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SUPER TWIST SPINNING

Louis H. Kauffman”

1. INTRODUCTION

This paper describes a generalized twist-spinning construction for
spherical knots in codimension two. The construction is a combination of
super-spinning and twist-spinning, hence the terminology super twist-
spinning.

Just as twist-spun knots are fibered by theorem of Zeeman [6], [2], so
are super twist-spun knots fibered via a generalization of the Zeeman
Theorem. (Theorem 3.1 of this paper.)

Super twist-spinning is closely related to the knot-product
construction of [3], [4]. Section 2 will review this background. Section 3
then sketches super twist-spinning and the proof of the fibration theorem.
Section 4 concludes with a discussion of results and open problems about
these spinning constructions.

The knot product construction was originally devised as a
generalization of branched covering constructions-including a geometric
construction of the link of the sum of two isolated algebraic singularities

" Research partially supported by NSF Grant DMS-8701772
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(see [5]). An isolated singularity gives rise to a smooth manifold
embedded in codimendion two by intersection with a sphere about the
singularity. Thus a trefoil knot es the link of the singularity at the origin of
the variety.

in two complex variables. The unit sphere suffices in this case, so that the
trefoil is explicitly described by the equations

o el = 1

In general if f = f(zl,zz,....,zn) and g= B(WpWopWa .o, W) are
isolated singularities in complex n and m-space, respectively, then f+g i«
an isolated singularity in complex n+m space. If L(f) denotes thc
intersection of the variety of f with a small sphere about the singularity
then L(f), L(g) and L(f+g) are the links of these singularities, eacth
embedded in the corresponding sphere. The knot product construction
describes the embedding and construction of L(f+g) in terms of the
embeddings of L(f) and L(g). In fact, the product construction is a purely
knot theoretic construction, more general than the case of the algebraic
singularities to which it applies. It produces a product K® L embedded in

Smm+l whenever K < S"andL < S™ with L fibered (see section 1).

The super twist spinning construction associates to a spherical knot
K < S" and a fibered knot LcS™ a new spherical knot Spinp (K) in
SnmAs we shall see in section three, the idea for super twist spinning is

very sinple. This idea can be used as a starting point for motivating the
knot product construction.

While the idea requires a bit more fleshing out, as we do in section 3,
it can be stated as follows:
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Twist spinning is based on the idea of turning the knot as it is spun.
Spinning consists in crossing the knot (minus a disc) with a circle.
Super-spinning consists in crossing the knot with a high dimensional

sphere Sm.

To combine twist spinning and super spinning we need to know by
how much to twist the knot for each point on the spinning sphere S™.
If S™is a fibered knot with fiber L, then on §m _ I, there is a fibration
p:S™-L— Sk

ount p(x) for x in the complement of L.
(the triviality of the 1-twist
s and create the super twist

Thus one can spin by the am
Now, specific properties of twist spinning

spin) allow us to fill in this spinning proces
n+m

spun knot Spin L(K) cS .

The super twist spin of a given knot K turns as it spins, governed by
the fibration of the complement of L. The complement of the super twist
spun knot Spin L(K) fibers over the circle with fiber the knot product punc
K ® L, the result of removing a ball from the knot product K ® L. This
results becomes the usual theorem of Zeeman when the "fibered knot L" is
taken to a be a mapping of the circle to itself of degree a (the empty knot of

degree a).

2.RECALL OF KNOT PRODUCT AND BRANCHED
FIBRATIONS

Throughout this paper a knot refers to a (connected) codimension-two
differentiable submanifold of a sphere. Thus, in the case where the
ambient sphere has dimension three, a knot is the familiar classical knot-an
embedded circle in three dimendional space.

A link consist in a embedding of mutually disjoint connected
submanifolds in a sphere. Thus, in dimensional three a link is an
embedding of a collection of circles.




Unless otherwise specified, I shall use the term knor to mean knot or
link when working in demension three.

A knot is said to be fibered if its complement can be smoothly fibered
over the circle. It is assumed that each component of the knot or link has g
trivial normal bundle, and that the fibration restrics to projection to the
fiber of the normal circle bundle for an appropriate choice of trivialization,

(See [4] for discussion of uniquenes and implications of the choices of
trivialization.)

The trefoil (see Figure 1) is a classical example of a fibered knot. The
fibration may be described by choosing a spanning surface as shown en
Figure 1. The surface consists of three twisted bands within a solid torus,
and two disks exterior to the torus. To describe the fibration it is sufficient
to explain a family of surfaces that disjointly fill up all of the three-sphere
minus the knot. These surfaces can be regarded as each having the knot as
boundary. In the case in question, this is seen by rotating the places where
the boundaries of the exterior disks join the solid torus (and rotating the
disks as well so that they exchange places after a rotation of 180 degrees).
The bands inside the solid torus are also rotated,with a screw motion, to
match the movement of the outer disks. The result is a moving family of
surfaces in the three-sphere satisfying the conditions for the fibration. See
[6] for a very good discussion of the fibration.
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Fiber surface for the trefoil
Figure 1
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The product construction [2], [3] associated to two knots (in possibly
different dimensional spheres) a new knot in a sphere whose dimension is
one more than the sum of the dimensions of the given knots. One knot
must be fibered for the construction to be well-defined. Given knots

K cS"and LCSm(with L fibered) we shall define the product
K ® Lc Sn+m+1

The basis for this construction is the following observation: Given

any knot K< Sn, there is a map k : s" > D2 (the two dimensional
disk), transversal to the origin, so that K is the inverse image of the origin
under this map. In fact if K has a tubular neighborhood in the form

K x D2, then k can be taken to be projection on the D? factor on this
neighborhood. With E (K) denoting the complement

E(K) = Closure (S" — K x D),

we can assume the maps E (K) to the unit circle, and that k restricted to
E (K) is the fibering in the case that K is a fibered knot.

Call k : S"—D? a generator for the knot K.

Given a generator k for K, we can also form the cone on k denoted
ck.This is the map ck : D**1—D?2 defined by the equation

ck (tu) = tk (u)
where t lies between 0 and 1, and u is a point on the sphere S™

Note that ck restricted to the inverse image of the circle is just the map
from (K) — S1. Thus, if K is a fibered knot, then ck is a fibration on the

complement of the inverse image of zero, and the inverse image of zero is
homeomorphic to the cone on the knot K.

When K is a fibered knot, I say that ck : D"*!—>D?2is a branched
fibration over D2 branched along zero, with fiber F (the fiber of the fibered
knot K).
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This formalism is intended to include the case n = 1 and the map of
degree a, a : D?—D?2 given by the formula

LoL=a(z)

where z is a complex variable parametrizing the disk. In this case the

associated fibered knot is the empry knot of degree a whose fibration is the
map of the circle to itself of degree a.

Z
N3
Za

The empty knot of degree a
Figure 2

Given a knot K and a fibered knot L with coned generators ck :

D+l 5 D 2 and cl:Dm+*1 5 D2 we form the
n+1 m+1

pullback X(K,L) < D x D via the diagram
X (K,L) p Dm+l
cl
| / 47
pn+l ck > D2

X(KL) = {(x,y) e D" x D™|ek(x) = cl(y) }.
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and define the product K ® Lto be the boundary of this pull-back in the

boundary of the product of the two balls:

K® L= a‘(X(K,L)) - a(Dn+1 v, Dm+1) _ Sn+m+1.

Note that in the case where L = [a] is the empty knot of degree a, the
product K®Ja] is the a-fold cyclic branched cover of S™ branched along K.
The product construction gives a natural embedding of this branched cover
in codimension two (in $**2 when K is in S%).

The simplest example is the product [a]l ® [b] < s>, a torus link of
type (a,b). In general, products of empty knots [a;] ® [a2] ® ... ® [am]
yield the Brieskorn manifolds (see [5]) :

(2] ® [2,] ®® [am] Ez(al,az...,am)

a

T (3p2q -o2m) = g2m-1 Vaﬁety(le +Z, ot Zm),

In general, the mapping K— K® [2] ®[2] for spherical knots takes
sphericals to sphericals, and gives a specific realization of the isomorphism
of the Levine concordance groups in higher dimensions [2]. There are
many other examples, and the full structure of the product construction

remains to be investigated.

Remark : It is interesting to see a direct "cut and paste" description of the
manifold K®L. It is given by the formula

- K®L=(D1xL)YU(EK* SIEL)U(KXD“‘“)

where E, X SIEL:{(X,}’) e Eg X Ele(X) =} (y)eS'}.

v
Note that B(EKx SlEL)E(KX EL)(EKXL)




146
While (D" xL)=(E, xL) U(KxD*xL)

and 9(KxD™") = (Kx D*x L) U(KxE,)

This decomposition can be easily read from our pull-back description.

3. SUPER TWIST SPINNING

In order to define super twist spinning of knots, it is necessary to
recall the notions of spinning, and of twist spinning. Given a

knot K © S”, one can excise an unknotted disk pair (D", D"2) sq that
(s"x) = (p"K,) u (D" D"?).

In the case of a classical knot S3, K1 is a (knotted) arc rﬁnning from

the north pole to the south pole of a ball D>. Standard spinning swings this
arc around to trace out a 2-sphere in four-dimensional space -- we add
some trivial pieces to close the construction. Thus one defines

(SHH, Spin(K)) by the formula

I

(s™spin(K)) = (D" x 8L,K, x 81) U(s"'x D’ 5" x DY)

The second piece of the formula fills in the spun arcs to form the
embedded sphere.

Twist spinning is a combination of spinning and twisting the arc at the
same time. Since spinning involves the angular parameter on the circle S',

we can use this parameter in the factor K, X s! to twist the embedding to

form

[ Ul(u(x)K . x)i\ U[Sn‘3 X D2]

xeS

e
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where u(x)K; is the image of K; under a rotation of the ball D" about the
axis through the north and south poles -- u (x) is a function of the angle x
in S1. In particular, if we take u (x) = ax so that the arc twists a times as if

‘spins once around, then this is a-twist spinning. With malice aforethought,

I let SPIN[4 (K) denote the a-twist spin of K.
Zeeman [6] proved the beautiful

Theorem. The a-twist spin of a spherical knot is a fibered knot, and that
fiber is a punctured a-fold cyclic branched cover of the ambient sphere of
the original knot, branched along the knot. In particular, the 1-twist spin of
a knot is trivial.

In [2] we showed another way to see this fact by exhibiting an
interchange between the axis (trivial knot) in S+l and the 1-twist spin of
any knot in S™. This was then used to give an alternate proof of the
Zeeman Theorem.

In dimension 4, the twist spinning construction has been used [1] to
construct multiple distinct sharing the same conplement.

Another variant of the spinning construction is super spinning. Here
the product with the circle is replaced by a product with a sphere 8™ of
arbitrary dimension. Thus we form the super-spun pair:

(Sn_l,Super(K)) = (D" x Sm,K1 x §™) U (s™ ' x D™ s"? x ™).

Super twist spinning-informal discussion

Finally, the main invention of this paper, super twist spinning, is a
simultaneous generalization of super spinning and twist spinning. The data
for super twist spinning consists in a spherical knot (8", K), and a fibered
knot (S™, K) -- not necessarily spherical. Note that (S™, L), being fibered,
comes equipped with a mapping 1 : E (L) —S1. Hence to each point x in
E (L) there is an associated rotation 1 (x). Consider therefore the space
obtained by formnig

AL o)
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The boundary of A consist in S"° x E(L)union wit

{(6K ,, (8,9)) } with 6 in S, and p in L. (The boundary of E (L) s

S!x I, and the fiber map restricts to projection to the S! factor for thig
boundary).

We may regard S**™ as

St = DMxS™/==where (a,b") for any (a,b’) in S™and a in the sphere
S™1, In this picture

A is identifield with A/== and

has boundary simply

B=(( U (BK 1,(&)))x L= =)=Spin[1](K) x L.
9651

Since  Spinp) (K) is a trivial knot there is a ball
D} 8™ < §" " with boundary Spingy) (K). Hence D, x L has
boundary B, and we can form

. n+m
Spin (K) =AU (D, xL)c§

This is the supertwist spin of K relative to L.

The idea behind the super twist spin is simply this : rotate K
according to the angle of the fibration for L. Fill in along the tubular
neighborhood of L by using the fact that the standard 1-twist spin of K is
trivial.

In order to make this description more precise, lets return to the
decompositon

Sn+m _ (Dn % Sm) U (Sn—l>< Dm+1)

Then Sn+m _ (Dn v E[,) U (Sn—l 9 Dm+1) U (Dn « D2 % L)
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union with Thus we have the branched fibration (see section 2)

7 of E (L) is

actor for this
(Dn xE )V (S“_1 « D™)

l \
\ \

in the sphere

1 T cl
\ \
I} ! 1
L. (p"x s v ("' x p?) =s™""
is a ball
D, x L has In other, we have that

(Dn % EL) O (Sn—l o Dm+1) ___b(sn+1’sn—1;L)

denotes the branched fibration of X along Y-using the

where b (X,Y; L)
corresponding to the fibered link L. Thus

generator cl : pm+lD?

s : rotate K
g the tubular
t spin of K is

Sn+ m _ b (Sn—l’ Sn—l;L) U (Dn+2 % L)

The L-super twist spin of K S" is then defined to be

return t i -
rn to the e Spln L(K) =T 1(Spm[ﬂ(K)) U (Dn X L) c Sn+m

~ where Spin[l](K)C s™*! denotes t
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theorem. Here it provides us with a canonical description of the super twis
construction.

The Theorem of Zeeman generalizes to

THEOREM 3.1. Let K be a spherical knot in S™ and L be a fibered knot in
S™. Then the super twist spun knot Spiny, (K) is a spherical fibered knot in
S™ ™ with fiber punc K®L where K®L in the knot product as constructed
in [4] and section 2 of this paper.(punc (M) is the manifold with boundary
obtained from a manifold M by removing the interior of a ball in the
manifold).

Remark. The same line of heuristic reasoning by which we gave a
description of the super twist spinning yields an insight for this theorem as
well : Visualize the knotted ball pair (D", K;). While K is not necessarily a
fibered knot, nevertheless we can imagine D" as decomposed into singular
fibers F(x) with x running over the circle such that each fiber has a
boundary K; union a ball D™ running from "north to south" on the
boundary of D™. Each D™ has boundary S™3 and S™3 is the boundary of
the interior ball K; in D™ (Think of a three-ball, knotedd arc pair). The
super twist spin is arranged so that these fibers are spun around as well to
create a manifold whose boundary is the super twist spun knot. A close
look shows that this manifold spun from the fibers in D" via the fibration
of the knot L, is the punctured knot product K®L. The argument in this
form is exactly analogous to Zeeman's original proof of his fibration
theorem, with branched fibrations replacing the branched coverings.

Proof of 3.1. Recall that we have formally defined the pair
(Sn+m,5pinL(K))via branched fibrations so  that

Sn+m -b (Sn+1, Sn_l;L) U (Dn+2 % L) where b (Sn+1, Sn_l;L) is the
branched fibration described by the diagram

b(SnH,Sn_l;L) 5 Dm+1

Ir lck
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That is, b(s““,s“'l; L) is the branched fibration (via L) of gn+l

anching along the standard unknottted sphere
"1 Lith Spin g(K) n8"'=8"", the standard
sl we form Sping (K) by restricting this branched

br s" < s™"" Since

unknotted sphere in

' fibration to Spingy (K).

That is
Spin  (K) = b (Spin(y(10,8"5L) U (D" x 1)

where D" x L embeds in B2 « L to extend the embedding
a(b(s™,s" L) =8" T x LoD (b (spin[l](K)s“'3;L)) =

= Spinm(K) x L

Here Spin[ﬂ(K) xLc §™*! « L is the product with L of the given

embedding Spin[ﬂ(K)cSnﬂ. Since we already know that

*1 and that the embedding Spin[ﬂ(K) = S™" bounds a

n+1

Spin(K) = 8"

ball in S™1 we can let Sping(K) =§" " be represented by

g]:Sn-1 8" extending to §':D" = s™

Let D" — D"*? be the embedding obtained by deforming {'
slightly (relative to 4 (S™1)) into the interior of D™*2 . Then ¢" gives the

specific embedding D" x L ,D""?x L needed to complete the
definition of the embedding Spin [K) < ™™ yia the decomposition
explained above.

theorem I use the interchangeability of
in S"*! (see [2]). This means that we can

(K) and axis S™!in the definition of

~ To prove the fibration
Spin, ﬂ(K) and the axis S™!
interchange the roles of Spin[ﬂ
Spin | (K). After this interchange we have
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'S“+m =b (Sn+l,Spin[ﬂ(K);L) U (DnJr2 X L) > Spin (K) =
=b(s",s" ) u(D"x L)

That is, Spin L(K) is obtained by taking the inverse image of the axis
sphere S ™1 in S ™! under the branched fibration of S ™*! along the
n+l

1-spun Spin[l](K)CS .

In this interchange picture, the embedding D" x L — D2 x L is
induced by the embedding $"M 5 8™ that represents Spin 1](K).

We are now in a position to prove the fibration theorem. Observe that
the pair (S"",8™™) is fibered with fibers diffeomorphic to D™,
intersecting Spin ;(K) transversally in copies of K, c D" where K,
denotes the result of excising a trivially embedded D"2 from K c S".
This fibering lifts under the branched fibration to a fibering of the knot
(8™™, Spin, (K)) with fibers b(D",K ;L) U (D" x L) Tt is easy to
see that

b(Dn,Kl;L) U(D"xL)=punc(K® L),

This completes the proof.

Remark. The exchange shown in Figure 3 where a knotted hole attached
to an unknotted arc is the basic geometry behind the interchangability of
the 1-twist spin and the standard axis. It is also the picture of how an
apparently unknotted branch set becomes the knotted branch set relevant
to'the fibering in the Zeeman theorem and its generalization.
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Figure 3

4. QUESTIONS

This paper has been a sketch of ideas and construction related to knot
products, spinning and super twist spinning. We have traced the line of
ideas to show that the product construction and its associated notions of
fibered knots and branched fibrations could have arisen entirely in
geometric knot theory in response to a natural generalization of twist

spinning to super twist spinning.

The product construction itself has its origins in the study of links of
algebraic singularities. In all cases of these constructions there is much
possibility for a deeper investigation of examples. While we are quite
familiar with certain knot products that arise from the sum of singularities,
the general behaviour of even the 5-knots in 7-space produced by products

of classical knos is largely unexplored.

Similarly, it would be very interesting to know more about the super
twist spun 4-knots in 6-space produced by the spinning of classical knots

by classical fibered knos and links.

highly significant examples in

Just as twist spinning has produced
twist spinning will produce

dimension four, it is likely that super
significant examplies in higher dimensions.
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A specific question: Are there distinct super twist spun knots with
homeomorphic complements ?
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