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B. Background in Set Theory

Intuitively, a “set” is a collection of objects called “members” of the set. In
mathematics the notion of a “set” is taken as undefined, as is the relation of
membership, and axioms are put down for these to follow. We will not do
so in this “naive” treatment. Of course, it is well known that an undisciplined
approach easily leads to logical difficulties such as the “set of all sets that
do not contain themselves.” These problems are handled in set theory by
careful treatment of the axioms. But that is not the purpose of this appendix.
We merely intend to set down terminology and notation that the reader
must already have a feeling for, or he would not be studying this book. We
will briefly discuss some “obvious™ concepts and results, and will then prove
some things that are not so obvious. .

The terms “collection” or “family”'are synonyms of “set,” although the
term “family” is usually used only for somewhat complicated sets such as a
family of subsets of a set or a family of functions. The term “class” is often
used as a synonym for “set,” but in axiomatic set theory, it is used for a
more encompassing concept: a “set” is a class that is a member of another
class. A “proper class” is a class that is not a “set.” The phrase “the class of.
all sets that do not contain themselves” is meaningful, but “the class of al
classes that do not contain themselves” is not. We will not worry about sucl
things, but we will avoid the use of the term “class” when we mean a “set.’
(An exception to this is the use of “class” in the phrase “equivalence class’
which is traditional)

We shall use the logical symbols 3 to mean “there exists”, 31 to mear
“there exists a unique,” V to mean “for all,” > to mean “such that,” = to me
“implies,” <= to mean “is implied by,” and < to mean “if and only if.”,

If an object x is a member of a set S then we write xeS. If not then
write x¢S. If P(x) is a statement about objects x which can be true or, fals
for a given object x, then {x|P(x)} stands for the set of all objects for w
P(x)is true, provided this does in fact define a set. If S is a set then {xeS [
is the same as {x|xeS and P(x)}.

If S and T are sets then we say S is contained in 7, or S is a “subse
T if xeS=>xeT. This is denoted by S< T or T>S. The statement
true for all sets S. If S < T is false then we write S & T.

The “empty set” ( is the unique set with no objects, ie., xed is fal
all objects x. The statement & < S is true for all sets S. ,

The “union” of two sets S and Tis SU T = {x|xeS or xeT}. The "0
is always inclusive, ie., in the previous sentence it means x€$S or
both xeS and xeT. The “intersection” of two sets S and T'is SNnT
and xeT}. The “difference” of two sets is S — T'= {seS|s¢ T}

If A is a collection of sets then [J{S|Sed}= {x|3SeA >
(\{S|Sed} = {x|¥Se4,xeS}. If {S,|acA} is an “indexed” family 0l &
also use the notation | J S, = {x|3ze4 > xeS,} and (S, = {x|Vaed

Unions, intersections and differences foilow these laws: ‘
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: T= TUS,
(SuT)=(RuS)uT,
u(Sr\T)=(RuS)m(RuT),
.= [(RUS);
=X—(8nT),

SAT=TnNS,
Rn(SmT)=(RmS)r\T,
Rn(Sv T)=(RmS)u(RmT),
RAUS.=URNS),
(X—S)n(X—T)=X—(SuT),
N —8)=X =S
NSV Tp) = (\(Sao Tp)-

he “cartesian product,” or simply the “product” of two sets Sand Tis

et of ordered pairs S x T'= {<s,t)

|seS,teT}. We sometimes use (5, 1)

ead of ¢s,ty to denote an ordered pair.

«relation” R between two sets S and Tis a set of ordered pairsReSx T.
¢ usually write s R ¢ to mean {s,tyeR. For example, €is @ relation between
et of objects and a collection of sets. Another example is the relation x <y
tween the set R of real numbers and itself.

The “domain” of a relation R= 8 X

is {s\BteTath}.

Tis {t|3seSas Rt} and the “range”

A “function” f from the set X to the set Yisa relation f = Y x X with
domain X such that (xeX,yeY, yeY,yfx and yfx)=>y=Y" One writes
f(x) to mean y fx. We also use f:X—Y, and variants of this to mean
that fisa function from X to Y. The notation x—y is also used for y = f(x).
A function f: X —Yis said to be “injective” or “gne—one into” if f(a)=

(p)=a=Db.Itis said to be “surjective” or “onto” if ye Y =>3xeX3y= f(x).

Tt is said to be “bijective” or a “one—one correspondence” if it is both injective

‘and surjective.

The identity function on X taking every member of X to itself is denoted
by 1y, or simply by 1 when that is not ambiguous.
If R and S are relations (in particular, if they are functions) then we define

the “composition” of R and S to be

RoS={(a,cH|FoaRband bSc),

and the “inverse” of R to be

R-'={{ab>|bRa}.

It is easy to see that (ReS)™ ' =S -1,R-1. It is also elementary that gof is
a function when f and g aré both functions.

KRcY x Xis a relation and A = X then we put R(A) = {yeY|3acA>y Ra}.
Note that, for a function f XY f(A)cYis defined for A< X and f~ YB) <=

X is defined for B < Y.

Iff:X—»YandAcXthenletf\A

A.

= fn(Y x A), the «restriction” of f to

B.1. Definition. A relation Rc X x X is an equivalence relation on X ift

(1) (reflexive) xRx

forall xeX,
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(2) (symmetric) xRy = yRx,
(3) (transitive) xRy and yRz = xRz

B.2. Definition. If R is an equivalence relation on X then we put
[x]={yeX|xRy}.

This is called the equivalence class of x.

B.3. Proposition. If R is an equivalence relation, then [x] =[y]l<xRy. Also
xInDy] # J<=[x1=Dyl O

In other words the equivalence classes [x] partition X into disjoint subsets
whose union is X.

B.4. Definition. If R is an equivalence relation on X then the set of equivalence
classes {[x]|xeX} is denoted by X/R. There is the canonical surjection
¢: X — X/R given by ¢(x) = [x].

B.5. Definition. If X is a set then its power set is 2(X)={A]4 < X}. Also
let 24(X)=2(X) - {T}.

B.6. Definition. If X and Y are sets, put Y¥ = {f|f:X =Y}

B.7. Proposition. If 2 denotes the set {0,1} of two elements then the corre:
spondence A<y, between P(X) and 2% given by
0 if x¢A4,
1 if x€e4,

xa(x)=
is a bijection.

B.8. Definition. A partial orderingonaset X isarelation < on X such tha

(1) (reflexive) a<g forall aeX,
(2) (antisymmetric)y a<b and b<a = a= b,
(3) (tranmsitive) a<b and b<c = a<c

A set together with a partial ordering is called a partially ordered set Ot a’

B.9. Definition. A poset X is said to be totally ordered (or simply ord
linearly ordered or a chain) if a,beX =>either a<b or b<a

B.10. Definition. A function f: X — X on a poset is called isotone if'x

fx)<70).

B.11. Definition. If (X, <) is a poset and 4 < X then xeX is an up
for 4 if aeA=-a < x. The element x is a least upper bound or lub
is an upper bound and x’ an upper bound for A=x < x'. Similazly
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Jower bound or glb. Also, supremum = least upper bound
+ lower bound, and sup andinfare abbreviations of these.

Definition. A lattice is a poset such that every two element subset has
juband a glb- Itis a complete lattice if every subset has an lub and a glb.

‘Bi13. Proposition. If Sisaset then 2(S) is partially ordered by inclusion (i.e.
by <) and is @ complete lattice. 0O

14. Proposition. IfXisa complete laitice and f:X —X is isotone, then f
s a fixed point, ie, IxeXaf(x)=x

rooF. Let Y= {xeX|f(x) = x} and put yo = sup(Y). Note that ye¥=f(=

= ffON = fO)=f0)E Y. Also ye Y=y <Yo=J < fO) < fo)=fo) 18
n upper bound for Y= f(yo) = Yo=>Yo€ Y=>f(yo)eY=>f(y0) < y,- Since we
ad the opposite inequality, we conclude that f (yo) = Yo- O

15. Proposition. Let f:X-Y and g: Y =X be functions. Then there are sets
= X and Bc Y such that f(4)=B and g(Y—B)=X——A.

ROOF. Consider the power set 2(X) ordered by inclusion. It is a com-
lete lattice by Proposition B.13. If ScX then let h(S)eZ?(X) be h(S) =

X —g(Y—fS)

If S = T then it is easy to see that h(S) <= W(T), so that h is isotone. BY
Proposition B.14 there is a subset A < X such that h(4)= A. Let B = f(A).
Theng(Y—B)=g(Y—f(A))=X——h(A)=X—A. O

B.16. Definition. A totally ordered set X is said to be well ordered if every non-
empty subset has a least element. Thatis, g #A =X = Jgeda(bed=a< b).
(Of course, the least element of Ais glb(4)) 1 xeX thenits initial segment is

1S(x) = {yeXly < x},
and its weak initial segment 18
WIS(x) = {yeXly = x}.

Also, if xeX and is not the least upper bound of X (which may not exist)
then we put ‘

succ(x) = glb {yeXly> X},

the successor of x.

Note that every subset of a well ordered set is well ordered.

B.17. Lemma. Let X be a poset such that every well ordered subset has an
bin X. If f: X=X is such that f(x) = x for all xeX, then f has a fixed point.
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Proor. Pick an element x,eX. Let S be the collection of subsets ¥ < X such
that:

(1) Yis well ordered with least element x4 and successor function f1, . by}
(2) xo % yeY=1luby(ISy(y))eY.

For example, {x,}€S, {x,,7 (o)} €S, etc. We need the following sublemmas
(A) and (B):

(A) If YeS and Y'€S, then Y is an initial segment of Y or vice versa.

To prove (A) let V = {xe YN Y |WISy(x) = WISy.(x)}. Suppose first that
V has a last element v. If v is not the last element of Y then succy(v) = f(v).
If v is not the last element of Y’ then succy.(v) = f(v). Hence if neither of ¥, ¥
is an initial segment of the other then f(v)e ¥, whence f(v) = v and we are done.

If, on the contrary, V has no last element, let z=Iuby(V). L Y #V # Y’
then it follows from (2) that ze Y n Y’ (because if y = inf(Y — V) then V = ISy(y)
and therefore z =1luby(ISy(y))eY by (2)). Therefore, zeV, a contradiction,
proving (A).

(B) The set Y, =|J{Y|YeS}isinS.

To prove (B) note that if y,eYeS then it follows from (A) that
{yeY,ly <yo} =ISy(yo) and so this subset is well ordered with successor
function f. This implies immediately that Y, is well ordered and satisfies (1).
Also luby(IS(yo))eY = Y, which gives condition (2) for Y,. Thus (B) is
proved.

Now we complete the proof of Lemma B.17. Let y, = luby(Y,). If y0¢ Y,
then YU {yo}€S and so y,eY, after all. If (o) > yo then You{f(yo)}eS
contrary to the definition of Y,. Thus f(y,) = v, as desired. O

B.18. Theorem. The following statements are equivalent:

(A) For each set X, there is a function f: P o(X)— X such that f(S)eS for all:
g#ScX.

(B) If X is a poset such that every well ordered subset has an lub in X the
X contains a maximal element, i.e., an element acX 3d' > a=-d =a.

(C) (Maximal Chain Theorem.) If X is a poset then X contains a maximd
chain, i.e., a chain not properly contained in any other chain in X. -

(D) (Maximality Principle.) If X is a poset such that every chain in X has
upper bound, then X has a maximal element.

(B) (Zermelo, Well-Ordering Theorem.) Every set can be well ordered

(F) If f: X =Y is surjective then there is a section g: Y-X of f, e
injection g: Y = X such that fog = 1,.

(G) (Axiom of Choice.) If {S,la€A} is an indexed family of nonempty SefS
then there exists a function f: A—\ ) S, such that f(x)€S, for all oceA

PROOF. (A)=(B): Assume (B)is false. Then let X, = {xeX|x > a}. By 45
tion X,# ¢ for all aeX. Let g:Po(X)—X be a choice function.’
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— X by f(a)=g(X,)>a. Then f(x) > x for all xeX contrary {0 Lemma

7.

B)=(C): Let S be the collection of all chains in X ordered by inclusion.
if C<S is a chain of chains (e, Y,,Y,eC=Y,cY, or Y, Y,) then

{7l YeC} is a chain. Therefore every chain in S has a lub. By (B) there is a

aximal element of S, i.e., a maximal chain.

(C)=>(D): Pick a maximal chain C and note that if x is an upper bound
of C, then x is-maximal.

(D)=(E): Consider the collection W of elements of the form (U, «) where
U < X and « is a well ordering on U. Order these by (U, <) < (V, «)<they
are equal or (U, <) is an initial segment of (¥, «’) and « is the restriction
of « to UxU.

As in the proof of Lemma B.17 we see that every chain in W has a (least)
upper bound, namely, the union of its elements. Thus (D) implies that there
exists a maximal (with respect to <) well ordering, say (U, «).

We claim that U = X. If not, let xeX — U and define (Uv {x}, «’) where
«' = «u(U x {x}), ie., make x larger than anything in U. This contradicts
maximality of (U, «).

(E)=(F): Well order X and let g(y) be the first element of (). Then
feg) =y

(F)=(G): Let S={JS,and X = {{s,a)eS x A|xeS,}. Let pg X =8 and
p. X — A be the projections ps(s,a) =sand py{s,a)=0a Then p, is onto
since each S, # . Thus there is a section g: A — X for py; ie., glo) = {s,0)
for some seS,. Let f =pseg: A—S. Then f is a choice function since fle)=
psg(e) = ps{s,a) = s for some seS,, all aeA.

(G)=(A): For TeZ(X) define Sy = T. Then Po(X) = {S7| TePo(X)}} is
an indexed collection of nonempty sets. Note that | ]Sy =X since, for any
xeX,xe{x} =S, By (G) there is a function f:2o(X)~ {JSr = X such that
f(T)eST=Tforany@;éTCX. O

The Maximality Principle (D) is often inappropriately referred to as “Zorn’s
Lemma.” It is actually due, independently, to R.L. Moore and Kuratowski,
a dozen years before Zorn.

The only numbered results in this appendix that depend on the Axiom of
Choice are Theorems B.28 and B.26(d). (The latter requires only a countable
number of arbitrary choices, and so is relatively innocuous.)

B.19. Definition. Two sets X and Y are said to have the same cardinal number
if there exists a one—one correspondence between them.

Given a set S of sets, this relation is an equivalence relation on S. If XeS
we denote the equivalence class of X by card(X). We also write card(X) <
card(Y) if there exists an injection f: X - Y.

B.20. Theorem (Schroeder—Bernstein). If card(X) < card(Y) and card(Y) <
card(X) then card(X) = card(Y).
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Proor. (Note that this proof does not use the Axiom of Choice.) By hypothesis
there exist injections f: X — ¥ and ¢: Y — X. By Proposition B.15 there exist
subsets 4 = X and B = Y such that f(4) = Band g(Y — B) = X — 4. Therefore
fls:A—Bandgly_p: Y — B> X — A are one—one correspondences. Put them
together. O

B.21. Corollary. The ordering < on the cardinals is a partial ordering. [J

It is not hard to see that, assuming the Axiom of Choice in the guise of
the Well-Ordering Theorem, the cardinals are well ordered by <. This is,
in fact, equivalent to the Axiom of Choice.

B.22. Theorem. For any X, card(X) < card(#(X)).

Proor. The relation card(X) < card(#(X)) holds because of the injection
x+—{x}. Let f: X — 2(X) be any function. Put 4 = {xe X|x¢f(x)}. We claim
that there can be no yeX with A = f(y). If there is such a y then

yed = yéf(y)=4
and
yEA = yef(y)=A4,

so neither possibility is tenable. Thus there never exists a surjection
11X —2(X). O

The symbol w is used to denote the set of nonnegative integers with the.
usual ordering. Let o’ = w U {w}, tacking on a last element. Note that card(w)
is the least infinite cardinal. '

B.23. Definition. 4 set X is said to be countable if there exists an injectio:
fX-o. :

B.24. Lemma. The product w X w is countable.

ProoF. The function f:w xw—w given by f(nk)=(2n+1)2¢—1 i
bijection. :

B.25. Lemma. If f: X —Y is an injection with X 5 (& then there exi
surjection g: Y — X such that go f = 1.

Proor. For some x,eX let g(y) be x, for y¢f(X) and g(y)=f -10)
yef(X).
B.26. Theorem.

(&) If X is countable and f: X —Y is onto then Y is countable.
(b) A subset of a countable set is countable.




2.X, Y countable = X x Y countable.
‘A countable union of countable sets is countable.

oroor. For (a) let g: X —  be injective and define h(y) = infg(f ~*(»))- Then
v > is an injection.
art (b) is trivial.
For (c), if f:X—w and g: Y - o are injections then the composition of
‘ g X xY-ooXxX0 with the injection @ X @ —®, given by Lemma B.24,
ves an injection X x ¥ —a.
'For (d), suppose that X, is a countable set defined for aeA # & which
countable. Then let f:w—X, be a surjection and g:w—4 a surjection.
et o x 0= {XalaeA} be given by h(n, k) = fym(k)- Then h is surjective
and so | X, is countable by (a) O

In general, it can be shown that if X, Y are nonempty, and not both finite,
then card(XuwY)= max(card(X), card(Y)) = card(X x Y). The consequence
that card(X x X) = card(X), whenever X is infinite, is equivalent to the Axiom
of Choice.

B.27. Theorem. If R is the set of reals then card(R — {0}) = card(2?(w)) >
card(w).

PrOOF. Let R, denote the nonnegative reals. The injection Ry =R and
the injection R =R, given by xr—>e” show that card(R) = card(R ;). Similarly,
card(R) = card(R — {0}). We shall exhibit a bijection R, «<>P(w).

First write each positive real number in its continued fraction expansion

1
+
a3_|..

where the a; are integers with do >0 and a;>0 for i>0. We shall denote
this expansion by r=1[dg,@1,02,---) A terminating (rational) continued
fraction will be written in the form

=a0+

a, +
1

as—1+ CL+1
s

and condensed to [ag,dy,---»a)- In particular, an integer n> 0 is written as
n=mn—1)+1=n-11 With this understanding, a continued fraction re-
presenting 7 is uniquely determined by 7. Thus this determines a one—one
correspondence of the positive reals r with the sequences, infinite or finite,
[, dy,---)- Also let the real 0 correspond to the empty sequence. Finally, let
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a sequence [ay, 4, ...] correspond to the subset {ay, ag + a,, a0 + a4y + ds, ...}
of w. This is easily seen to be a one—one correspondence between the non-
negative reals and subsets of w, as claimed. The real number 0 corresponds
to the empty subset of w. O

It should be noted that, in the above correspondence, the rationals corre-
spond to the finite subsets of w. Thus the set of all finite subsets of w is
countable. (I believe the foregoing proof is due to A. Gleason.)

B.28. Theorem. There exists an uncountable well-ordered set &' with last
element Q such that x < Q=-1S(x) is countable.

Proor. Well order the reals and put on an extra element x, at the end. Then
let Q be the least element in the ordering such that IS(Q) is uncountable.
This exists since IS(x,) has cardinality that of R which is greater than that
of w. Then Q' = WIS(Q)) is the desired set. Note that by an equivalence, one
can regard Q' as QU {Q}. O

We shall refer to Q, as in Theorem B.28, as “the least uncountable ordinal”
and to other elements of Q' as “countable ordinal numbers.”

B.29. Theorem. If card(X)=card(X x Y)then card(P (X)) = card(2(X) x
Po(Y)).

Proor. By assumption there is a one—one correspondence f:X x Y—»X ’

This induces a one-one correspondence F:2(X x Y)—2(X) by F(S)=
{f0e, I {x,y>eS};ie., F(S)y= f(S). But g: 2o(X) x Po(Y) - P(X x Y)give

by g({S,T>)=S x T is an injection, and s0 Fog: 2,(X) x Py(¥)— P(X) 1

also an injection. There is also an injection P,(X)— Po(X) x Po(Y) (unl

Y = ¢, in which case the result is trivial) and so the contention follows fro 3

the Schroeder—Bernstein Theorem (Theorem B.20).

B.30. Corollary. For any positive integer n we have card (R") = card(R

PRrOOF. By Lemma B.24, card(w x w) = card(w). By Theorem B.27, card(}
card(R — {0}) = card(#o(w)), so Theorem B.29 implies that card(R .
card(R x R)=card(R). If we know that card(R")=card(R)

card(R"*1) = card(R x R") = card(R x R) = card(R) and so an induction

finishes the proof.

As mentioned before, the Axiom of Choice implies similar facts for arbitrary .-
infinite cardinals, but Theorem B.29 and Corollary B.30 do not depend on o
the Axiom of Choice. 5 '

In this book, we shall often make use of the Axiom of Choic
explicit mention. In cases where use of the axiom is known to be cI
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