its use in computing Alexander polynomials, hence, deriva

ively, in computing ARF.




