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1. Introduction
The maps discussed in this paper are dissections of surfaces into simple

polygons, called regions. In each map it is supposed that the regions are
finite in number and that each vertex of a region is common to just three
regions. Sides and vertices of the regions will be called edges and vertices
of the map respectively.

A colouring of a map M is defined as a set of four mutually exclusive
subclasses, called colour-classes, of the regions of M such that each region
belongs to some colour-class and no two regions of the same colour-class
have any edge in common. If Z is a colouring whose colour-classes are
C1} C2, C3 and C4, we write

The union A v B of two colour-classes A and B of a colouring Z we call
a colour-dyad. The regions of a colour-dyad may or may not form a connected
set. In any case we call the disjoint internally connected components
Kempe chains and denote their number by co{A \J B).

If U is a Kempe chain of A u B and V is the remainder of A u B, then it
is clear that the four sets

{(AnU)v{BnV))t ((BnU)u(AnV)), C, D,
where Z = (A,ByC,D) and AnU, for example, denotes the intersection
of A and U, constitute a colouring Zx of the map concerned and that Zx
differs from Z if and only if

J co(AvB)>l.
We say that Zx is derived from Z by an exchange operation on the Kempe

chain U. The set of all colourings of the map that can be derived from Z by
a finite sequence of exchange operations we call the colour-system containing
Z and denote it by II(Z). Clearly, if Y is any colouring in U(Z), then

The problem with which this paper is concerned is as follows.
PROBLEM. Let Mbea, map on the sphere, and let M contain a pentagon P.
Let any colouring Z of that part MP of M which is exterior to P be said
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to be of type I if it has a colour-class A which contains no region of MP
adjacent to P, and of type II otherwise.

The problem is to find MP and Z such that all the colourings of II (Z) are
of type II.

A demonstration that this problem is insoluble would complete the
verification of the four-colour conjecture by enabling us to deduce from the
existence of a colouring of MP the existence of a colouring of type I of MP
and thence (by assigning Pto A) the existence of a colouring of M.f

The contribution of this paper to the problem is the deduction of some
new limitations on the structure of II (Z) which must be satisfied in any
solution that may exist.

Use is made of an elementary general theorem on the colourings of
spherical maps, to which I have not seen any reference in the literature.
This is the "Parity Theorem" proved below.

Reference may be made to a paper by KittelJ on the above problem.
In comparing this paper with his it should be borne in mind that he counts
as distinct colourings which differ only by a redistribution of "colours"
among the colour-classes—a distinction which has no meaning with the
definitions used here.

2. The parity theorem
Let Z = (A, JB, C,D) be a colouring of the spherical map M of a2 regions.

Let oc2(X) and a,2(X u Y) denote the number of regions in the colour-class
X and the colour-dyad (X u Y) respectively, and let fti(X u Y) be the
number of edges in which regions of X meet regions of Y. Then, if cx(X \J Y)
is the connectivity of the set of regions XuY, we have by elementary
topology§ CQ(A O B)-C1{A KJB) = a2(A v B)~px{A u B) (1)
and C1(AVB) = C0(CKJD)-1. (2)

From these equations and the corresponding ones for the colour-dyads
AKJC and A u D it follows that
co(A u 5 ) + co{A vC) + co(A u D) -cQ(C u D) - co(B u D) -co(B u C)

= 3a2(A) + a2(B) + a2(C) + <x2(D)-^1(A^B)-fi1{AKjC)-fi1(^^D)-^
3, (3)

RcA
where f(R) denotes the number of sides of the polygon R.

f Heawood, Quart. J. of Math. 24 (1890), 332-338.
% Kittel, Bull. American Math, Soc. 41 (1935), 407-413.
§ See, for exariaple, Newman, Topology of Plane Sets (C.U.P. 1939), 194-199.

The regions must be dissected into triangles before his results are applied, but this
introduces no real difficulty.



1945] ON THE FOUR COLOUR CONJECTURE 139

Now the right-hand side of (3) depends only on the colour-class A. Hence
we have

THEOREM I. The quantity on the left of equation (3) has the same value for
all colourings of M for which A is a colour-class.

We say that two colourings Zx and Z% of a map are connected if there
exists a finite sequence of colourings of the map beginning with Zx and
ending with Z2 and such that each pair of consecutive members have
a colour-class in common. Clearly any two colourings which belong
to the same colour-system are connected. (But the converse does not
follow.)

For any colouring Z, let J(Z) denote the sum of the quantities co(X u Y)
over the six colour-dyads. We call the parity of J{Z) the.parity of Z.

THEOREM II (the parity theorem). / / Zx and Z2 are connected colourings
of a spherical map M, then

, (mod 2). (4)

For by (3), for any colouring of M

J{Z)= 2
ReA

1, (mod2),

where A is any colour-class of Z.
Hence (4) is true whenever Zx and Z% have a colour-class in common,

and therefore it is true whenever Zx and Z% are connected.
I t may be worth mentioning that the colourings of a particular spherical

map need not be restricted to one parity. For example the two colourings
shown in Fig. 1 have opposite parities.
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3. The pentagon problem
Let us now return to the problem of the partially coloured map stated in

the introduction.
Let F denote the set of regions of M which meet P. We denote these

regions by Fv F2, Fs, F4, F6 in the cyclic order of incidence with the edges
of P. We may suppose that they are taken in clockwise order as seen from
the centre of the sphere. We have not yet assumed that they are all
distinct.

In a colouring of type I I each colour-class contains a region of F. Three
colour-classes therefore each meet P in one edge only, and the fourth meets
it in just two edges, Ex and E2 say. E1 and E2 do not meet, for if they did the
third edge incident with their common vertex would be common to two
regions of the fourth colour-class. There is therefore an edge Ez of the
pentagon adjacent to both Ex and E2. We call the set of regions of F which
have E1 or E2 as an edge the norm of the colouring, and the region of F
having Ez as an edge the apex of the colouring.

The following well-known result will be needed, f

THEOREM III. If Z is a colouring of MP such that all the members of II(Z)
are of type II, then if any Kempe chain contains the norm of Z it contains also
the apex of Z.

For let Z = (A, B, C, D) where A contains the norm and B the apex of Z.
Then if the theorem is false for Z one of the remaining two regions of F,
e C say, must be separated in MP from the apex by a Kempe chain of A u D
containing the norm. Hence, by an exchange operation on that Kempe
chain of B u C which contains the apex, a type I colouring of II (Z) can be
obtained, contrary to hypothesis.

It follows from theorem III that if all the colourings of U(Z) are of
type II, then the five regions Ft are all distinct. We therefore assume their
distinctness in what follows.

If F€ is the apex of Z, then the norm of Z is the pair of regions Fi+li Fi+^.
(The addition in the suffices is modulo 5.) We then denote the Kempe chain
containing Fi+1 and Fi+2 by g(Z) and the colour-dyad to which it belongs
by O(Z). We denote the Kempe chain of O(Z) which contains the other
member Fi+i of the norm by h(Z). It follows from theorem III that g(Z)
and h(Z) are distinct.

We define a X-operation on Z as the application of the exchange operation
to each member of a subset A of the Kempe chains of G(Z), where A contains
g(Z) but not h(Z).

f Heawood, loc. cit.
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(Note. A similar operation on O(Z) affecting h(Z) but not g(Z) would
be equivalent to the A-operation affecting just those components of O(Z)
which the former operation left unchanged.)

We define a X-circuit in II (Z) as a cyclic sequence of colourings belonging
to IT(Z) such that each member of the sequence can be derived from its
immediate predecessor by a single A-operation. A-operations and A-circuits
can of course be defined in the same way when II(Z) contains type I
colourings but they are of particular interest in the other case, for then it
has been shown that every colouring in U(Z) is a member of a A-circuit.f

If a A-operation is applied to a colouring Z of apex Fi the norm of the new
colouring will be the pair Fi+2, Fi+4, and its apex will therefore be Fi+3.
The colour-classes of the old and new apices must be common to both
colourings, since neither belongs to 0(Z). Each A-operation thus advances
the apex three places in the cyclic sequence of the Ft. Hence if the number
of members of any A-circuit is n, then

n = 0, (mod 5). (5)

The object of this paper is to improve upon this result by establishing
the following two theorems:

= 0, (mod 10).THEOREM IV.

THEOREM V.

4. Proof of theorem IV
Let XZ be the colouring obtained from Z by application of the A-operation

A. The intersections of the colour-classes with F will be as shown in the
diagrams (i) and (ii) of Fig. 2 for Z and XZ respectively. The colour-classes
B and D are common to both colourings.

Fig. 2

t Errera, "Du Coloriage des Cartes et de Quelques Questions d'Analysis Situs",
Thesis (Gauthier-Villars, 1921). See also Kittel, loc. cit.
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Since the regions of F are distinct, a new spherical map N can be formed
from M by incorporating P in that region of F which belongs to B in the
colourings Z and XZ. If the new region is assigned to B, the colourings Z
and XZ will be transformed into colourings ZN and (XZ)N respectively
of N. These two colourings of N are connected, for they have the colour-class
D in common. Hence by the parity theorem

J(ZN) = J((XZ)N), (mod 2). (6)

Now in the change from Z to ZN the only two of the six quantities co(X u Y)
not obviously unaltered are co(B u C) and co{B u D). But for one of these,
let us say co(B u C), to be altered it is necessary for the two regions in which
the corresponding colour-dyad of Z meets F to be in different Kempe chains
of that colour-dyad. This colour-dyad (B u C) of Z would then contain the
apex and would not separate the members of the norm in MP. The members
of the norm would therefore belong to the same component of {A u D) in Z,
which contradicts theorem III, since the apex of Z is in B and therefore
not in (A u D). Hence

J(ZN) = J(Z). (7)

Again in the change from XZ to (XZ)N the only quantities cQ(X v Y) not
obviously unaffected are co(B u D) and co(B u A'). But the first of these is
unchanged, by the last paragraph, since B \J D is the same in Z as in XZ
and in ZN as in (XZ)N. However, by theorem III the two members of the
norm in XZ are in different Kempe chains of (B v A') (which does not contain
the apex). co(B u A') therefore decreases by 1 and so

l. (8)

From (6), (7) and (8) we have

J{XZ) = J{Z) + l, (mod 2). (9)

It follows that the number of members of any A-circuit must be even.
Hence by (5), ^ ( m o d l 0 ) ( 1 0 )

5. Proof of theorem V
Assume that a A-circuit of 10 members exists. Let its members be in

order Z0) Zx, Z2, ..., Z9.
Let Ai denote that colour-class of Zi which contains the apex. By the

paragraph immediately preceding equation (5), Ai-X, At and Ai+1 are all
colour-classes of Zt. Moreover they are distinct, for the apices of Zt_v Zi
and Zi+1 are distinct regions Fit Fi+Z and Fi+1. (Addition in the suffices of
the Ai and the Zi is mod 10.)
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The ten colourings Zi are therefore completely determined when the ten
colour-classes Ai are given, for when three colour-classes of a colouring are
given the fourth is uniquely determined.

If R is any region of MF we write

v{ = vt(R) = 1 if R is in Ait

= 0 if R is n o t i n g . (11)
Then the set of 10-vectors

V(B)^{vo(B),v1(B),...tv9{B))
given for all R completely determines the At and therefore the Zv

As an example we note that Ft is in Ai if and only if it is the apex of Zi
and that this happens just once in any five consecutive members of the
A-circuit. So we may write

V(FX) = ( 1 0 0 0 0 1 0 0 0 0 ) , (12)
a vector which we denote hereafter by e.

We then have, by the properties of A-operations,

and in general, V(*i+r) = Q*e* (13)
where Q is a cyclic permutation defined by

Q(vo,vv ...,v9) = (v9iv0,vv ...,t>8). (14)

We denote the group of cyclic permutations Q* by Q, and say that two
10-vectors are equivalent when they can be transformed into one another
by operations of &.

A 10-vector whose components are restricted to the values 0 and 1 we
call a V-vector.

We say that a F-vector F is admissible if it satisfies the following con-
ditions: (i) no three consecutive signs of F (regarded as a cyclic sequence)
include more than one 1; and (ii) there exist three other F-vectors satisfying
(i) such that their sum with F is J = ( 1 1 1 1 1 1 1 1 1 1).

The other three F-vectors of (ii) are clearly admissible. We call a set oi
four admissible F-vectors whose Sum is / a tetrad.

We have at once

LEMMA I. / / V1 and V2 are equivalent V-vectors and Vx is admissible, then
V2 is admissible.

For the properties (i) and (ii) are invariant under the transformation Q.

LEMMA II. / / R is any region of MP, then V(R) is an admissible V-vector.
For first, by (11), V(R) is a F-vector.
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Secondly, suppose two of v^R), v^R), and vi+1{R) have the value 1.
Then, by (11), R belongs to two of the colour-classes A^, Aiy Ai+1 which is
impossible since these are distinct colour-classes of the same colouring Z{.
Hence V(R) satisfies (i).

Thirdly, any region Ro of MP has some vertex not a vertex of P. For if
this were false for Fj then Fj_x and Fj+1 would not be distinct. At this vertex
Ro meets two other regions, R1 and R2 say, of MP. Consider the matrix
whose three rows are the vectors V(R0), ViRJ, V(R2).

No column of this matrix contains more than one 1, since no two of
Ro, R1 and R2 belong to the same colour-class in any colouring o£MP. Hence
V = I- ViRJ-ViRJ-ViRJ is a F-vector.

Consider the (i — l)th, ith and (i + l)th columns (addition mod 10). If
two of them consist entirely of O's, then Zi has a colour-dyad containing
none of the regions Ro, R± and R2 by (11). But this is impossible for it requires
that two of these mutually contiguous regions shall belong to the same
colour-class of Zt. I t follows that the F-vector V satisfies (i) and so by the
previous result that V(R) is a F-vector satisfying (i), and by the definition
of F', it follows that V(R0) satisfies (ii). This proves the lemma.

COROLLARY. / / three regions Ro, i^ and R2 of MP meet at a vertex, then the
four vectors F(J?0), F ^ ) , V(R2), I-V^-ViRJ-ViRt) are admissible
V-vectors and constitute a tetrad.

If F is a F-vector, we denote by «r( F) the number of its 1 's. By considering
in turn the cases cr(F) = 0, o~(V) = 1, etc., we find that every F-vector
satisfying (i) is equivalent to a member of the following set.

a = (0 00000000 0),
6 = (100000000 0),
c = (100100000 0),
d = (100010000 0),
e = (1 0 0 0 0 1 0 0 0 0),
/= (100 100 1000).

Clearly no two members of this set are equivalent.
If x is one of the vectors satisfying (i) we define m(x) as the smallest

integer m not 0 such that Q^x = x. We then have

m(x) = 1 if x is equivalent to a,

= 5 if x is equivalent to e,

= 10 otherwise. (16)

(15)
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The next step in the proof is the determination of all the tetrads. We note
that if the vectors Vi (i = 1,2,3,4) constitute a tetrad, then

1X^ = 10 (17)
i

by the definition of a tetrad; and for each criy^ (by (15))
O^F^. (18)

The only sets of four integers satisfying (17) and (18) are
(3,3,3,1) and (3,3,2,2). (19)

The F-vector a therefore is not admissible.
Now the only vector x of (15) for which <x(x) = 1 is 6 and the only one

for which cr(x) = 3 is / . Hence by (19) any tetrad involving 6 is of the form

Now / contains just one block of three consecutive 0's. Consider the
matrix whose rows are the vectors of T. The three columns which contain
the corresponding block in Q*/must contain three l's altogether (definition
of a tetrad) and this is possible only if they contain the non-zero com-
ponent, of b (by (i)) which implies that i = 1, 2, or 3. The same argument
applies with i replaced by j or k. Hence if b is contained in a tetrad, that
tetrad is ^

and it is easily verified that these four vectors do indeed constitute a tetrad.
If we apply an operation Qi to each of the four F-vectors of any tetrad T

we shall clearly obtain a new tetrad. We denote this by QlT and say that it
is equivalent to T. In listing the tetrads it will suffice to give one member
of each set of equivalent tetrads. We may therefore proceed to those tetrads
which contain no vector equivalent to 6. By (15) and (19) such a tetrad
involves just two vectors equivalent to / , and is therefore equivalent to a
tetrad involving a pair/, Q>j. We can further suppose,; less than 6, for the
operation Qx°-j transforms the above pair into the pair/, Q10~jf (by (16)).

By comparing the first of the six F-vectors/, Qf, Q2f, Q3f, Q*f, Q5f with
the other five, we find that the cases j = 3 and j = .4 are impossible since
for each of these there is an s such that

v8(f) = v8{Qif) = 1,
contrary to the definition of a tetrad, but that the other cases cannot be
ruled out in this way. We may suppose therefore that j = 1, 2 or 5.

Now I-f-Qf= (00 1 0 0 1 0 0 1 1)
= QW+Q*d
= Q5c+Q9c,

SEB. 2. VOL. 60. NO. 2388. K
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and these are the only two ways in which the vector (0 0 1 0 0 1 0 0 1 1)
can be expressed as the sum of two vectors equivalent to members of the
set (15) and satisfying <r(z) = 2.

Again / - / - Q2f = (0 1 0 0 1 0 0 1 0 1),

which can be expressed subject to the above conditions only as

Finally / - / - Q5f = (0 0 1 0 1 0 0 1 0 1),

which must be expressed either as

Q2e+Q*e or as Q*c + Q9c.

Every tetrad therefore is equivalent to a member of the following set:

Zi = (6, Qf, Q% Q3f)> )
T2 = (f, Qf, Q% Q»d),
T3 = (f, Qf, Q% Q»c),
T, = (f, Q2f, Q7d, Q*e),
T5 = (f, Q5f, Q2e, Q'e),
T, = (f, Q5f, Q% Q9c).

(20)

The significance of the set W of all admissible F-vectors can best be
understood in terms of the dual map M* of M. The regions of M* are all
triangles and so M* is a simplicial dissection of the sphere. If R is any region
of M, we denote the corresponding vertex of M* by R*. The dual map
M* of MP may be defined as the set of all simplexes of M* which do not
have P* as a vertex. It is therefore a simplicial dissection of a part of the
sphere bounded by a simple closed curve F* which consists of the vertices
Ft, F$, ..., Ft and the edges F$F%, F^F^, ..., F2;Ff dual to the five
distinct edges of MP which meet the pentagon P. (If there were not five such
distinct edges of MP, some two vertices of the pentagon would be joined
by an edge E in MP and then at least one of the two regions of MP incident
with E would be incident with two of the edges of P. This would contradict
the requirement that the 2^ must be distinct.)

It follows that the formal sum

S (*?, i^-u) = K say, (21)
i = l

where (Ff, Ff+1) is a 1-simplex of F* with an orientation given by the order
of the tf rms Ff and Ff+V is a bounding 1-cycle on M%.



1945] ON THE FOUR COLOUR CONJECTURE 147

We can treat W as a simplicial 3-complex of which the F-vectors are the
O-simplexes and the tetrads the 3-simplexes (and in which each i-simplex
is incident with an (i + l)-simplex for i < 3). The correspondence R* -> V(R)
defines a mapping of M* into W which maps vertices on to vertices, and, by
the corollary to lemma II, 2-simplexes on to 2-simplexes.

It follows at once that if the correspondence maps the 2-chain U of
M% on to the 2-chain Uw of W, where U and Uw have ordinary integers as
coefficients, then it maps the boundary of U on to the boundary of Uw.
Consequently bounding cycles on M* are mapped on to bounding cycles
on W.

Now the bounding 1-cycle K on M% maps on to a 1-cycle

Kw = , V(FM)) by (21)

= ((e, Q2e) + (Q\ Q*e) + (Q*e, Qe) + (Qe, Qh) + (Qh, e))
by (13) and (16):

But it can be shown that this is a non-bounding cycle of W. By proving
this we shall show that the hypothesis of the existence of a A-circuit of
10 members leads to a contradiction and so establish theorem V. To do this
we first define a function
of the equations

and the following table.

for each 1-simplex (V^V^) of W by means
^ ( 2 2 )

(23)

TABLE I
Reference
number

1
2
3
4
5
6
7
8
9

10
11

vx

b
b
b
c
c
c
c
c
c
'd
d

v,

Qf
Q2J
Q3f
Q'c
Q5c
Qf
Q2f .
Q*f
Q«f
Q*d
Q2e

A(FX, F2)

- 1
0
1

- 1
0
0
1

- 1
0
3
0

Reference
number

12
13
14
15
16
17
18
19
20
21

Fx

d
d
d
d
e
e
e
f
f
f

F2

Q2/
Q3f
Q*f
Q*f
Q2e
Qf
Q3f
Qf
Q2f
Qbf

A(F1S F2)

- 2
- 1

1
2
2

- 1
1
1
2
0

It may readily be verified (with the help of (16)) that no two of the pairs
of this table, even when regarded as unordered, are equivalent under the
operations of 0 . The definition of A(P̂ ,T̂ ) is therefore consistent.

K2
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Other assertions verifiable from the table with the help of equations
(16), (22) and (23) are: (i) A(T£,F2) is defined for every 1-simplex (^,F2), that
is for every ordered pair of F-vectors both contained in the same tetrad;
and (ii) if Vv V2 and Vz are distinct members of the same tetrad, then

It is sufficient to verify these two assertions for each of the tetrads of
(20) by (23). This verification is set out in tabular form in Table II. The
numbers in the last column of this table are the references, in order, to the
rows of Table I.

Equation (24) states that the sum of the function A^,!^) over the
boundary of any 2-simplex of W is 0. I t follows from this, and (22) that the
sum of the function over any bounding 1-cycle of W is 0. But its sum over
the 1-cycle Kw is, by (23) and the preceding expression for Kw,

5A(e, Q2e) = 10 (by Table I).

Thus Kw is shown to be non-bounding and the proof of theorem V is
complete.

TABLE II

Tetrad

Tx

T,

T>

Tt

T>

Fx

6
b
b
Qf
f
f
f
Qf
f
f
f
Qf
f
f
f
QV
f
f
f
Q*f
/
/
/
Q*f

F a

Qf
Q2f
Qf
Q2f
Qf
Qf
Q*d
Q*d
Of
Qf
Q5c
Q6c
Q*f
Q*f
Q7d
Q'd
Q*f
Q6f
Qae
Q*e
Q'f
Q'f
Q'c
Q'c

F 3

Q2f
Q*f
Q*f
Q*f
Q6d
Q8d
Q*d
Q*d
Q6c
Q'c
Q'c
Q'c
Q7d
Qle
Q'e
Q*e
Q*e
Q'e
Q'e
Q'e
Q'c
Q'c
Q'c
Q'c

A(Flf Fa)
i

0
- 1

1
1
1

- 1
- 2

1
1
1
0
2
2
1

- 1
0
0

- 1
- 1

0
0
0
0

A(F2, F3)

1
1
2
1

- 2
1
3
3
0

- 1
- 1
- 1

j

- 1
0
0

- 1
1
2
2
0
0
0
0

A(F8, Vx)

0
- 1
- 1
- 2

1
- 2
- 2
- 1
- 1

0
0
1

- 1
- 1
- 1

1
1

- 1
- 1
- 1

0
0
0
0

Sum

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

References

1, 19, 2
2, 19, 3
1, 20, 3

19, 19, 20
19, 16, 14
19, 13, 12
14, 10, 12
15, 10, 13
19, 9, 8
19, 7, 6
8, 4, 6
9, 4, 7

20, 14, 13
20, 18, 17
13, 11, 17
14, 11, 18
21, 18, 18
21, 17, 17
18, 16, 17
18, 16, 17
21, 6, 9
21, 9, 6
9, 5, 6
6, 5, 9
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The simple method used in the proof of theorem V will not suffice to
prove the analogous theorem for n = 20. For Erreraf has given a map MP
and a colouring Z such that a certain sequence of 20 A-operations transforms
Z into itself. Perhaps it is significant that this map contains a region (the
central one in Kittel's diagram) whose 20-vector V satisfies Q4(F) = V,
where Q and F are defined by equations analogous to (14) and (11) respec-
tively. Even in this case IT (Z) contains colourings of type I.

Trinity College
Cambridge

f Errera, loc. cit. and Kittel, loc. cit.


