
Discrete Applied Mathematics 25 (1989) 105-127 
North-Holland 

105 

A TUTTE POLYNOMIAL FOR SIGNED GRAPHS* 

Louis H. KAUFFMAN 
Department of Mathematics, Statistics clnd Computer Science, The University of Illinois at 
Chicago, Chicago, IL 60680, USA 

Received 9 January 1989 

1. Introduction 

This paper introduces a generalization of the Tutte polynomial [14] that is defined 
for signed graphs. A signed graph is a graph whose edges are each labelled with a 
sign (+l or - 1). The generalized polynomial will be denoted Q[G] = Q[G](A, B, d). 
Here G is the signed graph, and the letters A, B, d denote three independent 
polynomial variables. The polynomial Q[G] can be specialized to the Tutte 
polynomial, and it satisfies a spanning tree expansion analogous to the spanning tree 
expansion for the original Tutte polynomial. 

Planar signed graphs are, by a medial construction, in one-to-one correspondence 
with diagrams for knots and links. By this correspondence, the polynomial Q[G] 
specializes to the Kauffman bracket polynomial [5-S] and hence (with a normaliza- 
tion) to the Jones polynomial invariant [3] for knots and links. The Jones poly- 
nomial is an important invariant in knot theory. One purpose of this paper is to 
provide a link between knot theory and graph theory, and to explore a context em- 
bracing both subjects. 

Since the relationship with knots and knot diagrams is the primary motivation for 
our polynomial, we will explain this connection early in the paper. The first two sec- 
tions provide graph theoretic and topological background. The reader may wish to 
begin reading directly in Section 4 and then turn to Section 2 and Section 3 for this 
background. On the other hand, a direct reading of the sections in order will give 
an account of the genesis of the polynomial Q[G]. 

Section 2 discusses chromatic, dichromatic and Tutte polynomials. Section 3 ex- 
plains the medial graph construction and the relation to the bracket polynomial for 
unoriented link diagrams. Section 3 also contains a result of independent interest: 
a reformulation of the definitions of activities in maximal trees (if the graph is 
disconnected, one should properly refer to maximalforests to denote disjoint collec- 
tions of trees; we shall speak of trees and ask the reader to read forest for tree when 
the graphs are disconnected) of a planar graph in terms of properties of Euler trails 
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on the corresponding medial graph. This reformulation gives new insight into the 
structure of the original Tutte polynomial for planar graphs, and it is useful 
topologically, and for the generalizations. In Section 4 we introduce the polynomial 
Q[G] and delineate its relationships with Tutte and bracket polynomials. Section 5 
discusses the spanning tree expansion for Q[G]. Section 6 summarizes our results, 
and indicates other directions and connections with topology and combinatorics. 

2. Chromatic, dichromatic and Tutte polynomials 

Recall first the chromaticpolynomial, C[G] = C[c :[q). This polynomial enumer- 
ates (for q a fixed positive integer) the number of proper colorings of a graph G us- 
ing q colors. In a proper coloring, vertices that are connected by an edge receive 
different colors. 

In this discussion, and throughout the rest of the paper, all graphs are finite- 
with loops and multiple edges allowed. A loop is an edge having a single vertex. 

Given a graph G and an edge e of G, let G’ be the graph obtained by deleting e 
from G (retain the endpoints of e) and let G” be the graph obtained from G by con- 
tracting e, that is, collapsing e to a point. We then have the deletion/contraction 
formula 

C[G] = C[G’] - C[G”] 

(see [IS]). It follows easily from the definition of proper coloring: If the edge e is 
a loop (equal endpoints), then C[G] =0 and C[G’] = C[G”]. If e has distinct end- 
points a and b, then colorings of G’ with the same colors at a and b are in one-to-one 
correspondence with colorings of G”. Hence the difference on the right-hand side 
of the formula enumerates proper colorings of G. 

The deletion/contraction formula is augmented with the following two formulas 
for disjoint unions, and for the graph consisting in a single vertex: 

CtG u HI = C[GlCWl, C[@] = q. 

Coloring numbers multiply under disjoint unions, and a single vertex has q color- 
ings. The deletion/contraction formula together with these formulas is sufficient to 
calculate C[G](q) recursively (since the graphs G’and G” have fewer edges than 6). 
It follows from this recursive form of calculation that C[G](q) is a polynomial in 
q, and that C[G](q) is well defined as a polynomial in the abstract variable q. 

A successor to the chromatic polynomial is the dichromatic polynomial, Z [G](q, 
o). Here an extra polynomial variable u has been added-replacing the -1 in the 
deletion/contraction formula for C[G] by u. That is, Z[G](q, -l)=C[G]. The 
dichromatic polynomial is determined by the recursive formulas: 

Z[G] = Z[C’] + oZ[G”], 

ZIG u HI = WWWI, 

Z[*] = q. 
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Note that the dichromatic polynomial is not necessarily trivial on graphs with 
loops. For example, 

Z[_] -Z[.]+uZ[*] =(l+u)q. 

While the chromatic polynomial is defined in terms of proper colorings, it is not so 
obvious that the dichromatic polynomial can be defined in an analogous manner. 
However, for q a positive integer, the dichromatic polynomial is in fact related to 
all possible vertex colorings of the graph G. To see this, let E=E(G) denote the set 
of edges of G, and V= V(G) the set of vertices of G. A coloring of G (with q colors) 
is a mapping c : !‘(G)+S(q) where S(q) is a set of q distinct colors. Let Cal(G) 
denote the set of colorings of G, and let 

D : E(G) x Cal(G) + (41) 

be defined by the formula D(e, c) = 1 only if the coloring c assigns the same color 
to both endpoints of e. Then 

Z]Gl = cE;,(Cj eEgcj (1 + uD(c, c)). 

It is easy to see that this formula satisfies the deletion/contraction property for the 
dichromatic polynomial. Hence it provides a model and proves the existence of the 
dichromatic polynomial. 

A short-cut in calculating either the chromatic or dichromatic polynomials is ob- 
tained by noting that it is easy to give a specific formula for Z[G] when the edges 
of the graph G are all isthmuses or loops. An edge in a connected component of 
a graph G is said to be an isthmus if deletion of this edge disconnects the com- 
ponent . 

Tutte [14] provided an elegant reformulation of the dichromatic polynomial. 
Tutte’s polynomial will be denoted T[G](x, y) where x and y are independent com- 
muting algebraic variables. 

The following properties determine the Tutte polynomial: 

(1) Let G, G’, G” be a deletion/contraction triple obtained for an edge that is 
neither an isthmus nor a loop. Then 

T[G] = T[G’] + T[G”]. 

(2) Suppose that G consists entirely of isthmuses and loops with i isthmuses and 
I loops. Then 

T[G] = x$‘. 

The dichromatic polynomial is related to the Tutte polynomial by the formula: 

Z[G](q, o) = qk#-kTIG](l +qu-‘, 1+ u), 

where Ndenotes the number of vertices of G and k is the number of connected compo- 
nents of G. In this sense the dichromatic polynomial and the Tutte polynomial 
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are equivalent, and the existence of the dichromatic polynomial implies the existence 
of the Tutte polynomial. 

Tutte proved a remarkable theorem, showing that his polynomial could be com- 
puted from weightings assigned to the maximal trees of the graph G. While this 
weighting depends upon an ordering of the edges of G, the resulting polynomial is 
indepenent of the particular choice of ordering. 

Definition 2.1. Let G be a connected graph whose edges have been labelled 
1,2,3 ,..., n. Let HC G be a maximal tree in G. Let i in ( 1,2, . . . , n> denote an edge 
of H. Let Hi denote H- (the ith edge). Since His a tree, Hi has two components. 
One says that i is internally active if ic j for every edge j in G-H with endpoints 
in both components of Hi. Let i be an external edge (external to the tree H). One 
says that i is externally active if i< j for all edges j on the unique path in Hextending 
from one end of i to the other. 

Theorem 2.2 (Tutte). Let d denote the collection of maximal trees in a connected 
graph G. Let i(H) denote the number of internally active edges in G (with respect 
to the tree H), and let e(H) denote the number of externally active edges. Then the 
Tutte polynomial is given by the formula: 

T[G](x, y) = n’, xi(n)ye(*). 
u- 

Example. 

A= : o@ “~4 a& 

3 

T [Gl = y+x + x2. 

‘A = ‘A + ‘o= TA + Tz. + ‘0 
= x* + x + y. 

The next section explains the passage to link diagrams via the medial graph con- 
struction. 

3. The medial graph and bracket polynomial 

It may seem from the definitions of external and internal activity (in Section 2) 
that they are somewhat different. Actually, there is a symmetry of definition for 
planar graphs. It is a very pleasant thing to see this symmetry, and thus obtain a 
more intuitive feeling for the spanning tree expansion of the Tutte polynomial. In 
order to see it we need to discuss the medial graph construction that associates a 
4-valent planar graph M(G) to any graph G embedded in the plane. 
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82 M(G) 

Fig. 1. 

Thus, our first motivation for the medial construction is a clarification of the 
Tutte polynomial for planar graphs. The second motivation is that this construction 
provides the transition to ideas and structures related to knots and links. 

3.1. The medial construction 

Let G be a planar graph (meaning a graph G together with an embedding of this 
graph in the plane). The medial graph, M(G), is obtained as shown in Fig. 1: Each 
edge of G is marked by a transversal crossing foe. 

These crossings are connected to each other by tracing from a given crossing, 
parallel to an edge of G, past a vertex, and connecting with the next available cross- 
ing. Each crossing becomes a vertex in the medial graph. 

The resulting medial graph, M(G), is 4-valent in the sense that it has four edges 
locally present at each vertex. Some of the edges of M(G) may be loops. A graph 
of this type, embedded in the plane, will be called a universe (see [4]). 

The medial construction has an inverse. To each connected universe U in the 
plane we can associate a planar graph G(U) such that M(G(U)) = U. The inverse 
process is illustrated in Fig. 2. First the universe is checker-board shaded so that the 
unbounded region is unshaded, and two regions sharing an edge have opposite 
shading. Then a graph G(U) is formed with vertices in one-to-one correspondence 
with the shaded regions of U. Two vertices are joined by an edge in G(U) whenever 
the corresponding regions share a crossing. 

Note that if U is a Jordan curve, then G(U) is an isolated vertex. Therefore we 

P G(U) 

Fig. 2. 
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Jordan Euler Trail on U ----_ 

Corresponding Maximal 

Tree I” G(U). --- 

Fig.3. 

let the medial graph of an isolated vertex be an isolated Jordan curve surrounding 
that vertex. 

The upshot of these remarks is the following. 

Proposition 3.1. The set of connected planar graphs is in one-to-one correspon- 
dence with the set of connected universes. 

Furthermore, structures in the category of planar graphs may correspond to 
perspicuous structures in the category of universes. In particular, call an Euler trail 
on a universe U a Jordan-Euler trail if it never crosses at a crossing, and hence, after 
a slight perturbation, can be drawn as a Jordan curve in the plane. See Fig. 3. Then 
the collection of Jordan-Euler trails on a universe U is in one-to-one correspon- 
dence with the collection of maximal trees on G(U). For a proof of this fact see [4]. 
The process is illustrated in Fig. 3: In the Jordan-Euler trail, each crossing (x) 
is replaced by a pair of cusps in the forms 

(><) or (x). 

Call each such pair of cusps a site. Regard the cusps as the sides of a doorway bet- 
ween regions (> - <), and connect all vertices in shaded regions that stand joined 
by open doors. This procudes the tree. 

In defining activities for trees we labelled all the edges of G from an ordered set 
{l,Z . . . . n}. This means that the crossings in the universe U are iabelled from this 
same set. Thus the sites of any trail T (henceforth trail denotes Jordan-Euler trail) 
are so labelled. 

Now note that if, in a trail, we replace a given site by its opposite as in 

““‘I - u> -cn 
h 
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then the trail breaks up into two components . These components interact at a subset 
of sites that includes the site at which the replacement was made. Thus, in the exam- 
ple above, the two components interact at 1 and at 2. An interaction is a site con- 
sisting of one cusp from each component. 

Let T be a trail, and i a site of T, to be exact, the site labelled by i. Let Ti be the 
set of two curves resulting from replacement at i. Call i active if all the other interac- 
tion sites in Ti have label greater than i. With this we have a single definition of ac- 
tivity. 

Call a site on a trail T internal if its two cusps point to the inside (bounded side) 
of the Jordan curve, and external if its cusps point to the outside of the Jordan 
curve. Thus, in the example above, sites 1 and 3 are internal, while site 2 is cl;ternal. 

Finally, a site is internally active if it is internal and active. A site is externalfy 
active if it is external and active. 

These definitions of activity for sites of a trail Ton a universe U correspond exact- 
ly to the discriminations of activity for the edges of G(U) with respect to the max- 
imal tree determined by T. I leave the verification of this statement to the reader. 

In this reformulation, Tutte’s theorem becomes 

T[Gl(x,y) = c Xi(r)ye(T) , 
TE Trails(M(G)) 

where the sum is taken over all Jordan-Euler trails T on M(G), and i(T), e(T) 
denote respectively the number of internally active and the number of externally ac- 
tive sites relative to the trail T. 

Example. The medial M of the triangle graph G is the trefoil universe. 

The Jordan-Euler trails on Mare shown below. Active sites are circled, and the cor- 
responding contribution to the Tutte polynomial is shown. 

'A=' + ’ + ‘* 
This form of activity calculation gives the Tutte polynomial for the triangle graph 
as T[G] =x2 +x+y. This tallies with the recursive calculation. 
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We can also rewrite the formalism of the Tutte deletion/contraction algorithm in 
terms of the medial graph. Then T[G] = T[G’] -t T[G”] becomes 

TX = TV + T>< 
A 

where each replacement creates a connected universe. Thus 

This reformulation contains the seed of the connection with knots and links. 

3.2. Link diagrams 

Any knot or link (an embedding of two or more circles) in three-dimensional 
space can, by appropriate projection, be represented by a diagram whose structure 
is that of a 4-valent planar graph-with extra structure at the vertices to indicate 
how the corresponding space curve crosses over or under at the vertex. The vertex 
with this extra structure is called a crossing, and is depicted as shown in Figs.4-6. 

A link diagram is a universe with extra structure. Each crossing is supplied with 
a break (or undercrossing) structure as shown in Fig.4. The result of such a choice 
(there are 2N link diagrams corresponding to a universe with N crossings) is a stan- 
dard schematic for a knot or link in three-dimensional space. The broken line is, 
in this interpretation, regarded as crossing underneath the unbroken (overcrossing) 
line. 

In order to use these diagrams to investigate topological problems about knots 
and links it is necessary to understand how certain diagrammatic changes (the 
Reidemeister moves) correspond to topological deformations of the links in three- 
dimensional space. These moves are shown in Fig. 5. See [7,8] for more information 
about the topology. 

The fundamental result about the Reidemeister moves is that two diagrams repre- 
sent ambient isotopic knots or links if and only if the diagrams can be transformed 
to one another by a finite sequence of Reidemeister moves. Two knots or links are 
sit!d to be ambient isotopic if there is a continuous family of embeddings in three- 

trefoil universe trefoil diagram -- -- 

I crossing 

choices 

Fig. 4. 
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Fig. 5. Reidemeister moves. 

space taking one to the other. Thus ambient isotopy captures the physical idea of 
deforming a knotted rope without tearing or breaking it. The theorem about the 
Reidemeister moves tells us that questions about ambient isotopy are equivalent to 
purely combinatorial questions about diagrams and moves. 

The 4-valent planar graph underlying a diagram will be called its universe. We do 
not distinguish diagrams whose underlying universes are carried one to another 
under a homeomorphism of the plane, preserving the extra crossing structure. 

The fundamental combinatorial result regarding link diagrams is: 

Proposition 3.2. The collection of connected planar link diagrams is in one-to-one 
correspondence with the collection of connected signed planar graphs. 

Proof. Associate crossings and signed edges as shown in Fig.6. This association 
assigns a unique crossing to each signed edge, and then by the medial construction 
gives a link diagram K(G) associated with each signed graph G. The inverse process 
proceeds just as in the medial construction. q 

Fig. 6. Link diagram associated with signed graph. 
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Remark. The signed graph G has all signs of the same type, if and only if the link 
diagram K(G) is alternating. A link diagram is alternating if the weave alternates 
between over and under as one traverses the strands (a strand is traversed by choos- 
ing a starting point, and walking so as to cross under or over at each crossing that 
presents itself). 

3.3. The bracket polynomial 

In analogy to the deletion/contraction algorithm for 
polynomial of three variables A, B, d that is associated 
link diagram K, we denote this polynomial by 

graphs, there is a general 
with link diagrams. For a 

and refer to it as the bracket polynomial (see [5-81). The bracket is defined by the 
formulas: 

+L] = A[==] + B[><3 
2.[0 K ] = d[ K] 

3.[0] = 1. 

Here it is understood that the three small diagrams are parts of otherwise identical 
larger diagrams. Note also that the association of the variables A and B to the two 
modes of splicing a crossing are well defined: 

A given crossing can be seen to distinguish two out of its four logal regions by 
rotating its overcrossing line counterclockwise to sweep out two regions. See the 
diagram above. A 

Finally, in the second equation, the extra circle denotes any disjoint component 
that is a Jordan curve in the plane. Thus if K consists solely of N disjoint Jordan 
curves, then [K] =dN-‘. 

Remark. It follows from these axioms that the bracket satisfies the following for- 
mula for disjoint unions of diagrams: 

IK u 4 = dtKltU. 

It is easy to see that the bracket is well defined. Just note that the recursive 
calculation is independent of the order in which the vertices are spliced. In fact, 
there is a direct formula for the bracket as a sum over states of the diagram. A state 
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S of a link diagram K consists in a choice of splitting at each crossing of K. As in- 
dicated in the axioms for the bracket, there are two possibilities for splitting a 
crossing-type A and type B. In this sense, each crossing in the diagram contributes 
an A or a B to the state S. Let [K 1 S] denote the product of A ‘s and B’s contributed 
by the crossings of the diagram to the state S. Let the norm of the state S, denoted 
IS I, be the number of Jordan curves obtained by splitting each crossing according 
to the state’s choice at that crossing. Then the bracket is expressed by the formula: 

[K] = ; [ICI S]d’s’-l. 

This formula can be taken as a definition of the bracket. 

Example. 

[LIsl] = [OD ~]= BA. 

[ 1 L = BA + A2d + AB + e2d . 

The bracket polynomial is very significant for the theory of knots and links 
because one can determine conditions on A, B, d for which [K] is invariant under 
Reidemeister moves (Fig-S). In particular, one finds that if 

B =A-‘, d = -(A2+K2), 

then [K] is invariant under the Reidemeister moves of type II and typr III. This 
specialized bracket is not invariant under the type I move, but it behaves as follows: 

[a-- ] = (-A3)[+] , [-?I = (-A31 [+] - 

An appropriate normalization then yields an invariant of all three moves. This nor- 
malization is most easily explained for oriented links. An oriented link has a direc- 
tionality associated to each of its components-indicated by arrow-heads placed on 
these components. Each crossing in an oriented link has a sign (plus or minus one) 
associated with it. In a positive crossing, the overcrossing segment will coincide in 
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direction with the undercrossing segment after a counterclockwise rotation. In a 
negative crossing this coincidence uses a clockwise rotation. See the figure below: 

x x 
Define the write, w(K), of an oriented diagram K to be the sum of the signs of the 
crossings of K. 

Example. 

w(K) = +l+l+l = 3. 

Then we can define a Laurent polynomial f [K] by the formula: 

f [K] = (-GI~)-~(~)[K]. 

This polynomial f [K] is invariant under all three Reidemeister moves. Hence it is 
an invariant of ambient isotopy for knots and links in three-dimensional space. In 
fact, f [K] is a state summation model (after a change of variables) for the original 
Jones polynomial [3]. The bracket yields an elementary construction of the Jones 
polynomial. It also specializes to give the partition function for the Potts model in 
statistical mechanics (see [6]). It is worth remarking that the Jones polynomial was 
originally discovered by a somewhat different route-a new representation of the 
Artin braid group into Von Neumann algebras. These matters are also very closely 
tied with this combinatorics (see [5,6]). 

3.4. Calculating the bracket 

In calculating the bracket it is not necessary to go all the way down to collections 
of disjoint Jordan curves. In fact, we can parallel our translation of the Tutte 
polynomial to the medial graphs and restrict the recursion 

to those cases where the universes underlying these three diagrams remain con- 
netted . 

It is not hard to see that a connected universe that is disconnected by one or the 
other of the splits at each of its crossings is the medial graph of a connected planar 
graph whose edges are each either loops or isthmuses. Call such a universe irreduci- 
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ble and say that a link diagram is irreducible if its underiying universe is a disjoin; 
union of irreducible universes. 

It is easy to see that if K had a connected, irreducible universe, then the bracket 
for K is given by the formula: 

Wl=X 3 MU yLw 

where 
X=A+Bd, Y=Ad+B, 

and p(K) denotes the number of positive crossings in K, and n(K) denotes the 
number of negative crossings in K. (K necessarily is a knot if it is connected and ir- 
reducible. The sign of the crossings of a knot diagram (one component in the space 
curve) is independent of the assignment of orientation to the diagram.) 

The connected, irreducible universes then have the form 

That is, they are locally composed of curls. 
Note that each curl contributes via 

[-WI = (A + Bd)[ I] = x[ 1-j 

[Jq = (Ad +B,[-->] = Y[ I]. 

Call a curl positive if it produces the factor Y, and negative if it produces the fac- 
tor X. Note that a positive curl can correspond to a positive loop in the associated 
graph (or to a negative isthmus); see Fig.7. 

A connected, irreducible universe consists entirely of curls in the sense that it is 
built out of them. Curls may be constructed on curls as in: 

With this formulation, the bracket definition closely parallels the recursive defini- 
tion of the Tutte polynomial. 

In fact, the bracket has the analog of a spanning tree expansion. It can be 
evaluated from the site-weightings associated with Jordan-Euler trails on the 
universe underlying K. 

Theorem 3.3. Let K be a link diagram, and T a (Jordan-Euler) trail on U, the 
universe underlying K. Assume that the crossings of K(U) are labelled from the set 
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+ 

P \ I’ <Z- 
: ’ \ 

1 
NW_’ 

positive curl -- 

i 

/-. 
/ 

<e \ /: 

/\ 
positive curl 
-- 

positive curl <_> 

I 

positive loop 
-- 

or 

negative isthmus 
-- 

Fig. 7. 

1,2, . . . . n so that sites of T may be labelled active and inactive according to the 
definitions given in this section. Define local site contributions from T according to 
the folio wing scheme: 

-1 -= A 

I 

inactive site 

DC]= B -- 

Here the crossing indicates the crossing type in K, in comparison with the correspon- 
ding site in T. 

Let [K / T] denote the product of the contributions from each site of T. 
Then the bracket [K] is the sum of these contributions from each trail: 

Example. 

[=ol z = (Ad + B)A +(A + Bd)B. 
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The proof of Theorem 3.3 is deferred to Section 5. [K] has the Tutte polynomial 
for planar graphs (via medial translation) as a special case. See Section 4 for this 
specialization. It is remarkable that Tutte’s expansion generalizes in this way. 
Thistlethwaite [13] was the first person to notice this possibility (in the case of the 
Jones polynomial). 

We are now in a position to translate the bracket into the category of signed 
planar graphs, and thereby obtain a further generalization. That is the subject of 
the next section. 

Remark. It is interesting to note how the expansion of the bracket via trails is 
related to the “state” expansion that I explained just after introducing the bracket. 
Each trail is a state, but states (being the result of arbitrary splittings of the cross- 
ings), may be disconnected. Note that in the trail expansion of the bracket each trail 
has a set of active sites. Associate to each trail the collection of states obtained by 
switching 

(>< -+ 

a subset of the active sites. The trail itself is one such state. Call the collection of 
states associated with a trail T the “states of T”, denoted St(T). Then it is not hard 
to see that the sum of the contributions of the states in St(T) (via the bracket state 
expansion) is equal to the contribution of the trail Tin the trail expansion. These 
same remarks apply to our generalization of the Tutte polynomial for signed graphs, 
and will be the subject of another paper. 

Example. 

4. A polynomial for signed graphs 

Let G be a sign& graph. Let e be an edge of G, and let sign(e) denote the sign 
of this edge (+l or -1). 

The edge e may be an isthmus or a loop. Let i, = i+(G) denote the number of 
positive isthmuses, i_ =i_(G) denote the number of negative isthmuses in G. 
Similarly, l+ = l+(G) and I_ = l_(G) denote the number of positive and negative 
loops in G. 

We shall define a polynomial 

QEI = QtGl(A,&d) 
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for signed graphs via deletion/contraction and evaluation formulas. 
The following abbreviations are of use: 

X= A+Bd, Y=Ad+B. 

The defining formulas for Q[G] are: 

(1) Let G, G’, G” be a deletion/contraction triple for an edge e that is neither an 
isthmus nor a loop in G. Then 

Q[G] = AQ[G’] + BQ[G”] if sign(e) CO, 

Q[G] = BQ[G’] + AQ[G”] if sign(e) > 0. 

(2) If every edge of G is either an isthmus or a loop and G is connected, then 

QWI = X ?++I_ y’_+i+. 

(3) If G is the disjoint union of graphs Cl and G2, then Q[G] =dQ[Gl]Q[G2]. 

] = AQ[+ + BQ[4 O-1 

IQ [d-e-] = BQ[+] + A+. )--I 
Q p-q = YQ[-t] 

Q [L] = XQ[+ 

1 Q [ =+ l ]= XQ[-O].Q[+=-+YQ[~] 

In order to establish the existence of Q[G] for all signed graphs, a spanning tree 
expansion for Q[G] will be established in Section 5 of this paper. Our next two 
results show that Q[G] includes as special cases, the bracket polynomial for link 
diagrams, and the dichromatic and Tutte polynomials for arbitrary graphs of con- 
stant sign. 

Proposition 4.1. Let G be a planar signed graph. Let K(G) be the link diagram 
associated with G via the medial construction, as described in Section 3. Then 
Q[G] = [K(G)] where the right-hand side denotes the bracket polynomial of 
Section 3. 

Proof. The proof follows immediately from the medial construction. The recur- 
sion formula for the bracket directly translates to formula (1) for Q[G]. A graph 
G consists only of isthmus and loop if and only if the corresponding link diagram 
K(G) is irreducible (in the terminology of the previous section). A single curl will 
correspond to either an isthmus or a loop in the corresponding graph. In an irreduci- 
ble, connected diagram the formula prior to Theorem 3.3 gives the same result as 
our formula (2) for Q[G]. This completes the proof. 0 
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Proposition 4.2. Let G be a signed graph all of whose edges receive positive signs. 
Let Z [G](q, v) denote the dichromatic polynomial for the underlying unsigned graph 
as define$ in Section 2. Let N denote the number of vertices oJf G. Then 

Z [G](q, v) = q(N+c)‘2Q[G](q-“2v, l,q’.‘2), 

where c denotes the number of components in the graph G. Since the Tutte and 
dichromaticpolynomiats are reformulations of each other, this shows that the Tutte 
polynomiat T[G](x, y) is a special case of the polynomial Q[G]. 

Proof. Note that with B= 1, A = q-‘“v and d = q1’2, we have 

X=A+Bd=(q+v)q-I”, Y=Ad+B=(l+v). 

Let W[G] denote Q[G](q-‘“v, 1, q”2). Then W satisfies the formulas 

w -o+e [ ] = q-evw [G-] + WC-8 0-l 
-I 

v@-v = (l+v)w [-o-] 
W’+’ C 1 = q-Qq + v)W --3 [I . 

while Z [G] is defined via 

z = (v+q)Z + [I 
Z 

C 
0 u G]= qZ[G]_ 

It is then easy to check inductively that these two definitions imply that 

Z [G] = g(N+c)‘2 W[G]. 

The most important verifications are for a single isthmus and a single loop. These 
are as follows: 

w[&+ q-Qq+v).z [o--o] =q(q+v) ;,[Qt]=(1+~),z[o]=q(l+“) 

Remark. The existence of d such that 

X=A+Bd, Y-Ad+B 
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is equivalent to the condition 

AX-A’= BY-B’. 

It is easy to see that this restriction on the variables A, B, X, Y is necessary in order 
that the recursion for Q[G] be well defined. For example, consider the following 
two computations of Q[G] for a triangle graph with two positive and one negative 
signed edges. 

A 
w $1 ji I2 [B] + BQ[~] 

= ABQ[y] + A20 [D-] + BXY 

= ABY + A2X + BXY. 

WQ[G] = AQ [G] + Bc2pa-j 

= AX2 + B2Q [A] + BAQ[v] 

= AX* + B2X + ABY . 

These agree since 

BY+,J2 = AX+B2 z, A2X+BXY= AX2+B2X. 

In the next section we establish the existence of Q[G] via a spanning tree ex- 
pansion. 

5. A spanning tree expansion for Q[G] 

This spanning tree expansion is based on Tutte’s notion of activities and 
weightings for labelled maximal trees as described in Section 2. The words spanning 
tree and maximal tree are used synonymously. A maximal tree is a tree in G, using 
every vertex of G and contained in no larger tree in G. 

The Tutte weighting procedure depends upon an assignment of labels to the edges 
of G from an ordered set that we take to be the set { 1,2, . . . , n} when the graph G 
has n edges. Relative to a given tree an edge e of G is said to be internally or external- 
ly active (inactive) as stipulated in Definition 2.1. 

I shall recall that definition here. Let H denote the given maximal tree in the con- 
nected graph G. Note that H falls into two components upon the deletion of any 
of its edges. Call these two components the parts of H relative to the edge e in H. 
An edge e is internally active if it belongs to the tree, and its label is smaller than 
the label on any edge outside the tree that connects the parts of H relative to e. An 



A Tutte polynomial for signed graphs 123 

edge e is externally active if it does not belong to the tree, and it has a label smaller 
than the label on any other edge of the unique cycle formed by e and edges of H. 

We designate an algebraic contribution to the polynomial Q[G] from each of the 
maximal trees, and define Q[G] to be the sum of these contributions from all the 

trees. It is necessary to show that the resulting sum is independent of the choice of 
labelling of the edges of G, and that it satisfies formulas (l)-(3) for the Q- 
polynomial as given in Section 4. 

5.1. Contributions from the trees 

Recall that the polynomial we wish to define has variables A, B, d and that we 
use auxiliary variables 

X= A+Bd, Y=Ad+B. 

Given a maximal tree H in G we shall define contributions from the edges of G 

(relative to H) via the following chart (in each row of the chart the contribution of 
the edge occurs after the colon): 

r internally active, sign = +l: X, 

externally active, sign = - 1: X, 

internally active, sign = -1: Y, 

externally active, sign = + 1: Y, 

internally inactive, sign = +l: A, 

externally inactive, sign = -1: A, 

internally inactive, sign = -1: B, 

c externally inactive, sign = +l: B, 

It is useful to abbreviate this chart as follows: 

ea-: X ia+: X 

ia-: Y ea+: Y 
(#) 

e-:A i+:A 
. 
l- :B e+:B 

The meaning of the abbreviations in the #-chart (as we shall refer to it) should be 

clear. For example, “i - : B” means that an internally inactive negatively signed 

edge contributes B. In general, activity is indicated by an a and inactivity is indicated 
by the absence of an a. 

Now define the contribution of a maximal tree H, denoted G(H), by 

G(H) = the product of the contributions of all the edges of G (relative 
to H). 

And define the polynomial Q[G] via 



124 L. H. Kauffman 

QFI = c WO. 
maximal trees H 

Example. Here is a triangle graph with all positive signed edges. We show below 
the contributions from each maxima1 tree. The label on each active edge is encircled. 
Note that the sum is the same as the sum obtained via the recursive calculation of 
Section 4. 

qG]= A’X + ABY + BXY . 

5.2. Independence of order 

The key to this approach to order independence is the fact that any permutation 
oftheset {1,2,..., n} can be accomplished by a sequence of interchanges of elements 
that differ by one unit. Call two such elements adjacent in the ordering. By letting 
the edge-labels for the Tutte weighting be chosen from a set { 1,2, . . . , n} of con- 
secutive integers, we can use this fact about permutations. Thus it suffices to show 
that an interchange of consecutive edge-labels leaves Q[G] invariant. (Two edge- 
labels are said to be consecutive if they differ by one.) 

For a given spanning tree H in G, let f and g be two edges labelled i and i+ 1 
respectively. Let p and g denote the same edges but for the edge-labelling that swit- 
ches i and i+ 1 so that phas label i+ 1, g has label i, and all other edges retain their 
labels. Tutte [14] observes the following facts: 

(1) The activity of any edge h, not equal to for to g, is unchanged by this inter- 
change of labels. 

(2) A change in the activity of for g is possible only if the following three condi- 
tions hold: 

(a) One of these edges (say f) is in the tree H, while the other is not in the 
tree. 

(b) fis an edge on the cycle determined by g and the tree H. (This is equivalent 
to stating that g connects the parts of H relative to J) 

(c) Each edge h (not equal to f or g) has the same activity with respect to H 
as it does with respect to the maximal tree, s(H), obtained from H by 
deleting f and adding g. 

Assuming conditions (a)-(c), the possible changes in activity are indicated in 
Fig. 8. In this figure we have indicated the activities of the edges e and f before and 
after the interchange with respect to the trees Hand s(H). The conventions are the 
same as in the #-chart. 

It is now straightforward to check that in every case of signs for e and f the 
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Old Order New Order -- v- 

Fig. 8. 

polynomial Q[G] is unaffected by the interchange. For example in case I of Fig.8 
with sign(f) = + 1, sign(g) = -1, we find (via the #-chart) that prior to the inter- 
change H and s(H) together contribute (AX+B*)K while after the interchange 
they contribute (BY+A*)K (same K). Since we know that AX+B*=BY+A*, this 
shows the invariance for this piece. The rest of the cases go through in similar 
fashion, and will be omitted. This completes the verification that Q[G] is well defin- 
ed as a spanning tree expansion. 

5.3. Formulas for Q[G] 

It is now routine to verify (using independence of order) that Q[G] satisfies for- 
mulas (1) and (2) of Section 4 for connected graphs. Formula (3) defines Q for ar- 
bitrary graphs. 1 omit these verifications. Note in checking them that an edge which 
is neither a loop nor an isthmus can be made inactive by choosing for it a maximum 
label; an isthmus is always internally active and a loop is always externally active. 

It is also easy to translate the spanning tree expansion for Q[G] to a correspon- 
ding Jordan-Euler trail expansion (in the case of G signed, planar) thereby obtain- 
ing a proof of Theorem 3.3. 

6. Conclusion 

This paper began with a survey of the chromatic, dichromatic and Tutte 
polynomials. Then we showed how these ideas can be transferred into the category 
of link diagrams via the medial construction. The bracket polynomial [K](A, B, d) 
arises naturally for link diagrams and has as a normalized special case the Jones 
polynomial, a topological invariant of knots and links. We then explained how the 
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bracket has an expansion via Euler trails that formally resembles the spanning tree 
expansion of the Tutte polynomial. We then generalized the bracket to define a 
polynomial Q[G] for signed graphs, showing that Q[G] contains the Tutte 
polynomial and the bracket as special cases. Furthermore, the polynomial Q[G] has 
a spanning tree expansion. 

I have restricted this account to the bracket polynomial and its context. Even here 
it is remarkable that a construction that seems at the outset to depend upon planari- 
ty (planar signed graphs, link diagrams) is an essential part of a larger scheme defin- 
ed for all (signed) graphs (the polynomial Q[G]). 

One of the simplest further generalizations that can be explored is an extended 
bracket satisfying a recursion of the form 

[-]=A[=] +B[>(]+c [=I. 
Here the last replacement is a planar vertex, so that this extension must be told how 
to evaluate a 4-valent planar graph. Very simple evaluations in terms of selected 
cycles in the graph give as special cases the usual bracket and also chromatic 
enumerations of Penrose (see [lo, 121, compare with [2]). More complex evaluations 
(see [l 11) give the known topological generalizations of the Jones polynomial (the 
Homfly and Kauffman polynomials, compare [7,8]). 

Much more work remains to be done in this field. 
One last remark: The type II Reidemeister move (Fig.5) corresponds to the 

following two moves on signed graphs: 

+,--, \- 

If we define 

Z-WI(A) = Q[G](A,A-', -A2-A-2), 

then P[G] is invariant under these graphical moves for any signed graph G (no 
planarity restriction). (It is also invariant under the “star/triangle” replacement 
corresponding to the Reidemeister type III move.) 

One interpretation of this invariance is to let the graph represent a communica- 
tions network for pure frequency signals, with the signs (+l, -1) denoting positive 
and negative quarter-period phase shifts. Then the graphical moves shown above 
will not affect the transmission properties of the net (half-period phase shifted 
signals interfere destructively for pure frequencies) and the polynomial P[G] will be 
an invariant of these network changes. Hence P[G] can be used to discriminate ine- 
quivalent networks. This application marks the possibility of a deep interdis- 
ciplinary connection between topology and network theory. 
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