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Abstract 

Kauffman, L., J. Simon, K. Wolcott and P. Zhao, Invariants of theta-curves and other graphs in 
3-space, Topology and its Applications 49 (1993) 193-216. 

Given a graph in 3-space, in general knotted, can one construct a surface containing the graph 

in some canonical way so that the embedding of the surface in space, or even the link type of its 

boundary, is an invariant of the knotted graph? We consider, in particular, surfaces that contain 

the graph as a spine and that are canonical in the sense of having trivial Seifert linking form. It 

turns out that &curves and &-graphs are the unique graphs for which this approach works. 
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We are interested in topological invariants of graphs embedded in 3-dimensional 

space. A primary method of constructing such invariants is to associate a collection 

of knots and links to a graph such that the isotopy class of the collection is an 

invariant of the isotopy type of the graph (for example, see [5,6,13]). In this paper, 
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we obtain a new invariant by associating a link to a graph with 3-valent vertices 

(called a trivalent graph). The paper is organized as follows: 

In Section 2, we discuss the possibility of associating a link with a trivalent graph, 

which is the boundary of an orientable surface of zero Seifert form collapsing to 

the graph, as a knot type invariant of the graph. We prove that the &curves and 

the &-graphs are the only 3-valent graphs to which such an invariant link can be 

associated. The proof also provides a method of constructing the invariant link. In 

Section 3 we show that the &curve spines are uniquely determined by the surfaces 

while the similar statement is not true for the &-graphs. Thus there is hope that 

those links can completely classify knotted &curves, while this cannot work for 

&-graphs. As affirmative examples and applications, the invariant links can distin- 

guish &curves through five crossings and &-graphs through four crossings (as 

listed in the tables in [ll]). In Section 4 we remark that for graphs with vertices of 

valence greater than 3 it is impossible to define the invariant link in this manner. 

1. Preliminaries and notations 

Let R3 be the 3-dimensional Euclidian space, and s,” be the 3-sphere. We shall 

work in piecewise-linear category (but we shall draw figures piecewise-smooth just 

for convenience), and work on graphs in R3. Every result here is true for graphs in 

9. 

A knotted graph, or an embedded graph, or simply a graph r in R’ (or s3) is a 

one-dimensional polyhedron. Each x E r has a neighborhood U(x) s r consisting 

of a finite number of half-open arcs ending at x. The valence of a point x E r is the 

number of such arcs (which is independent of the choice of such neighborhood). 

We only consider one-dimensional polyhedra for which every point has valence 

32, and define vertex to be any point in r of valence ~3. A polygonal line connecting 

two vertices (either distinct or identical) and having no vertices in its interior is 

called an edge. 

An abstract graph is a homomorphism class of knotted graphs and is denoted G. 

Often, r(G) is used to denote a knotted graph which belongs to the homeomorphism 

class G, and is called an embedding of G into R’ (or S3). 

Two graphs are said to be equivalent if they are ambient isotopic (z). The 

equivalence class of a graph r is called the knot type of I’. 

A graph r is planar if it is equivalent to some graph r, in R* (or s’). 

An abstract graph G is planar if there is a planar embedding T(G). 
An abstract graph G is connected if some T(G) is connected as subspace of R’ 

(or S3). 

Let r be a knotted graph in R’, P be any plane in R’ and p : R3 + P the orthogonal 

projection. The projection p is regular for r provided p is locally one-one and for 

each y up, p-‘(y) contains either one or two points; if p-‘(y) contains two 

points x, , x2, then neither of them is a vertex of r; and x, , x2 have neighborhoods 



A,, A2c r that are open arcs such that the projected arcs p(A,) and p(A2) meet 

transversely. In Fig. 1, we illustrate a regular projection of a “theta-curve” (O-curve), 

a graph consisting of two vertices joined by three edges. This example shows that 

a graph may be nontrivially knotted while each of the knots and links in it is trivial 

[71 

Fig. 1. A regular projection of Kinoshita’s &curve 

Let S be an oriented surface, x and y be cycles on S. Let x+ denote the result of 

pushing x a very small amount into s’-S (or R3-S) along the positive normal 

direction to S. The function ( ,) : H,(S) x H,(S) + B defined by 

(x, Y) = Ik(x+, Y) 

is called the Seifert ,form (or Ser&rt linking f&-m) for S; (x, JJ) is called the Seifert 

pairing of x and y. It is a well-defined, bilinear pairing, an invariant of the ambient 

isotopy class of the embedding S c s’ (or I@). Let x - y be the intersection number 

of x and y; then (well known from Seifert; see e.g. [4]) 

(x, y) -(_Y, x) = x - y. 

We need to consider several ways of decomposing a knotted graph into “simpler” 

graphs. 

Let I' be a knotted graph. We say I‘ is splittable if there exists a 2-sphere S in 

s’-r which splits s3 into 3-balls A and B with both An I‘ and Bn I’ nonempty. 

The 2-sphere S is called a splitting sphere. 

Following [12], we say r is a connected sum along a point (or a connected sum 

of type I) if there exists a 2-sphere S, called an admissible sphere of type I, which 

meets r in a vertex u’, or transversally in one point u’ in the interior of an edge and 

splits s3 into 3-balls A and B with (I‘- MI) n A and (I‘- w) n B nonempty. The 

graph r is a connected sum along two points (or a connected sum qf tJ*pe II) if there 

exists a 2-sphere S, called an admissible sphere of‘ type II, which meets I‘ in two 

points, u and ZI (each point u, v is either a vertex or is a point of transversal 

intersection of S with an open edge off‘), and splits S3 into 3-balls A and B with 

neither (I’- u u v) n A nor (r - u u v) n B empty or equal to an unknotted arc, and 

such that the annulus obtained by taking away small open regular neighborhoods 

of u and v from S is incompressible in &-K 

We say r is prime if (a) it is nonsplittable and (b) it cannot be decomposed into 

a connected sum of type I or type II (in [12], all planar embeddings are considered 

nonprime; we do not make this extra distinction). 
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The above definitions can be converted into similar definitions for r G R3. In the 

case where Tc R2, the 2-sphere S intersects the plane transversally in a circle C, 

which we call an admissible circle of type I or II. 

2. Association of a link to a knotted graph 

2.1. Association of a family of surfaces to a knotted graph 

To investigate the possibility of associating a link to a knotted graph as a knot 

type invariant, let us look at the abstract graphs first. The interest here is the 

connected graphs. We pass from a graph to a surface closely related to the graph 

and then take the boundary of that surface. 

Lemma 2.1. For any abstract graph G and any T(G), there is an orientable surface 

S(T) containing r(G) and collapsing to r(G). 

Proof. The lemma can be proved by constructing such a surface. Take a regular 

projection of r and isotope r such that near each vertex, all edges lie in a small 

disk parallel to the projection plane l? Put such a disk at each vertex; then connect 

disks with bands, one along each edge (see Fig. 2). Do this so that each band projects 

locally one-one onto its image. Let S(T) be the disk/band surface constructed as 

above; then it is an orientable surface collapsing to r q 

Henceforth, we shall use S(T) to denote an orientable surface collapsing to a 

graph r. We note that there are many such surfaces since, for example, it is possible 

to give full twists to the bands in the above construction. 

Fig. 2. A disk/band surface. 

2.2. Existence and uniqueness of special surfaces 

We now begin to consider the questions of existence and uniqueness of surface 

S(T) on which the Seifert form is required to be zero. For brevity we call such a 

surface a special (or good) surface. We first show that to have a good surface the 

corresponding abstract graph must be planar. 

Lemma 2.2. If G is a nonplanar abstract graph, then for any embedding r(G) there 

are no surfaces of zero Seifert form collapsing to r(G). 
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Proof. If r(G) is an embedding of a nonplanar abstract graph then S(T) must 

have genus 21, since otherwise S(T) is homeomorphic to a surface in R*, which 

contradicts the hypothesis that G is nonplanar. So there are two cycles, a and b, 

on S, intersecting each other transversally at one point (Fig. 3). Since (a, b) - (b, a) = 

a - b # 0, the Seifert form of S(T) is nonzero. 0 

Fig. 3. A nonplanar surface. 

Lemma 2.3. Let G be a connected planar abstract graph; then any two planar 

embeddings of G are equivalent. 

Proof. Suppose r(G) and P(G) are two embeddings of G in R*. Then there is a 

homomorphism C#J of R’ to R’ with c#J(~) = r’, and 4 is realizable by an isotopy 

[81. 0 

Theorem 2.4. Let Z’,( G) be a planar embedding of a connected trivalent planar abstract 

graph of G. Suppose Z’,(G) is prime. 

(1) If the number of edges in G is ~6, then for each T(G), there exists a unique 

(up to ambient isotopy) surface S(Z) with zero Seifert form. 

(2) Zf the number of edges in G is >6 then 

(i) there exists a r(G) with no S(T) of zero Seifert form; 

(ii) if there is an S(T) of zero Seifert form, it is the unique such surface. 

We state and prove two lemmas for Theorem 2.4. 

A graph r,(G) has complementary domains D, , . . . , D, that are bounded and 

one unbounded U. The boundary c, of D, is a l-complex which can be viewed as 

a l-cycle in H,(T,,). We call these boundary cycles in r,. 

Lemma 2.5. Zf G is a connected planar abstract graph, then the set of all boundary 

cycles in Z, represents a basis of H, (K’,). 

Proof. Each loop in r, can be expressed homologically as a combination of boun- 

dary cycles since it is the boundary of a closed region in R* which consists of 

closures of several Di’s, and since filling in the disks bounded by the boundary 

cycles produces R2- U which, by Alexander duality, has trivial first homology. On 

the other hand, all boundary cycles are linearly independent: for each boundary 



198 L. Kauflman et al. 

cycle, say c,, let K, = Tou D, u . . . U Dig., U D,+, u . . . u D,, then it is known that 

c, is homologous to 0 in the closure of D,; if c, is homologous to 0 in Ki, then 

c, = aq2 in Ki, so 6r(q2 - D,) = 0, and [q2 - Di] E H&R2 - U) is nonzero. But [w2 - lJ 

has trivial second homology, we get a contradiction. Hence c, is homologically 

nontrivial in K,. q 

Lemma 2.6. For a prime planar embedding r,,(G) of a connected, trivalent graph G 

with at least four edges, (1) every boundary cycle contains at least three edges; (2) 

any two boundary cycles are either disjoint or with one common edge; (3) if an edge 

belongs to more than one boundary cycle, it is a common edge of exactly two boundary 

cycles; (4) every edge belongs to a boundary cycle; and (5) in each boundary cycle, 

there is at most one edge which is not a common edge (i.e., it belongs to only one 

boundary cycle, and is called a boundary edge). 

Proof. Use definition of prime and facts in point set topology. We omit the 

details. 0 

Proof of Theorem 2.4. Assign some orientation to each edge of the graph r; later 

in the proof we will choose special orientations for certain graphs. Let S(T) be an 

orientable surface which collapses to I’. If F is sufficiently small, then the boundary 

of the &-neighborhood of a vertex intersects I’ transversally at three points. S(r) 

can be isotoped near each vertex such that it intersects the s-ball about each vertex 

transversally in a disk parallel to a certain plane P which is the plane of a regular 

projection of I-. S(I‘) may also intersect the e-neighborhood of each edge trans- 

versally in a band which connects the two disks associated to the two vertices of 

the edge. By the Regular Neighborhood Theorem and Isotopy Extension Theorem 

[3] there is a space isotopy under which S(T) is equivalent to a disk/band surface 

constructed by putting a disk (parallel to the plane of the regular projection of the 

graph) at each vertex, connecting all disks with bands along the edges as we did in 

Lemma 2.1, and perhaps adding twists. For such a surface, the Seifert pairing can 

be easily calculated by counting the corresponding crossing signs of the graph and 

the number of half twists of bands. So we will only work on disk/band surfaces. 

We make the following conventions: the half twist x will be counted +l; the 

half twist >c will be counted -1; the oriented crossings 3/“\ and x will be 

given signs of +1 and -1, respectively. Let n, be the number of half twists on the 

band corresponding to the edge a,. We also use wii to denote the sum of the crossing 

signs of oriented edges ai and a,. 

We first prove statement (1) of the theorem. 

If the number of edges in G is ~6, then being trivalent, G must either consist of 

two vertices and three edges, or consist of four vertices and six edges. Among these 

graphs the only ones which have prime planar embeddings must be the o-curve and 

the &-graph (the complete graph of four vertices). 

We claim that for each regular projection of the embedded o-curve or &-graph 

there is a unique choice of the number of twists on bands to make the corresponding 

disk/band surface be of zero Seifert form. 
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In the case of a &curve, the three edges can be denoted by a,, a, and a3 and 

oriented as in Fig. 4. Let S(T) be a disk/band surface about lY By Lemma 2.5, the 

generators for H,(S(T)) can be chosen as 

a=a,-aa,, P=a,-a,. 

Fig. 4. Oriented and labeled @curve. 

If y=a+p=a,-a,, then (y, y) =0 if and only if (cu, p)=O. Take a regular 

projection of r; the corresponding disk/band surface is of zero Seifert form if and 

only if ((Y, CE) = (p, p) = ( y, y) = 0, which is 

n, + rl2 = -2( w,, + w72 - w,,), 

n,+fl,= -2(w,z+w33- w2,L 

n,+ n3 = -2(w,,+ w33- w,3). 

Since the matrix of the equation system with variables n, , n, and n3 is nonsingular, 

and the constants are even, there is a unique solution {n, , n,, n3}. Therefore, there 

is a unique disk/band surface corresponding to this regular projection of r, which 

is of zero Seifert form. 

In the case of a K,-graph, the six edges can be ordered and oriented as in Fig. 5. 

a6 

4 Q 63 % 
a3 

% 

Fig. 5. Oriented and labeled &graph. 

Homology generators of H,(S(T)) can be chosen as 

LY =a2-a,+a,, 

P=-a,+a,+a,, 

y=a,-a,+a,. 
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For a regular projection of r, the corresponding disk/band surface is of zero 

Seifert form if and only if 

n,=-w,, -w*5+w2,-2w,,+w,,+w,5+w,,-w,,+w,,, 

n~=-w,,+w,,+w,,+w,,-w,,-w,,-2w,,+w,,+w,,, 

n3 = w34 - w,4+ w45 + w23 + w25 - w12 -2w33+w,,-w,,, 

n2 + n3 + n4 = -2( wZ4 - wJ4 - wZ3 + w44 + w33 + w,,), 

n,+fl,+n,=-2(w,,-w,,-w,,+w,,+w,,+w,,), 

n,+n,+n,=-2(-w,,+w,,-w,,+w,,+w,,+w,,). 

The coefficient matrix of this equation system with unknowns n, , . . . , n6 is 

100000 

010000 

001000 

011100’ 

101010 

1 10 0 0 li 

which is nonsingular. Therefore, there is a unique solution {n, , n2, . . . , n,}, hence 

a unique disk/band surface corresponding to the regular projection of lY 

As we mentioned previously in the proof of Lemma 2.1, given any S(T), there 

is a space isotopy under which S(T) is equivalent to a disk/band surface for a 

regular projection p : T + l? For r’- f we can similarly relate to S(P) a disk/band 

surface for a regular projection p’: P+ P’ and rotate the space such that P’= P. 

Hence we consider S(T) and S(T’) as disk/band surfaces for a regular projection 

p and show that they can be made identical except perhaps in the number of half 

twists on bands. Since any two regular projections of a graph as well as regular 

projections of equivalent graphs are related by a finite sequence of the five moves 

in Fig. 6 and plane isotopies ([6] or [9]), and each of these moves and plane isotopies 

Fig. 6. Ambient isotopic and vertex moves. 
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extends (for 3-valent graphs) to take vertex disks to vertex disks, we have a space 

isotopy taking r’ to r and S(F) to a disk/band surface S’(Y) for the regular 

projection p which is identical to S(T) except for the number of half twists on 

bands. But as we have seen the number of half twists on each band is uniquely 

determined by the requirement that the surface must have zero Seifert form, hence 

the two disk/band surfaces are ambient isotopic. This shows the existence and 

uniqueness of a good surface in the cases of &curves and K,-graphs. 

From the above discussion, our problem has been reduced to the existence and 

uniqueness of solutions to certain equation system. Each of the equations in the 

system corresponds to a relation (x, y) = 0 for some x and y which are in a basis of 

H,(S(T)). 
Now we prove statement (2) of Theorem 2.4. Suppose r is an embedding of a 

connected trivalent abstract graph G with more than six edges and a prime planar 

embedding. Then the number of vertices in the graph is 2k and the number of edges 

is 3k for some integer ka3. If S(T) is a disk/band surface of r, then p, = 

dim H,(S(T)) = k+l. Then there are (1/2)(k+l)(k+2) Seifert pairings of the 

homology generators of S(T). Let n, be the number of half twists on the band about 

edge ai. Setting all the Seifert pairings equal to zero we get an equation system, 

with variables n,, . . . , n3k. 

We start with a planar embedding r,, with oriented edges a,, . . . , c+~. By Lemma 

2.6, the orders of variables n,, . . . , Q associated with edges a,, . . . , a3k can be 

arranged such that a,, . . , a, are common edges of two boundary cycles; 

a /+I,..., u3k are boundary edges and the relations can be ordered by listing, first, 

all the self pairings of homology generators corresponding to boundary cycles 

without boundary edges, secondly, the Seifert pairings of generators corresponding 

to adjacent boundary cycles, thirdly, the self pairings of homology generators 

corresponding to boundary cycles with boundary edges, and finally, the pairings of 

disjoint boundary cycles. By ordering the edges and the pairings carefully, the matrix 

of the equation system A(r) will be of the following form, with m = 

(1/2)(k+l)(k+2) rows and n=3k columns. Since k>3,A(r) is not a square 

matrix. Write m = h + 3k + g. In the following presentation of A(r), the submatrices 

H and G have at least three and two nonzero entries in each row, respectively, and 

0 represents zero matrix. 

We prove part (i) by constructing an embedding T(G) without a good surface. 

The discussion will be divided into two cases. 

Case 1. If there exists a zero row in A(r), then there must be a pair of disjoint 

cycles, say, x and y, in a planar embedding r, of the graph. Pick an edge a, from 

x, and an edge a, from y, such that ai and a, don’t belong to the same boundary 
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cycle. Lift them out of the plane, and make a full twist of the two edges as shown 

in Fig. 7. Let f be the resulting graph. We claim that there are no good disk/band 

surface S(T) for lY 

Fig. 7. A full twist of edges a, and a, 

Note that wi, appears in a relation (x, y) = 0 if and only if ai and a, are in the 

boundary cycles x and y, respectively. If the equations for the above embedding r 

is written into the form 

then B(I‘) will have all zero entries except for the h +3k+j (some j> 0) position, 

which makes rank [A(T) 1 B(T)] > rank A(f) so there is no solution to the equations 

and no good disk/band surface for K Therefore, there are no good surfaces for lY 

Case 2. If there are no zero rows in A(I‘), then h # 0, so there must be at least 

one boundary cycle x in l-, without boundary edge. Take a boundary cycle y in r, 

with a boundary edge a,. Then they must have a unique common edge a, because 

g = 0. Let a, be an edge in x which is different from a,. By Lemma 2.6, a, belongs 

to two boundary cycles, x and z. Let the common edge of y and z be a,. We construct 

an embedding r by lifting a, and ai out of the plane and make a full twist as above. 

Then the h + s and h + t entries of B(T) are nonzero (equal to +2, the sign depend 

on orientations of the four edges) and all the other entries of B(T) are zero. 

Therefore, the solution must satisfy n, = . . . = n,_, = n,,, = . * . = n,_, = n,,, = 
. . . = nl = 0 and n, = 12, n, = 12. But since n, appears in the self pairing of the 

boundary cycle x and n, doesn’t, there will be an integer p, 14 p s h, the (p, s) entry 

of A(T) is one, and the (p, t) entry is zero. Also, the (p, q) entries will be zero for 

q > 1. This is contradictory because the pth equation in the system shows n, = 0. 

Therefore, there is no solution to A(I’)N = B(T) for this embedding r of G. 

Finally, we prove part (ii). Through the above discussion, we have seen that A(T) 

is of full rank. If I- has a disk/band surface with zero form for a certain regular 

projection of r, then the number of twists on bands is a solution to A(T)N = B(T). 

In that case, the equation system has a solution and we conclude that 

rank [A(T) 1 B(T)] = rank [A(T)], and hence the solution is unique. Again, any two 

surfaces S(T), S’(r) are equivalent to each other except perhaps for twists; and 

the above argument shows that the numbers of twists are unique. 0 

Theorem 2.7. Let G be a connected trivalent planar abstract graph. Zf the planar 

embedding r,(G) is not prime, then 

(1) there exists an embedding r without good surface; 

(2) there exists an embedding r with more than one good surface. 
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Proof. We prove part (1) by first claiming that there must be a pair of disjoint 

boundary circles in r,. Then, let a, and aj be edges in each of the cycles; we can 

make an embedding r by twisting them, as in the proof of Theorem 2.4. The linking 

number of these cycles are not zero (equal to (1/2)~,~). It is clear that any twisting 

on bands along the edges cannot change the Seifert pairing of the two corresponding 

homology generators. Therefore, there cannot be any good surface about r 

Proof of the claim. 

Case 1. If there exists a type I admissible circle C in IF@ intersecting 1; in a single 

point, then we can always assume that the circle C intersects r, in an interior point 

of an edge. Note that this edge does not belong to any boundary cycle. There must 

be a loop entirely inside the disk bounded by C, and a loop entirely outside the 

disk. Pick a boundary cycle in each of the regions bounded by the loops. They are 

disjoint boundary cycles. 

Case 2. If there is no type I admissible circle, then there must be an admissible 

circle of type II intersecting r, in two points which are interior to two edges, 

respectively (Fig. 8). 

Fig. 8. The intersection of circle C with I’(,. 

It is known by definition that there is a path in the graph connecting U, and u2, 

lying entirely in one side of C and there is another edge containing z), which is not 

in the path. If the other vertex of this edge is a vertex in the path, then a loop is 

obtained in one side of C. Otherwise, take one of the other two edges containing 

that vertex and look at the other vertex of that edge. If it is in the loop or is a 

previous vertex, a loop is obtained in one side of C. Continuing the process until 

a vertex or going back to a vertex in the “old path”, a loop will eventually be 

obtained in one side of C. Pick a boundary cycle in the bounded region of the loop. 

The same discussion starting with vi and vi leads to a boundary cycle in the other 

side of C. They are disjoint boundary cycles. 

We prove part (2) by considering the above two cases separately. 

Case 1. There exists an admissible 2-sphere of type I. First, look at the special 

case where G is a “handcuff graph” (to illustrate the method), and let T,(G) and 

T(G) be embeddings as shown in Fig. 9. Let S,(T) (n E Z) be as in Fig. 10. 

Claim. The S,, are all different (and all good). 



204 L. Kauffman et al. 

o-o cm 
Fig. 9. Two embeddings, r,, and I’, of the handcuff graph. 

Fig. 10. A good surface S,,(r) of r. 

If two such surfaces are equivalent, then so are their boundary links. Let L, 

denote the boundary link of S,. We claim all these links are mutually inequivalent. 

Let F,, = (L,), the Kauffman bracket polynomial of L, (for definition, see [4,5]) 

and fi = (oooo). Through calculation we get 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

F = 63 = -A6 _ 3AP’ -3A-2 _ A-“, 

where 6 = -AZ-A-‘. To finish the calculation we need the following lemma. 

Lemma 2.8. Let K,, be a link with a regular projection that includes a pair of strands, 

with n half twists, as shown below: 

6; ;, .;;>, 

‘__ _ __- / 

K” 

Let l? be the link obtained from K,, by replacing the tangle above with 

----. 

5 d 
h_____,’ 

li 

Then the normalized brackets are related as follows: 

bl 
(K,)=A~(K,_,)+ 1 (_l)n~hAjalgn(n)(--3/,11+4h~2) (k) 

L=l > 

for Q<rnGn ornSm<Q. 

Proof. Since ( s )=A( X )+A-‘( )( ) and ( y, )=A-‘( x )+A( >( ), the 

formula can be obtained by induction on n. 0 
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If we apply the lemma to our boundary links L, with m = n we know that the 

highest degree term in F, is AHi2’, and for n sufficiently large the lowest degree 

term in F, is (-l)nAm3n-4. Since w( L,) = -n, the Kauffman polynomial (see [4,5]) 

of L, is 

with leading term (- l)nA4n-t’“. Hence, L, f L, and S,, # S,,, for n # m. 

Having completed the case of a handcuff graph, we now continue Case 1 of (2) 

with a general graph G. We shall show that T,(G) contains a particularly well- 

situated handcuff graph and use that handcuff to construct the desired embeddings 

of G. Let e, be the edge of T,,(G) which intersects an admissible type I circle C, 

u0 and v& be two vertices of e,,. We shall find a handcuff graph in f,,(G) consisting 

of two boundary cycles joined by an arc through e,. We first look at q,. The other 

two edges containing q, either belong to the same boundary cycle (and might be 

identical) or both belong to no single boundary cycle. If they are in a boundary 

cycle, then we are done with half the desired handcuff. Otherwise, take one of the 

other two edges and look at the other vertex of that edge. Repeat this process until 

a “left-most” vertex ui (Fig. 11) can be found with the other two edges belonging 

to a boundary cycle (the two edges might be identical). Denote the edge containing 

U, which belongs to the cycle and “near” C by e, (Fig. 11). Then we start at v;, and 

find a “right-most” vertex uZ such that one of the three edges containing u?, denoted 

by e3, belongs to no boundary cycle, and the other two (possibly identical) belong 

to a boundary cycle (Fig. 11). Denote one of them by e2 (see Fig. 11). (Note: it may 

happen that e3 is e,.) 

Fig. 11. Edges e, , e2 and e,. 

Take an embedding r as shown in Fig. 12, and the disk/band surface S,,(T) with 

zero Seifert form as shown in Fig. 13. The link L, =dS,,(r) is shown in Fig. 14. As 

we showed in the special case of a handcuff, L, f L, if n # m, hence S,, # S,. 

Case 2. If there is no type I circle, then there must be an admissible type II circle. 

Again, let us look at a special case where T,,(G) is a “double &curve” with an 

ordering and an orientation to edges as in Fig. 15(a). 
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Fig. 12. The embedding r 

Fig. 13. A good surface .S,,(I‘) of r. 

Fig. 14. The boundary link 

u 0 u4J 0 

L,, of s,,(r). 

(b) 

Fig. 15. Two embeddings of the double 6’-curve with orientations and labelings of edges. 
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Consider the embedding r shown in Fig. 15(b). The numbers of twists ni (i = 

1 ,..., 6) on the bands of a disk/band surface of r with zero Seifert form should 

satisfy the following relations 

n,=-w,,=2, 

n3 = - ws4 = -2, 

n, = -n, = -2, 

n4 = -n3 = 2, 

n5 + nh = -2 wZ5 = 4. 

Let a = n5 and b = nh = 4 - a and S(T) <,,,] be a disk/band surface about the above 
regular projection of r with 

n, = -2, 

n2 = 2, 

n3 = -2, 

n4 = 2, 

n5 = a, 

nh=4-a, 

as shown in Fig. 16. 

Let L,,, = boundary link of S( r)o,h, Fcr,h =(L&. Take (a, b) = (4,O) and (a’, b’) = 

(0,4), apply Lemma 2.8, we get 

Fig. 16. A good surface S( I‘), ,,,, of I: 

F4,,j=A&,+ 
( 

; (-l)“‘A’“~“’ F<,, 
h=l > 

F,,,,=A,F,.,,+ i (-1)3mAA4“m”’ S’, 
h=l > 

since F, # S2, F4,” Z F,,,4 and S(T)4,0 f S(T),,,. 
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In general, let e, and e2 be the two edges that intersect the circle C in two points, 

ui and v: be vertices of ei, i = 1,2. By hypothesis, e, and e, belong to exactly one 

boundary cycle. Let A be the open disk bounded by the cycle in R*-r, (Fig. 17). 

The other two edges containing v, other than e, must belong to some boundary 

cycle, so do the two edges containing vi other than e,. Denote the open disks by 

B and D, respectively (Fig. 17), and let embedding r of G be as in Fig. 18. A set 

of disk/band surfaces S(T), with zero Seifert form of this regular projection of r 

can be chosen as in Fig. 19. The boundary link L(T), of the surface S(T), is 

shown in Fig. 20. The results of the special case indicate L(T), Z L(T),, hence, 

S(T), f S(T), . 0 

Fig. 17. Edges e, and e2 intersecting circle C and disks A, B and D. 

Fig. 18. The embedding r. 

)>. . ;t-(i 
4-a half twists 

Fig. 19. A good surface S(T), of E 

In conclusion, &curves and K,-graphs are the only connected trivalent graphs 

that can be associated uniquely with an orientable surface with zero Seifert form, 

hence, a link of self linking number zero. Moreover, the link (in fact the surface) 

is an ambient isotopy invariant of the graph. 
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4 -a half twists 

Fig. 20. The boundary link L(Y), of S(l‘), 

3. The invariant link as a knot-type detector 

We have shown that a surface of zero Seifert form, and hence a link of zero self 

linking number, can be associated to an embedded &curve or K,-graph as a knot 

type invariant of graphs. Furthermore, the link serves as part of a “peripheral 

coordinate system” of the graph complement in 3-space, in fact, the components 

of the link can be the “standard longitudes” of a tubular neighborhood of the 

embedded graph, in the sense that each one vanishes in H,(s3- K). In particular, 

in the case of a nontrivial O-curve, the link cannot be a Brunnian link: if every 

sublink of the link is trivial, then the link itself must be a trivial link. The reason 

is that one of the components of the link can be viewed as the result of a band 

operation of the other two components [lo]. By a theorem of Scharlemann [lo] we 

know that the band must be a trivial one, hence, the link is trivial. Furthermore, 

Scharlemann’s theorem implies that if the associated link is trivial then the &curve 

is trivial (planar). 

As a first application of this knot type invariant of graphs, it can be used to 

distinguish (unoriented) &curves through five crossings and K,-graphs through 

four crossings as listed in [ll]. To distinguish various of these graphs we end up 

needing to distinguish the associated links, and we do this using HOMFLY poly- 

nomials computed with a program for drawing links and calculating polynomials 

developed by R. Litherland. 

Example 1. OS,, vs. 05,2 (Fig. 21) (here 8i,j are names for &graphs used in [ll]). 

The constituent knots of 0,,, and f& are both (3,) 0, 0) (where 0 means trivial knot). 

But the associated links are different, for the two trivial components in the first link 

form the link 5: and those in the second link form an 11-crossing link (Fig. 22), 

which is different from the link 5:. 

Fig. 21. 0,,, and O,,z 
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Fig. 22. The associated links of O,,, and O,., 

Example 2. I?&, vs. O,,, (Fig. 23). Both of them have constituent knots {5,, 0, 0}, but 

the sublinks of the associated links consisting of two trivial components are different, 

as link 7: and a lo-crossing link (Fig. 24). 

Fig. 23. O,,6 and OS,,. 

Fig. 24. The associated links of O5,h and OS,, 

Example 3. Kinoshita’s &curve (Fig. 1) is nontrivial (i.e., not planar), even though 

all its constituent knots are trivial. The associated link, as pictured in Fig. 25, is 

nontrivial since any one of its 2-component sublinks is a 7: link. 

Fig. 25. Kinoshita’s O-curve and its associated link 
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In order to understand how the invariant works as a knot type detector, we want 

to see whether the process of “graph + special surface + link” can be “reversed”, 

and first of all, we want to know whether the special surface determines its graph 

spine. 

3.1. Theta-curve spines are uniquely determined by the surfaces 

Lemma 3.1. Let K be a O-curve spine of a standard (planar) disk with two holes P,,, 

then there is an isotopy of P,, , jixing boundary of P,,(aP,) and sending K to the standard 

&curve spine K,, of P,, (Fig. 26). 

Fig. 26. K,, and P,, 

Proof. Let 1, (i = 1, 2,3) be the (oriented) boundary components of P,, as shown in 

Fig. 26. If K is a O-curve spine of P,, then any constituent knot in K is a simple 

closed curve in P,, which is homotopically nontrivial, so it is freely homotopic to 

some I:‘, and the three constituent knots of K are not homotopic in PO. Therefore 

K can be ordered and oriented such that (refer to Fig. 26) (Y -p = I,, /3 - y = l2 and 

y - (Y - I, (where “=” means “freely homotopic to”). Since homotopic simple closed 

curves on a surface are isotopic [2], there is an isotopy rel JP, taking y - (Y to 

yo- cyO. With an additional isotopy we may assume CY + (Y,] and y+ y,,. Let /3’ be 

the image of p under the isotopy. Let A be the annulus bounded by yo- (Y,, and 

aP,, and P, be the twice punctured disk (P,, - A). Since (Y~-P’ is homotopic to I,, 

there is a homeomorphism h of P, fixing aP, and taking p’ to PC,. This homeomorph- 

ism is equivalent to h2,, for some n E H via an isotopy fixing aP, [l], where h,, is 

the 2n-multiple of the homeomorphism h, of P, which sends 1, to l,, l2 to I,, and 

is identity outside a disk in the interior of P, including I, and lz. So p is isotopic 

rel aP, to B, = h,,(P,,) (Fig. 27). 

Fig. 27. The twice punctured disk P, with a,), p,,, y,,. 
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Let N be a small cylindrical neighborhood of LY~U y0 in the interior of P,, which 

is parametrized by ( y, O), with -1 s y s 1, 0 G 0 s 27~, where a0 u y. is described by 

y =O, and the two vertices of K by (1,O) and (-l,O), as in Fig. 28. We define a 

map g,: PO+ PO by the rule that if a point is in N, then its image is given by: 

g,:(.Y, O)+ 
{ 

(y, 0+27ry), ifOsyG1, 

(y, 19-27~y), if-IsysO, 

while all points of PO-N are fixed (Fig. 28). Let g, be the nth power of g,. Then 

it is an isotopy of PO rel aPo. This isotopy followed by an isotopy of P, fixing CIP, 

takes K to K,. q 

Fig. 28. The map g, restricted on N. 

Corollary 3.2. Let PO be the standard twice punctured disk with boundary components 

1, , I,, 1, , each of them inherited an orientation from PO. If K is an ordered and oriented 

B-curve spine of PO such that LY - ,8 = I,, p - y = l2 and y - LY 2 13, then there is an 

isotopy of PO rel aPo taking K to Ko. 

Proposition 3.3. Any two O-curve spines, K, and KZ, of an embedded twice punctured 

disk P are ambient isotopic. 

Proof. Let h be the embedding PO +R3 (or s3), P = h(P,), and I-I, be the isotopy 

of PO rel dPo taking one &curve spine h-‘(K,) to another &curve spine h-‘(K,) of 

PO. Then the composition h 0 H, 0 h-’ is an isotopy of P fixing aP and taking K, 

to KZ. Since P is compact, h 0 H, 0 h-’ can be extended to an isotopy of R3 (or s3) 

taking K, to K, [3]. 0 

Corollary 3.4. Let P be an embedded twice punctured disk, aP = {I,, I,, l,}, each of li 

has the boundary orientation inherited from an orientation of P. Then any two ordered 

and oriented O-curve spines K, and K2 of P with cq -pi = I,, pi - yi = 1, and yi - a, = l3 

(i = 1,2) are ambient isotopic via an isotopy respecting the ordering and orientation. 

3.2. An example of two dilghrent K,-graphs being spines of a surface with zero Seifert 

form 

Let S be the surface in Fig. 29 and r, be a “standard” spine of S (see Fig. 29). 

The set of seven constituent knots of r, consists of four figure-8 knots, two connected 

sums of figure-8 knots, and a trivial knot. 
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Fig. 29. Surface S and its spine r, 

Let r, be another spine of S (Fig. 30). The set of constituent knots of r, consists 

of four figure-8 knots, one connected sum of two figure-8 knots, and knots k, and 

k, as in Fig. 3 1. 

We claim that both k, and k2 are not trivial, and then conclude that r, f I’,. 

Fig. 30. Another spine 1; of S. 

Fig. 31. Knots k, and k,. 

Claim 1. The jgure-8 knot is a proper companion of k, . 

Consider the following knot, k;, in a standard solid torus V (Fig. 32). In the 

universal covering of V, k; is lifted to the link in Fig. 33. Any two adjacent com- 

ponents of the above link are geometrically linked since the link in Fig. 34 is not 

splittable (being two parallel copies of a nontrivial knot). Therefore, k; is geometri- 

cally essential in V, and hence the figure-8 knot is a proper companion of k,. 
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Fig. 32. k{ in the solid torus K 

Fig. 33. Lifting of k; 

’ , 0 3 c . \ ’ 
, 

Fig. 34. A nonsplittable link. 

Claim 2. 7’he$gure-8 knot is a proper companion of k,. 

Consider the following knot, ki, in a standard torus V (Fig. 35). Since the algebraic 

intersection number of k; and the meridian disk of V are 1 for appropriate orientation 

of k;, ki is geometrically essential in V, and hence the figure-8 knot is a companion 

of k,. The referee pointed out another proof by computing HOMFLY polynomials. 

Fig. 35. ki in solid torus V 

The “first term” of each polynomial was computed by the referee as the following: 

Pk,(V, 2) = (-vPf4vP6- 8v-4+12v?-13+12u2-8v4+4v6-v8)+~~~ 
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and 
P&( U, z) = (4vP’4- 27~-‘2+83~~‘o-141u~X+108v-6+82v~4-341u~2 

+82u4+108vh-141vx+83u’o-27v’2+4v’4)+~~~ 

4. Discussion on graphs with vertex of higher valence 

If the graph G contains at least one vertex of valence 24, then there are different 

good surfaces for some ambient isotopic embeddings. Moreover, we can find an 

infinite sequence of ambient isotopic embeddings with different good surfaces. This 

result is stated in the following theorem. 

Theorem 4.1. Let G be a connected planar abstract graph with at least one vertex of 

valence 34, then there are equivalent embeddings of G with mutually diflerent good 

surfaces. 

Proof. The discussion will be separated into two cases, depending on whether or 

not the graph admits a certain kind of splitting. 

Case 1. If there is an admissible circle of type I intersecting r,, a planar 

embedding of G, in an interior point of an edge, then the discussion is similar to 

that in the proof of part (2) of Theorem 2.7. 

Case 2. Otherwise. 

First consider a special example of Case 2, where G is the figure-8 graph 

(Fig. 36(a)). Let the embeddings To and r,, be as in Fig. 36(a) and (b). Note these 

are ambient isotopic embeddings. A good surface S(J’,,) of r, is defined as in Fig. 37. 

The boundary link L, of S(T,,) consists of two trivial knots and a “twist knot” k,, 

with n twists. If n, Z n2, then k,l Z K,,, hence L,, f; L,,, S(I’,,,) # S(T,,J, although 

r,,, and r,,z are ambient isotopic embehdings. 

(a 1 (b) 

Fig. 36. Two embeddings, r, and f;,, of the figure-8 graph. 

@izzi?!z 
n full twists 

Fig. 37. A good surface S(T,,) of r,,. 
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Now let G be an arbitrary graph of Case 2, and let uO be a vertex of G of valence 

~4. By hypothesis, every edge in TO must belong to some boundary cycle. Without 

loss of generality we may assume that there are two adjacent edges of TO containing 

Q, which don’t belong to the same boundary cycle (Fig. 38(a)). Let r,, be as in 

Fig. 38(b). The surface S(I’,,) can be constructed in the same way as for the knotted 

figure-8 graph. L,, = a(S(r,,>) consists of trivial components and a “twist knot” k,. 

Hence, if n, # n2, then S(T,,) f S(I’,,,). But r,,, is equivalent to r,,, . 0 

(a) (b) 

Fig. 38. Two embeddings, r, and r,,, of the graph G. 
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