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1. Introduction

The complex phenomena of experience are deeply
interconnected in levels of patterns. By looking for
connections, we move through these levels and begin to éee
essential unify in diversity.

In this essay I examine spatial concepts and, by a process
of descent, draw out what I believe are simple unifying patterns.
These patterns connect space concepts with sign concepts.

Space is continuous -- signs are discrete. Yet these
opposites meet, They more than meet. Sign and space are
inseparable -- each creates the other.

The discussion of this topic is bound in circularity:
symbols pétterning a space created out of the very symbols
themselves. Bateson says, "The pattern that connects is a
pattern of patterns."l

Our method is as follows: Begin in the middle. Observe how
new and simpler structures arise by throwing away excess
descriptive baggage. Go back to the middle with these .structures
in mind. Descend again. This process continues, in its
oscillatory way, binding the world of experience and the realm of

Pure pattern.
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To illustrate, consider regions bounded by curves in the
plane. The curves are simple closed curves -- without self-
crossihgs and without free ends. A simple closed curve divides
the plane into two pieces denoted inside (I) and outside (0).

0

.~ Cross

A Flatlander in this arena will also wish to discuss the crossing
of the boundary formed by the curve. ‘

If X is the side you are on, let —ET denote the side you
move to when you cross. Thus Eﬂ = I and ?ﬂ = 0. 0 and I
are names while ‘7 is an operator that indicates the crossing of
the boundary. 1In this descriptive context names, operations, and
the things that they stand for are held separate.

Since we are discussing only the inside and outside of a
single boundary (a single distinction) it is sensible to adopt
condensation rules: 00 = 0 and II = I. This eliminates
repetition of the name. Condensation is already a form of
descent, joining apparently distinct forms into one form.

There are now four rules:

ol =1, T =o,

00 =0, 1II =1
and the beginnings of a simple mathematical system. Complicated
expressions now have geometrical interpretations. Thus :%ﬂ& =,f€ﬂ
= .Eq = 0 represents a journey that begins inside and crosses

the boundary three times.
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But the symbols have a life of their own. What is the
(geometrical) meaning of 0I ? Perhaps it is an early cousin of
the Chomsky sentence "Colorless green ideas sleep furiously.“2
One rule would set O0I = 0 . The 0 dominates I just as a high-
voltage signal may dominate a low-voltage signal. With O0I = 0
the system is Boolean arithmetic and it applies to many two-
valued situations. For example, one can interpret 0 as True
(T) and I as False (F), §1 as not X and O0I as T or F,
Since the truth value of "T or F" is T, this vindicates 0I = 0.
An interpretation beyond the geometrical has suggested a new
syntatic rule.

Further descent reveals another source for dominance. We
have, all along, been using two names and two symbols (0 and I)
for the two sides of the distinction., It would have been enough
to simply mark one side, leaving the other unmarked. 1In other

‘words, we can regard the absence of a symbol (the unmarked
notational plane) as a reference to the inside (also unmarked).
Guided by ﬁhis idea, descent consists of erasing I from the

equations:

. .
om0
erase 1
ol | ol =

O:
1] = =0
00 00 = 0

A

H O O H

IT1

Il

Halfway down the rabbit-hole, the erased equations demand

identification of operator ”1 with operand 0! At the bottom
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of the hole there are two equations instead of four.
:ﬂ = Crossing
'1—I=—W calling
—r7=—w (calling), '=ﬂ= (crossing) .

These equations form the basis of G. Spencer-Brown's primary
3

arithmetic. In the primary arithmetic the mark, —1 r is

neither operator nor operand, but simply a sign that Zitself makes
a distinction in the plane. The object-plane of the original
distinction has condensed with the notation-plane of the forms of
expression. " The language is seen to be its own reference.
Signifier and signified are one.

No paradox arises from the conflation. Primary arithmetic
is a formal system with just enough structure to generate
significant pattern. The mark may be see as shorthand for a
rectangle [:]. Expressions in primary arithmetic consist of
disjoint collections of rectangles; they are subject to the

transformations generated by calling and crossing.

e -8 {1 = 3
T T -

Calling and crossing constitute basic modes of

simplification. Calling is the formal image of condensation,

while in crossing, two forms fit together and cancel each other.
Each expression has a unique simplification, a determinant

of value (marked or unmarked). Boolean arithmetic is now seen as

a description of the properties of the primary arithmetic. By
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setting I =:ﬂ, we recover the four Boolean equation; from the
primary arithmetic, and also the form of dominance since

o1 =1 1="1]=o.

A space with a mark upon it cannot be unmarked.

By falling into the primary arithmetic we have found a realm
where operator and operand are no longer distinguished from one
another and there is no longer a split between describer and
described. Along with this descent into a world of patterns
underneath Boolean arithmetic, there is a corresponding ascent
into new views of logic, paradox, extra-logical values, complex
numbers, and the formalisms of relativity and quantum physics.
These relationships will be detailed as the paper continues.

In the next section we descend from the geometry of
rotations in three-dimensional space through the algebra of
quaternions

i2 = j2 = k2 =
to the primary notion of reflection from which these compléxities
spring. The quaternions are the true middle groﬁnd about which
all these musings turn. .Section 3 finds quaternions again in the
rotational symmetries of an object that is connected with its
surroundings. Further descent (section 4) finds a condensation
of the quaternionic'pattern in the forms of superposition of
periodic boundaries.. Section 5 relates peribdic and self-
referential form with paradox and self-containing geometric form.
Sections 6 and 7 treat complex numbers as the formaliéation of

the possibility of multiple viewpoints of a periodic ground-form.
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Here pattern-evaluation and numerical measurement begin to

intermix as the real numbers sound within their complex
counterparts. Section 8 details the matrix formulation of
complex numbers. By viewing matrices as shorthand for periodic
arrays or "waveforms"™ of real numbers, we obtain a direct
relationship with the approach of section 7 and a new
interpretation of matrix multiplication as a form of pattern
combination. Section 9 studies the form of an event. The most
primitive event is an act of observation -- a splitting of the
world into observer and observed -- a distinction being made (or

unmade). In first approximation this may be symbolized by a

curve marking a distinction in the plane.
|

Further articulation would replace the boundary by an oscillation

and the sides by conjugate imaginary values.
aba _
) b z
a z a
b
a
p 2

Here we realize that there really can be no distinctions at all.
Full descent condenses all into one. But ho@ would a distinction
appear if such a mythical beast could indeed exist? This is a
matter of experience andit is the form of an event. The summary

form of an event is the form of the crossing, a 2 x 2 hermitian

-

matrix
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Here our imagery touches the formalism of relativity and
quantum theory. Depending upon one's viewpoint, such a matrix
represents either a point in Minkowski spacetime or the
mathematical analog of an observer of a two-state quantum system
(the quantum mechanical analog of a simple distinction). By
mixiné these viewpoints we find that an event.observing itself
can observe its own time and length. An event on the light-cone
that operates upon itself produces a radial series of events in
Minkowski space, in time-ratios of the original event's time
raised to powers of Fibonacci numbers. These last results may
have no present physical interpretation, but they provide a
beguiling link with the mythology. |

I believe that what we see here is the beginning of an -
arcing connection between myth and scienc;. Both find their
commonality in the culture in which we are embedded and the
language that we use. It should not be too astonishing that a
descent from physics through its mathematical formalism to
péttern and form leads inevitably to the mythology 6f world
arising -- with the observer as imaginary mirror of the internal
and the external (which are really one).

Section 10 addgesses projection, coding, wholes and parts,
through the metaphor of knotting and linking in three-space. A
sﬁmmary of the major points, with illustrations; concludes the
paper.

I would like to take this opportunity to thank the many

people without whose time, conversation and love this attempt at
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synthesis would never have seen the light of day. Particular

thanks go to Kyoko Inoue, David Solzman, Alex Comfort, Barney

Weissbourd, Milton Singer, and Francisco Varela.

2. Rotations - Reflections - Quaternions

Rotations in three-dimensional space have remarkable
properties. Consider the following problem. Rotate a solid cube
by 90° about a vertical azis followed by 90° about a
horizontal axis. Describe the resulting motion of the éube as a
rotation by some angle about a single axis. Determine the angle
and the axis.

The problem can be solved by experiment, or by a series of
pictures. For the pictures, an axis of rotation will by
represented by an arrow:

r/////////a
This arrow can be regarded as a unit vector in three-space, R3,
We take R3 as the set R3 = {(a,b,c) ,a, b, and ¢ are real
numbers}. This is the coordinaté model for space. Each point is-
specified by a triple of numbers. In this interpretation the

three basic mutually perpendicular directions are

k
i= (lr Or O)I
j = (0, 1, 0), /O >
k = (0, 0, l). i »

By defining (a,b,c) + (d,e,f) (a+d, b+e, c+f) and r(a,b,c) =

(ra,rb,rc), where the lower-case letters stand for real numbers,
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we see that RS is the set of points of form ai + bj + ck (a,b,c
real numbers).

A rotation is specified by an angle € and an axis U. We
adopt the right-hand rule to determine the sense of rotation
about the axis: The diagram below indicates a positive rotation
(positive angle) about the axis U. By placing a right hand
around the axis with thumb pointing in the axis direction, the

fingers will curl around the axis in the positive sense.

/

With these conventions, consider the rotation problem:

E F F B
%qoo
© c
H
R °
0 Q H D
Kz
—G&G—
/C//' qo°
& T§3 & c
F'
hd B
‘ &
4 q >
E A

Ka ':R:\RL

Denoting the two 90° rotations by R; and R, as in this diagram,

we write Ry = RyRy for the rotation obtained by first doing R;

.and then doing Ry. Examine Ry directly. Ry fixes the corners B

and H,
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Thus Ry is a 120° (a third of a full rotation) about the diagonal

axis through B and H!

A remarkable symbolic schema, devised in the 1800's by the
mathematician Williaﬁ Rowan Hamilton,4 gives the pattern
underlying these compositions of rotations. The'schema is an
algebra associated with i, j, k that Hamilton called the
qudternions. It is based upon a series of rules for
multiplying i, j, and k among themselves. These rules are:

i =32 k2 -

i
|
~

ij =k ji

jk =1 kj = =i

ki =3 “ik = =5
The rules are easy to remember. The Square of each unit vector
is -1 . If two unit vectors U, U' are at 90° to one another,
then their product UU' is perpendicular to both of them., This
product points in an axial direction so that a rotation about it

in the sense of rotating U into U' conforms to the right-hand

rule, uu'!
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Actually, we are dealing here with the four-dimensional

2 = -1 does

epace H = {ai + bj + ck + d |a,b,c,d, real}, since i
not belong to R3. Hamilton's search for this system was impeded
for many years until he stepped off into that fourth dimension.
Any two quaternions are multiplied by treating them as
ordinary numbers, but subject to the quaternionic rules. Thus

(2 + 31) (5 + 73) 2(5 + 73) + 3i(5 + 73)

10 + 143 + 15i + 21ij

Jo(2 + 31)(5 + 73) 10 + 143 + 15i + 21k.

Some quaternionic facts

1. Let U = ai + bj + ck where |Ull= a2 + b2 + ¢2 = 1, Then
u2 = -1 (unit directions have square minus one).

2. Suppose P and Q belong to R3 with P = (a,b,c) and Q =
(d,e,f). Define the imner product P-Q = ad + be + cf. P
and Q are said to be perpendicular (P| Q) if P:Q = 0. This
conforms to the usual notion of perpendicularity. Then the
gquaternionic proauct of Pand Q is given by the formula PQ =
~-P*Q + PxQ where PxQ = (bf - ce)i + (cd - af)j + (ae - bd)k.
PxQ is called the vector cross-product of P and Q. It is
perpendicular to both P and>to Q.

3. There is a three-dimensional sphere of quaternions of unit
length. These may be expressed as A + BU, where U is a unit
vector in three-space (hence a pure imaginary quatetnion)
and A and B are real numbers with A2 + B2 = 1. Define the

econjugate quaternion A + BU = A - BU, and note that
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(A+BU) (A+BU) = A®-ABU+BAU-B202 = a24p2 = 1

.

Thus the conjugate of a unit quaternion is 1its
multiplicative inverse.
4. Recall the definitions of sine and cosine as lengths of

sides of a right triangle with unit hypotenuse.

A = cos (6
1 (6)

B B = sin (8)

S
A
Thus unit quaternions may be written in the form
eUf = cos(8) + U sin(6),

where UER3,HUH = 1.

Here is the relation between quaternion multiplication and

the composition of rotations:

Theorem 2.1, Let R(U, 6 ) denote a rotation about axis U by
angle 6 , Given two rotations R(U, &) and R(V,¢), then

R(U, 6 )R(V,¢) = R(W, ¥), where

e06/2 . Vo/2 _ WY/2

Thus the rotation R(U, 6) corresponds to the quaternion
eU?/z = cos(6/2) + U sin(6/2).

Ezample. 1In the cube problem Ry = R(k,m/2) and Ry, = R(j,n/2).

Hence Ry corrésponds to

. 'f_
eX™/4 = cos(n/4) + k sin(u/4) = % + k‘-;_-_ ,

and R, corresponds to

in/4 o 2, /2
e > + 3 5
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Thus
3T/ kT4 {%+ J% {%+ kg}
=21+ (L + k) =31+ 3+ k+ 3K).
=—§-(1+i+j+k)=_§-+"_§_[ "*k].

/4 km/4 _ L+ 3+ k)/V/3] [2m/3] /2

T f

diagonal axis 120°

SENOMMREL G

This calculation corresponds precisely to our geometric-

e B e BT

diagrammatic work, giving the correct diagonal axis and
rotational angle of 120°. Thus each rotation correspdnds to a
quaternion in such a way that successive rotations are described
by the algebraic product of the quaternions. Theorem 2.1
codifies this remarkable relationship.

Here is a first explanation of why this theorem works. The
crux of the matter is that to each g = A + BU we can define a
mapping g# : R3 ——R3 by the formula

*(p) = gpg.

* is a rotation about the U-axis by the

One then verifes that g
a .

angle 6 when g = eU”/z. Since (gg')# = g#g'# r this shows that

composition of rotations corresponds to multiplication of

quaternions, proving the theorem.
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Thus a quaternion of length one corresponds to a rotation

about its imaginary part U by the angle associated to it in the

ue/2 un/2

form e Since e = U, we see that each unit direction

U in RS corresponds to a 180° +turn about itself. Indeed,

1F(4) = 44T = 11(oq) - “1(-i) = i,
i%(9) = 15T = kT = py - -3, ,
1Y) = ikT = o5 =y
Thus
i"(ai + b + ck) = ay - bj - ck,

and this is a 180° turn about the i-axis.

But to stop here would be to leave the mystery unsolved.
Why does this clever algebra work so well? Why half angles?
How do the rules arise? In order to go deeper, a key fact is
needed: Every rotation 18 the composition of two reflections
in two planes that make an angle with each other that 18 one
half the rotation angle.

To see this, view a plane that is perpendicular to the two
feflectidn pPlanes. Represent the reflection planes by fhéir
lines of intersection with the perpendicular plane. Take the
plane of the paper as the perpendicular plane. Recall that a
reflection is perfdrmed by drawing a line orthogonal (perpen-
dicular) to the mirror, and continuing it by the same distance
vacross the other side of the mirror. (See the diagram on the

following page.)
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Mirror

In the next diagram the two lines represent the two
intersecting mirrors. The point 0 is a point on the line of
intersection of the mirrors. Successive reflections in the tﬁo
mirrors P+ P' = P''" give a rotation P ——P'" about 0. The
angle of this rofation is twice the angle between the two

mirrors.

Rotations are secondary phenomena. Reflections are primary.

The algebra that describes reflections will also describe

132




rotations. Consider reflection in the i-j plane. This is given

by the formula S(ai + bj + ck) = ai + bj - ck. The i-j plane is

where ¢ = 0 ; it is invariant under the reflection.

k

U, unit direction perpendicular to M

bsip)= ai+bi —c k
S(P) = T‘C‘g"ec,"\"lovp o o

Observe:
U
kik = -k2i = i,
kik = -k2j = 5, 0
|
kkk = +k2k = —k. 4 l
I
Thus [
v -U
S(P) = kpPk.

In general, given a mirror Plane M and a unit direction U

that is orthogonal to M, reflection in M is given by the formula

S(P) = UPU. U2 = =1 makes sure that U is reflected, and the

anti- —commutativity of U with vectors orthogonal to it keeps the

mirror plane invariant. All features of the quaternion algebra

have direct geometric interpretation in the mirror world.

If U and U' are directions orthogonal to the planes M and

M', then R(P) = U'UPUU' is the formula for performing'successive

133
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reflections in M and M'. Letting g = U'U, we have U = -U, U' =
-U', and U'U = UU'. Thus R(P) = gPE. This recovers the quater-
nionic formula for rotations.

The structure of three-space rotation is purely based on
mirrors. By associating to each mirror M an imaginary quantity
U, orthogonal to it with U2 = -1, reflection becomes P +—— UPU.

Thus in the algebra P becomes a (notational) mirror for U. Mir-

ror and mirrored are exchanged in the crossing from geometry to

algebra!

3. Quaternionic Tangles

The quaternionic pattern also arises from topological con-

siderations. Recall that i is interpreted in quaternions as a

180° rotation about itself. Thus i2 = -1 represents a 360° rota-
tion. But we are not back to start with -1! It requires 720° or
1~ to return to +1. This algebraic fact has a geometric counter-
part.

It is an idealization to imagine an object in space that is
free to rotate as it pleases, disconnected from the rest of space
and ony other objects in it. Therefore let the object being rotat-
ed be connected by strings to a fixed background or reference.
Then, as it rotates, the strings become tangled, e#hibiting the
track of eration. Amazingly, however, after two full rotations
(720°) the strings can be disentangled without moving object or
reference. This is the geometric analog of i2 = -1.

In order to see the simplest instance of this phenomena,

imagine a ball connected by two strings to a wall.
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\

axis
*jigsball

§ wall

The strings will become twisted about each other if the ball is %

rotated about an axis perpendicular to the wall.

180°

Let I denote the operation of rotating the ball by 180°. This

—
puts a single crossing ;:\\, or half-twist on the strings, 12

o : ~
corresponds to 360°, and puts a full twist :><:::>\\_ on the

strings.

iy o

Call a string form of the following type a cur?l:

— ()
——

Curl

1 (topological equivalence)

—2

1
j:::::(::::><:::::::::’ 360° Twist
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A curl is topologically equivalent to a 360° twist. ‘Thus a 720°
turn will put two curls of the same type on the strands. The
deformations of the strings occur without moving the ball or the

wall. The following diagrams show how the 720° tangle is

unraveled.

W 720° twist

two curls (opposite ﬁype)

%@m (twists unravel)
1

@ 0° twist
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] M M
/XX/

_ ’ ) ~ ) 2
v = T% = -1 (XD = ()7 = -1
GEOMETRY TOPOLOGY

In fhis sense_::N:: and‘::X:: are analogous to +1:
(2X)? = T < 360° twist < -1.  Both > and
;:X:: constitute "imaginary" third dimensional values
associated with a crossing in the plane. They are topological
analogs of the unit vectors éssociated with the mirror plane.

The entire structure of the quaternion group @ =
{+1, +i, +3, +k}.arises through this weaving trick. 1In order to
see this, first consider the symmetries of a disc. Then add

strings connecting it to the surroundfngs. One has a disc with

labelled sides, and the motions:
@ front ' ' @ back
(:) v, () 180 turn about Jb(vertical)

H
@ ’ 180 turn about G» (horizontal)

— ®© 150
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Then it is easy to see that V2 = H2 = T2 =1, VH =T =T = HV.

These turns generate the Klein 4-Group, XK. I has the form of
the guaternions with -1 set equal to +1. If we add strings to
the disks and work out how these motions drag the strings around,

then the Klein group is replaced by the quaternion group.

Rotation may deform the space surrounding the rotating ob-
ject, but space is restored to its original condition (topologi-

cally) after every two turns!

/

N
)
A\
{~»
NS

1)~
l}-‘

4. The KZein-4—Group Revisited

We have just seen the Klein 4-Group as symmetries of a rotat-
ing disk. This pattern also arises in the superposition of the
simplest periodic waveforms. To expléin this we first make a side
descent that condenses calling and crossing. The key is Spencer-

. . ... .5
Brown's notion of <demposition.
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Aziom of Idemposition, Superimposed boundarijies of the same

"color" cancel each other. Thus

D _

(i? =D :
N

As a corollary of this Principle we obtain the following versions

of calling and crossing (see section 1).

LT -
T ] - o teom,

To obtain the Klein 4-Group consider the following wave-trains,

I (call)

i

o 0O
Il

(D is the empty wave.)
Let XY denote the superposition of X and Y, Then

idemposition implies that

AA:BB:.CC::),
AB = C,
BC = A,
CA = B,

Hence the Klein Group appears from superposition of simple wave-

trains. In this sense, the quaternions are directly related to
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the primary arithmetic. (Quaternions condense to the 4-group.)

The next section examines wave-trains and self-reference.

5. HWave Traine and Self-Referential Form

The equation F = Flhas no solution in the primary

arithmetic. The attempt to solve it leads to a (paradoxical?)

oscillation of wvalues:

F=—]=>F:Jﬂ=:ﬂ=>F:Jﬂ:%ﬂ=_]@,F=ﬁ]%,f=7 s e

e e | e B | B 10 P R B

The paradox is its own solution. View the wave-train either as a

repetition of 1 1l or as a repetition of I17] . Let [a,b]

denote the pair a,b with specified order.

I=107,11and Jd= [T ,7]

denote the two views of the pattern. In general, 1let [a,b]

denote one view of ...ababababababa... and define [a,b] [c,d]

‘[ac,bd],[a,b]=[‘1—3—],—a_]].

Then

=700 =T = 1T =T,
A=A = MW= 13- 7 ana - o

This creates a waveform arithmetic in which F = -E] has

solutions. Note that the product adopted here is different from

idemposition (as in section 4). 1In section 7 a similar procedure

will produce the complex numbers. Imaginary numbers and logical

values beyond True and False have the same underlying form. 6,7
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The wave is not the only way to understand F = Eﬂ . Take
this equation as a Prescription to re-enter F into its own

indicative space:

ﬁ -=0-F0- 5

In the limit there is an infinite descending chain of crosses:

5

J

The chain is denoted by the re-entering mark [](org),s since it

2

literally contains a copy of itself.
0=l

Of _L_] we cannot say that is is marked or that it is unmarked. It

is itself. In the form of its construction the waveform is .

regenerated,

1T MW WA

0 I 1} n 1 " 1

17T 71T 7 -

More complex self-referential forms appear in the same way. For

example,  let ﬁ; =‘ﬁiﬂ = ;fi;>
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This is the Fibonacei Form. The number of divisions of # at

depth n is the n"? Fibonacci number f,: £, = £, + £, 7. f,

fl = 1. l' 1, 2, 3’ 5' 8, 13' 21, 34' 55, 89,...

F (7] 7 =E[§

e b BBa e

Unfolded in this way, self-referential form becomes infinite

self-similar geometric form —- the precursor to space-filling

curves, fractals,9 and to the multitude of common forms

(coastlines, mountain ranges, branching systems of trees and

142
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rivers, the human circulatory system,...) that exhibit self-
similarity at different scales of observation. (Fractal is a
term coined by Benoit Mandelbrot.? a fractal is a geometric form
of fractional (!) dimension. Such forms are often self-similar
as in the “snowflake“.depicted below. It is convenient to use
the word fractal when referring to infinite self-similar.

geometric form,)

6. KReal Numbers
The real numbers R consist of ‘calculating forms 1like
11.379821... , an integer followed by a (possibly) infinite

decimal expansion., Real numbers (and more generally points in
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any space) are shorthand for procedures to make a decision,

establish a location. Think of points in the Cartesian

plane R x R. You can specify a specific point by a sequence of

choices of four values
> |

3 ‘ 4

in a concatenating series of grids.

o e PRGBS, g e,

144
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7. Complex Numbers
Consider a period pattern of period two.

... ABABABA ...

[A,B] [B,A]
This can be seen as a repetition of AB or as a repetition of BA,
Let [A, B] and [B, A] denote these two viewpoints of the wave-
form. Let [A, B] = [B, A] and call this reversal operation
conjugation,

The A's and the B's could be anything at all. 1In genéral we
consider a ground-form that is Susceptible to multiple
interpretation. In this sense the situation is quite analogous
to the Necker cube illusion -- a drawing of a cube with two

three-dimensional interpretations.

e

Now suppose that A and B represent real numbers, Then it is '}

natural to add and multiply waveforms by combining corresponding
terms. (If these are temporal sequences, then we are combining
parts of the wave that appear at the same time.)

W= ...A B A B A B A B A...

T .+« C D C D CDCODC...
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W*T= ... AC BD AC BD AC BD AC BD AC
W+ T = ... A+C B+D A+C B+D A+C B+D A+C B+D A+C

[A,B] * [C’D]

[AC,BD],

(A,B] + [C,D]

i

[A+ C, B+ D].
We identify A with [A,A] and set

A[C,D] = A * [C,D] = [A,A] * [C,D] = [AC,AD].
Let D denote the set of pairs of real numbers with this
structure. D will be called the counter-complex numbers, Let
i = [+1, -1]. Every counter-complex number is of the form a + bi
for real nuﬁbers a and b.

a+ bi= [a, al] + b[1l, -1],

+.a + bi=[a+ b, a-b].
Thus a + bi denotes an oscillation between a + b and a - b. We
say that [a, a] is the real part of a + bi and that [b, -b] is

the imaginary part. Thus

R(a) = %( @+ a) = real part @,

I(a) ='%( @ - o) = imaginary part o .
The basic imaginary waveform i satisfies i * i = +1., 1In the
complex numbers € = {a + bi |la,b real}l, i is characterized by ii

= -lI. What is the relationship between ) and C 2 By defining
a new multiplication on D in terms of the old multiplication *,
we can obtain the structure of the complex numbers: Let the new
product of o and B be denoted ®B , Then

B = R(a) * B 4+ T(a) % B

]

Thus ii 0*i + i*i = i*I = -1, ang
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(a + bi)(c +di) = a * (c + di) + bi * (c = di)
= ac + adi + bci - bdgi * i,
-.(a + bi)(c + di) = (ac - bd) + (ad + bc)i.
It is easy to verify that

[]Ddefines(L]uB:%(oc*B + TEB+ a*B- G*EF),

[C defines@]u*8=-%-(a8 + aB + af - af) .

Hence € and D are mirror images in respect of their

multiplicative structure. Each defines the other in the same

o 1

C o8] a*g] I

pattern.

Spacetime Structure

From this mirror-imaging reference the stfucture of
Minkowski spacetime is born. From the outside this is the
personal myth of forms breaking forth into duality only to return
once again into void and dissolution in an endless round. The
poles of each duality support each other, contain each other, and
ultimately, in the place of light are seen to bear no difference.
By choosing a symbolism to describe a difference that may be ne
difference, the mathematical structure will emerge.

Let M =D x{. This is a four-dimensional space. Define an
interval I: M —R by the formula I(a,8) =a*ay - BB (see

note 6). Let L = { (o, 8) € M|I(a,B) = 0}. Since L is that
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locus in the four-space where the evaluations in the separate
mirror planes agree, it will be called the place of agreement,
the image of the place of light.

From the inside, this is the formalism of Minkowski
spacetime , for spacetime is given by coordinates (T, X, Y, %)
(time, space, space, space) and with the speed of light set equal
to 1l for convenience, the spacetime interval is given by T2-x2-
Y2_22, a quantity independent of the observer (for observers
moving at constant .velocity with respect to one another). The
light-cone 1is the locus T2-x2-y2-32 = 0. Represent spacetime
coordinates in M by the scheme (a,B) = (T + iX, Y + i2). Then
I(a, B)= T2—X2—Y2—Zz. Hence the light-cone corresponds to that
place of light. Macroscopic geometry is governed by the wavelike
structure of conceptual microspace. Waves of pattern

crystallizing the void.

8. Complex Numbers as Matrices
By a ( 2 x 2‘) matrix we mean an array
a c
d b}.
Matrices with numerical entries are commonly added and multiplied

by the rules

~




0 0 1 0 K 0
0 = r 1 = r K = (K a constant)
0 0 0 1 0 K

Observe that

N IR R

Hence one can write

L

and complex numbers are represented in the form

a 0 0 b a b
a + bi = + = .
LO a -b 0 -b a

Compare this matrix representation with the waveform presentation
of section 7. 1In the matrix the real and imaginary waveforms are

presented separately and rotated 90° with respect to one another!
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Each complex number creates its own checkerboard plane.
Moreover, there is a formal similarity between matricx
multiplicaton and wave-combination as given by the formula af =

R(a) * B + I(a) *x 3, Observe:

a c] [e ae + cf
My = =
4 b |f de + bf
[ ae [ cf
= +
| bf | de
{a] e ] c el
= * + *
b] |£] |a £ |

socesetrip ol e #0

r - r
Real(M) = R(M) = R = } ,

]
]

U]

~la ] [e¢
Imag (M) I(M) I ’

we have MY = R(M) * Y 4+ I(M) * Y . Matrix multiplication
conforms to the same pattern as wave combination.

We shall write M = R(M) + VI(M),

MNENEE

where |~ is a formal symbol designating the imaginary part of
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the matrix. Let * act linearly on the formal sum and define
B+ Vv =Y+ Vs

Proposition 8.1, Let M and N be 2 x 2 matrices. Then their

matrix product is given by the formula

MN = R(M) *N + I(M) * N .,

ae ag ch cf ae + ch = ag + cf
= + -
bh bf de dg| | bh + de bh + dg
= M-NO
The formal similarity between matrix multiplication and waveform

combination ties the usual mathematics of matrices into the web

of pattern.

9. The Wave-Structure of an Event
Right now is an event. Observer and observed occur, each

supporting the other. Their difference is imaginary. The
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observer is the observed. Time is now and this happens in its

presentness.

The primitive event of self-looking, self-producing-sel f-

producing—self—prodUCing—self—producing- «s» 18 symbolized by the

reentering mark, J r and its associated waveforms

with 1J =], Taken singly, the waveforms represent the

observer's oscillation I - not I - I - not I-1I- not - eses

Together they form a conversation and a taking of turns. Taken

individually the two waveforms are indistinguishable. When
together, the phase difference suffices to tell them apart.
The closing of the circuit, the inturning gesture, the act

of oscillation are all forms of the establishment of boundary.

This first circularity 'ﬂ r Circular return, is not quite a

boundary <n anything. But with it come the remarkable simulacra
we call scenes, spaces, sides, pattern and place.

For a geometrical sense of :] as boundary, think of

crossing as an act of reflection. The boundary then takes the

-role of mirror, and is invariant under crossing:iﬂ=-a.

- g
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Each distinction gives rise to a trinity:~7 ,=ﬂ ,:] - Inversely,
the reentering mark as imaginary value gives rise to the (individ-
ually indistinguishable) waveforms I and J that distinguish one

another and hence can be distinguished.

| P J
. I/\J
. \/
]
The symbols have deep roots.
TEO R O

LU [
del2fere eroramme.

Spirals, gestures of reference, repeating pattern.

Frieze patterns that decorate walls.

Walls and symbols for walls.

Waveforms delineating boundaries that separate imaginary space.
Spaces of the imagination.

Inside and outside aancing out of an

Ever-vanishing I.

z z z z z z z z z z z z
E=...ababababa bababababababa b
z Z z z z Z z z Z z z z

The real waveform becomes boundary between sides labelled z, z.

z

z
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Temporality is the tempo of pattern.

N

~0
\
a = &
]
L

2 (SN

1YY
7 > q @ A

The complex part of the event-wave occurs at 90° to the real part

forming a matrix or crossing.

S NN AR a
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Matrix represents view, window, frame, freeze of event. Hence
the matrix is the form of operator. One waveform expanded
abababa ... . The other folded to the two sides z|z. Folding

both waveforms, we obtain

o <[ nee,

B z |
a point in Minkowski spacetime (see the end of section 7). 1In
time-space coordinates the correspondence is as follows:
;T + iX

(T, X, Y, Z) <> Je DxC
i Y + iz

T + X Y + iz] a z]
= E .
z b

The determinant of the hermitian matrix E gives the spacetime

Y - iZ T - X

interval. At this point we make contact not only with
relativity, but also with quantum mechanics, for hermitian
matrices (E above) are quantum mechanical operators. They

- correspond to observations of a two-state system.

Digression. Quantum Mechanics of a Two-State System

A system that has two ostensible physical states (such as a
particle with two spin states) is represented mathematically by-a
continuum of superpositions of these states with relative complex

probability amplitudes. Thus if the two states are labelled U

and D, then one considers superpositions e = zU + wD, where z
and w are complex numbers,withIzl'2 + |w|2 = 1 (lzﬁ=.zE).

Observation is modelled by the algebraic situation He =) e, where
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» is a real number, e is a state superposition, and the operator
H corresponds to some observable guantity. In order to obtain
real ) (the measurement), the matrix H must be hermitian; thus
hermitian matrices correspond not only to points of spacetime,
5 but also to the observables of a two-state system!
some sense of the logic of this model is obtained by con-
sidering an experiment with light-polarizing material. Two
polarizing filters rotated at 90° with one another will not pass
any iight. But if a third filter is placed between them at an

angle of 45°, then light will pas through the triplet. Thus an

appropriate mathematical model for the filtering process must be
something like projection of one direction upon another direction.
Two directions at 90° to one another give a null projection,

while two sucessive 45° projections can be non-null.

The guantum mechanical model needs complex probabilities in

order to explain interference phenomena.

then Ee = e has solutions e if and only if A= A+ or A_, where




then

A =T % V&Z + Y2 + 22

and

_ 1 2 2 2 1 _
T=35 O, +2), %{ + YT+ 27 =5 (A A).
Hence the event E, viewed as a gquantum mechanical operator, can

observe its own time and length.

Proof. Ee = le <= (E - Ale = 0.
This has solutions if ang only if the determinant of (E - )\) is
zero. Determinant (E - )\) = Az - (a + b)A + (ab - zz).

Az - (a + b)) + (ab - 2z) = 0 <= ) = A, or A

+ -
as above.

Observation involves the split into event as operator E,
and event as operand e. We should, at least, consider what may
lie below such a split. Then there are only events. But not
all products will remain in the same pattern. That is, the pro-
duct of two hernitian matrices is not always hermitian. However,
powers of ‘a hermitian matrix are hermitian, and powers of ‘an
event on the light-cone remain on the light-cone.

Recall that

T + X Y + i2Z
B = - iz T - X
. . . . 2 2 2 2
1s said to be on the light-cone if T° = x° + v° + Z2 . Let E be
denoted by the pair (T ,ﬁ) where ﬁ = (X, Y, 2).
Proposition 9.2. Let E = (T,‘E) be a point on the light-cone.
Then M1 = ()9 Wp | nIMz, oo g(n) = £_ - 1 ana

fn is the nth Fibonacci number.
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Proof. It is easy to verify that

T + X Y + 1iZ| [T' + X' Y' + ig! T" + X" Y" + ig"®
Y - iz T - X y'-iz'  T" - X! Y" -igzm v o~ oxno |
where
™ = TT' + XX' + Yy' + Z27z' + 1 (2Y! -Yz'),
X" = TX' + XT',
Y" = YT' + TY' + (XY' - ¥X'),
z2" = ZT7' + TZ2' + (Xz' - ZX').
In the case at hand we have ZY' - YZ' = XYy' - YX' = XZ' -2ZX'= 0.
- UL\ - - —_
Hence T" = TT' + R « R', R" = TR' + T'R, where (a,b,c) (d,e,f)
= (ad,be,cf) is the usual inner product, and t(a,b,c) = (ta,tb,tc)
is scalar multiplication. Futhermore , when (T' , R') is a power
of E, then R + R = TT'. Hence, T" = 2TT', R" = TR' + T'R. The

result now follows by induction.

Expanding the event.
Given that z = ¢ + di corresponds to the matrix
c d
-d c
we can expand the event thus:
fa 0 c d
E = |2 z] _ |0 a -d c
z bj c -d b 0|-
d
Now the real wave form acts precisely as notational mirror for
the two sides. Each side z,z 1is seen to be itself an event, and
there is a hint of the recursive concatenating formal structure
that will continue to decompose closer and closer views of the

event structure into more copies of itself. The event becomes

fractal form.
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Quaternions Again.

These are called the Pauli Spin Matrices.lo They satisfy the

identities
2 _ 2 - 2 1
° T 9% =09z =1,
OXOY = _lGZ r
OYOZ = _lGX r
0,0y = ~io, -

I = ioX ’
J = ioY ’
K = 1OZ

the quaternions appear once again.

Pattern of Observation.

We have seen that Ee = Ae is the physicist's model for
observation. E is the operator and stands for an observer. It
operates on the vector e, changing it. The "ratio" Ee : e is A,
a real number, the measurement.

This model should be compared with the formal stabilizations
such as fﬂ = IJ. Here the operator,—w , by acting upon itself,
.?ﬁl, creates the operand. It also gives rise to the act of
measurement, when it is seen as separate from the process vl,:T\,
Eﬁﬂ ; ... that builds 7]. Our discussion of T] is pureiy formal,

without the scaling of numerical measurement.
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It is possible to produce examples that exhibit various
mixtures of the formal and the numerical. Investigation along

these lines should help to clarify the meaning and extent of

applicability of the guantum mechanical (Ee = le) model.
10. Projection - Coding - Description
I want to discuss wholes and parts. We start with the

notion of a knot or a link in apparent three-dimensional space.

Schematic Projections
A knot is an endless loop of rope embedded in the three-space.
It is knotted if there is no spacial deformation, short of
~ tearing the rope, that transforms the knot to the unknot (a sim-
ple loop). A link consists of many loops, possibly entangled
with one another.

A knot' is a fine example of a whole form. It has no par-
ticular (special) decomposition into parts. The knot's proper-
ties are determined through its (contextual) relation to the
space in which it is embedded.

Nevertheless, any picture or projection of the knot invari-
ably cuts it up into a group of interrelated pieces. In a

schematic projection of the knot, these pieces are arcs in the




plane, meeting at the crossings: = - The inter-
relationship of the parts may then be indicated by labelling

each arc, and by describing the situation at each crossing:

7

b c=alb
C

_b //( C=apib

[c is obtained by crossing b from a (see note 11).] A code is

then obtainea that describes the knot.

b , c =ab b
b=cp>a Code
@ Z \\\\\\:::Ey a=>bpc
c
The code (description) is self-referential. Each term is de-
fined via the other terms. Self-referential linguistic form

codes circularly-interconnected spatial form.

Many different projections (hence many different decom-
positions into parts, and many different codes) may represent
the same knot up to topological equivalence. Topological in-
varianﬁs (invariants of topological form) are obtained by ex-
amining how the descriptioné change under spatial deformation
of the knot.

To return to a sense of the whole from the parts requires

an integration that is somehow independent of the particular

decomposition. This requires blindness (but systematic blind-

ness!) to certain details. The parts must condense into the

whole.
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Sign and Space -- A Summary
1. The form we take to exist arises from framing nothing.
2. A circle makes a distinction in the plane.

O

3. You could get lost!

4. The snake eats its tail.
5. The form reenters its own indicational space.
@

i

[e)}

Imaginary value.

%=U*—+ﬂ

7. Agreement is the place of light.
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