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1 Introduction

This paper focuses on the class of algebraic objects called involutory quandles and, in particular, on

the connection between involutory quandles and topological knots and links. The paper is intended to

be a self-contained treatment of the topic and should be accessible to readers with various backgrounds.

Section 2 surveys the available material concerning involutory quandles and includes several important

examples. Section 3 covers an exposition of a more general class of algebraic objects called quandles and

their connection with knots and links, and the results discussed are those of [Joyce1982a]. As will be shown,

quandles associated to a knot are analogous in a number of ways to the fundamental group of the knot

complement. In particular, the involutory quandle is obtained from a given quandle as the image of a

particular homomorphism.

In Section 4, we develop a new type of a diagram for an arbitrary quandle. This diagram encodes

the multiplication table in an e¢ cient and notationally convenient form. Such a diagram often contains

repeated geometric patterns that provide intuitive clues concerning the algebraic structure of the associated

quandle. (This type of a diagram is compared and contrasted with another type of diagram [Joyce1979] at

the end of Section 4.3.) Sections 4.5 - 4.11 develop a method to construct the new diagram directly from a

quandle presentation thereby bypassing calculation of the multiplication table. This method is applied in

Section 4.8, where we construct diagrams of involutory quandles for various knots and links. In Section 4.12,

we distinguish the 4-quandles of the square and granny knots with the aid of a quandle diagram.

Our main theorem� any tame knot with a trivial involutory quandle or a trivial n-quandle must be

trivial� is proven in Section 5.2. The proof involves certain types of groups obtained from quandles: the

conjugate group of the knot quandle (Joyce�s Adconj); the involutory conjugate group; and its even subgroup.

Our discussion begins with Joyce�s result that the conjugate group of the quandle associated to a knot or

link is isomorphic to the knot (or link) group. As a result, we obtain the statement that the even subgroup

of an involutory conjugate group is isomorphic to the fundamental group �1(M (2)) of the two-fold branched

cover of S3 along a knot or link. The main theorem is proved using the Smith Conjecture.
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2 Brief Survey and Examples

A knot is an embedding of a circle S1 into the 3-sphere S3 (Figure 2:1). What we actually draw is its

projection onto the plane.

Trivial Trefoil Figure-eight (5; 2) Torus

Figure 2:1: Knots

A link is an embedding of a disjoint union of two or more circles into S3 (Figure 2:2).

Figure 2:2: Links

We will consider only tame knots and links, those knots and links with a �nite number of crossings

in the projection. The knot group, an algebraic object associated with a knot or link, is an invariant of

the knot. That is, the knot group remains the same (up to an isomorphism) no matter how the knot is

deformed through ambient isotopy of S3 (Section 3.1). For example, while using the knot group, the trefoil

knot cannot be deformed into the �gure-eight knot (Figure 2:1) by showing the corresponding knot groups

are not isomorphic.

The knot group is not the only algebraic invariant associated to a knot or a link. We shall also consider

another invariant called an involutory quandle of the knot or link.

De�nition 2.0.1 An involutory quandle is a set Q with a binary operation B called product, written

x B y, which satis�es the following three axioms.

1. x B x = x for all x 2 Q.

2. (x B y) B y = x for all x; y 2 Q.

3. (x B z) B (y B z) = (x B y) B z for all x; y; z 2 Q.

We construct an involutory quandle for the trefoil knot in this section and describe the general procedure

for constructing involutary quandles for knots and links in Section 4. We shall see close connections between

quandles and groups and, in particular, between the involutory quandle of a knot or link and the knot group.

3



The involutory quandle has advantages over the knot group for certain purposes. First, the involutory

quandle of a tame knot or link is either �nite or "not too in�nite". For example, we shall see the involutory

quandle of the trefoil knot has three elements. (The knot group for any nontrivial knot is "very in�nite,"

and the corresponding Cayley diagram is impractical due to its complexity.)

Second, involutory quandles distinguishes certain pairs of links which cannot be distinguished using their

groups. For example, the two links in Figure 2:3 have the same knot groups but have �nite involutory

quandles of di¤ering cardinality. The involutory quandle for the �rst link of Figure 2:3 has 8 elements

and 24 elements for the second link. (See Section 4.8, Example 4.8.4 for details.) Note these links can

be distinguished by examining their corresponding two-fold branched covering spaces. This observation

suggests a connection between the involutory quandle and the two-fold branched cover. This connection will

be closely examined in Section 5.2. (Note knots with di¤erent knot groups can have the same associated

involutory quandle [e.g. the �gure-eight knot and the (5; 2) torus knot in Figure 2:1], and, as conjectured by

J. Simon, the knot group determines the involutory quandle for knots, as opposed to links).

Figure 2:3: Two links with homeomorphic complements in S3 but

non-isomorphic involutory quandles. The involutory quandle of the link

at left has 8 elements,while the involutory quandle of the link at right has

24 elements.

A third advantage of the involutory quandle is the involutory quandle can be studied conveniently by means

of a diagram analogous to the Cayley diagrams (Section 4). With the advantages stated, we now construct

the diagram an involutory quandle.

We begin with a diagram of the involutory quandle of the trefoil knot shown in Figure 2:4. Label arcs

of the knot projection by a; b; c (Figure 2:4; upper left). For each crossing in the projection, de�ne

the relation

a B b = c:

The relations are listed in Figure 2:4, upper right. (The relation c B b = a obtained by reading the projection
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in the opposite direction is redundant.) These relations, together with the axioms of an involutory quandle

(see De�nition 2.0.1), yield a multiplication table for the involutory quandle of the knot (see Figure 2:4,

lower right). The multiplication table is obtained from the relations and the axioms by a purely algebraic

process. Note while a one-to-one correspondence between the elements of the involutory quandle and the

labeled arcs of the original knot occurs in this particular case, such a correspondence does not occur in

general. Usually the labeled arcs of a knot correspond to the set of generators of the associated involutory

quandle. (An involutory quandle usually has more elements than generators). The correspondence between

arcs and distinct generators of an involutory quandle is also not necessarily one-to-one as two di¤erent arcs

of the knot projection may correspond to the same element in the involutory quandle (see Figure 2:5).

a B b = c

b B c = a

c B a = b

B a b c

a a c b

b c b a

c b a c

F igure 2:4: Trefoil knot, relations, and multiplication table for the involutory quandle

([Joyce1982a]). Our diagram of the involutory quandle appears at lower left.

We de�ne the diagram of an involutory quandle in terms of the multiplication table (Figure 2:4, lower left).

The vertices a; b; c of the diagram represent the elements of the involutory quandle. The solid arcs represent

right multiplication by a, and the dashed arcs represent right multiplication by b.

Thus, the solid arc from c to b implies c B a = b; the solid arc from a back to a indicates a B a = a;

and the dashed arc from a to c indicates a B b = c: In Section 4.5, the diagram of an involutory quandle

encodes all information present in its multiplication table. In the example, the information concerning the

right multiplication by a and b allows us to �nd right multiplication by c as well. We shall ultimately derive
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the diagram of an involutory quandle directly from the relations (Sections 4.5 - 4.7) without intermediate

computation of the multiplication table.

Figure 2:5: Two arcs of knot projection may correspond to same element of the associated

involutory quandle. In the projection above c B c = d (for right-most crossing),

but c B c = c as well (Axiom 1 in De�nition 2.0.1):

Using Figure 2:6, we suggest the intuitive possibilities of quandle diagrams. We provide several knots of

increasing complexity and provide the corresponding involutory quandle diagrams to the right. Since the

corresponding involutory quandle diagrams reveal an increase in complexity, we ask how the complexity of

the quandle diagram is related to the complexity of the knot We have no general answer yet. However, we

show any nontrivial knot must have a nontrivial involutory quandle (see proof in Section 5.2).

Figure 2:6: Increasing complexity in knots and in their involutory quandle diagrams

We conclude this section with an example of the involutory quandle for the Borromean rings (Figure 2:7).

The quandle diagram of this link has three components, one component for each component of the link.

We show only the component which contains element a in Figure 2:7. The quandle diagram can be drawn

on a conical surface and is discussed further in Section 4.7. The quandle diagram in Figure 2:7 shows the

involutory quandle of the prime link is in�nite. If the diagram is collapsed by letting

x B c = x

for any x, and the c component of the link is deleted, then the resulting quandle diagram is the same as for
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the trivial link of 2 components.

In Section 4.12, quandles are used to show the square knot and the granny knot are distinct. Quandles

are related to the n-fold branched covering spaces in Section 5.

a

Figure 2.7. Borromean rings and its involutory quandle�s diagrams (one of three components)
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3 The Quandle of a Knot

In this section, we de�ne a quandle of a knot [Joyce1982a] both topologically and algebraically. A

combinatorial review of elementary knot theory and the knot group introduces the approach. (For further

reading see [Crowell and Fox1977] and [Rolfsen 1976]) An algebraic structure of a quandle naturally arises

by considering a mapping called a disk with a path�a meridian path spanned by a disk. Homotopy

equivalence classes and product operations are used to de�ne an algebraic structure of a quandle. A

particular homomorphic image of this quandle is called an involutory quandle. We describe a more direct

geometric application of the involutory quandle in Section 5.2.

3.1 Combinatorial Knot Theory

We introduce basic notions of knot theory from a combinatorial point of view. A knot is an embedding

of a circle S1 within the three dimensional sphere S3 (see Figure 3:1:1).

Figure 3:1:1:Trivial knot, trefoil, and �gure-eight knot

We represent a knot by drawing a projection of the knot onto the plane. A link is an embedding of disjoint

union of two or more circles into S3 (see Figure 3:1:2). Each embedded circle is called a component of the

link; a knot is a link with one component.

Figure 3:1:2: Trivial link (unlink), simplest nontrivial link, and Borromean rings

The following terminology will be used in describing presentations of knot groups and quandles. An arc is

an unbroken curve in a knot projection. We label them by letters a; b; c::: (Figure 3:1:3).

Figure 3:1:3: Labeling of arcs
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At each crossing, three arcs meet�an overcrossing arc, a, and two undercrossing arcs, b and c. We consider

only tame projections, those with a �nite number of crossings, and tame knots and links, those having a tame

projection. An oriented knot or link has a preferred direction of travel along each component. Orientation

leads to positive and negative crossing and linking as illustrated in Figure 3:1:4.

Positive Crossing Positive Linking Negative Crossing Negative Linking

Figure 3:1:4: Orientation of knots and links

Deformation of knots in S3 is formalized using the following de�nition of ambient isotopy, (see Figure 3:1:5).

De�nition 3.1.1 An ambient isotopy between two knots K1 and K2 is a continuous mapping

h : S1 � I ! S3such that

h(S1 � f0g) = K1 and h(S1 � f1g) = K2;

and for all x 2 I; the mapping h restricted to S1 � fxg is a knot.

Figure 3:1:5: Ambient isotopy

An ambient isotopy de�nes an equivalence relation between knots in S3; and a knot type is de�ned

as an equivalence class of the ambient isotopy relation. Analogously, we de�ne ambient isotopy of links.

The following three elementary knot moves shown in Figure 3:1:6 describe an ambient isotopy using knot

projection.

()

Type I

()

Type II

()

Type III

F igure 3:1:6: The three elementary knot moves
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For example, in Figure 3:1:5 moves I and III were applied to pass from the left-most �gure to the

right-most. The elementary moves on knot projections yield all ambient isotopies between tame projections

as shown in [Alexander and Briggs1976]. Therefore, to de�ne an invariant of a knot type it su¢ ces to show

the invariance under the three above moves.
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3.2 The Knot Group

In this section, we de�ne the knot group both topologically and combinatorially. Given a tame oriented

knot or link K � S3 we choose a basepoint P 2 S3 �K. A path is a continuous map � : I ! S3 �K such

that �(0) = �(1) = P , as shown in Figure 3:2:1.

Figure 3:2:1: Paths � with the basepoint P

A meridian is a path singly and positively linked with a single arc (see Figure 3:2:1, right) of the knot

projection. Meridians will play a special role. Deformation of paths is formalized as the equivalence

relation of path homotopy (Figure 3:2:2).

De�nition 3.2.1 A homotopy of paths �1 and �2 (path homotopy) is a continuous map h : I� I ! S3�K

such that

h(I � f0g) = �1 and h(I � f1g) = �2;

and for all x 2 I the map h restricted to I � fxg is a path.

Figure 3:2:2:Path homotopy

A homotopy between paths is an equivalence relation described in terms of the three elementary knot moves

and an additional move passing the path through itself. Multiplication of paths is de�ned by concatenation

of paths.

De�nition 3.2.2 The product of two paths �1 and �2 is the path � : I ! S3 �K de�ned as follows

�(x) =

8>><>>:
�1(2x); when 0 � x � 1

2

�2(2x� 1); when 1
2 � x � 1

:
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With this product, the set of equivalence classes of path homotopy relation in S3�K with the �xed basepoint

P forms a group�the fundamental group of a knot complement or the knot group �1(S3 � K). This group

depends only on the complement of K in S3 and not on the connection of K to its complement. By contrast,

the quandle and the involutory quandle, de�ned in Sections 3.3 and 3.4, will utilize this connection.

A presentation of �1(S3 �K) is obtained as follows (see Figure 3:2:3). In the projection of an oriented

knot (or link) K, label arcs by a; b; c; :::. These labels will serve as the generators of �1(S3 � K). A

relation in the presentation of the knot group is obtained for every crossing of the knot projection as follows.

Whenever an arc a crosses under b to become c, the relation b�1ab = c is read if the crossing is positive and

bab�1 = c if it is negative.

�1
�
S3 �K

�
= ha; b; c : b�1ab = c; c�1bc = a; a�1ca = bi

Figure 3:2:3: Wirtinger presentation of knot group

Such a presentation has the following topological interpretation. Each generator a represents a meridian

linking the arc a positively and passing under no other arc of the knot projection. The relations follow

from the path homotopy at the crossings. Using Van Kampen theorem, these relations are su¢ cient to

de�ne �1(S3 �K) up to the isomorphism. Consequently, invariance of the group thus presented is proved

combinatorially by examining the e¤ect of the three knot moves, as in Figure 3:2:4.

Figure 3:2:4: Invariance of the knot group under elementary moves
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Meridians will now be discussed in another connection. Knowledge of which paths are meridians is useful

in distinguishing knots. For instance, the two non-equivalent knots shown in Figure 3:2:5 have isomorphic

knot groups, but the isomorphism fails to map meridians. Similarly, consider the links in Figure 3:2:5.

The complements are homeomorphic as demonstrated by cutting along the shaded disk, twisting 2�, and

re-pasting. Therefore, the knot groups are isomorphic. However, the isomorphism does not preserve

meridians.

Square Knot Granny Knot

Whitehead Links

Figure 3:2:5: Distinct knots and links with isomorphic knot groups

The quandle is introduced in order to incorporate the special role of meridians into an algebraic structure.
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3.3 De�nition of the Quandle of a Knot

For a knot or a link K, a meridian m 2 �1
�
S3 �K

�
can be spanned by a disk to become a disk with

a path, an element of an algebraic object called the knot quandle Q (K). Formally, a disk with path is a

continuous map to S3 from the following topological object.

De�nition 3.3.1 A disk with an interval is a topological object illustrated in Figure 3:3:1 below.

Figure 3:3:1: Disk with an interval

Note the preferred direction of travel P1 P2 P3 P1 around the circumference of the disk.

De�nition 3.3.2 A disk with a path is a continuous map � : D !
�
S3; K; P

�
from a disk with interval D

to an oriented knot or link K in S3 with the basepoint P 2 S3 �K, which satis�es the following conditions.

1. � maps P0 to P and K0 into K.

2. No point in D, other than K0, is mapped to K.

3. The path � obtained by tracing the image of the circumference P0 P1 P2 P3 P1 P0 of D is singly and

positively linked with K. The path � is called the meridian of �.

A disk with a path and its meridian are illustrated in Figure 3:3:2. Deformation of a disk with a path is

formalized as the equivalence relation of homotopy.

Figure 3:3:2: Disk with path � and its meridian �
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De�nition 3.3.3 A homotopy of disks with paths �1 and �2 is a continuous map h : D � I !
�
S3; K; P

�
such that

h(D � f0g) = �1 and h(D � f1g) = �2;

and the restriction of h to D � fxg is a disk with a path for all x 2 I.

Homotopy of disks with path is exempli�ed by homotopy of paths with the addition of the two move types

of Figure 3:3:3. The homotopy classes of disks with paths are the elements of the quandle Q (K) associated

to K. Note two non-homotopic disks with paths may have homotopic meridians (see Figure 3:3:4). In

Section 4.6, these two non-homotopic disks with paths are shown in a diagram of the involutory quandle

associated to this link.

() ()

Rotation

()

Translation

Figure 3:3:3: Homotopy of disks with path. These moves are in

addition to the elementary moves of Figures 3:1:6 and 3:2:2.

P

Figure 3:3:4: Non-homotopic disks with path, which nevertheless have homotopic meridians

The product a B b of two disks with paths is now de�ned as illustrated in Figure 3:3:5. The path component

of a is extended by appending it by the meridian of b to yield the disk with path a B b. The inverse product

a B�1 b is obtained by instead appending a by the inverse of the meridian of b.
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De�nition 3.3.4 A quandle Q (K) of a knot (or link) K � S3 with the basepoint P 2 S3�K is an algebraic

structure whose elements are the homotopy equivalence classes of disks with path � : D !
�
S3; K; P

�
and

whose product operations are B; B�1as de�ned above.

The quandle satis�es the following equalities which can be veri�ed by use of homotopy. For all x; y;

z 2 Q (K) we have:

1. x B x = x

2. (x B y) B�1 y = x =
�
x B�1 y

�
B y

3. (x B y) B z = (x B z) B (y B z)

The above identities are used to de�ne the algebraic notion of a quandle in Section 4.1.

Figure 3:3:5: Product of disks with paths

We now discuss the presentation for quandle Q (K). Brie�y, a presentation consists of the set of

generators a; b; c; ::: for the quandle and the set of relations (equalities) involving those generators. Therefore,

an algebraic structure of a quandle given in terms of generators and relations is the set of all formal products of

generators, modulo the equivalence relation generated by the axioms and the relations

(see Sections 4.1 and 4.2).

A presentation of Q (K) is obtained as follows (Figure 3:3:6). In a tame projection of K, label the arcs

a; b; c; ::: . These labels are generators of the quandle. At each crossing, a relation is obtained; whenever

an arc a crosses under b to become c, the relation

a B b = c

is read if the crossing is positive and

a B�1 b = c
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if the crossing is negative. Presentations for the trefoil and the �gure-eight knot are given in Figure 3:3:6.

The procedure for �nding the multiplication table of Q(K) using the presentation of Q(K) is discussed in

Section 4.

a B b = c Q (K) = ha; b; c : a B b = c; b B c = a; c B a = b

Q (K) = ha; b; c; d : a B�1 b = c; c B d = b; b B�1 a = d; d B c = a

Figure 3:3:6: Presentations of knot quandles

That the algebraic structure Q(K) is a knot invariant is intuitively clear and is proven in Figure 3:3:7 by

showing Q(K) is preserved by the 3 elementary knot moves. In the Figure 3:3:7, only certain cases of

the possible orientations were considered. In each of these cases the invariance under the knot moves is a

consequence of the axiom given in the de�nition of a quandle. However, most of the remaining cases are

consequences of more involved identities derived in Section 4.1 and in Lemma 4.4.7 from the axioms given

in De�nition 2.0.1.

Figure 3:3:7: Invariance of the knot quandle under the elementary knot moves

Figure 3:3:8: Relation a B b = c at a crossing veri�ed by homotopy

A presentation of Q (K) as in Figure 3:3:6 has the following topological interpretation. Each generator (arc

label) a represents a homotopy class of a disk with a path linked singly and positively around the arc a. The
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path of the disk crosses over, but not under, the arcs of the knot projection. The relations read for each

crossing are a consequence of the homotopy of a disk with a path relation (see Figure. 3:3:8). The algebraic

structure Q(K) de�ned in terms of generators and relations is, in fact, the same algebraic structure de�ned

in terms of disks with paths and the homotopy relation [Joyce1982a]. The theorem for quandles used as

proof for this statement is analogous to the Van Kampen theorem for the fundamental group.
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3.4 De�nition of the Involutory Quandle of a Knot

We now turn our focus to the involutory quandle, a homomorphic image of the quandle associated to a

knot. The involutory quandle IQ (K) of a knot or link K is obtained from the quandle Q (K) by identifying

the operations B with B�1. In other words, by adding relations x B y = x B�1 y for all x; y 2 Q(K) to

the presentation of Q(K). Equivalently, the presentation of IQ (K) is de�ned using the following identities

for all x; y:

1. x B x = x

2. (x B y) B y = x

3. (x B y) B z = (x B z) B (y B z)

and the generators and relations are obtained as in Figure 3:4:1. In a tame projection of K, label the arcs

using a; b; c; :::. These labels serve as the generators of IQ (K). Each crossing yields a relation obtained as

follows. Whenever an undercrossing arc labeled by a crosses under the overcrossing arc b to become c, we

have the relation a B b = c. Presentations for the trefoil and the �gure eight knot are shown in Figure 3:4:1.

a B b = c IQ (K) = Iha; b; c : c; b B c = a; c B a = b

IQ (K) = Iha; b; c; d : a B b = c; c B d = b; b B a = d; d B c = a

Figure 3:4:1: Presentation of an involutory quandles of knots

Note the orientation of K can be omitted as it is redundant for de�ning a presentation of an involutory

quandle. The omission of the orientation implies the relation for each crossing can be either a B b = c or

c B b = a. In fact, these two relations can be shown to be equivalent assuming axioms of the involutory

quandle (see Lemma 4.1.6).

As presented, an involutory quandle is a knot invariant. This statement is proven by verifying IQ(K)

is preserved by examining three elementary knot moves (see Section 3.3) or recognizing Q (K) is a knot

invariant and IQ (K) is de�ned as a quotient of Q(K).
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IQ (K) is indirectly connected with the knot K through the topological interpretation of Q (K). A more

direct topological interpretation of IQ (K) is established in Section 5.2.
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4 Diagramming of Quandles

In this section, we produce a diagram (see De�nitions 4.3.1, 4.3.9) for an arbitrary quandle Q(K), which

encodes properties of the algebraic structure in an often concise way. In order to produce a diagram of

Q(K), preliminary information is necessary. This information includes basic de�nitions and lemmas given

in Section 4.1; a discussion of a presentation for quandle described in Section 4.2; a de�nition and simple

examples of diagrams discussed in Section 4.3; and the canonical left association introduced in Section 4.4.

Thus, in Sections 4.5-4.7, we develop a method of constructing a diagram of a quandle from its presentation

and focus on the de�nition of an involutory quandle (De�nition 4.1.2). Diagrams of involutory quandles

associated to various knots and links will be constructed in Section 4.8. Correctness of the method for

constructing diagrams of involutory quandles will be discussed in Sections 4.9-4.10. Finally, in Section 4.11,

the method for constructing diagrams will be extended to arbitrary (not necessarily involutory) quandles

and then used to distinguish 4-quandles of the square and granny knots in Section 4.12.
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4.1 Algebraic De�nition of Quandles

In this section, we give basic de�nitions, results, and examples concerning quandles. The discussion is based

entirely on [Joyce1982b].

De�nition 4.1.1 A quandle is a set of elements with two binary operations B; B�1satisfying the following

axioms.

Axiom 1 (idempotency) x B x = x

Axiom 2 (right cancellation) (x B y) B�1 y = x =
�
x B�1 y

�
B y

Axiom 3 (distributivity) (x B y) B z = (x B z) B (y B z)

Idempotency for the operation B�1, x B�1 x = x, is obtained from axioms 1 and 2.

De�nition 4.1.2 An involutory quandle Q is a quandle in which x B y = x B�1 y for all elements x; y.

Equivalently, an involutory quandle is a set of elements with one binary operation B satisfying the following

axioms.

Axiom 1 (idempotency) x B x = x

Axiom 2 (right cancellation) (x B y) B y = x

Axiom 3 (distributivity) (x B y) B z = (x B z) B (y B z)

From this point on, the omission of parentheses in the product denotes left association, e.g. x B y B z

denotes x B y B z = (x B y) B z. Note quandles are non-associative in general as shown in the following

examples. The multiplication tables given in Figures 4:1:1 and 4:1:2 clearly satisfy the axioms of an

involutory quandle.
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Example 4.1.3 The involutory quandle in Figure 4:1:1 is generated by the elements a; b; c; and satis�es the

following relations:

a B b = c;

b B c = a;

c B a = b:

Lemma 4.2.7 supports this is in fact an involutory quandle for the trefoil knot,

IQ = ha; b; c : a B b = c; b B c = a; c B a = bi.

B a b c

a a c b

b c b a

c b a c

F igure 4:1:1: Involutory quandle for the trefoil knot

Note this quandle is non-associative. For instance,

(a B b) B c = c B c = c

but

a B (b B c) = a B a = a:

Example 4.1.4 The involutory quandle of Figure 4:1:2 is generated by a; b; c; d and satis�es the following

relations.

a B b = c;

c B d = b;

b B a = d;

d B c = a:
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Lemma 4.2.7 demonstrates the quandle in Figure 4:1:2 is an involutory quandle for the �gure-eight knot and

has the following presentation.

IQ = ha; b; c; d j a B b = c; c B d = b; b B a = d; d B c = ai:

B a b c d e

a a c d e b

b d b e c a

c e a c b d

d b e a d c

e c d b a e

F igure 4:1:2: Involutory quandle of the �gure-eight knot

As in Example 4.1.3,

(a B b) B c 6= a B (b B c)

and

a B b 6= b B a;

Thus, the quandle in Figure 4:1:2 is non-associative and non-commutative.

The following class of quandles will be discussed in Section 5.

De�nition 4.1.5 An n-quandle Q is a quandle satisfying x Bn y = x for all x; y; where the relation

x Bn y = x is de�ned inductively as follows:

x B1 y = x B y

and

x Bm+1 y = (x Bm y) B y:

In particular, a quandle Q is an involutory quandle if and only if Q is a 2-quandle.
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The following lemma aids in an algorithm for �nding the multiplication table for a quandle.

Lemma 4.1.6 For any involutory quandle,

x B y = z () z B y = x:

For any quandle,

x B y = z () z B�1 y = x:

Proof. For an involutory quandle, if x B y = z , then we obtain z B y = (x B y) B y = x from axiom 2.

Analogous argument applies in the other direction. Similar arguments prove an arbitrary quandle.

Further discussion of properties of quandles, including the existence of the canonical form for the left

association and the fundamental asymmetry between right and left multiplication, is discussed in Section 4.4.

Connections between quandles and groups are discussed in Section 5. This section ends with the following

standard de�nitions for homomorphism, isomorphism, and automorphism of quandles.

De�nition 4.1.7 A homomorphism of quandles Q; Q0 is a map

h : Q! Q0 such that h (x B y) = h (x) B h (y) for all x; y 2 Q.

De�nition 4.1.8 An isomorphism of quandles is a homomorphism that is one-to-one and onto.

De�nition 4.1.9 An automorphism of a quandle Q is an isomorphism from Q to itself.

Remark 4.1.10 For a homomorphism h of quandles,

h
�
x B�1 y

�
= h (x) B�1 h (y)

and

h
�
x B�1 y

�
= h

�
x B�1 y

�
B h (y) B�1 h (y) (by axiom 2)

= h
�
x B�1 y B y

�
B�1 h (y) (De�nition 4.1.7)

= h (x) B�1 h (y) (by axiom 2).
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De�nition 4.1.11 An inner automorphism of a quandle Q is an automorphism given by 'q(x) = x B q for

some q 2 Q, a product of such mappings and their inverses.

Using axiom 3 of a quandle, 'q is indeed an automorphism,

'q (x B y) = (x B y) B q = (x B q) B (y B q) = 'q (x) B 'q (y) :

The set of inner automorphisms
�
'q
	
q2Q generates a group of inner automorphism denoted by Inn (Q).

The group Inn (Q) is a subgroup of the group Aut (Q) of all automorphism of quandle Q. Both cases,

Inn (Q) = Aut (Q) and Inn (Q) $ Aut (Q), can occur. For example, equality holds when Q is the involutory

quandle of the trefoil knot, and the strict inclusion holds when Q is the involutory quandle of the �gure-eight

knot.

De�nition 4.1.12 The algebraic components of a quandle Q are the orbits under the inner automorphism

group Inn Q..

That is, q; r 2 Q are in the same component of Q i¤ there are qi 2 Q and ei = �1; i = 1; 2; :::; n such

that

q Be1 q
1
Be2 ::: Ben�1 q

n�1 Ben qn = r

A quandle associated with a knot has exactly one algebraic component, and a quandle associated to a link

has as many algebraic components as the link (Lemma 4:6:8).
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4.2 Presentation of Groups and Quandles

Presentations are a convenient way of describing algebraic structures and, as mentioned in Section 3, arise

repeatedly in an algebraic approach to knot theory.

Example 4.2.1 The presentation of the group of the trefoil knot

ha; b; c : b�1ab = c; c�1bc = a; a�1ca = bi:

The symbols a; b; c before the colon are the generators. The equalities following the colon are the relations.

Example 4.2.2 The presentation of a quandle of a trefoil knot

Q = ha; b; c : a B b = c; b B c = a; c B a = bi:

In this section, we discuss a presentation of an algebraic structure from the perspective of the universal

algebra [Graetzer and Taylor]. To construct an algebra de�ned by a presentation, begin with a set called

the universe of words on the generators. The universe of words on a set of generators is the set of all formal

expressions (words) which are obtained by concatenation of the generators using the operations appropriate

to the algebra studied (product and inverse for groups; B; B�1for quandles; B for involutory quandles).

Thus, in a group with generators a; b; c such words include a; b; c; ab; ca; a�1; a
�
b�1

�
; (ab)

�1
; (ab) c;

(ab) (ba) ; etc. In a quandle with generators a; b; c; the set of words include a B b; c B a; a B�1 b;

(a B b) B�1 a;
�
a B�1 b

�
B�1

�
b B�1 c

�
, etc. We record the following for the later reference.

De�nition 4.2.3 The universe of words U (S; B) on the generating set S and the operation B consists of

the elements of S and the word v B w for all pairs of words v; w 2 U (S; B).

De�nition 4.2.4 The universe of words U
�
S; B; B�1

�
on the generating set S and the operations B

; B�1consist of the elements of S and the words v B w and v B�1 w for each pair of words v; w 2

U
�
S; B; B�1

�
.

These universes are used to present involutory quandles and arbitrary quandles respectively.

Algebraic operations on words in the given universe is de�ned in a purely formal way. For instance, the

product of (ab)�1 and c�1 is (ab)�1 c�1; the inverse of a�1 is (a�1)�1; the B product of a B b and a B�1 b is
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(a B b) B
�
a B�1 b

�
. Evidently, formal operations do not satisfy the axioms for the desired algebra nor the

relations given in its presentation. Therefore, equivalence classes of words are used. The set of all words

of the universe is partitioned into equivalence classes. Each equivalence class is one element of the algebra

according to the equivalence relation = de�ned as follows.

1. For any words u; v in the universe, u = v if and only if the identity u = v is either an instance of one

of the axioms for the algebra or it is one of the relations given in the presentation.

2. For any words u; v; w in the universe:

� u = u (re�exivity);

� if u = v then v = u (symmetry);

� if u = v and v = w then u = w (transitivity).

3. Well-de�nedess for the unary operations. If the algebra in question is a group and u = v, then

u�1 = v�1.

4. Presentation of an involutory quandle for binary operations. If u = v, then for any word w of the

universe,

uw = vw and wu = wv

in the case of a group, and

u B w = v B w;

w B u = w B v;

u B�1 w = v B�1 w; and

w B�1 u = w B�1 v

in the case of a quandle. (The last two equalities are omitted in the case of an involutory quandle.)

The condition 1 ensures the axioms and relations hold for the multiplication of equivalence classes.

Condition 2 assures = is in fact an equivalence relation. Conditions 3 and 4 assure the operations on the
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equivalence classes are well-de�ned. This means the product xy appears in the same equivalence class no

matter which x; y are chosen within their respective equivalence classes.

Remark 4.2.5 The above de�nition of a presentation of an algebraic structure is not generally practical for

the actual computation. Among the many di¢ culties, the following are most signi�cant. First, the universe

of words is always in�nite, even when the resulting presentation is �nite. Similarly, all the equivalence classes

are in�nite sets, as they are the sets of equalities de�ning the equivalence classes. Second, one needs to have

some means for naming the individual equivalence classes while computing. Common practices include

assigning numbers to classes or referring to some element selected from the equivalence class. Except for

the simplest objects, either of these practices leads to the irregular notation. Third, such methods may be

criticized on the grounds they make no use of the special properties of quandles, such as their canonical forms

(Section 4.4).

Diagramming, a more practical computational method, is presented in Sections 4.5- 4.7. Various

properties of quandles are incorporated intrinsically in such diagrams and in the method for producing

them. Correctness of the practical method is proven in Sections 4.9 - 4.10 by demonstrating its equivalence

to the abstract de�nition given in this section.

Canonicalization, or the reduction of all words to some standard canonical form, aids e¢ cient

computation. For instance, in groups we have

(xy)
�1
= y�1x�1 and x (yz) = (xy) z:

Therefore, any word can be written in the canonical form of a left-associated product of the generators and

their inverses. In Section 4.4, we discuss displaying quandles and involutory quandles in canonical form.

The common notion of free object is de�ned as follows.

De�nition 4.2.6 A free object (a group, a quandle, or an involutory quandle) is a presentation of an

algebraic structure with no relations.

Thus, any algebraic structure given via a presentation may be viewed as a free structure on the given set

of generators, modulo the equivalence relation generated by the set of relations present in the presentation.
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The following lemma can be useful in obtaining the multiplication table corresponding to a given presen-

tation.

Lemma 4.2.7 Let Q be a quandle (respectively, involutory quandle) de�ned by a presentation consisting of

the generating set S and the set of relations R. Let Q0 be a quandle (respectively, involutory quandle) which

satis�es the following properties:

1. Every element of S is an element of Q0.

2. The elements of Q0 form a subset of U
�
S; B; B�1

�
(respectively, U (S; B)).

3. The relations R are satis�ed in Q0.

4. Whenever p B q = r for p; q; r 2 Q0, the equality p B q = r can be derived from the relations R and

the axioms of quandles (respectively, involutory quandles) by rules 1 - 4 given above. Then Q �= Q0.

Proof. Q0 is generated by S and satis�es the relations R. Thus, Q
0
= h (Q) for some homomorphism of

quandles h. The homomorphism h is necessarily one-to-one by condition (4) of the lemma, and is onto by

condition (2) .

Remark 4.2.8 Lemma 4.2.7 can be generalized in an obvious way for the case of groups and, indeed, to

any type of an universal algebra. Condition (4) must be asserted for each operation of the algebra. Note

Lemma 4.1.6 automatically asserts condition (4) is for the operation B�1 in quandles.

Remark 4.2.9 There are particular presentations in which relations R force equality of two elements of S.

In such cases, Lemma 4.2.7 holds in the following modi�ed form. Condition (1) is restated, "Every element

of S is either an element of Q0 or is identi�ed with an element of Q0." Therefore, the following sentence is

added to condition (4). "The equalities mentioned in (1) are derived similarly."

Applying Lemma 4.2.7, the reader may verify the multiplication tables given in Section 4.1 do correspond

to the presentations stated there. As a proof, we notice the element e in the second example can be expressed

as a word in the generators, e = a B d. We shall develop more e¢ cient computational techniques in the

following sections.
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We use the following notation for presentations. The notation hS : Ri denotes a presentation for a group.

QhS : Ri denotes a presentation for a quandle. IQhS : Ri denotes a presentation for an involutory quandle

in which the axiom x B y B y = x is assumed to hold. QnhS : Ri denotes a presentation for an n-quandle,

in which the identity x Bn y = x holds. Note IQhS : Ri = Q2hS : Ri. The two descriptions have the same

meaning.

In order to examine homomorphisms of algebraic structures given by presentations (in Sections 4.12, 5.1

and 5.2), we conclude this section with the following De�nition and Remark.

De�nition 4.2.10 Let S be the set of generators of quandle Q. Let q = r be a quandle-theoretic (respectively,

group-theoretic) relation on S, and let h : S ! Q0 be a map from S to a quandle Q
0
(respectively, group).

Then the image of the relation q = r via h is the relation h (q) = h (r) obtained by replacing each occurrence

of each generator g 2 S in q = r by its image h (g).

For example, if

h (a) = a0 and h (c) = b0 B c0;

then the image of the relation a B c B a = c via h is the relation

a0 B (b0 B c0) B a0 = (b0 B c0) :

Remark 4.2.11 Let Q = QhS : Ri (respectively, QnhS : Ri, hS : Ri) be a presentation of quandle Q

(respectively, presentation of an n-quandle, presentation of a group). Let h : S ! Q0 be any map from the

generating set S to a quandle (respectively, n-quandle, group) Q0. Then h extends to a homomorphism

h : Q! Q0 of quandles if the image of each relation in R via h is a relation in Q0.

Remark 4.2.11 holds not only for quandles, n-quandles, and groups, but for every algebraic variety in the

universal algebra as well [Graetzer and Taylor]. It can be shown for every relation derivable in Q that the

corresponding image via h is a relation derivable in Q0.
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4.3 Diagrams of Quandles

In this section, we begin our discussion of diagrams for quandles. A diagram of a quandle Q provides a

systematic way for counting elements of a quandle as well as a compact representation of the multiplication

table. Intuitive clues are present in the regular geometric forms of many diagrams. Our goal is a method

for constructing the diagram directly from the presentation of a quandle or involutory quandle. The

method of constructing diagrams for involutory quandles is described in detail in Sections 4.5 - 4.7. In

Section 4.8, we apply the method to a number of knots and classes of knots, and we give mathematically

sound proof of its correctness in Sections 4.9 - 4.10. Before the full method can be described, we need a

number of preliminary notions and results. Therefore, we simply construct a diagram of a quandle using

its corresponding multiplication table in this section. We then use knowledge concerning the generating

subset S � Q to reduce the number of arcs in the diagram of a quandle. In Section 4.5, the reduced form

of the diagram does, in fact, represent the entire multiplication table. The reader may also wish to refer to

Remark 4.2.5, Remark 4.3.12, and Exercise 4.5.12 concerning alternatives to diagramming a quandle. We

begin with the formal de�nition of a diagram.

De�nition 4.3.1 The diagram D of an involutory quandle Q with the generating set S � Q is the undirected

graph whose vertices are labeled by the elements of Q using one-to-one correspondence and has an edge labeled

by s 2 S connecting vertices p; q 2 Q whenever p B s = q.

Remark 4.3.2 We use undirected graphs instead of directed graphs in De�nition 4.3.1 because for an

involutary quandle p B s = q i¤ q B s = p by Lemma 4.1.6. However, in the more general case of an

arbitrary quandle (see De�nition 4.3.9); a directed graph must be used.

Remark 4.3.3 We use the following conventions to construct a diagram for a quandle. We draw the

arc labeled a using a solid arc; the arc labeled b by a dashed arc; and the arc labeled c by a dotted arc

(see Figure 4:3:1 bottom center). This visual convention emphasizes the labeling and yields an uncluttered

diagram for the quandle.

Example 4.3.4 Let Q = IQha; b; c : a B b = c; b B c = a; c B a = bi be a presentation of the

involutory quandle for the trefoil knot. Consider �rst the diagram obtained by taking S = fa; b; cg = Q
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(Figure 4:3:1, bottom left). This diagram explicitly encodes the entire multiplication table for Q. For

example, the solid arc from c to b indicates c B a = b, and the dashed arc from b back to b indicates

b B b = b. This presentation of the multiplication table for Q is convenient since Q has only three elements.

However, for quandles with more elements, the diagram is more readable if the number of arcs in the diagram

can be reduced. We achieve this by reducing the size of the generating set S; so only arcs labeled with elements

of S will remain in the diagram. In the present example, the set S can also be reduced to a set with only 2

elements fa; bg. Using the set fa; bg, we obtain the diagram at the bottom right of Figure 4:3:1.

Relations:

a B b = c

b B c = a

c B a = b

B a b c

a a c b

b c b a

c b a c

Figure 4:3:1: Diagram of the involutory quandle for the trefoil knot

In such a reduced diagram, the multiplication by c is no longer explicitly indicated. However, the entire

multiplication table remains encoded into the reduced diagram of Q and is retrieved in Section 4.4 - 4.5. In

order to write a desired product as a canonical left-associated product of generators during this retrieving

process, the following identity is applied:

x B (y B z) = ((x B z) B y) B z:

This identity follows from axioms 2 and 3 (see Lemma 4.4.1). Recall quandles are non-associative in general

(see Example 4.1.3). We now illustrate computation possible by using diagrams. In order to multiply a B c

using a reduced diagram of Q, we �rst use the diagram to read an expression for c in terms of the generators

a; b 2 S. The expression is c = a B b. In order to �nd the product a B c; we �rst substitute c = a B b.

Thus, we have

a B c = a B (a B b) :
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We apply the above identity to represent the result of the multiplication as a left-associated product:

a B (a B b) = ((a B b) B a) B b:

Therefore, we have

a B c = ((a B b) B a) B b.

To �nd the vertex of ((a B b) B a) B b which corresponds to the diagram of Q, trace from the vertex a along

the dashed arc B b, the solid arc B a, and around the dashed arc B b to the vertex b. Thus, we have

a B c = ((a B b) B a) B b = b:

The value of b B c can be found similarly, and of course c B c = c.

Example 4.3.5 Let Q = Iha; b; c; d : a B b = c; c B d = b; b B a = d; d B c = ai, the involutory quandle

of the �gure-eight knot. Let S = fa; bg. We diagram Q in Figure 4:3:2. The reader may wish to construct

the corresponding diagram in which S = Q and observe the e¤ect on readability of the diagram.

Relations:

a B b = c

b B a = d

c B d = b

d B c = a

B a b c d e

a a c d e b

b d b e c a

c e a c b d

d b e a d c

e c d b a e

Figure 4:3:2. Diagram of the involutory quandle of the �gure-eight knot
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Remark 4.3.6 The diagram of an involutory quandle Q generated by S � Q has the following properties.

1. For every q 2 Q and s 2 S; exactly one arc labeled by s meets the vertex labeled by q. (This arc may

meet the vertex q at one or both ends.)

2. For every s 2 S; there is a vertex labeled by s met by the arc labeled s at the both ends.

In regard to these properties, Figure 4:3:3 illustrates examples of labeled graphs failing to be diagrams

of involutory quandles.

Figure 4:3:3: Non-diagrams

As before, we draw the arc labeled by a using a solid arc and the arc labeled by b using a dashed arc.

Example (1) is not a diagram of an involutory quandle because no solid arc meets the right hand vertex

labeled by d. In algebraic terms, no value is assigned to the product d B a. Example (2) is not a diagram

of an involutory quandle because two di¤erent solid arcs meet the center vertex d. Algebraically, this means

two distinct values are assigned to the product d B a : b = d B a = e: However, b 6= e. Similarly, in

example (3), two di¤erent solid arcs meet the vertex a. Example (4) is not a diagram of an involutory

quandle because no arc labeled by b meets the vertex b at both ends. Similarly, examples (5) and (6) cannot

be diagrams of involutory quandles no matter how we label their vertices. In both examples, the presence

of a dashed arc indicates the presence of the generator b, but no vertex can be labeled b because none of the

vertices is met at the both ends by a dashed arc.
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Remark 4.3.7 Some diagrams of involutory quandles may not be connected graphs, as shown in Figure 4:3:4.

Neither of the connected components taken by itself is a diagram of an involutory quandle. Non-connected

diagrams are discussed in more details in Section 4.6.

Figure. 4:3:4: A two-component diagram

Remark 4.3.8 The conditions of Remark 4.3.6 do not su¢ ce to ensure a labeled graph is the diagram of

some involutory quandle. Consider the two-component counterexample of Figure 4:3:5.

Figure 4:3:5: A cryptic non-diagram

From the diagram, b B a = b. Hence, using algebraic reasoning,

a B b = a B (b B a) (equality substitution)

= (a B a) B (b B a) (using axiom 1)

= (a B b) B a (using axiom 3).

in contradiction to the diagram which indicates a B b 6= (a B b) B a.

We generalize the notion of a diagram of an arbitrary quandle as follows.

De�nition 4.3.9 The diagram D of a non-involutory quandle Q generated by the set S � Q is a directed

graph whose vertices are labeled by the elements of Q using one-to-one correspondence between vertices and

elements of S and has an arc directed from p to q labeled by s whenever p B s = q, where p; q 2 Q; s 2 S.

Example 4.3.10 The quandle for the trefoil knot,

Q = ha; b; c : a B b = c; b B c = a; c B a = bi;
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has in�nite cardinality and is inconvenient to diagram. In such a circumstances, it may be useful to

consider certain homomorphic images of Q. For example, if we add relations x B3 y = x for all x; y 2 Q

(De�nition 4.1.5) to the presentation of Q, we obtain a 3-quandle which is also a knot invariant. In the

case of the trefoil knot, such a homomorphic image is �nite and has the multiplication table and the diagram

shown in Figure 4:3:6. (The table for B�1can be obtained from the diagram or by applying Lemma 4.1.6).

B a b c d

a a c d b

b d b a c

c b d c a

d c a b d

F igure 4:3:6: 3-quandle for the trefoil knot

Remark 4.3.11 The diagram of an involutory quandle Q generated by S (De�nition 4.3.1) can be converted

to the directed diagram (De�nition 4.3.9) as follows. Whenever an undirected arc connects two distinct

vertices, we replace it by two directed arcs. Whenever an undirected arc connects two distinct vertices,

replace the undirected arc by two directed arcs . Whenever an undirected arc connects a vertex

to itself, replace the undirected arc with one directed arc .

Remark 4.3.12 In [Joyce1982a], a di¤erent type of a diagram is considered for various involutory quandles.

Such a diagram is similar to those constructed in this section in that the diagram represents the multiplication

tables, uses vertices to represent the elements, and uses arcs to represent multiplication. Such a diagram

di¤ers from the diagram in this section in the following ways.

1. An arc of such a diagram may contain three or more vertices rather than just two.

2. The arcs of such a diagram are not labeled.

3. Such a diagram explicitly describes all entries of the multiplication table rather than just multiplication

by generators.
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4. Such diagrams could be di¢ cult to draw for the large and in�nite involutory quandles presented in

Section 4.8.

5. On the other hand, such diagrams for small quandles have symmetries which may not be visible in the

diagrams constructed in this section.

6. Such diagrams may not be easily applied to arbitrary non-involutory quandles.

7. Apparently, there is no simple procedure to construct such a diagram directly from a given presentation

of a quandle. However, Sections 4.5 - 4.7 present relatively easy methods to construct the diagrams

de�ned in this section.

Our next objective is to use the diagrams of involutory quandles constructed in this section to calculate

products of any two elements�to �nd an algorithm for calculating the corresponding multiplication table of

quandle Q. In order to do so, we will use the method of canonical left association as discussed in Section 4.4.
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4.4 Canonical Forms for Products

In this section, we develop a method of representing products of elements in a quandle Q in the canonical

left-associated form. For any free quandle or an involutory quandle Q; we obtain a one-to-one correspondence

between the set of elements of Q and a subset of all canonical left-associated products. Representation of

elements of a quandle Q in the canonical left-associated form yields an algorithm for computing products of

elements of Q. Section 4.5 uses the canonical left-associated forms of elements of Q for the study of diagrams.

Recall the convention that any product written without parentheses is assumed to be left-associated. For

example, a B b B c B d means ((a B b) B c) B d.

Lemma 4.4.1 In any involutory quandle Q; the following left association identity holds:

x B (y B z) = ((x B z) B y) B z

Proof. Using axiom 2,

x B (y B z) = ((x B z) B z) B (y B z) ;

and using axiom 3,

((x B z) B z) B (y B z) = ((x B z) B y) B z:

Thus, we have

x B (y B z) = ((x B z) B y) B z:

Note an alternative set of axioms for involutory quandles is obtained by replacing axiom 3 by the left

association identity just proved. Proof that axiom 3 (self-distributivity) is obtained from this alternate set

of axioms is left to the reader.

Additionally, note Lemma 4.4.1 can be generalized to the product of any two elements of quandle Q

expressed in the left-associated forms as follows.

Lemma 4.4.2 For every involutory quandle Q the following identity holds:

(a0 B a1 B ::: B am) B (b0 B b1 B ::: B bn) = a0 B a1 B ::: B am B bn B ::: B b1 B b0 B b1 B ::: B bn:
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Proof. The above identity is obtained by repeated application of Lemma 4.4.1. For instance:

a B (b0 B b1 B b2) = a B b2 B b1 B b0 B b1 B b2:

Any product of elements of an involutory quandle can be expressed in the left-associated form by repeated

use of Lemma 4.4.2.

Example 4.4.3 What are the bene�ts of representing elements of an involutary quandle Q in the

left-associated form? Consider the following exercise. Show the following identity holds in any involu-

tory quandle:

(x B y) B (y B x) = (x B (x B y)) B x:

This identity follows directly from the axioms. First, establish the following identity

((x B y) B x) B y = x B (x B y):

Proof. We have

((x B y) B x) B y = ((x B y) B y) B (x B y) (by axiom 3)

= x B (x B y) (by axiom 2)

Now we derive the desired equality.

(x B y) B (y B x) = (((x B y) B x) B x) B (y B x) (by axiom 2)

= (((x B y) B x) B y) B x (by axiom 3)

= (x B (x B y)) B x (by the identity just established):

Alternatively, show

(x B y) B (y B x) = (x B (x B y)) B x

using the left association identity. More precisely, the representation of the both sides of the identity as

left-associated products yields the canonical form, x B y B x B y B x.
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Theorem 4.4.4 A free involutory quandle Q generated by the set S is an algebraic structure of which the

elements are left-associated products of the form

a0 B a1 B ::: B an; n � 0;

where ai 2 S, ai 6= ai+1 for 0 � i � n� 1. Distinct left-associated products correspond to distinct elements

of Q. The multiplication in Q is given as in Lemma 4.4.2 with the use of right cancellation and idempotency

to remove adjacent occurrences of the same generator.

Note the idempotency property (axiom 1) of quandles allows for removal of only one occurrence of

a generator, while the right cancellation property (axiom 2) allows for removal of two occurrences of a

generator. In [Joyce1982b], the author describes free involutory quandles in terms of groups.

Proof. Let Q0 denote an algebraic structure described in the statement of the theorem. Q0 is an involutory

quandle; Q0 satis�es axiom 2. Let a = a0 B a1 B ::: B am and b = b0 B b1 B ::: B bn then we have

(a B b) B b = a0 B a1 B ::: B am B bn B ::: B b1 B b0 B b1 B ::: B bn B bn B ::: B b1 B b0 B b1 B ::: B bn

(by Lemma 4.4.2)

= a0 B a1 B ::: B am

(by repeated right cancellation)

= a:

Analogous computations verify axioms 1 and 3. Q0 evidently satis�es conditions (1) - (4)of Lemma 4.2.7.

Hence, Q = Q0.

Corollary 4.4.5 The result of representing a product in the canonical left-associated form using the left

association and axioms 1 and 2 is independent of the order in which sub-expressions are represented in the

canonical form.

Proof. Suppose di¤erent orders of representing sub-expressions of a given product in the canonical

left-associated form yield di¤erent �nal canonical forms. Distinct left-associated products representing

di¤erent elements of a free involutary quandle by Theorem 4.4.4 contradicts the fact both canonical forms

represent the same product (an element of a free quandle).
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Remark 4.4.6 The expression resulting from representing an element of a free quandle in the canonical

left-associated form is unique even when axiom 1 is not included in the set of rules for representing quandles

in canonical form.

Now we generalize the above results to the case of an arbitrary quandle (not necessarily an involutary

quandle).

Lemma 4.4.7 Let Q be a quandle. Then, for all x; y; z 2 Q, the following identities are equivalent.

1. (x B y) B z = (x B z) B (y B z) (axiom 3 for quandles)

2. x B (y B z) =
��
x B�1 z

�
B y

�
B z

3. (x B y) B�1 z =
�
x B�1 z

�
B
�
y B�1 z

�
4. x B

�
y B�1 z

�
= ((x B z) B y) B�1 z

5.
�
x B�1 y

�
B�1 z =

�
x B�1 z

�
B�1

�
y B�1 z

�
6. x B�1

�
y B�1 z

�
=
�
(x B z) B�1 y

�
B�1 z

7.
�
x B�1 y

�
B z = (x B z) B�1 (y B z)

8. x B�1 (y B z) =
��
x B�1 z

�
B�1 y

�
B z

We note alternate axiom sets for quandles can be obtained by replacing axiom 3 with any one of the

identities (2) - (8).

Proof. In our proof we use axiom 2.

(1) =) (2) : We have

x B (y B z) =
��
x B�1 z

�
B z

�
B (y B z) =

��
x B�1 z

�
B y

�
B z by (1):

(2) =) (3) : We have

(x B y) B�1 z =
�
x B

��
y B�1 z

�
B z

��
B�1 z =

��
x B�1 z

�
B
�
y B�1 z

��
B z B�1 z by (2)

=
�
x B�1 z

�
B
�
y B�1 z

�
:
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(3) =) (4) : We use a similar argument as in the proof (1) =) (2):

(4) =) (5) : We have

�
x B�1 y

�
B�1 z = [

��
x B�1 y

�
B�1 z

�
B
�
y B�1 z

�
] B�1

�
y B�1 z

�
= [x B�1 y B�1 z B z B y�1z] B�1

�
y B�1 z

�
by (4)

=
�
x B�1 z

�
B�1

�
y B�1 z

�
:

(5) =) (6) =) (7) =) (8) =) (1): Reverse the roles of B; B�1 in (1) =) (2) =) (3) =) (4) =) (5):

The result of Lemma 4.4.7 generalizes the remark (1) =) (3); (5); (7) mentioned in [Joyce1979].

With the aid of a modi�ed notation we can capture identities (2); (4); (6); (8) as one. Let a Be b denote

a B b when e = +1 and a B�1 b when e = �1. Then the left association identity

x Bd (y Be z) =
��
x B�e z

�
Bd y

�
Be z

captures all four identities (2); (4); (6); (8). The following result corresponds to Lemma 4.4.2.

Lemma 4.4.8 In any quandle Q,

�
a0 Bd1 a1 Bd2 ::: Bdm am

�
Be0 (b0 Be1 b1 Be2 ::: Ben bn)

= a0 Bd1 a1 Bd2 ::: Bdm am B�en bn B�en�1 ::: B�e1 b1 Be0 b0 Be1 b1 Be2 ::: Ben bn:

Proof. The identity given in the lemma is a consequence of repeated application of the left association

identity just given

As in the case of involutory quandles, any product of elements of a quandle can be expressed in the

canonical left-associated form by repeated application of Lemma 4.4.8. The following theorem for quandles

corresponds to the result obtained for involutary quandles in Theorem 4.4.4.

Theorem 4.4.9 A free quandle Q generated by S is an algebraic structure in which the elements are all

left-associated products

a0 Be1 a1 Be2 ::: Ben an; n > 0;
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where ai 2 S; a0 6= a1, and whenever ai = ai+1, then ei = ei+1, 1 6 i 6 n � 1. Distinct left-associated

products represent distinct elements of Q. The multiplication of left-associated products in Q is given using

Lemma 4.4.8 followed by the use of cancellation and idempotency to remove adjacent occurrences of the same

generator where possible.

Note Joyce describes free quandles in terms of groups [Joyce1982b].

Proof. The argument is analogous to the argument used in the proof of Theorem 4.4.4.

Remark 4.4.10 (Fundamental asymmetry.) We conclude this section with a discussion of the fundamental

asymmetry between the right and left arguments of quandle operations B; B�1. As we have shown, any

product of elements of a quandle can be expressed in the canonical left-associated form. No corresponding

canonical right-associated form for products of quandle elements exists.

First, consider symmetry between right and left arguments in the axioms de�ning quandles. Although

the �rst axiom, x B x = x, possesses a symmetry between left and right arguments of the operation B, the

second axiom, (x B y) B�1 y = x =
�
x B�1 y

�
B y, has no such symmetries. Exchanging roles of right and

left arguments in this second axiom, we obtain

y B�1 (y B x) ?
= x

?
= y B

�
y B�1 x

�
:

The �rst quandle given in Figure 4:4:1 does not satisfy this identity. Thus axioms de�ning quandles show

fundamental asymmetry between right and left arguments. Since the example given in Figure 4:4:1 is an

involutary quandle, axioms de�ning involutary quandles are also asymmetric.

Finally, we examine the possible existence of the right-associated canonical form for products of elements

of quandles. The second quandle in Figure 4:4:1 provides a counterexample to such existence. The elements
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a; b; c generate this quandle. In particular, f = (c B a) B b. However, f cannot be written as a right-

associated product of generators a; b; c. Since this quandle is also an involutory quandle, we conclude there

is no right-associated canonical form for products of elements for both quandles and involutary quandles.

B; B�1 a b

a a a

b b b

B; B�1 a b c d e f

a a a a a a a

b b b b b b b

c d e c c c c

d c f d d d d

e f c e e e e

f e d f f f f

F igure 4:4:1: Left-right asymmetry in quandles
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4.5 Diagramming of Presentations of Involutory Quandles - Tracing Relations

In this section and the two that follow, we present an algorithm for constructing diagrams for involutory

quandles directly from their presentations. The method is formalized in De�nition 4.7.1 with the aid of

De�nitions 4.5.3 and 4.6.10. Correctness of our algorithm is discussed in Sections 4.9-4.10. In Section 4.11,

we extend our method to arbitrary quandles. The method partially overcomes the di¢ culties alluded to in

Remark 4.2.5 and Exercise 4.5.12.

A main feature of the diagramming method is it allows construction of such a diagram directly from

the given presentation of a quandle and it does not require, as the intermediate step does, construction of

the multiplication table for the quandle. In fact, as shown below, the diagram contains all the information

present in a multiplication table.

Given the diagram of an involutory quandle Q generated by the set S and two vertices labeled by p;

q in the diagram, the vertex p B q is found as follows. From the diagram, read an expression for q as a

left-associated product of generators q = g0 B g1 B ::: B gn. From the vertex p; follow a sequence of arcs

gn; gn�1; :::; g1; g0; g1; :::; gn connecting vertex p and vertex q; that is

p B gn B ::: B g1 B g0 B g1 B ::: B gn = p B q:

Example 4.5.1 Consider the diagram given in Figure 4:5:1. To calculate d B e, read from the diagram

e = a B b B a:

Then,

d B e = d B (a B b B a) = d B a B b B a B b B a:

Applying Lemma 4.4.2 we obtain

d B a B b B a B b B a = c

by following the sequence of arcs a; b; a; b; a from d to arrive at c.
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Remark 4.5.2 For any q 2 Q, at least one expression for q as a product of the generators of Q is read from

the diagram. For instance, q can be expressed as a left-associated product of a corresponding initial vertex

v and the sequence of arcs in the diagram connecting v to q.

Figure 4:5:1: Figure eight knot and diagram of involutory quandle

Now we present our construction of a diagram of Q directly from the corresponding presentation of Q. The

construction of the diagram from the presentation of an involutory quandle Q = IQhS : Ri generated by S

starts from the rudimentary partial diagram having one vertex labeled g for each generator g 2 S and no arcs

(see Figure 4:5:2, top). This partial diagram is then expanded and completed by successively incorporating

the relations given in the presentation of Q and their algebraic consequences. The process of incorporating

a relation into the diagram of Q is called tracing the relation.

De�nition 4.5.3 In the construction of the diagram of an involutory quandle Q generated by the set S;

trace the relation,

a0 B a1 B ::: B am = b0 B b1 B ::: B bn; ai; bi 2 S;

by performing the following sequence of operations:

1. Locate the vertex a0 B a1 B ::: B am in the existing partial diagram. That is, locate the

vertex a0 and trace from that vertex along arcs labeled a1; :::; am to the desired vertex. If some vertex

a0 B a1 B ::: B am; 0 < i < m, is not met by any arc labeled ai+1, adjoin the required sequence of arcs

ai+1; :::; am and corresponding new vertices to the diagram.

2. In the same manner, �nd the vertex b0 B b1 B ::: B bn.

3. Merge (make identical) the two vertices located in steps (1) and (2).

4. For any two merged vertices p, q and for every s 2 S, merge the vertices p B s and q B s (if both are

present in the partial diagram).
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Remark 4.5.4 Tracing relations has the following properties:

(i) The two merged vertices represent algebraically equal elements of Q.

(ii) Any further merged vertices also follows algebraically.

(iii) The relations satis�ed before tracing a given relation in the previous diagram will still hold in the new

diagram.

Remark 4.5.5 Step (4) may be repeated a number of times during a single tracing depending on given

circumstances. This suggests a major di¢ culty in diagramming�how to determine whether two seemingly

distinct vertices must be merged at some point. For in�nite diagrams, the e¤ect of an in�nite number of

identi�cations must be considered. Under certain circumstances, unsolvable problems may arise due to the

absence of a solution for the word problem concerning groups. Fortunately, there is a solution for the word

problem concerning knot groups [Waldhausen 1968], so we will not encounter such di¢ culties in this paper.

We now produce an actual diagram by tracing relations.

Example 4.5.6 We shall construct a diagram for the involutory quandle given by the presentation

IQha; b : (a B b) B a = b; (b B a) B b = ai:

We start with the partial diagram with two vertices labeled with the generators a; b (see Figure 4:5:2, top).

Trace the relation (a B b) B a = b (see Figure 4:5:2, center). Since the vertices a B b and (a B b) B a are not

present in the partial diagram, we add them to the existing partial diagram together with the corresponding

arcs. The vertex (a B b) B a is then identi�ed with the vertex labeled b since the relation (a B b) B a = b

is present in the presentation of the quandle. As shown in the diagram, a B b = b B a. Algebraically, this

is a consequence of the traced relation. In general, various consequences of the original relations become

evident as the diagram is produced.

Next, trace the other relation (b B a) B b = a. The vertex (b B a) B b is already present in the partial

diagram (since a B b = b B a) and, in fact, is the vertex a. Thus tracing the second relation produces no

further e¤ect on the existing diagram. Finally, we trace the relations a B a = a and b B b = b, which are

the instances of axiom 1 (Figure 4:5:2, bottom).
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The resulting diagram satis�es the elementary conditions stated in Remark 4.3.6. Although not yet

proven, the resulting diagram is actually the complete diagram for the given presentation. We still must

prove the given relations and all algebraic consequences are already incorporated into this diagram. The

necessary proof is straightforward after full discussion of our diagramming method (see Sections 4.5-4.7) and

once correctness of the method is proved in general (see Sections 4.9-4.10).

Figure 4:5:2: Diagram of IQ ha; b : a B b B a = b; b B a B b = ai

Now we show how to streamline the process of tracing relations.

Remark 4.5.7 In tracing a relation, the number of identi�cations of existing vertices can be minimized

as follows. First, the intermediate step between constructing a new vertex and merging can be omitted

(Figure 4:5:3, top). Second, both construction and merging may further be reduced applying Lemma 4.1.6

to rewrite the relation before tracing it. For example, the relation a B b B c B b = e can be rewritten as

a B b = e B b B c. If the vertex e B b B c is already present in the partial diagram, use of the latter form

simpli�es the construction and merging (Figure 4:5:3, bottom).

Figure 4:5:3: Streamlined tracing (Remark 4.5.7)

Remark 4.5.8 When using this streamlined method of tracing, beware of incorporating an extraneous

relation that does not follow from the relation being traced. For example, consider tracing of the relation a B

b B a B b = a in the diagram at the top of Figure 4:5:4. The diagram at the center of Figure 4:5:4 is not the
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correct result, even though the relation a B b B a B b = a is satis�ed in this diagram. Unfortunately, the ex-

traneous

relation a B b = a is incorporated. The diagram at the bottom of Figure 4:5:4 is the correct result of

tracing the relation. Similar caution is given for a more subtle case in Remark 4.7.6

Figure 4:5:4: Incorrect and correct tracing of the relation a B b B a B b = a (Remark 4.5.8)

Now we construct diagrams for the involutory quandles of certain knots.

Example 4.5.9 The trefoil knot and the presentation of its involutory quandle is shown in Figure 4:5:5. In

order to obtain a more readable diagram, it is desirable to eliminate generators wherever possible. In this

example, the generator c can be eliminated using the �rst relation, so the remaining relations become

b B (a B b) = a and (a B b) B a = b:

Elimination of generators is described in general in Remark 4.5.10. Left association (Lemma 4.4.1) yields

b B a B b = a and a B b B a = b:

The above relations are examined in Example 4.5.6. The diagram (Figures 4:5:2, 4:5:5) is identical to the

one obtained from the multiplication table in Example 4.3.4.

Generators:

a; b; c

Relations:

a B b = c

b B c = a

c B a = b

F igure 4:5:5: The trefoil knot, generators and relations, and diagram of its involutory quandle

Remark 4.5.10 (Elimination of generators.) The presentation IQhS : g = t; Ri; where S is a set of

generators g 2 S; t is a product over S � fgg, and R is a set of relations, de�nes the same involutary
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quandle as the quandle given by the presentation IQhS : R0i, where R0 is obtained from R by replacing every

occurrence of g by t in every relation of R. (This Remark applies to presentation quandles, n�quandles,

groups, and involutory quandles.)

Generators:

a; b; c; d

Relations:

a B b = c

b B a = d

b B d = c

a B c = d

F igure 4:5:6: The �gure-eight knot, presentation of its involutary quandle and its corresponding diagram

Remark 4.5.11 The �gure-eight knot and the presentation of its involutory quandle is shown in Figure 4:5:6.

The generators c; d can be eliminated using the �rst two relations. The remaining two relations become:

b B (b B a) = a B b and a B (a B b) = b B a

or, when written in the left-associated form,

b B a B b B a = a B b and a B b B a B b = b B a:

On the initial diagram consisting of vertices labeled a; b, we trace the above relations then the relations

a B a = a; b B b = b (Figure 4:5:6). As in Example 4.5.6, the second of the relations traced, namely

a B b B a B b = b B a, is already incorporated into the diagram by tracing the �rst relation. (This

phenomenon is not universal in knot and link quandles; see Examples 4.6.1 and 4.6.9.) The diagram is the

same as the one obtained from the multiplication table given in Example 4.3.5. As with Example 4.5.6, proof

all derivable relations have been incorporated must await development of the necessary machinery.

Exercise 4.5.12 Construct the multiplication table for the preceding example as an interesting exercise in

understanding the power of the diagramming method. Begin by writing the known products in a table form

(Figure 4:5:7). Dots in Figure 4:5:7 re�ect the general necessity of the table as it is developed. Next, derive

other product values by use of the known values in the table, axioms, and lemmas, such as Lemma 4.1.6,

and enter these into the table. The product c B a cannot be assigned any of the elements a; b; c; d, so
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let c B a = e be an additional element which we put into the table. Now further calculations close o¤ the

table without the need for naming additional elements. Verify the table produced in such a way satis�es the

axioms for an involutory quandle in all instances (De�nition 4.1.2) . Correctness of the table follows from

Lemma 4.2.7.

a b c d : : :

a a c d

b d b c

c c

d d

: :

: :

: :

F igure 4:5:7: Computation of a quandle multiplication table (Remark 4.5.12)

In the next section, we focus on more complex instances of applying the diagramming method.
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4.6 Diagramming with Multiple Components and Secondary Relations

In this section, we construct diagrams more complex than those of the preceding section. The

complexities are of three types. First, a diagram may have two or more connected components. Such

diagrams arise from the involutory quandles of links (Example 4.6.1). Second, tracing of the given

relations and idempotency may not su¢ ce to complete the diagram (Example 4.6.9). Additional derived

relations, called secondary relations (De�nition 4.6.10), must be traced. Given

relations, secondary relations, and idempotency su¢ ce to complete the diagram for any presentation of

an involutory quandle independent of the order in which they are traced (Theorem 4.10.14). Third, we

construct an in�nite diagram (Example 4.6.9). The process of diagramming reveals the repeating pattern

that de�nes the in�nite structure.

Example 4.6.1 Diagram the involutory quandle of the simplest nontrivial link (Figure 4:6:1). None of the

generators (see Figure 4:6:1) can be eliminated. The construction of the diagram is straightforward: trace

the relations and a B a = a; b B b = b. The involutory quandle has two generators as in Examples 4.5.6

and 4.5.11, but in the the present example, the second relation is not automatically incorporated by tracing

the �rst relation. The diagram is not connected, a point now examined in detail.

De�nition 4.6.2 The components of the diagram of an involutory quandle are the connected components

of the underlying graph.

Generators:

a; b

Relations:

a B b = a

b B a = b

F igure 4:6:1: The simplest nontrivial link, generators and relations, and diagram of the involutory quandle

Remark 4.6.3 In the diagram of any involutory quandle Q generated by S � Q, the nodes p; q 2 Q lie in

the same connected component of the diagram i¤ q = p B g1 B g2 B ::: B gn for some g1; g2; :::; gn 2 S.
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Remark 4.6.4 In the diagram of an involutory quandle Q generated by S, each connected component con-

tains at least one vertex labeled by a generator g 2 S. (To see this, write any element q of the component

as a left-associated product of generators and apply Remark 4.6.3.)

To diagram link quandles in a useful manner, relate the components of the link diagram to the algebraic

components (De�nition 4.1.12).

Lemma 4.6.5 The connected components of the diagram of an involutory quandle Q generated by S

correspond to the algebraic components of Q.

Proof. If p; q are in the same connected component of the diagram of Q; then evidently they are in the

same algebraic component. Conversely, suppose p; q are in the same algebraic component. Then

q = p B r1 B r2 B ::: B rn; ri 2 Q:

Writing each ri as a left-associated product of generators and then left associating to the resulting product

(Lemma 4.4.2), we obtain

q = p B g1 B g2 B ::: B gm

for some g1; g2; :::; gm 2 S. Thus p; q are in the same connected component of the diagram by Remark 4.6.3.

Remark 4.6.6 The algebraic components of an involutory quandle Q are in one-to-one correspondence with

the elements of the homomorphic image Q0 formed by imposing the relation x B y = x for all x; y 2 Q.

Remark 4.6.7 Any homomorphic image Q0 of an involutory quandle Q contains no more components than

does Q. In particular, if p; q are in the same connected component of Q, then their images are in the same

component of Q0.

Lemma 4.6.8 If a tame link L has n components, then its involutory quandle IQ (L) has n components.

Proof. There are no more algebraic components of IQ (L) than generators (see Remark 4.6.3). Generators

associated with the same component of the link are placed in the same component of IQ (L) by the relations:

a B b = c
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Thus IQ (L) has at most n components. The involutory quandle Q0 consisting of one element for each

component of the link L and satis�es relations x B y = x for all x; y is a homomorphic image of IQ (L)

(because it satis�es all relations read from the projection of L) and has n components. Hence, IQ (L) has

exactly n components.

Now we focus on the construction of an in�nite diagram with multiple components. Tracing just the

relations read from the link projection will not be su¢ cient in constructing the diagram. Other derived

relations called secondary relations must be traced to obtain the correct diagram.

Example 4.6.9 We examine the link of three components, including the generators and relations, in

Figure 4:6:2. The generator d can be eliminated using the relation b B a = d; so the relation b B c = d

becomes b B c = b B a. The two remaining relations are unchanged. Begin the diagram with the three

vertices a; b; c and trace the given relations and idempotency (Figure 4:6:3).

Generators:

a; b; c; d

Relations:

a B b = a

c B b = c

b B a = d

b B c = d

8>>>>>><>>>>>>:
a B b = a

c B b = c

b B a = b B c

9>>>>>>=>>>>>>;

Figure 4:6:2: A three-component link, generators, and relations for the involutory quandle

These operations do not produce the �nal diagram in that the elements a B c; b B; and c B a are not present

in this diagram. Furthermore, certain relations can be derived algebraically but are not incorporated into

the diagram. For example, the relation c B b = c implies

a B (c B b) = a B c

or, through left association,

a B b B c B b = a B c;

but this relation is not incorporated in the diagram. In order to avoid this kind of omission we introduce

the notion of secondary relations.
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De�nition 4.6.10 Let IQhS : Ri be a presentation of an involutory quandle. The primary relations of the

presentation are represented as R. The secondary relations for the presentation are the relations

x B s = x B t for all x 2 Q;

whenever the relation s = t is an element of R. We denote the set of secondary relations by RS. The

idempotency relations of the presentation are the relations g B g = g; g 2 S. We denote this set of

relations by IS. In most contexts, it is convenient to assume the relations of R; RS are in the canon-

ical left-associated, right-cancelled form (Lemma 4.4.2, Remark 4.4.6). The variable x ranges over all

left-associated, right-cancelled products in the generators.

Link Arc Labels

Figure 4:6:3: Partial diagram of IQ (L) for the link in Figure 4:6:2

In our example, we have the following secondary relations corresponding to the primary relation c B b = c.

x B (c B b) = x B c for all x 2 Q;

or, using the left-associated form,

x B b B c B b = x B c for all x 2 Q:

The relation captures the instance a B b B c B b = a B c missing in the partial diagram given above.

We shall trace the primary relations as well as the secondary relations for each vertex x in the diagram.

This procedure will incorporate more of the necessary relations, but will it incorporate all the derivable

relations? For example, do we also need to trace the relations x0 B (x B b B c B b) = x0 B (x B c) for

all x; x0 2 Q and so on ad in�nitum? As shown in Sections 4.9-4.10, tracing the secondary relations in
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addition to the primary relations and idempotency is su¢ cient as all other derivable relations are incorporated

automatically. We now obtain and trace the secondary relations for our example.

Primary relation Secondary relation

a B b = a x B b B a B b = x B a; x 2 Q

c B b = c x B b B c B b = x B c, x 2 Q

b B c = b B a x B c B b B c = x B a B b B a, x 2 Q.

Trace the �rst of these secondary relations at x = b�that is, trace the relation b B b B a B b = b B a.

This completes the "b" component (Figure 4:6:4, bottom, left). The reader may verify all three secondary

relations are satis�ed at both vertices of this component.

Figure 4:6:4: Diagram of the involutory quandle of a link

Next, we turn to the "a" component. Consider �rst x = a; the �rst of the secondary relations is already

satis�ed at this vertex (Figure 4:6:3). However, the second relation is not. Trace a B b B c B b = a B c

to obtain the partial diagram of Figure 4:6:4, bottom, center. Note the products a B b B c and a B c

correspond to the same vertex; tracing simply adds a dashed loop. Next, consider x = a B c. Trace the

�rst secondary relation at the vertex,

(a B c) B b B a B b = (a B c) B a;

to obtain the partial diagram in Figure 4:6:4, right. The second relation is already satis�ed for x = a B c.

Continuing vertex by vertex in this fashion, we obtain the entire in�nite "a" component shown in Figure 4:6:5.
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The reader may verify each of the three secondary relations is satis�ed at each vertex x of this component.

The "c" component is constructed similarly. Correctness of the completed diagram given in Figure 4:6:5

follows from Theorem 4.10.14.

Figure 4:6:5: Diagram of the in�nite involutory quandle of a link

Remark 4.6.11 In the link of Example 4.6.9 and Figures 4:6:3, 4:6:5, the arcs b; d correspond to distinct

elements of the involutory quandle (hence to distinct elements of the quandle as well). This follows from

distinctness of b, b B a = d in the diagram. By contrast, the meridians at b; d are homotopic and, therefore,

equal in the knot group (Figure 4:6:6).

Figure 4:6:6:Distinct quandle elements b,d, homotopic meridians

We have now seen the essentials of the diagramming method. The method is summarized and applied to a

more di¢ cult example in the following section.
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4.7 The Diagramming Method De�ned and Applied to the Borromean Rings

In this section, we provide a formal de�nition of the diagramming method (De�nition 4.7.1). Then

we state lemmas making computation more e¢ cient. Finally, we diagram the involutory quandle of the

Borromean rings, the prime link of fewest crossings with an in�nite involutory quandle (Example 4.7.5).

The diagramming method is extended to arbitrary, not necessarily involutory, quandles in Section 4.11.

De�nition 4.7.1 A diagram of a quandle given by the presentation IQhS : Ri is a labeled undirected graph

obtained as follows. Begin with the graph consisting of one vertex labeled g for each generator g 2 S and no

arcs. Well-order the union of the following sets: the primary relations R, the secondary relations RS, and the

idempotency relations IS (De�nition 4.6.10). Trace these relations in the chosen order (De�nition 4.5.3).

We shall show (Theorem 4.10.14) the diagram constructed using the presentation IQhS : Ri is independent

of the choice of well-ordering and is, in fact, the diagram of the involutory quandle Q = IQhS : Ri generated

by S (De�nition 4.3.1). Note De�nition 4.7.1 streamlines the computation implicit in De�nition 4.3.1 and

in the de�nition of presentation of an algebraic structure (Section 4.2). In particular, a �nite diagram can

be constructed applying a �nite number of tracings even when the number of relations derivable from the

given set R is in�nite.

Remark 4.7.2 The notion of the limiting partial diagram corresponding to a limit ordinal is implicit in the

notion of tracing an in�nite well-ordered set of relations. Such a limit is formed as follows. The set of

vertices V of the limit diagram consists of those vertices present in the initial diagram and those constructed

prior to the limit ordinal with the omission of each vertex merged with a previously constructed vertex. The

set of arcs of the limit diagram contains each arc present between vertices of V at any step prior to the limit

ordinal.

This notion is used for the Borromean rings in Example 4.7.5, in which the idempotency relations IS are

traced after all other relations in the in�nite set R [RS .

Now we turn to some conputationally useful results.
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Lemma 4.7.3 The following primary relations are equivalent for an involutory quandle.

1. p B q1 B ::: B qn = r

2. p B q1 B ::: B qi = r B qn B qn�1 B ::: B qi+1 for 1 6 i 6 n� 1

3. p = r B qn B qn�1 B ::: B q1.

Proof. The proof is shown by repeated applications of Lemma 4.1.6.

Any primary relation

p B q1 B ::: B qn = r

and the corresponding secondary relation

x B qn B ::: B q1 B p B q1 B ::: B qn = x B r (for all x)

are related in the diagram as shown in Figure 4:7:1. The primary relation, a chain traceable only from the

speci�c point p, "opens out" into a loop traced anywhere in the diagram.

In general

a B b B a = b

a B b B a B b B a = b

Figure 4:7:1: Primary and secondary relations

60



Lemma 4.7.4 (Equivalent forms for a secondary relation) For an involutory quandle Q, the following

relations are equivalent.

1. x B q1 B ::: B qn = x; x 2 Q

2. x B q1 B ::: B q1 = x B qn B qn�1 B ::: B qi+1 (any 1 6 i 6 n� 1); x 2 Q

3. x B qi+1 B qi+2 B ::: B qn B q1 B ::: B qi = x (any 1 6 i 6 n� 1); x 2 Q

4. x B qn B qn�1 B ::: B q1 = x; x 2 Q:

Proof. Repeated application of Lemma 4.1.6 yields equivalence of the �rst, second, and fourth forms. The

third form is obtained from the second by substituting x B qi+1 B qi+2 B ::: B qn for x in the second form

and then cancelling. The second form can be obtained similarly from the third.

Note there is no distinction among q; qi; r in the above lemma. Our notation is chosen to emphasize

the cyclic rearrangements, rather than to emphasize the connection with the primary relations. The last

two equivalent forms correspond to the rotational and re�ectional symmetries of an n-sided polygon. We

illustrate n = 6 diagrammatically in Figure 4:7:2.

Figure 4:7:2: Secondary relations and polygonal symmetry

Now we address the �rst major question posed in our investigation: Does a prime knot or link with an

in�nite involutory quandle exist? We shall diagram the in�nite involutory quandle of the Borromean rings.

The study of this quandle led to the development of the diagramming method presented here. In the next

section, we address the question of minimality in terms of the number of crossings, for an in�nite involutory

quandle.

Example 4.7.5 The Borromean rings and a presentation of its involutory quandle are illustrated in

Figure 4:7:3. The three relations in the center of the �gure express the generators d; e; f in terms of
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a; b; c. Eliminating d; e; f from the presentation and expressing relations in the left-associated form yields:

Primary relations Corresponding secondary relations are obtained

by left multiplication by x

1: a B b B c B b B c = a 1s x B c B b B c B b B a B b B c B b B c = x B a

2: b B c B a B c B a = b 2s x B a B c B a B c B b B c B a B c B a = x B b

3: c B a B b B a B b = c 3s x B b B a B b B a B c B a B b B a B b = x B c

We now construct the diagram of the involutory quandle IQ (L) of the Borromean rings generated by

S = fa; b; cg with the aid of the above relations. The diagram will consist of three components corresponding

to the three components of the link (see Lemma 4.6.8). Each component of the diagram will include exactly

one vertex labeled with a generator�a; b; or c respectively. Focus on the component containing vertex a;

the other two components are obtained from the component containing vertex a by cyclic permutation of

the roles of a; b; c.

a B b = d

b B c = e

c B a = f

d B e = a

e B f = b

f B d = c

F igure 4:7:3: Borromean rings, generators and relations for the involutory quandle

To begin construction of the "a" component, we trace the primary relation (1) a B b B c B b B c = a

(Figure 4:7:4, left). The two remaining primary relations (2), (3) a¤ect the "a" component indirectly through

the secondary relations (2S) ; (3S). Note the delay in tracing idempotency relations a B a = a for easier

construction (Remark 4.7.7). Trace the secondary relation (1S), which yields the polygon (Lemma 4.7.4)

illustrated in the center of Figure 4:7:4. When (1S) is traced at the vertex x1 = a B b B c of the partial

diagram (Figure 4:7:4, left) it gives rise to the second diamond (Figure 4:7:4, right). We illustrate the

pinching induced by (1) a B b B c B b B c = a; the merging of a B b B c B a and a B c B b B a; and the

reversal of the lower diamond (for a more pleasant appearance of the diagram later). In the same manner,
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trace the relation (1S) for x2 = a B c and x3 = a B c B b B a B c (Figure 4:7:5). The next step, closing the

near-octagon in Figure 4:7:5, cannot be done by simply tracing (1S) once more.

Figure 4:7:4: Tracing relations (1) and (1S)

Figure 4:7:5: Further tracing of relation (1S) for x2; x3

Remark 4.7.6 (Tracing of the relation) (1S) x B c B b B c B b B a B b B c B b B c = x B a does

not su¢ ce to show x4 B a = x5 in Figure 4:7:5. If (1S) is traced at x4, an additional diamond is created

(Figure 4:7:6, left), but (1S) does not justify merging this new diamond with the x5 diamond.

Figure 4:7:6: Closing of octagon by relation (2S)

In order to connect x4 to x5, closing the octagon, we rewrite relation (2S) applying Lemma 4.7.4 as

x B c B a B c B a = x B b B c B a B c B a B b
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and we trace this relation for x = a (Figure 4:7:6, right). We now have a pattern for the diamond-and-

octagon tiling of the plane (Figure 4:7:7). The entire tiling is obtained by repeatedly tracing (1S) to adjoin

diamonds both horizontally and vertically and (2S) close octagons.

Figure 4:7:7: Diamond-and-octagon tiling of the plane, obtained in the

process of diagramming the involutory quandle of the Borromean rings.

Remark 4.7.7 The relations (1S) ; (2S) ; and (3S) hold throughout the partial diagram shown in Figure 4:7:7.

By the symmetry of the diagram it su¢ ces to verify (1S)� (3S) at just one vertex. For instance, at x = a.

We have delayed tracing of idempotency in order to retain this useful symmetry.

With the secondary relations veri�ed throughout, we trace idempotency relations a B a = a. This

tracing merges not only a B a with a, but also a B a B g1 B ::: B gn with a B g1 B ::: B gn; gi 2 fa; b;

cg. Diametrically opposite pairs of vertices are merged, rolling the diagram into the cone illustrated in the

�attened form in Figure 4:7:8. This is the "a" component of the diagram. The "b" and "c" components are

obtained from it by cyclic permutation of the roles of a; b; c. (Change the label of the topmost vertex and

change solid arcs to dashed, dashed to dotted, and dotted to solid.) The involutory quandle thus constructed

clearly has an in�nite cardinality.

Figure 4:7:8: The Borromean rings and diagram of the involutory quandle "a" component
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4.8 Examples

In this section, we examine the involutory quandles of two-bridge (rational) knots, certain three-bridge

knots, and certain Whitehead links. Through this examination, we �nd a prime knot K with in�nite

involutory quandle IQ (K) must have at least 8 crossings in the projection of K. For certain three-bridge

knots K, called pretzel knots, the diagram of IQ (K) is related to a tiling of a plane, hyperbolic plane, or

sphere with polygons. Finally, we distinguish certain Whitehead links with homeomorphic complements by

examining their involutory quandles.

We begin by examining n-bridge knots and links in general (Figure 4:8:1). Such a knot or link K consists

of a braid of 2n strands capped at each end by n arcs. Q (K) ; IQ (K) ; Qm (K) is presented using only n

generators as follows. Label the left-hand n cap arcs with the generators a1; :::; an. At each undercrossing

x under y, label the new arc with the corresponding product in the generators, x B y or x B�1 y. Read

o¤ a relation at each right-hand capping arc. Examples of such presentations for 2- and 3-bridge knots are

provided below. We conjecture the presentations employ the minimum possible number of generators.

Conjecture 4.8.1 A tame knot or link K is n-bridge but not (n� 1)-bridge i¤ its quandle Q (K)

(respectively, IQ (K), respectively, Qm (K)) is generated by some set of n generators but by no set of n� 1

generators.

Figure 4:8:1: General 2n-strand knot. The involutory quandle can be

presented as follows. The n capping arcs at left are labeled a1; :::; an.

Arcs in the braid are labeled with products of these. A relation is read

at each of n capping arcs at the right.

K is the trivial knot if and only if it is 1-bridge. The conjecture for n = 1 is proved in [Joyce1982a] for

Q (K) and below for IQ (K) ; Qm (K) (Theorem 5.2.5).
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The following notation will be useful in our discussion. We write x (B y B z)n where n is a repetition

factor

x (B y B z)0 = x; x(B y B z)n+1 = x (B y B z)n B y B z:

For n 6 0,

x (B y B z)n�1 = x (B y B z)n B�1 z B�1 y;

and recall B and B�1 are the same in involutory quandles.

Now we discuss the involutory quandles of four-strand (vierge�echt) knots and links K omitting details

of computation. Figure 4:8:2 is a typical example. In general, a 4-strand braid is capped at both ends. At

one end, we label the capping arcs a; b. The involutory quandle IQ (K) is �nite, or "abelian", and has order

equal to the knot determinant j K j, see [Joyce1982a]. However, �niteness of IQ (K) does not imply that

K is a 4-strand braid (see Example 4.8.2 below).

What is the minimum number of crossings for a prime knot with in�nite involutory quandle? Every

prime knot of 7 or fewer crossings is 4-strand and, therefore, has �nite involutory quandle. On the other

hand, IQ (816) is in�nite, establishing 8 as the minimum. Construction of the involved diagram of IQ (816)

is deferred to another paper. The in�nite IQ (935) is diagrammed in Example 4.8.3 below.

Figure 4:8:2. A 4-strand knot.

Among prime links with in�nite involutory quandle, the Borromean rings (Example 4.7.5) has the minimal

number of crossings. All prime links with fewer crossings are 4-strand.The smallest non-prime knot and

link each have in�nite involutory quandle. The diagram for the smallest non-prime link is illustrated in

Example 4.6.9 above, while those for the square and granny knots are left to the reader. Any disconnected

link (e.g. two unlinked circles) also has in�nite involutory quandle.

Now we turn to the involutory quandles of pretzel knots and links Kk;m;n (Figure 4:8:3). The integers k;

m; n count half-twists. For pretzel knots, apply the convention that positive values of k; m; n denote twists

of the form , while negative values of k; m; n denote . (Note, while k; m; n positive yields
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an alternating knot, all crossings thus obtained may not be positive in the same sense used in Section 3.1.

Consider K2;3;5 of Figure 4:8:3). We assume none of k; m; n is zero or �1 to avoid degenerate cases. Any

permutation of k; m; n yields the same knot or link. For example, K2;3;5, K3;2;5 and K3;5;2 are the same

knot.

The pretzel knots and links fall into four classes based on evenness/oddness of k; m; n.

1. k; m; n are all odd, Kk;m;n is a knot

2. exactly one of k; m; n is even, Kk;m;n is a knot

3. exactly two of k; m; n are even, Kk;m;n is a link of two components

4. k; m; n are all even, Kk;m;n is a link of three components.

Figure 4:8:3: Pretzel knots and links

Now we state general results concerning the involutory quandles of pretzel knots and links. IQ (Kk;m;n)

is in�nite if and only if

1

k
+
1

m
+
1

n
6 1:

(For reasons of space, we omit the proof, which involves polygonal tiling, spherical, planar, and hyperbolic

surfaces and case analysis on evenness/oddness of k; m; n.) We obtain a convenient presentation for

IQ (Kk;m;n) by labeling the three arcs to the left of the twists with a; b; c as in Figure 4:8:3. All generators,

except a; b; c, can be eliminated. For case (1) k; m; n odd, we obtain the following primary relations.

� a (B a B c) n+12 = b (B c B b) m�12

� b (B b B a) k+12 = c(B a B c)n�12

� c (B c B b) m+12 = a (B b B a) k�12
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Calculation of similar formulas for the three remaining cases is left to the reader. In all cases, the secondary

relations can be written

� x (B a B b)k = x (B b B c)m = x (B c B a)n for all x.

A certain homomorphic image of IQ (Kk;m;n) yields particularly pleasing diagrams and is obtained by

setting

x (B a B b)k = x (B b B c)m = x (B c B a)n = x for all x.

Tracing this relation throughout one component produces a partial diagram (a tiling of a sphere, plane, or

hyperbolic plane according to whether 1
k +

1
m + 1

n is greater than, equal to, or less than one) composed of

polygons of 2k; 2m; and 2n sides. (If the three quantities in the secondary relation are not equated to x,

a third dimension of depth appears in the diagram but is well-behaved. The polygons of 2k; 2m; 2n sides

lift to parallel helices. The criterion for in�niteness remains the same, but the proof involves analysis of the

four evenness/oddness cases and is omitted here.) Now we turn to examples of speci�c Kk;m;n.

Example 4.8.2 The knot 85 = K2;3;3 is shown at left in Figure 4:8:4. Primary relations for Q = IQ (K2;3;3)

are

� c B a B c = a B b B a;

� a B c B a B c = b B c B b; and

� b B a = c B b B c B b.

Secondary relations are

� x (B a B b)2 = x (B b B c)3 = x (B c B a)3 for all x.

Obtain the diagram of the homomorphic image Q0 of Q by setting

x (B a B b)2 = x (B b B c)3 = x (B c B a)3 = x for all x.

When this relation is diagrammed, the result is a spherical tiling (Figure 4:8:4, center). Tracing of the

primary relations and idempotency yields the diagram of Figure 4:8:4, right. The mapping Q! Q0 can be
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shown to be 7-to-1 pointwise. Making the diagram for Q is a more complicated version than shown for Q0.

a c

b

Figure 4:8:4: The knot 85 = K2;3;3 with diagrams of homomorphic images

of secondary relations and of involutory quandle (Example 4.8.2).

Figure 4:8:5: The knot 935 = K3;3;3 and diagram of homomorphic image of IQ (935)

(Example 4.8.3). The left edge of the diagram shown is to be glued to the right

edge to form a cylinder, which extends downward to in�nity.

Example 4.8.3 The knot 935 = K3;3;3 is shown at left in Figure 4:8:5. The primary relations for

Q = IQ (K3;3;3) have the form given above for case (1) k; m; n odd. The secondary relations have the

general form given in Figure 4:8:5 for pretzel knots. We obtain the diagram of the homomorphic image Q0

of Q by setting

x (B a B b)3 = x (B b B c)3 = x (B c B a)3 = x for all x:

When this relation is diagrammed, the result is the familiar tiling of the plane with hexagons. Tracing of

the primary relations yields the in�nite diagram of Figure 4:8:5, right. Note the left edge is to be "glued" to

the right edge to form a cylinder. The homomorphic mapping Q! Q0 is in�nite-to-one at all points. The

diagram of Q has an added dimension (perpendicular to the page or thickening the cylinder obtained after

gluing), and the hexagons lift to helices.

Example 4.8.4 The knot K2;3;7 is shown in Figure 4:8:6. The primary relations for Q = IQ (K2;3;7) are

as follows.

� (a B c) (B a B c)3 = b B c B b

� a B b B a = c (B a B c)3

� b B a = c B b B c B b
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The secondary relations have the general form for pretzel knots. We obtain the diagram of the homomorphic

image Q0 of Q by setting

� x (B a B b)2 = x (B b B c)3 = x (B c B a)7 = x for all x:

Diagramming this relation yields a tiling of the hyperbolic plane with squares, hexagons, and 14-sided

polygons. Tracing of the primary relations yields the in�nite diagram of Figure 4:8:7. Note the two copies

of the illustrations are to be taken one above the other and the edges be knitted together left to left and

right to right to form an in�nite cylinder.

Figure 4:8:6: The knot K2;3;7.

Figure 4:8:7. Half diagram of a homomorphic image of IQ (K2;3;7) (Example 4.8.4).

To obtain the correct diagram from the half shown here: Form identical second half

just over that shown. Glue the left edges of the two halves together and glue the right

edges together. The result is a cylinder (�ared cylinder of hyperbolic surface).

Vertices a; b lie in the lower half ; c in the upper half. The diagram contains an

in�nite number of vertices.

Example 4.8.5 Finally, we distinguish certain links with homeomorphic complements. Consider the class

of links illustrated in Figure 4:8:8. The complements are homeomorphic as follows. The parameter n, the

number of half-twists, can be adjusted by �2 by cutting along the shaded disk, twisting 3600, and re-pasting.

Thus the complements for n even are all homeomorphic. The complements for n odd are all homeomorphic
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to the complements for n even because n; �n � 1 half-twists yield mirror-image links. By contrast, these

links are all distinguished by the involutory quandle (up to mirror images). The primary relations are

� b B a = b B c;

� c (B c B a)d
n
2 e B b B c B b = a (B c B a)b

n
2 c ; and

� (c B b) (B a B c)n B a = a B b:

where dn2 e is the smallest integer >
n
2 and b

n
2 c is the largest integer 6

n
2 . The secondary relations are

� x B a B b B a = x B c B b B c (for all x);

� x (B b B c)2 (B c B a)2d
n
2 e (B b B c)2 (B c B a)2b

n
2 c = x; and

� x (B a B c)n+1 (B c B b)2 (B a B c)n (B a B b)2 = x:

The diagram is given in Figure 4:8:9. There are two components�the "b" component, always of 4

elements, and the "a; c" component of j 8n + 4 j elements (whether n is even or odd). The order of the

involutory quandle su¢ ces to distinguish the links except for mirror images, which the involutory quandle

cannot distinguish.

Figure 4:8:8: Whitehead link.

Figure 4:8:9. Involutory quandle of Whitehead link (Example 4.8.5)

The diagram consists of two components: one of four vertices and the other

of 8n+ 4 vertices where n is the number of half-twists (Figure 4:8:8).

In the latter component, a basic pattern of 8 vertices is repeated

horizontally n times (n > 0) or j n� 1 j times (n < 0).
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We o¤er the following hints for the reader who wishes to construct the diagram by the method of De�ni-

tion 4.7.1. For the "b" component, trace the �rst primary relation and idempotency. Apply the �rst of

the secondary relations repeatedly to show x B a = x B c throughout this component. Then, apply the

second of the secondary relations. For the "a; c" component, �rst trace a B a = a. Next, develop the

brick-wall pattern by repeated use of the �rst of the secondary relations. Trace the second primary relation,

the relation c B c = c; and the third primary relation. Finally, sew the edges together by repeated use of

the �rst secondary relation.

We conclude Section 4.8 and proceed to prove correctness of the diagramming method.
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4.9 Correctness of the Diagramming Method: Diagrams and d-derivations

In this section and the next, we prove the correctness (Theorem 4.10.14) of the diagramming method

presented in Sections 4.3 - 4.7 (De�nition 4.7.1). The diagramming method and proof of correctness are

extended to arbitrary quandles in Section 4.11.

Throughout this section, we are concerned with an arbitrary presentation of an involutory quandle

IQhS : Ri with generating set S and set of relations R on U (S; B) (De�nition 4.2.3). We may assume the

relations in R are all canonically left-associated without loss of generality (Lemma 4.4.2). Note the proofs

apply when S; R are in�nite, even though both S and R are �nite for knots and links.

The task is to prove a diagram constructed from the presentation IQhS : Ri; in accordance with

De�nition 4.7.1, is the same as the diagram of the involutory quandle Q = IQhS : Ri (De�nition 4.3.1

and Section 4.2). The central theme of the proof is the question, which aspects of involutory quandle

structure are encoded intrinsically in every diagram, and which remain to be incorporated into a particular

diagram by means of tracing? The diagrams build in the right multiplication property of equality; p = q

implies

p B x = q B x:

However, the diagram does not build in the left multiplication property; p = q implies

x B p = x B q:

A detailed discussion of this matter precedes Lemma 4.10.9.

Our proof is algebraic in nature. The �rst task, to which Section 4.9 is devoted, is to algebraically

formalize the diagramming method while focusing on the operation of tracing (De�nition 4.5.3) that merges

formerly distinct vertices of a partial diagram. The tracing operation is formalized in terms of algebraic

derivation of equalities, and we discuss such derivations in detail accordingly. Begin by de�ning the universe

within which the derivations are made. This universe is restricted to left-associated expressions due to the

pervasive role of left association in diagramming.

De�nition 4.9.1 The d-universe (diagrammatic universe) Ud (S; B) of words over the generating set S with

operation B is the subset of the full universe U (S;B) (De�nition 4.2.3), which consists of all left-associated
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words and contains no sub-expression of the form

(x B g) B g; x 2 U (S; B) ; g 2 S:

Remark 4.9.2 In general, the words of Ud (S; B) are not in canonical form with respect to idempotency

(axiom 1). For example, g B g and g are distinct words of Ud (S; B). Our reasons for de�ning Ud (S; B) in

this way are as follows. First, idempotency is not intrinsic in diagrams and still must be traced. Therefore,

the statement of Lemma 4.9.7, which relates Ud (S; B) to diagrams, is simpli�ed by making idempotency

not intrinsic in Ud (S; B). Second, it is useful to delay tracing of idempotency in the construction of

actual diagrams . In the case of the Borromean Rings (Example 4.7.5), tracing of idempotency breaks the

symmetry of the partial diagram. It is considerably easier to check satisfaction of the secondary relations

before the symmetry is broken. For this reason, our theory includes partial diagrams lacking idempotency

and, correspondingly, a universe lacking idempotency.

Remark 4.9.3 We have the following (elaborated) sequence of canonical surjective maps.

U (S; B) !
ud

Ud (S; B) !
uf

IQhS : �i !
h

IQhS : Ri

# �

D

The map ud sends each word in U (S; B) to its canonical left-associated, right-cancelled form in Ud (S; B)

(Lemma 4.4.2, Remark 4.4.6). The map ud does not canonicalize with respect to idempotency. That

aspect of displaying quandles in canonical form is done by the map uf , a two-to-one map sending both

g0 B g0 B g1 B ::: B gn and g0 B g1 B ::: B gn to the same element of the free involutory quandle IQhS : Ri

generated by S. Finally, we discuss the map � from Ud (S; B) to a diagram D constructed from the

presentation IQhS : Ri according to De�nition 4.7.1. This map is induced by the operation of location

(tracing, De�nition 4.5.3, point 1); � (w) is the vertex of D obtained by locating the word w in D.
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Now the goal of our correctness proof is stated in terms of maps. We show IQhS : Ri and D induce the

same equivalence relation on U (S; B) ;

ud � uf � h (v) = ud � uf � h (w)

i¤

ud � � (v) = ud � � (w) ; v; w 2 U (S;B) .

Equivalently, we show

uf � h (v) = uf � h (w)

i¤

� (v) = � (w) ; v; w 2 Ud (S;B) :

The �rst step in capturing the diagramming method algebraically is using any partial diagram D to induce

an equivalence relation on the corresponding d-universe.

De�nition 4.9.4 Let D be any (involutory) diagram, partial or complete, on the generating set S. The

equivalence relation
~

D induced by D on the d-universe Ud (S; B) is the relation in which v
~

Dw i¤ v; w

label the same vertex when located in the diagram D. We shall abbreviate
~

D as ~ when the choice of D is

clear from context.

Note a partial diagram may not contain a vertex for every word w 2 Ud (S; B). For this reason, we

include the phrase "when located" (De�nition 4.5.3, tracing, point 1) in De�nition 4.9.4.

The notion of d-derivation is de�ned in order to study this equivalence relation.

De�nition 4.9.5 Let S be any generating set and R̂ be any set of (canonicalized) relations in Ud (S; B).

A d-derivation (diagrammatic derivation) from R̂ in Ud (S; B) is a sequence of steps, each of which derives

a relation by one of the following rules.

1. Re�exivity. For any word w 2 Ud (S; B) ; w = w.

2. Symmetry. From the relation p = q, either given in R̂ or derived in a previous step, derive the relation

q = p.

75



3. Transitivity. Derive the relation p = r from the given or derived relations p = q; q = r:

4. Right multiplication. Derive the relation p B g = q B g from the given or derived relation p = q and

for any generator g 2 S .

Right cancellation, x B g B g = x for g 2 S, is assumed to be applied wherever possible. A relation

p = q will be called d-derivable from R̂ over S if there is a d-derivation of p = q from R̂ over S.

The rule of re�exivity is supplied only so w = w can be d-derived in a single step. Re�exivity is not used

in longer, nontrivial derivations. Arbitrary derivations are de�ned in the next section (De�nition 4.10.1) in

connection with the discussion of presentation involutory quandles.

Example 4.9.6 (A d-derivation.) The following d-derivation employs a secondary relation corresponding

to the primary relation a B b = c together with one instance of idempotency to derive the relation

b B a B b = b B c:

1: b B b B a B b = b B c b B (a B b) = b B c, secondary relation for a B b = c

2: b B b = b idempotency

3: b = b B b 2, right multiplication by b (or 2, symmetry of equality)

4: b B a = b B b B a 3, right multiplication

5: b B a B b = b B b B a B b 4, right multiplication

6: b B a B b = b B c 5, 1, transitivity of equality

Each relation derived (steps 1 � 6) holds in the involutory quandle IQha; b; c : a B b = ci and in any

involutory quandle for which the relation a B b = c holds (including those of the trefoil [Examples 4.1.3,

4.5.9] and the �gure-eight knot [Examples 4.1.4, 4.5.11]). The relation derived in step 6 is obtained in a

di¤erent manner in Examples 4.10.4 and 4.10.6 of the next section.

Now we capture the notion of partial diagram and the e¤ect of tracing of relations in algebraic form with

the aid of d-derivation (De�nition 4.5.3).

Lemma 4.9.7 Let S be a set of generators and R̂ be a set of relations in Ud (S; B). Let D be the partial

diagram obtained by tracing each relation of R̂ (in any order). Let v; w be any words of Ud (S; B). Then,

in the equivalence relation
�
D (De�nition 4.9.4), v � w i¤ the relation v = w is d-derivable from R̂ over S.
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Proof. (=: Assume v � w and obtain a contradiction. Given v = w is d-derivable, examine one such

d-derivation M. Since every relation p = q in R has been traced, p � q for each such relation. Find the

earliest step of the d-derivation M such that for the relation x = y derived in that step x � y. Now we do a

case analysis based on the d-derivation rule used in that step.

1. Re�exivity. The derived relation is x = x for some x 2 Ud (S; B). However, x � x for all x in

Ud (S; B), which contradicts the assumption x � x.

2. Symmetry. The derived relation is x = y and is derived from y = x. By assumption, we have y � x

but x � y, a contradiction.

3. Transitivity. The derived relation is x = y; which is derived from x = z and z = y for some

z 2 Ud (S; B). By assumption x � z; z � y; but x � y, a contradiction.

4. Right multiplication. The derived relation has the form

p B g = q B g; g 2 S (assuming no cancellation occurs).

By assumption, p � q; but p B g � q B g. This contradicts the de�nition of tracing (De�nition 4.5.3),

whereby if p; q label the same vertex, then p B g; q B g must label the same vertex. A similar argument

holds when cancellation occurs.

=): In the initial diagram D0 in which no relations have been traced, v � w i¤ v; w are the same word

of Ud (S; B). Whenever vertices labeled v; w are merged by tracing, the relation v = w is d-derivable from

the relations traced. Step 3 of tracing (De�nition 4.5.3) merges v; w for a given relation v = w of R̂. Step 4

of tracing merges p B g; q B g for already merged vertices p; q and various g 2 S. In this case, d-derivability

of p = q implies

p B g = q B g:

In this case, d-derivability of p = q implies

p B g = q B g:

Rules (2) and (3) of d-derivation, symmetry and transitivity, may be required to merge multiple vertices.
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A similar argument applies when v; w are not represented by actual vertices in the partial diagram but are

represented by the same vertex when located.

Corollary 4.9.8 Let the diagram D be constructed from the involutory quandle presentation IQhS : Ri

according to De�nition 4.7.1. Then two words v; w 2 Ud (S; B) label the same vertex of D i¤ the relation

v = w is d-derivable from the set of relations R[RS [IS. The diagram is independent of the order in which

these relations are traced.

Proof. Set R̂ = R [RS [ IS in Lemma 4.9.7. The d-derivation is independent of the order of tracing, and

the criterion completely speci�es the diagram. Therefore, the diagram is independent of the order.

The following lemma gives a still tighter form for d-derivation and closes this section. The proof of this

lemma introduces the style of proof to be used in Lemma 4.10.12 in a simpler context.

Lemma 4.9.9 (Reordering in d-derivation.) Given any d-derivation of a relation v = w from a set R̂ of

relations over a universe U (S; B), there exists a related d-derivation of v = w in which all applications

of right multiplication precede all applications of symmetry of equality. The applications of symmetry of

equality in turn precede all applications of transitivity. (The resulting derivation simply applies symmetry

and transitivity to various right-multiplied variations of the initial relations.)

Proof. First, we show how to move applications of right multiplication to the beginning. Two adjacent

steps independent of one another can be exchanged at will. The di¢ culty arises when right multiplication

is applied to a relation derived by symmetry or transitivity. In the �rst of these cases, i.e.

(a) p = q (given or derived earlier)

(b) q = p a, symmetry of equality

(c) q B g = p B g b, right multiplication

the application of right multiplication may be placed before the application of symmetry while deriving the

same formulas (and one additional one) as follows.

(a) p = q

(a0) p B g = q B g a, right multiplication

(b) q = p a, symmetry of equality

(c) q B g = p B g a0, symmetry of equality
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A similar device is used when an application of right multiplication is preceded by the application of transi-

tivity. When the relation p = r is derived from p = q and q = r and p B g = r B g is derived from p = r,

instead derive

p B g = q B g;

q B g = r B g

by right multiplication followed by

p B g = r B g

and (if needed), p = r by transitivity. In this case, two additional steps are inserted in the d-derivation.

Repeated application of these maneuvers places all applications of right multiplication before those of sym-

metry and transitivity. Finally, we show how to place an application of symmetry before one of transitivity.

When p = r is derived from p = q and q = r and r = p is derived from p = r, instead derive

q = p;

r = q

by symmetry of equality followed by

r = p

and (if needed), p = r by transitivity. Repetition of this maneuver places all applications of symmetry

before all those of transitivity.
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4.10 Correctness of the Diagramming Method: Presentation Involutory

Quandles, Derivation, and d-derivation

In this section, we complete the proof of correctness began in the preceding section. First, we examine

our task in terms of mappings (Remark 4.9.3).

U (S; B) !
ud

Ud (S; B) !
uf

IQhS : �i !
h

IQhS : Ri

# �

D

The map � is characterized in terms of d-derivation in Corollary 4.9.8. The maps ud � uf � h and uf � h

remain to be characterized, which we do by means of derivation (De�nition 4.10.1) and derivation with

canonicalization (De�nition 4.10.5) respectively. These notions must be related to d-derivation

(Lemmas 4.10.10 through 4.10.13).

Alternatively, we may view our task as performing a series of recastings. The series begins with the

notion of presentation of an algebraic structure de�ned in Section 4.2 for arbitrary algebras, and here we

deal with involutory quandles. This de�nition is totally general for universal algebra and makes use of none

of the special properties of involutory quandles. Correspondingly, the de�nition of a presentation is not

suited for computation and indeed is not even stated in computational terms. The highly speci�c and highly

computational diagramming method and its characterization in terms of d-derivation (preceding section) is

at the end of the series.

The transition between these two very di¤erent entities is made in the following stages. First, the

de�nition of presentation involutory quandle is given a more computational quality through derivation

(De�nition 4.10.1). Derivation is then recast as derivation with canonicalization (De�nition 4.10.5) which,

because it derives canonically left-associated formulas, is easier to deal with notationally and is closer to

d-derivation . The �nal stage�transition from derivation with canonicalization to d-derivation

(Lemmas 4.10.10-4.10.13)�is also the most di¢ cult. This recasting eliminates the operation of left

multiplication and adjoins the secondary relations to the initial set of relations through compensation. These

modi�cations re�ect right multiplication is built into the diagrams but left multiplication is not. Therefore,

left multiplication must be incorporated by tracing the secondary relations. The entire sequence of recasting
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is summarized in the statement of Theorem 4.10.14.

Now we turn to the �rst stage of the recasting.

De�nition 4.10.1 Let S be a set of generators and R̂ be a set of relations in U(S; B). A derivation in

U (S; B) from R̂ is a sequence of steps through which a relation is derived by one of the following rules.

1. Re�exivity. For any word w 2 U(S; B); w = w.

2. Symmetry. From the relation p = q (either given in R̂ or derived in a previous step), derive the

relation q = p.

3. Transitivity. From the given or derived relations p = q; q = r derive the relation p = r.

4. Right multiplication. From the given or derived relation p = q and for any word w 2 U (S; B) ; derive

the relation p B w = q B w.

5. Left multiplication. From the given or derived relation p = q and for any word w 2 U (S; B) ; derive

the relation w B p = w B q.

Re�exivity is used only for a one-step derivation of w = w and is not applied in longer, nontrivial

derivations.

Note the de�nition refers to R̂ and not R because R is not the initial set of relations employed. This

raises the following question. What set of initial relations is employed given a presentation IQhS : Ri? The

following de�nition will be useful in supplying a precise answer.

De�nition 4.10.2 Let AS denote the set of all instances of the involutory quandle axioms over the gener-

ating set S. Therefore, AS consists of all relations of the forms

x B x = x;

(x B y) B y = x;

(x B y) B z = (x B z) B (y B z) for x; y; z 2 U (S; B) :

Now we answer the question posed above.
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Remark 4.10.3 Two words v; w of the universe U (S; B) represent the same word of the involutory quandle

IQhS : Ri i¤ the relation v = w is derivable from the set of relations R[AS (according to De�nition 4.10.1).

This Remark may be veri�ed by inspection of the appropriate de�nitions. Since the characterization of

the map ud � uf � h (Remark 4.9.3) and the �rst stage of the recasting discussed above are accomplished,

we proceed with an example of a derivation. The example is used to illustrate subsequent stages of the

recasting.

Example 4.10.4 (A derivation.) The following derivation employs the relation a B b = c and various

instances of the involutory quandle axioms to derive the relations

(b B a) B b = b B c

and

(c B a) B ((b B a) B b) = (c B a) B (b B c) :

1: a B b = c given relation

2: b B (a B b) = b B c 1, left multiplication

3: (b B b) = b instance of axiom 1

4: (b B b) B (a B b) = b B (a B b) 3, right multiplication

5: (b B b) B (a B b) = b B c 4, 2, transitivity of equality

6: (b B a) B b = (b B b) B (a B b) instance of axiom 3

7: (b B a) B b = b B c 6, 5, transitivity of equality

8: (c B a) B ((b B a) B b) = (c B a) B (b B c) 7, left multiplication

Each relation derived (steps 2 � 8) thus holds in the involutory quandle ha; b; c : a B b = ci and in any

involutory quandle for which the relation a B b = c holds (including those of the trefoil [Examples 4.1.3,

4.5.9] and the �gure eight knot [Examples 4.1.4, 4.5.11]).

As the preceding example suggests, the parenthesis structure of the terms in a derivation can become quite

complex. For convenience of notation, we prefer to work with the notion of derivation with canonicalization.
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De�nition 4.10.5 A derivation with canonicalization is a derivation (De�nition 4.10.1) in which each

initial relation of R̂ is considered to be in left-associated, right-cancelled form (that is, of the form p = q for

p; q 2 Ud (S; B)) and in which each derived relation is immediately placed in the canonical form.

Note d-derivation is a special case of derivation with canonicalization.

Example 4.10.6 (A derivation with canonicalization.) The following derivation with canonicalization rep-

resents a step-by-step recasting of Example 4.10.4 The relation a B b = c and various instances of the

involutory quandle axioms are employed to derive the relations

b B a B b = c

and

c B a B b B a B b B a B b = c B a B c B b B c

The latter relation is the canonicalized form of Example 4.10.4, step 8.

1: a B b = c given relation

2: b B (a B b) = b B c 1, left multiplication

b B b B a B b = b B c immediately canonicalized

3: b B b = b instance of axiom 1

4: (b B b) B (a B b) = b B (a B b) 3, right multiplication

b B a B b = b B b B a B b immediately canonicalized

5: b B a B b = b B c 4, 2, transitivity of equality

6: (b B a) B b = (b B b) B (a B b) instance of axiom 3

b B a B b = b B a B b immediately canonicalized, becomes trivial

7: b B a B b = b B c 6, 5, transitivity of equality

8: (c B a) B (b B a B b) = (c B a) B (b B c) either 5 or 7, left multiplication

c B a B b B a B b B a B b = c B a B c B b B c immediately canonicalized

Several features of the recasting of Example 4.10.4 include the following. First, one of the two desired rela-

tions is obtained in step 5 of the recasting, as well as in in step 7 (as in the original). Thus, a derivation with
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canonicalization may be shorter than the corresponding ordinary derivation. Second, the instance of axiom 3

in step 6 becomes trivial upon canonicalization. This is a general phenomenon (Lemma 4.10.8 below). Third,

the derivation of Example 4.10.4 maps step for step to the corresponding derivation with canonicalization.

These observations are incorporated in the following two lemmas.

Lemma 4.10.7 (Recasting of derivation.) Let M be a derivation from a set of canonicalized relations R̂ in

U (S; B). Then M can be recast as a derivation with canonicalization from R̂ in which the same relations

derived in M are derived in left-associated, right-cancelled form.

Proof. The recasting is straightforward. For each step of M; simply canonicalize the resulting relation while

retaining the same derivation rule with reference to the same preceding step(s). De�nition 4.10.1 shows the

canonicalization of a derived relation does not interfere with subsequent application of the derivation rules.

Lemma 4.10.8 Two words v; w of the universe U (S;B) represent the same element of the involutory

quandle IQhS : Ri i¤ the relation v1 = w1 is derivable with canonicalization from the set of relations R[ IS,

where v1; w1 are the left-associated, right-cancelled forms of v; w and the relations R are assumed to be

canonicalized as well.

Proof. =): If v; w represent the same element of IQhS : Ri, then a derivation of v = w from R[AS exists

(Remark 4.10.3). Recast this derivation as a derivation with canonicalization (preceding lemma). Relations

of AS ; which are instances of axioms 2 and 3; become trivial when canonicalized (Remark 4.4.6, proof of

Theorem 4.4.4). The remaining considerations are instances of axiom 1, x B x = x . By canonicalization,

we may assume

x = g0 B g1 B ::: B gn for some g0; :::; gn 2 S:

When canonicalized, the relation

x B x = x

becomes

g0 B g0 B g1 B ::: B gn = g0 B g1 B ::: B gn:

84



This relation can be obtained from the relation g0 B g0 = g0in IS by a derivation with canonicalization

involving repeated right multiplication.

(=: Given a derivation with canonicalization from R[IS , a corresponding ordinary derivation is readily

obtained by applying canonicalization explicitly by derivation. (Canonicalization by explicit derivation

requires use of axioms 2 and 3, as in the proof of Lemma 4.4.1. Therefore, the explicit derivation depends

on AS . Right and left multiplication are applied to embed instances of canonicalization within larger

expressions; symmetry and transitivity of equality combine multiple applications of canonicalization.).

Now we review the recasting accomplished thus far and outline what remains to be accomplished. To

review, the original task is to establish the relationship between the diagramming method (De�nition 4.7.1)

and the notion of presentation involutory quandle (Section 4.2). Both entities�the diagramming method

in terms of d-derivation (Corollary 4.9.8) and the notion of presentation involutory quandle in terms of

derivation with canonicalization (preceding lemma)�have been recast. The desired relationship between

these two types of derivation must be established.

Examination of De�nition 4.9.5, 4.10.1, and 4.10.5 shows d-derivation is a restricted case of derivation

with canonicalization. Speci�cally, right multiplication is restricted to generators, and left multiplication

is excluded entirely. These restrictions on d-derivation re�ect diagrams build in right multiplication but

not left multiplication. As will be seen in Lemma 4.10.10, the restriction on right multiplication does not

actually reduce derivation power but may lead to a longer derivation. On the other hand, the absence of

left multiplication makes d-derivation strictly weaker than derivation with canonicalization. How is the

weakness of d-derivation counterbalanced?

The lesser power of d-derivation is counterbalanced using a larger set of initial relations: R [RS [ IS as

compared with R [ IS . The larger set of initial relations does not overcompensate

(Theorem 4.10.14, (iv) =) (iii)) because d-derivation is not made stronger than derivation with

canonicalization. The major di¢ culty lies in showing the addition of RS is su¢ cient to compensate for the ab-

sence of left multiplication. The necessary recasting techniques and proof are given in

Lemmas 4.10.11-4.10.13 and Theorem 4.10.14. We begin by illustrating the recasting process.

Example 4.10.9 (Derivation with canonicalization recast as d-derivation.) We recast Example 4.10.6 in
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terms of d-derivation. Left multiplication is removed. By way of compensation, various instances of the

secondary relation

x B (a B b) = x B c

are introduced and correspond to the primary relation a B b = c. We develop the recasting step by step.

1: a B b = c given relation

The �rst step needs no modi�cation.

(2: b B b B a B b = b B c 1, left multiplication)

We must remove this left multiplication; instead we cite the corresponding secondary relation.

2: b B b B a B b = b B c secondary relation b B (a B b) = b B c

3: b B b = b idempotency

(4: b B a B b = b B b B a B b 3, right multiplication by a B b)
This step must be recast in terms of right multiplication by generators. Lemma 4.10.10 below covers the

general case. Here three steps are required.

4a: b = b B b 3, right multiplication by b

4b: b B a = b B b B a 4a, right multiplication by a

4c: b B a B b = b B b B a B b 4b, right multiplication by b

Step 5 can be retained unmodi�ed.

5: b B a B b = b B c 4c, 2, transitivity of equality

(6, 7 omitted)

(8: c B a B b B a B b B a B b = c B a B c B b B c 5, left multiplication by c B a)

The �nal step illustrates the di¢ culty of removing arbitrary left multiplication. Left multiplication

applied to a given primary relation (as in Step 2) is easily handled by employing the corresponding secondary

relation. At this point, left multiplication is applied to a derived relation. Generally, for such cases,

left multiplication must be pushed toward the beginning of the proof to reach a more tractable situation.

However, in this case, we can derive the necessary relation from two secondary relations as follows.
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8a. (c B a) B b B a B b = (c B a) B c relation given in RS

8b. c B a B b B a B b B a = c B a B c B a 8a, right multiplication

8c. c B a B b B a B b B a B b = c B a B c B a B b 8b, right multiplication

8d. c B a B c B a B b = c B a B c B b B c relation given in

R8 : (c B a B c B b) B (a B b)

= (c B a B c B b) B c

8e. c B a B b B a B b B a B b = c B a B c B b B c 8c, 8d, transitivity

The exempli�ed recasting is accomplished by the techniques given in the proofs of the following four lemmas.

Note the application of the techniques to step 8 of this example gives rise to super�uous yet valid steps.

Lemma 4.10.10 Let M be any derivation with canonicalization containing no application of left

multiplication. Let the initial set of relations for M be R̂ and the universe U (S; B). Then M can be

recast as a d-derivation from R̂ in Ud (S; B) deriving all relations derived by M.

Proof. The power of derivation with canonicalization exceeds that of d-derivation only in the rules of left

and right multiplication. Application of left multiplication is absent by hypothesis. Application in M of

right multiplication by an arbitrary word w 2 U (S; B) can be recast as right multiplication by generators,

as required by d-derivation. Suppose M derives p B w = q B w from the relation p = q. Placing this

relation is canonical form causes w to be canonicalized as well. Therefore, in w:l:o:g:; w has the form

g0 B g1 B ::: B gn; gi 2 S. The same canonicalized relation is obtained by successive right multiplication

by gn; :::; g1; g0; g1; :::; gn.

Lemma 4.10.11 Let p = q be any relation in U (S; B) and x; y be any words of U (S; B). Then the

relation

y B (x B p) = y B (x B q)

is d-derived (in canonicalized form) from two instances of the secondary relation

w B p = w B q

for w 2 Ud (S; B). That is, left-multiplied forms of secondary relations are d-derived from secondary

relations.
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Proof. We give a derivation in which left multiplication is not used.

1: y B p = y B q secondary relation

2: y B p B x = y B q B x 1, right multiplication

3: y B p B x B p = y B q B x B p 2, right multiplication

4: (y B q B x) B p = (y B q B x) B q secondary relation

5: y B p B x B p = y B q B x B q 3, 4, transitivity

Step 5 is the desired relation

y B (x B p) = y B (x B q)

with one application of canonical left association to each side. Recast this derivation as a derivation with

canonicalization (Lemma 4.10.7) and then as a d-derivation (Lemma 4.10.10)

Lemma 4.10.12 Let M be any derivation with canonicalization from a set of relations R̂[ R̂S in Ud (S; B)

(a set of relations and the corresponding secondary relations), which is a d-derivation except for the �nal

step of left multiplication. Then M is recast as a d-derivation from R̂[ R̂s to derive the same relations (and

possibly others).

Proof. The reader may wish to review the similar but simpler proof of Lemma 4.9.9. The present proof

is by induction on the length (number of steps) of the derivation M. The lemma is vacuously true for a

derivation of length one because, in the �nal step, left multiplication must be applied to the result of a

previous step. Now assume the lemma is true for derivations of less than n steps. We wish to prove the

lemma for derivations of n steps.

In the �nal step, left multiplication must be applied to the result of the mth step for some 1 6 m < n.

If m < n � 1; we may simply reorder the steps so the left multiplication is the m + 1st step and apply the

induction hypothesis to the sub-derivation consisting of steps 1 through m+1. Consider left multiplication

applied to the result of step m = n� 1 and perform a case analysis on the nature of step n� 1. If step n� 1

simply states a relation p = q given in R̂, then the result

x B p = x B q

of step n can be stated as given in R̂S .
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If step n� 1 states a relation

x B p = x B q

given in RS ; then the result of step n can be d-derived from R̂S by the preceding lemma.

We may assume step n � 1 does not apply re�exivity, which is only of use in the trivial derivation of

w = w.

If step n� 1 applies symmetry of equality to the relation p = q to derive q = p; then step n derives

x B q = x B p:

Recast so step n� 1 derives
x B p = x B q

by left multiplication and steps n; n+ 1 derive

x B q = x B p;

q = p

by symmetry. Apply the induction hypothesis to recast the sub-derivation consisting of steps 1 through

n� 1 as a d-derivation .

If step n� 1 applies transitivity to the relations

p = q;

q = r

to derive
p = r;

then step n derives
x B p = x B r:

Consider the following two related derivations.

1. Retain steps 1 through n� 2 of M but derive x B p = x B q by left multiplication as the �nal (n� 1)st

step.

2. Derive x B q = x B r similarly in n� 1 steps.

Apply the induction hypothesis to each of these two derivations to show the relations x B p = x B q;

x B q = x B r are d-derivable from R̂ [ R̂S . The relations x B p = x B r; p = r are then d-derivable by

transitivity.
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If step n�1 applies right multiplication to the relation p = q to derive p B g = q B g; then step n derives

x B (p B g) = x B (q B g) or, closer to the canonical form, x B g B p B g = x B g B q B g: Recast so step

n� 1 derives

(x B g) B p = (x B g) B q

by left multiplication and steps n; n+ 1 derive

x B g B p B g = x B g B q B g;

p B g = q B g

by right multiplication. Apply the induction in order to recast the sub-derivation consisting of steps 1

through n� 1 as a d-derivation.

We note certain technicalities involved in the induction argument presented above thereby pointing out

the need for the three preceding lemmas and the following lemma. First, the total length of a derivation

may increase when recast. Therefore, care is taken in phrasing the induction hypothesis based on derivation

length. Second, the recasting yields two new left multiplications when left multiplication follows transitivity.

Each new left multiplication is dealt with individually and ultimately removed. This technicality stands

in the way of combining the induction proof above with the proof of Lemma 4.10.13 because the latter

induction depends on reduction of the number of left multiplications. Fortunately, neither of these points

need concern the practical "diagrammer," who requires only the result stated in Theorem 4.10.14 below and

not the details of its proof.

Lemma 4.10.13 Let M be any derivation with canonicalization from a set of relations R̂ in Ud (S; B).

The M can be recast as a d-derivation from R̂ [ R̂S deriving the same relations as M (and possibly others as

well).

Proof. The proof is by induction on the number of applications of left multiplication in M. If there are

no applications of left multiplication, apply Lemma 4.10.10 to complete the proof. Otherwise, �nd the

�rst application and let n be the number of that step. Apply Lemma 4.10.10 to recast steps 1 through

n � 1 in terms of d-derivation. Apply Lemma 4.10.12 to recast the d-derivation combined with the �rst
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left multiplication as a d-derivation from R̂ [ R̂S . One application of left multiplication has been removed.

Repeat until all applications of left multiplication are removed. Apply Lemma 4.10.10 to recast the remainder

of the derivation as d-derivation.

Although removal of the �rst left multiplication acts on R̂ to bring in an element of R̂S , subsequent left

multiplications may act on the element brought about in this manner. Therefore, Lemma 4.10.11 and the

full power of Lemma 4.10.12 are required.

Now we state and prove the main theorem of Sections 4.9 - 4.10.

Theorem 4.10.14 (Correctness of the diagramming method for involutory quandles.) Let Q = IQhS : Ri

be a presentation involutory quandle. Then any diagram D produced according to De�nition 4.7.1 is the

diagram of Q (over the generating set S).

In addition, suppose the relations R are in canonical form (Lemma 4.4.2). Let p; q be any words of the

universe U (S;B) and p1; q1 their canonicalized correspondents in Ud (S;B) (De�nition 4.9.1). Then the

following are equivalent.

(i) p; q represent the same element of the involutory quandle IQhS : Ri.

(ii) The relation p = q is derivable from the set of relations R [AS (De�nitions 4.10.1, 4.10.2).

(iii) The relation p1 = q1 is derivable from the set of relations R [ IS (De�nitions 4.6.10, 4.10.5).

(iv) The relation p1 = q1 is d-derivable from the set of relations R [RS [ IS (De�nitions 4.6.10, 4.9.6).

(v) p1; q1 label the same vertex of the diagram D.

Proof. Proof that (i)()(v) is su¢ cient to prove D is the diagram of Q.

(i)()(ii): Remark 4.10.3.

(i)()(iii): Lemma 4.10.8.

(iii)=)(iv): In Lemma 4.10.13, set R̂ = R [ IS . R̂S then contains RS . In fact, R̂S = RS because the

secondary relation w B (g B g) = w B g canonicalizes to the trivial relation w B g = w B g for any relation

g B g = g in IS and any word w 2 Ud (S;B) . Thus

R̂ [ R̂S = R [RS [ IS

as required for this application of Lemma 4.10.13
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(iv)=)(iii): Every d-derivation is a derivation with canonicalization. The di¢ culty lies in the initial

unavailability of the secondary relations RS for the desired derivation with canonicalization. However, every

secondary relation required from RS can be obtained in the context of derivation with canonicalization by

applying the appropriate left multiplication to the corresponding primary relation from R.

(iv)() (v): Corollary 4.9.8.
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4.11 Diagramming of Arbitrary Quandles

The diagram of the arbitrary quandle is obtained similar to involutory quandles. The following modi-

�cations are necessary.

1. The diagram is a directed graph (De�nition 4.3.9, Example 4.3.10) rather than an undirected graph

(De�nition 4.3.1). An arc labeled b and directed from a to c indicates a B b = c and c B�1 b = a.

2. Modify the de�nition of tracing for the directed graph.

3. B�1 is distinguished from B in left association (Lemmas 4.4.7, 4.4.8).

Theorem 4.11.6 is the analogue of Theorem 4.10.14 for arbitrary quandles. The necessary de�nitions

and some examples are provided. An application is found in Section 4.12, in which the 5-quandles of the

square and granny knots are shown to be non-isomorphic. Review of De�nition 4.3.9 and Example 4.3.10

before proceeding is useful.

Remark 4.11.1 The diagram of a (non-involutory) quandle Q over a generating set S � Q has the following

properties.

1. For every q 2 Q and every s 2 S; there is exactly one arc labeled s and directed to q and exactly one

arc labeled s and directed from q. These may be the same arc .

2. For every s 2 S; there is a vertex labeled s met by both ends of an arc labeled s :

As in Remark 4.3.8, the aforementioned properties do not guarantee a directed graph is the diagram of

some quandle.
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Review of left association in arbitrary quandles from Lemmas 4.4.7 and 4.4.8 is useful. As with involutory

quandle diagrams (Section 4.5), left association is useful in calculating multiplication table entries. In

Example 4.3.10 we have

c B d = (a B b) B
�
a B�1 b

�
(by the diagram)

= a B b B b B a B�1

(Lemma 4.4.7)

= a

(by the diagram).

Given a presentation QhS : Ri for a non-involutory quandle Q; the diagram of Q over S may be obtained

by a method analogous to Sections 4.5 - 4.7. Tracing is key to the method.

De�nition 4.11.2 In the construction of the diagram of a presentation quandle Q with generating set S ,

to trace the relation

a0 Be1 a1 Be2 ::: Bem am = b0 Bf1 b1 Bf2 ::: Bfn bn; aibi 2 S; ei; fi = �1;

is to perform the following sequence of operations.

1. Locate the vertex a0 Be1 a1 Be2 ::: Bem am in the existing partial diagram. In other words, locate the

vertex a0 and, beginning at the vertex, a0, trace along arcs labeled a1; :::; am (and directed by corre-

sponding exponents e1:::em) to the desired vertex. If some vertex a0 Be1 a1 Be2 ::: Bei ai; 0 6 i < m;

is not met by any arc labeled ai+1 and directed outward (ei+1 = +1) or inward (ei+1 = �1) as neces-

sary, then adjoin the required sequence of arcs ai+1; :::; am (appropriately directed) and corresponding

new vertices to the diagram.

2. Locate b0 Be1 b1 Be2 ::: Ben bn in the same manner.

3. Merge (make identical) the two located vertices.
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4. For any two merged vertices p; q and every s 2 S, merge the vertices p B s; q B s (if both are present

in the partial diagram). Similarly merge p B�1 s; q B�1 s (if both are present).

De�nition 4.11.3 Let QhS : Ri be any quandle presentation. The primary relations of the presentation

are the relations R. The secondary relations RS are, for each relation s = t of R, the relations

x B s = x B t

for all x 2 U
�
S; B; B�1

�
.

De�nition 4.11.4 A diagram of a quandle presentation QhS : Ri is any labeled directed graph D obtained

as follows. Begin with the graph consisting of one vertex labeled g for each g 2 S and no arcs. Well-order

the set of relations R [RS [ IS. Finally, trace these relations in the chosen order.

The reader may wish to state and prove the analogues of Lemmas 4.7.3 and 4.7.4 (rewriting of primary

and secondary relations) for the case of non-involutory quandles.

Remark 4.11.5 We alter the notion of d-derivation (De�nition 4.9.5) for arbitrary presentation quandles

as follows. The d-universe in question is Ud
�
S; B; B�1

�
rather than Ud (S; B). The d-universe consists

of left-associated words in which right cancellation (axiom 2) is applied wherever possible. Operation (4),

right multiplication, must be expanded to admit both B and B�1multiplication; from p = q; either

p B g = q B g or p B�1 g = q B�1

may be derived for g 2 S.

Now we state the analogue of Theorem 4.10.14 for arbitrary quandles.

Theorem 4.11.6 (Correctness of the diagramming method for arbitrary quandles.) Let Q = QhS : Ri be

any presentation quandle (in general, non-involutory). Then any diagram D produced according to De�nition

4.11.4 is the diagram of Q.

In addition, suppose the relations R are in canonical form (Lemma 4.4.8). Let p; q be any words

of the universe U
�
S; B; B�1

�
and p1; q1 be their canonicalized correspondents in Ud

�
S; B; B�1

�
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(Remark 4.11.5). Then the following are equivalent.

(i) p; q represent the same element of the quandle Q = QhS : Ri.

(ii) The relation pi = qi is d-derivable from the set of relations R [RS [ IS

(De�nition 4.11.3, Remark 4.11.5).

(iii) pi; qi label the same vertex of the diagram D.

Proof. Analogous to the proof of Theorem 4.10.14.

Corollary 4.11.7 Let Q = QhS : Ri be any presentation quandle. If the relations R[RS[IS are d-derivable

from a subset R0 of R [RS [ IS ; then tracing the relations R0 is su¢ cient to diagram Q.

The following result is convenient for diagramming n-quandles (Section 4.12) and completes this section.

Corollary 4.11.8 In diagramming an n-quandle QnhS : Ri; the relations x Bn y = x need only be traced

for y 2 S, and the corresponding secondary relations need not be traced.

Proof. We show the relations

x Bn y = x; where y 2 U
�
S; B; B�1

�
;

are d-derivable from

x Bn y = x; where y 2 S;

and need not be traced (preceding corollary). Write y as a canonicalized product in the generators,

y = g0 Be1 g1 Be2 ::: Bem gm; gi 2 S; ei = �1:

Let

x1 = x B�em gm B�em�1 ::: B�e1 g1; x2 = x1 Bn g0 Be1 g1 Be2 ::: Bem gm:

Then

x Bn y = x2

(by left association and right cancellation). The relation x Bn y = x, or x2 = x, is d-derived from

x1 Bn g0 = x1 in m right multiplications, namely Be1 g1 Be2 ::: Bem gm. The corresponding secondary

relations,

z B (x Bn y) = z B x;
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can be d-derived from primary relations by recasting the following as a d-derivation:

z B (x Bn y) = z B�n y B x Bn y = z B�n y B x = z B x:

The recasting procedure is analogous to Lemmas 4.10.7 and 4.10.10.

The reader may now verify the diagram in Example4.3.10 by tracing the relations

R = fa B b B a = b; b B a B b = ag

RS = fx B�1 a B�1 b B a B b B a = x B b for all x;

x B�1 b B�1 a B b B a B b = x B a for all xg

IS = fa B a = a; b B b = bg

and, in addition,

x B3 a = x;

x B3 b = x

for all vertices x in a diagram.
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4.12 The Square Knot Distinguished from the Granny Knot by Examination

of Their 4-quandles

In this section, the diagramming method is used to show the 4-quandle of the granny knot is

non-isomorphic to that of the square knot. Our criterion is algebraic.

Proposition 4.12.1 Let Q� denote the quandle Q4ha; b : a B b B a = bi, T the trefoil knot, and �T its

mirror image; T # T; T # �T are the granny and square knots respectively. There exists a homomorphism

from Q4 (T # T ) onto Q�, but no homomorphism exists from Q4 (T # T ) onto Q�.

This proposition, once veri�ed, yields a quandle-theoretic proof of the (well-known) distinctions of the

two knots. Therefore, the proposition yields the (also well-known) distinctness of the trefoil knot T from

its mirror image �T .

In order to verify the proposition we will diagram

Q� = Q4ha; b : a B b B a = bi:

The diagram (Figure 4:12:4) is conveniently �nite. We will use it to verify inequality in Q� of various pairs

of expressions in a; b. Note such inequality information cannot be obtained by simply deriving algebraic

identities from the relations for Q�.

We begin veri�cation by obtaining presentations of the n-quandles Qn (T # T ) and Qn
�
T # �T

�
. The

case n = 4 is the present focus. The two knots are illustrated in Figure 4:12:1. In order to present the

quandle of a knot an orientation, a direction of travel along the knot is chosen (Section 3.4). The orientation

is chosen arbitrarily for the knot T # T because the two oppositely oriented forms are ambient isotopic via

a 180� rotation along a horizontal axis (Figure 4:12:2). Similarly, the orientation for T # �T is chosen

arbitrarily. Orient the knots as shown in Figure 4:12:1, label the arcs as shown, and obtain the following

presentations (after eliminating all but three generators).
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Qn (T # T ) = Qnha1; b1; c1 : a1 B b1 B a1 = b1;

a1 B c1 B�1 a1 = c1;

b1 B a1b1 = c1 B�1 a1 B�1 c1i

Qn
�
T # �T

�
= Qnha2; b2; c2 : a2 B b2 B a2 = b2;

a2 B c2 B a2 = c2;

b2 B a2 B b2 = c2 B a2 B c2i

Obtain the homomorphism h : Q4
�
T # �T

�
! Q� by letting

h (a2) = a; h (b2) = h (c2) = b:

We verify these assignments extend to a well-de�ned homomorphism. Figure 4:12:3 is a geometric

interpretation of the homomorphism h based on the mirror symmetry of the square knot. Corresponding

quandle elements on opposite sides of the plane of symmetry are identi�ed. The image quandle Q� has the

same presentation as Q4 (T ), the 4-quandle of the trefoil knot, except one relation is omitted.

b1
a1

c1

Granny T # T Square T # T

Figure 4:12:1. Granny knot and square knot

a x is o f
1 8 0
ro ta t io n

Figure 4:12:2: Ambient isotopy of the two choices of orientation for the granny knot

Figure 4:12:3: Geometric interpretation of homomorphism from Q4
�
T # �T

�
onto Q�
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Now we verify h is well-de�ned by applying De�nition 4.2.10 and Remark 4.2.11. Examine the image of

each de�ning relation for Q4
�
T # �T

�
. The images are

a B b B a = b (twice)

and

b B a B b = b B a B b

and obviously are satis�ed in Q�. Note h is surjective (onto) because both generators of Q� are in the image

of h.

A longer computation is needed to verify there is no homomorphism from Q4 (T # T ) onto

Q� = Q4ha; b : a B b B a = bi:

We begin by diagramming Q�, Figure 4:12:4. This diagram is readily produced by the methods of

Section 4.11. We use this diagram to show various relations do not hold in Q�; these non-relations block

various possible homomorphisms.

Now we consider the possibilities for homomorphisms from Q4 (T # T ) onto Q�. Any homomorphism

h is determined by the mapping of a set of generators. Thus, we consider the possible values for h (a1) ;

h (b1) ; h (c1) in Q� and check if a well-de�ned homomorphism results in each case.

The number of cases to be examined is reduced since h (a1)may be set equal to a without loss of generality.

The inner automorphism group Inn Q� (De�nition 4.1.11) is transitive on the elements of Q�. That is, for

every element q 2 Q�; there is an inner automorphism � 2 Q� mapping q to a. (Note the diagram of

Q� is connected as a graph, and the arcs of the graph represent the action of the inner automorphisms

�a : x! x B a and �b : x! x B b.) Therefore, if surjective homomorphism h : Q4 (T # T )! Q� existed,

a surjective homomorphism h1 : Q4 (T # T ) ! Q�with h1 (a1) = a;where h1 = h � � for some � 2 Inn Q�

would exist also.

Figure 4:12:4: Diagram of Q� = Q4ha; b : a B b B a = bi
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We next consider the possible values of h (b1) given h (a1) = a. Because

a1 B b1 B a1 = b1;

we must have

a B h (b1) B a = h (b1) (De�nition4.1.7):

The possibilities for h (b1) can be read from the diagram of Q� and tested by diagrammatic multiplication

(Sections 4.5, 4.11). Only h (b1) = a; hb1) = b Bk a; k = 0; 1; 2; 3 prove satisfactory (where k has been

reduced mod 4). Similarly, a1 B�1 c1 B�1 a1 = c1 implies a B�1 h (c1) B�1 a = h (c1) ; whence h (c1) = a

or h (c1) = a B�1 b Bm a; m = 0; 1; 2; 3: Finally, because

b1 B a1 B b1 = c1 B�1 a1 B�1 c1;

the following must be true:

h (b1) B a B h (b1) = h (c1) B�1 a B�1 h (c1) :

With h (b1) ; h (c1) selected from the admissible values just given, equality results only when

h (b1) = h (c1) = a:

Although these values yield a homomorphism, it is not surjective. This completes the veri�cation.

We note the diagram of Q� is used repeatedly in this veri�cation to show inequality of elements.

Derivation of algebraic identities from the relations given for Q� is not su¢ cient to show such inequality.

Rather, demonstration of inequality concerning correctness of the diagramming method rests on

Theorem 4.11.6.

To close this section, consider possible generalizations of Proposition 4.12.1. Let K be any tame knot.

The image quandle Q� of the Proposition generalizes as follows. Let

Q (K) = QhS : Ri

be the knot quandle presented as in Section 3.3. Let R0 be a set of relations obtained from R by deleting

any one of the given relations. Let

Q� (K) = QhS : Ri;

Q�n (K) = QnhS : Ri:
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Then Q� of the Proposition is Q�4 (T ). Q
� (K) ; Q�n (K) are knot invariants (proof is omitted for reasons of

space). We now have the following generalization of one half of Proposition 4.12.1.

Proposition 4.12.2 A surjective homomorphism h : Qn
�
K # �K

�
! Q�n (K) exists for every tame knot K

and every n > 2.

The homomorphism merges symmetrically opposite quandle elements as in Figure 4:12:3.

Generalization for Qn (K # K) ! Q�n (K) is more complex. Existence/nonexistence of a surjective

homomorphism varies with both K and n. When K is invertible
�
K = �K

�
; the homomorphism for

Qn
�
K # �K

�
serves for Qn (K # K). On the other hand, for the trefoil K = T , existence varies with

n. For n = 2; 3

Qn (T # T ) = Qn
�
T # �T

�
(proof omitted) yielding existence of a surjective homomorphism. Nonexistence holds for n = 4

(Proposition 4.12.1) and n = 5 (a lengthier but similar veri�cation).

Conjecture 4.12.3 No surjective homomorphism Qn (T # T )! Q�n (T ) exists for n > 4.

Does there exist, for every non-invertible tame knot K, an n such that no surjective homomorphism

Qn (T # T ) ! Q�n (T ) exists? That is, can Proposition 4.12.1 be generalized to demonstrate K 6= �K for

every non-invertible K?
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5 Quandles, Groups, and Branched Covering Spaces

At this point, the reader may suspect close interrelationships exist between quandles and groups. For

example, there is similarity between a knot quandle element and a meridian in the knot group (Section 3.3)

and a similarity of quandle diagrams (Sections 4.3 - 4.11) to Cayley diagrams of groups. In the present

section, we discuss those interrelationships between groups and quandles centered around the conjugate

group and the n-conjugate groups (De�nitions 5.1.1, 5.1.2); the n-fold cyclic branched covering spaces of

knots and links; and the corresponding n-quandles (Theorem 5.2.2). By examining these interrelationships

in detail, we show (Theorem 5.2.5) that a tame knot with trivial involutory quandle or trivial n-quandle

(for some n > 2) must be the trivial knot.
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5.1 The Conjugate and n-conjugate Groups of a Quandle

In this section, we de�ne the conjugate group and the n-conjugate groups of an arbitrary quandle.

These groups are obtained in an invariant manner and, therefore, are knot invariants for knot quandles.

The fundamental groups of cyclic branched covering spaces are obtained from these groups (Sections 5.2).

The �rst group considered is the conjugate group Conj Q of a quandle Q and is obtained by interpreting

quandle multiplication as group theoretic conjugation.

De�nition 5.1.1 The conjugate group Conj Q of a quandle Q is the presentation group

h�q for q 2 Q : �q�1�p�q = �r whenever p B q = r in Qi:

The presentation given in De�nition 5.1.1 is unwieldy when Q has more than a few elements.

Theorem 5.1.7 o¤ers a more convenient presentation of Conj Q for any presentation quandle Q. Note

Joyce refers to Conj Q as Adconj Q [Joyce1982b].

For any tame knot (or link) K, Conj Q (K) is the knot (or link) group (Corollary 5.1.8). For any

q 2 Q (K), �q is the meridian path (De�nition 3.3.2) of the quandle element q. Di¤erent quandles may have

the same conjugate group. For example, the square and granny knots have non-isomorphic quandles and

4-quandles (Section 4.12) but have isomorphic knot groups Conj Q (K).

Distinct elements q; r 2 Q may yield the same element �q = �r in Conj Q. Consider Q
�
T # �T

�
, the

quandle of the square knot presented in Section 4.12. The elements a2 and q = b2 B a2 B b2 are distinct

(they are distinct even in the homomorphic image Q�, Section 4.12) but have the same meridian �a2 = �q

(Figure 5:1:1).

The n-conjugate groups n > 2 can be de�ned for any quandle but are particularly useful in connection

with n-quandles.

Figure 5:1:1: Distinct quandle elements, same meridian
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De�nition 5.1.2 The n-conjugate group, Conjn Q of a quandle Q where n > 2; is the presentation group

h�q for q 2 Q : �q�1�p�q = �r whenever p B q = r in Q; �qn = 1 for q 2 Qi:

Conj2 Q is also referred to as the involutory conjugate group IConj Q.

The n-conjugate group is the image of the canonical homomorphism of the conjugate group. The

generators are involutions in the involutory conjugate group. Thus the relations

�q�1�p�q = �r

can be rewritten as

�q�p�q = �r

for this group. Generally, the involutory conjugate group has non-involutory elements as well

(Example 5.1.12). Similarly, the n-conjugate group has elements x with xn 6= 1. Joyce refers to Conjn Q

as AdQn Q [Joyce1982b].

Exponent-zero subgroups of the above groups are de�ned below and are useful in Section 5.2.

De�nition 5.1.3 Let Q be any quandle. The exponent of an element of Conj Q represented as a product

of powers of generators �qe11 �q
e2
2 :::�q

ek
k is the sum of the exponents e1+e2+ :::+ek. The exponent of an element

of Conjn Q is the corresponding sum mod n. The exponent-zero subgroups E0Conj Q; E0Conjn Q consist

of all elements of exponent-zero.

The exponent-zero subgroups are quandle invariants and, therefore, are knot invariants for knot quandles.

Moreover, K; E0Conjn Qn (K) is the fundamental group of the n-fold cyclic branched covering space of K

for a tame knot or link (Theorem 5.2.2). In regard to this connection, we have the following.

Remark 5.1.4 Let K be any tame oriented knot or link. The the exponent of any element

� 2 Conj Q (K) �= �1
�
S3 �K

�
(Corollary 5.1.11) is the linking number of the corresponding path with

K. The exponent of any � 2 Conjn Q (K) is a linking number mod n�the linking number of any path �

mapping to � under the canonical homomorphism Conj Q (K) ! Conjn Q (K). Thus the exponent-zero

subgroups consist of paths of linking number zero (or zero mod n) with K.
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Remark 5.1.5 Let K be any tame knot. Then E0Conj Q (K) is the commutator subgroup of Conj Q (K),

and E0Conjn Qn (K) �= E0Conjn Q (K) (Corollary 5.1.10) is the commutator subgroup of Conjn Qn (K)

for every n � 2.

Q a B b = c a B�1 b = c

ConjQ �b�1�a�b = c �b�a�b�1 = �c

�1 b�1ab = c bab�1 = c

F igure 5:1:2: Presentations for Q (K), Conj Q (K), �;
�
S3 �K

�
Now we develop the corresponding presentations for Conj Q and Conjn Q for any presentation quandle

Q = QhS : Ri. The corresponding presentations are considerably more convenient for computation than

the presentation given in De�nition 5.1.1. Furthermore, the convenient presentations lead to additional

interesting results. A conjugation-based recasting of words over quandle generators to words over group

generators must be de�ned.

De�nition 5.1.6 Let w be any word on a generating set S with operations B; B�1 (De�nition 4.2.4). Let

�S = f�s : s 2 Sg. Then, �w is the group theoretic word obtained from w by replacing u B v by �v�1�u�v and

u B�1 v by �v�u�v�1 throughout.

For example, (a B b) B c is �c�1�b�1�a�b�c.

Theorem 5.1.7 Let Q = QhS : Ri be any presentation quandle. Then, Conj Q �= h �S : �Ri

where �S = f�s :2 Sg and �R = f�r = �s : r = s is a relation in Rg.

Example 5.1.8

Q = Qha; b : a B b B a = b; b B a B b = ai;

ConjQ = ha; b : �a�1�b�1�a�b�a = �b; �b�1�a�1�b�a�b = �ai:

Proof. We show

1. Conj Q is a homomorphic image of hS : Ri; and

2. the homomorphism is an isomorphism.
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To prove (1), map every �q 2 �S to �q 2 Conj Q. This mapping extends to a well-de�ned homomorphism

h by Remark 4.2.11 for groups. De�nitions 5.1.6 and 5.1.1 show w = q in Q implies �w = �q in Conj Q.

Proof of part (2) is an exercise in derivations (Section 4.2). First, prove if the relation r = s is derivable

from R, then �r = �s is derivable from �R . Examine each derivation rule; only left and right multiplication

present di¢ culty. If r = s is the relation u B v = u B w derived from v = w by left multiplication, then

�r = �s is the relation

�v�1�u�v = �w�1�u �w

derivable as

�v�1�u�v = �w�1�u�v = �w�1�u �w

by right multiplication, left multiplication, and transitivity. Right B multiplication and B�1are dealt with

similarly.

When p; q; r 2 Conj Q are expressed in terms of the generators in �S, derivability of p B q = r from R

implies derivability of p B q = �r: That is,

�q�1�p�q = �r;

from �R. Therefore, h is an isomorphism.

The following corollary describes Conj Q (K) for knot and link quandles.

Corollary 5.1.9 [Joyce1982a] Let K be any tame knot or link. Then Conj Q (K) is the knot or link group

�1
�
S3 �K

�
. For any disk with path q; �q is the corresponding meridian path.

Proof. Compare the presentations of Q (K), Conj Q (K) with the Wirtinger presentation of the knot group

(Figure 5:1:2, Theorem 5.1.7, and Sections 3.3, 3.4).

Corollary 5.1.10 If Q = QhS : Ri then

ConjnQ �= h �S : �R; �qn = 1 for �q 2 �Si:

ConjnQhS : Ri �= ConjnQnhS : Ri:
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Proof. For the �rst �=;

�qn = 1 for �q 2 �S

implies

�qn = 1 for q 2 Q

because the remaining �q are conjugates of those in �S. For the second �=, the relations

x Bn y = x for Qn

yield

�y�n�x�yn = �x;

which reduces to

�x = �x

in the presence of �yn = 1.

Therefore, Conjn only re�ects quandle structure mod x Bn y = x. This statement is useful in the next

section.

Corollary 5.1.11 Let K be any tame knot or link. Then, Conjn Q (K) is �1
�
S3 �K

�
mod �n = 1 for

meridians �.

Example 5.1.12 Recall that IConj is Conj2 and IQ is Q2. For the trefoil knot:

IQ (K) = IQha; b : a B b B a = b; b B a B b = ai;

IConjIQ (K) = h�a;�b : �a�b�a�b�a = �b;�b�a�b�a�b = �a; �a2 = �b2 = 1i

is just the symmetric group S3; and, in this group, �a�b is a non-involutory element.

The following section relates Conjn groups to branched covering spaces.
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5.2 Knots, n-fold Branched Covers and n-quandles

This �nal section demonstrates the n-quandles� Qn (K) of a tame knot or link K � S3, n � 2� yield

considerable information about the n-fold cyclic branched covering spaces ~Mn (K) of K. Speci�cally,

E0ConjnQn (K) = �1

�
~Mn (K)

�
;

the exponent-zero subgroup of the n-conjugate group of the n-quandle is isomorphic to the fundamental

group of the n-fold branched cover (Theorem 5.2.2). A tame knot with a trivial n-quandle n � 2 is trivial

(Theorem 5.2.5).

A description of �1
�
~Mn (K)

�
is required and begins with a brief review of covering spaces. Then, a

discussion of n = 2 is followed by an outline of the generalization to n > 2.

The two-fold covering space is constructed with the aid of a spanning surface F for K and is obtained

as follows (Figure 5:2:1). Given a tame projection of K (item (i) of the Figure), color it in checkerboard

fashion (ii). The dark areas become portions of the spanning surface F . Span each crossing (iii) with a

twisted sheet to obtain F (iv). Now cut S3 along the surface F . Glue two copies of the resulting manifold

together along the cuts, as indicated schematically in Figure 5:2:2. The two copies of K are merged. The

resulting manifold is the two-fold branched covering space ~M2 (K). The two-fold unbranched covering space

M2 (K) is obtained by removing the copy of K from ~M2 (K). Both ~M2 (K) and M2 (K) are invariants of

K.

i ii iii iv v vi

F igure 5:2:1: Spanning surface for trefoil knot (i� iv). Checkerboard coloring

is illustrated also for the knot 935(v) and the Borromean rings (vi).

Now we outline the generalization to n > 2. Construct an orientable (contains no embedded Möbius

band) spanning surface F . If K is a link, it must be oriented for this construction. The construction,

involving Seifert circles, is more complicated. Again S3 is cut along F , and n copies of the resulting

manifold are glued together back to front along the cuts (Figure 5:2:3). The n copies of K are merged
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to yield the n-fold branched cover ~M2 (K) or deleted to yield the n-fold unbranched cover M2 (K). Both

~M2 (K) and M2 (K) are knot invariants.

Glue 1 to 1�

2 to 4�

3 to 3�

4 to 2�

Figure 5:2:2: Gluing of two copies of a manifold to form ~M2 (K). Schematically 1; 3

represent the knot K; 2; 4 represent cut along spanning surface F .

Glue 1 to 1�to 1"

3 to 3�to 3"

2 to 4�

2�to 4"

2" to 4

Figure 5:2:3: Gluing of n copies of a manifold to form ~M2 (K). Schematically 1, 3

represent the knot K; and 2, 4 represent cut along spanning surface F .

Now we examine the fundamental groups of these coverings. Employ the projection � : ~M2 (K) ! S3;

which re-merges the n sheets of the cover. The projection � maps Mn � ~Mn onto S3 �K. Any path � in

Mn projects onto a path � (�) in S3 �K. Figure 5:2:4 gives such a projected path for the case n = 2. In

the �gure, the solid portion of � (�) lifts to one sheet of M2, and the dotted portion lifts to the other sheet.

The path � passes from one sheet to the other whenever � (�) passes through the spanning surface F . The

path must both start and end in the sheet of the basepoint P 2M2. Therefore, for any path � in M2, � (�)

passes through F an even number of times. Equivalently, � (�) is evenly linked with K and is homotopic to
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the product of an even number of meridians. In general, n � (�) has a linking number (with K) congruent

to zero mod n.

Figure 5:2:4: Projection of a path � in ~M2 onto a path � (�) in S3 �K.

Conversely, any product �0 of an even number of meridians (for n = 2) or (for arbitrary n) with exponent

zero mod n lifts to a path � inMn. Two paths �; � inMn are homotopic, � � �; i¤ � (�) � � (�) in S3�K

because homotopies project and lift. Hence

�1 (Mn) �= E0�1
�
S3 �K

� �= E0ConjQ (K) ;
the subgroup of the knot group consisting of all elements of exponent zero mod n.

Now consider �1
�
~Mn

�
. Any path in Mn � ~Mn is a path in ~Mn, and any path in ~Mn is homotopic to

a path in Mn. But isomorphism of the fundamental groups does not follow because there are additional

homotopies available in ~Mn. In particular, if � (�) = �n for some meridian � of K � S3; then � � 1 in ~Mn

(Figure 5:2:5). Since �n = 1 for all meridians � of K � S3; � � 1 in ~Mn (Figure 5:2:5). That the relations

�n = 1 for meridians � of K are the only relations added by the presence of the lift of K is proved in [ ].

Figure 5:2:5: Homotopy of path � (in ~M2) to trivial path, when � (�) � �2, a squared meridian

We have obtained �1
�
~Mn (K)

�
as follows. In Conj Q (K) �= �1

�
S3 �K

�
; form the subgroup of elements

of exponent zero mod n. In this subgroup, mod out by �n = 1 for meridians � to obtain �1
�
~Mn (K)

�
.

Interchange the order of operations; mod out by �n = 1 and form the subgroup of exponent zero mod n.

The following lemma guarantees the same group results.
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Lemma 5.2.1 Let G be any group and H < G any subgroup. Let C be any subset of H closed under

conjugation in G. Let hCi be the subgroup of H generated by C. Then hCi is normal in H and in G, and

H=hCi is isomorphic to the subgroup of G=hCi generated by all elements (cosets) hCih; h 2 H.

Proof. hCi is normal in G; H because C is closed under conjugation in G; H. Normality and hCi � H

yield the result.

We apply the lemma by letting

G = ConjQ (K) �= �1
�
S3 �K

�
;

H = �1 (Mn) ; C

the set of all nth powers of meridians. Therefore,

�1

�
~Mn

�
�= �1 (Mn) =hCi �= E0ConjnQ (K) �= E0ConjnQn (K)

(Corollaries 5.1.10, 5.1.11). Therefore, the following is proved.

Theorem 5.2.2 Let K be any tame oriented knot or link in S3. Let ~Mn be the corresponding n-fold cyclic

branched covering space, n > 2. Then the fundamental group �1
�
~Mn

�
is isomorphic to the exponent-zero

subgroup E0ConjnQ (K) �= E0ConjnQ (K).

Note

1. �1
�
~Mn

�
can be obtained given just the n-quandle, and

2. it is not necessary K be oriented for n = 2.

Example 5.2.3 (Illustration of Theorem 5.2.2 for K the trefoil knot, n = 2.) We have

Q2 (K) = IQ (K) = IQha; b : a B b B a = b; b B a B b = ai:

Conj2Q2 (K) = IConj IQ (K) = h�a; �b : �a�b�a�b�a = �b; �a2 = �b2 = 1i;

which is just the symmetric group S3. The exponent-zero subgroup is generated by �a�b and is isomorphic

to Z3. Therefore, the fundamental group of the two-fold cyclic branched covering space of the trefoil knot

is Z3.
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The Smith Conjecture [Smith 1965] is required to prove our �nal result and is stated as follows.

Theorem 5.2.4 (Smith Conjecture). Let K be any tame knot in S3. If the n-fold cyclic branched covering

space of K � S3 has trivial fundamental group for some n > 2, then K is the trivial knot.

The proof for n = 2 appears in [Waldhausen 1969]. The general case is proved, but no summary paper

has appeared.

Our �nal result is proven with the aid of the following theorem.

Theorem 5.2.5 Let K be any tame knot in S3. If K has trivial n-quandle Qn (K) for some n > 2; then

K is the trivial knot.

Proof. Qn (K) trivial implies ConjnQn (K) �= Zn. The exponent-zero subgroup is trivial; �1
�
~Mn

�
is

trivial by Theorem 5.2.2; K is trivial by the Smith Conjecture.

Theorem 5.2.5 represents a �rst step toward deriving knot structure information from involutory quandle

and n-quandle structure.
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