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Abstract. Suppose gt is a 1-parameter Ad-diagonalizable subgroup of a Lie group G and Γ < G
is a lattice. We study the dimension of bounded and divergent orbits of gt emanating from a class
of curves lying on leaves of the unstable foliation of gt on the homogeneous space G/Γ. We obtain
sharp upper bounds on the Hausdorff dimension of divergent on average orbits and show that the
set of bounded orbits is winning in the sense of Schmidt (and, hence, has full dimension). The class
of curves we study is roughly characterized by being tangent to copies of SL(2,R) inside G, which
are not contained in a proper parabolic subgroup of G.

We describe applications of our results to problems in Diophantine approximation by number
fields and intrinsic Diophantine approximation on spheres. Our methods also yield the following
result for lines in the space of square systems of linear forms: suppose ϕ(s) = sY + Z where
Y ∈ GL(n,R) and Z ∈ Mn,n(R). Then, the dimension of the set of points s such that ϕ(s) is
singular is at most 1/2 while badly approximable points have Hausdorff dimension equal to 1.
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1. Introduction

1.1. Summary of the results. The purpose of this article is to study the Hausdorff dimension
of bounded and divergent orbits of diagonalizable flows emanating from curves on homogeneous
spaces. The motivation for studying these problems comes from the theory of Diophantine ap-
proximation. The class of curves we study is roughly characterized by being tangent to maximal
representations of SL(2,R) into the ambient Lie group G. These are representations whose images
are not contained in a proper parabolic subgroup G. See Definition 10.1 for a precise description. In
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this setting, we provide a sharp upper bound on the dimension of divergent on average trajectories
(Definition 2.1) and show that bounded orbits are winning for a Schmidt game on intervals of the
real line (see Section 5 for detailed definitions). Moreover, we establish, in a quantitative form, the
non-divergence of push-forwards of shrinking curve segments (cf. Proposition 6.1).

For concreteness, we state our results in the introduction in the examples which are most rel-
evant to applications in Diophantine approximation, deferring the more general statements to
Theorems 4.3, 10.7, and 11.6. These concrete examples include homogeneous spaces of products
of real rank 1 Lie groups (Theorem A), a more general class of curves on homogeneous spaces of
products of SO(n, 1) (Theorem B and 11.6), and actions of SL(2,R) on any homogeneous space of
finite volume (Theorem C). Curves on more general arithmetic homogeneous spaces are studied in
Section 10.

In Section 3, we present applications of our results to problems in intrinsic Diophantine approxi-
mation on spheres (Corollary 3.1), Diophantine approximation by number fields (Corollary 3.2), and
Diophantine properties of lines in the space of square systems of linear forms Mn,n (Corollary 3.3).

1.2. Historical context. To the best of our knowledge, the problem of the dimension of diver-
gent orbits starting from curves has not been previously addressed in the literature. Among the
motivations for studying this problem is a well-known deep conjecture, due to Wirsing, concerning
the approximability of transcendental numbers by algebraic numbers of bounded degree. By the
work of Bugeaud and Laurent, the Hausdorff dimension of the set of counterexamples to Wirsing’s
conjecture in degree n is bounded above by the dimension of singular vectors in M1,n

∼= Rn lying
on the Veronese curve

{
(ξ, ξ2, . . . , ξn) : ξ ∈ R

}
[BL05].

To place our results in context, we briefly survey the history of the subject. In [Dan86,Dan89],
Dani studied the problem of bounded orbits in two settings: orbits of diagonalizable flows on
homogeneous spaces of rank 1 Lie groups and orbits in SL(m + n,R)/SL(m + n,Z) of the form
gtuY Γ, where, for t ∈ R and Y ∈Mm,n an m× n real matrix,

gt = diag(et/m, . . . , et/m, e−t/n, . . . , e−t/n), uY =

(
Im Y
0 In

)
. (1.1)

We refer to gt as a diagonal element with weight (1/m, . . . , 1/m, 1/n, . . . , 1/n). It is shown that
bounded orbits of diagonalizable flows on rank 1 homogeneous spaces have full Hausdorff dimen-
sion. It is also shown that orbits of the form (gtuY Γ)t>0 are bounded if and only if Y is badly
approximable, i.e., there exists δ > 0 such that for all (p,q) ∈ Zm × Zn, with q 6= 0,

‖Y q− p‖n ‖q‖m > δ.

Using the results of Schmidt on badly approximable systems of linear forms [Sch69], this implies
that bounded orbits for gt as in (1.1) have full dimension. These results were generalized in [KW10,
KW13] where bounded orbits of non-quasiunipotent flows were shown to have full dimension.

All of these results were obtained by showing that bounded orbits are winning for variants of
a game invented by Schmidt in [Sch66]. The winning property is much stronger than having full
Hausdorff dimension since it is stable under countable intersections and implies thickness, i.e., the
intersection of a winning set with any non-empty open set has full dimension. We refer the reader
to [KW10] for more details on Schmidt’s original game as well as a new variant introduced by
the authors. More recently, far reaching generalizations of these results were obtained in [BPV11],
in particular settling an old conjecture of Schmidt on the intersection of sets of weighted badly
approximable vectors with different weights.

Dani also studied the existence and classification of divergent orbits of diagonalizable flows on
homogeneous spaces in [Dan85]. Among the results obtained by Dani is the fact that divergent orbits
on non-compact homogeneous spaces of a rank 1 Lie group G are degenerate, i.e., can be detected
using the behavior of finitely many vectors in some fixed representation of G. In particular, the set
of divergent orbits consists of a countable collection of immersed submanifolds in G/Γ. This result



HEIGHT FUNCTIONS AND EXPANDING CURVES 3

also holds for quotients of Lie groups by arithmetic lattices of rational rank 1. By contrast, quotients
by higher rank arithmetic lattices always admit non-degenerate divergent orbits [Dan85,Wei04].

In a landmark paper, the precise Hausdorff dimension of divergent orbits under the flow induced
by gt in (1.1) was calculated when (m,n) = (2, 1) in [Che11]. This result was extended in [CC16] to
the case when min(m,n) = 1. These results build on earlier ideas of Cheung in [Che07] where the
Hausdorff dimension of divergent orbits in SL(2,R)n/SL(2,Z)n for n ≥ 2 under the flow induced
by a diagonal matrix in each coordinate was determined to be 3n − 1/2. In [KKLM17], a sharp
upper bound on the dimension of divergent orbits for general m and n was obtained by different
methods. The proof in [KKLM17] relies on the powerful technique of systems of integral inequalities
introduced in [EMM98] in the context of quantifying Margulis’ work on the Oppenheim conjecture.

Parallel to these developments and motivated by problems in Diophantine approximation, the
study of the evolution of curves on homogeneous spaces under diagonal flows attracted a lot of inter-
est. In [KM98], Kleinbock and Margulis showed that the push-forward of certain “non-degenerate”
smooth curves in the group {uY : Y ∈M1,n} by diagonal elements similar to gt in (1.1) do not
diverge in SL(n + 1,R)/SL(n + 1,Z). This allowed them to settle a conjecture due to Baker and
Sprindžuk showing that the Lebesgue measure of very well approximable vectors belonging to such
curves is 0. This result has been generalized in numerous directions, cf. [KLW04,BKM15,ABRdS18]
for notable examples.

In [Sha09b,Sha10], using Ratner’s theorems and the linearization technique, Shah extended the
results of Kleinbock and Margulis by showing that the push-forwards of the parameter measure on
these curves, in fact, become equidistributed towards the Haar measure on G/Γ. These results build
on earlier work of Shah in [Sha09c,Sha09a] where the push-forwards of certain smooth curves on the
unit tangent bundle of hyperbolic manifolds by the geodesic flow were shown to be equidistributed
towards the Haar measure.

On the other hand, the problem of determining the Hausdorff dimension of bounded and diver-
gent orbits restricted to curves as above is far less understood. In a breakthrough article, Beres-
nevich showed in [Ber15] that the Hausdorff dimension of finite intersections of weighted badly
approximable vectors on non-degenerate analytic curves in M1,n is full. By means of Dani’s corre-
spondence, this implies that bounded orbits of diagonal elements similar to gt in (1.1) with more
general weights than (1, 1/n, . . . , 1/n) starting from points on curves on the group {uY : Y ∈M1,n}
is equal to 1. We refer the reader to [Ber15] for more on the history of this problem and to [ABV18]
where these bounded orbits were shown to be in fact winning in the sense of Schmidt for planar
curves. The dimension of bounded orbits starting from curves on other homogeneous spaces was
studied in [Ara94] in rank 1 homogeneous spaces and in [EGL16] in quotients of SL(2,R)r×SL(2,C)s

by irreducible lattices.

2. Main Results

2.1. Preliminary Notions. Before stating our main results, we need to introduce necessary defi-
nitions and notation. Given a real Lie group G, we denote by g its Lie algebra. For a 1-parameter
subgroup gt of G, we say gt is Ad-diagonalizable over R if g decomposes over R under the Adjoint
action of gt into eigenspaces.

g =
⊕
α∈R

gα, gα =
{
Z ∈ g : Ad(gt)(Z) = eαtZ

}
.

We remark that the decomposition above is only an eigenspace decomposition with respect to
Ad(gt), not a decomposition into root spaces. Suppose that G acts on a metric space X. Our
goal is to study the Hausdorff dimension of certain orbits of gt on X with prescribed recurrence
properties. For that purpose, let us make precise the recurrence notions we shall be interested in.
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Definition. For a flow gt : X → X on a metric space X and y ∈ X, we say the (forward) orbit gty
is divergent on average, if for any compact set Q ⊂ X, one has

lim
T→∞

1

T

∫ T

0
χQ(gty) dt = 0 (2.1)

where χQ denotes the indicator function of Q. We say the orbit gty is bounded if {gty : t > 0} is
compact. The orbit gty is said to have linear growth if for some base point y0, we have

lim sup
t→∞

d(gty, y0)

t
> 0, (2.2)

where d(·, ·) is the metric on X.

Finally, recall that a subset A of a metric space is thick if the intersection of A with every
non-empty open set has full Hausdorff dimension.

2.2. Homogeneous Spaces of Products of Rank One Lie Groups. Our first result is in the
setting of homogeneous spaces of Lie groups of the form G = G1×· · ·×Gk, where each Gi is a real
rank one Lie group. To state the result, we need some preparation.

Suppose Γ is any lattice in G. Then, we can write Γ = Γ1×· · ·×Γl (up to finite index), where each
Γj is an irreducible lattice in a sub-product of G, which we denote by Hj . By Margulis’ arithmeticity
theorem, if for some 1 ≤ j ≤ l, Hj is a product of more than 1 factor (i.e. rankR(Hj) > 1), then
there exists a rational structure on Hj in which Γj is arithmetic, i.e. Γj is commensurable with
Hj(Z).

We say that a 1-parameter subgroup gt of G is split if the projection of gt onto each higher rank
factor Hj is Ad-diagonalizable over Q with respect to the Q-structure in which Γj is arithmetic.
The following maps into g are the main object of study in this setting.

Definition. For a compact interval B ⊂ R and an Ad-diagonalizable subgroup gt, we say a differ-
entiable map ϕ : B → g is gt-admissible if the image of ϕ is contained in a single eigenspace gα
for some α > 0 and [ϕ, ϕ̇] ≡ 0 on B. For every s, we denote by u(ϕ(s)) the image of ϕ(s) in G
under the exponential map.

Denote by gi the Lie algebra of Gi. The following is the first main theorem of this article.

Theorem A. Suppose G = G1× · · · ×Gk , where each Gi is a simple Lie group of real rank 1 and

finite center and Γ is any lattice in G. For each 1 ≤ i ≤ k, let g
(i)
t be a non-trivial 1-parameter

subgroup of Gi which is Ad-diagonalizable over R, and suppose ϕi : B → gi is a g
(i)
t -admissible

C2-map. Let gt = (g
(i)
t )1≤i≤k and ϕ = ⊕ki=1ϕi. Assume that gt is split and that ϕ is gt-admissible.

Define the following set.

Z = {s ∈ B : ϕ̇i(s) = 0 for some 1 ≤ i ≤ k} .

Then, for every x0 ∈ X = G/Γ, the following hold.

(i) The Hausdorff dimension of the set of points s ∈ B\Z for which the orbit (gtu(ϕ(s))x0) is
divergent on average as t→∞ is at most 1/2.

(ii) For any compact interval V ⊆ B\Z, the set of points s ∈ V for which the orbit (gtu(ϕ(s))x0)t>0

is bounded in X is winning for a Schmidt game on V induced by gt. In particular, this set is
thick in B\Z.

(iii) For almost every s ∈ B\Z, any weak-∗ limit of the measures 1
T

∫ T
0 δgtu(ϕ(s))x0ds is a probability

measure on X.
(iv) The set of points s ∈ B\Z for which the forward orbit (gtu(ϕ(s))x0)t>0 has linear growth has

Lebesgue measure 0.
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Remark 2.1. In studying divergent orbits, it is necessary for our methods that the diagonalizable
flow we consider in Theorem A expands the curve by the same amount in every coordinate. In
Theorems B and 11.6 below, we relax this assumption, where we allow some of the coordinate flows
git to be trivial. It is an interesting question as to whether similar results hold for more general
diagonal flows.

We refer the reader to Section 5 for details on Schmidt games and a more precise form of part
(ii) of Theorem A. Number theoretic corollaries of Theorem A concerning intrinsic Diophantine
approximation on spheres are discussed in Section 3.1.

We note that the assumption in Theorem A that ϕ = ⊕ki=1ϕi is gt-admissible amounts to ensuring

that the eigenspace of Ad(g
(i)
1 ) containing the image of ϕi corresponds to the same eigenvalue for

each i. Moreover, the restriction to the points in B\Z is natural since it is possible for the map ϕ
to map a sub-interval of B onto a point whose orbit is divergent.

Remark 2.2. The proof of Theorem A is reduced to the case when Γ is an irreducible lattice in
G. When rankRG > 1, Γ is an arithmetic lattice by Margulis’ arithmeticity theorem. In that case,
Theorem A is a special case of a more general result we obtain for quotients of semisimple algebraic
Lie groups by arithmetic lattices, Theorem 10.7.

In [Ara94], in the setting of rank one locally symmetric spaces, it is shown that bounded orbits
under the geodesic flow restricted to non-constant C1-maps on the unit tangent sphere around a
point is winning in the sense of Schmidt. The methods in [Ara94] rely on the geometry of rank 1
locally symmetric spaces. Our proof is completely different and remains valid in more generality.
Theorems B and C below are other instances where our methods also apply. We refer the reader to
Theorems 4.3 and 5.2 where we show an analogous statement to Theorem A in the abstract setting
of Lie group actions on metric spaces satisfying certain recurrence hypotheses.

Remark 2.3. If we assume the image of a coordinate function ϕi is contained in an abelian
subspace of gi, we can weaken the regularity condition on ϕi to be C1+ε for some ε > 0. In
particular, Theorem A holds for C1+ε-maps when Gi ∼= SO(di, 1) for each 1 ≤ i ≤ k.

Using a result in [KP17], we deduce a lower bound on the dimension of the divergent on average
orbits considered in Theorem A in a special case which agrees with the upper bound we obtain. We
further discuss the sharpness of this bound, as well as the bounds obtained in the results below, in
Section 13.

Corollary 2.4. In the notation of Theorem A, suppose G/Γ = (SL(2,R)/Γ1)× (G′/Γ′), where Γ1

is a non-cocompact lattice in SL(2,R). Assume further that ϕ1 is non-constant. Then, for every
x0 ∈ G/Γ, the Hausdorff dimension of the set of points s ∈ B\Z such that the orbit (gtu(ϕ(s))x0)t>0

is divergent on average is exactly 1/2.

2.3. Non-maximal Curves and Restrictions of Scalars of SL(2). In Theorem A, every co-
ordinate of the map ϕ is assumed to be non-constant. However, our methods apply in more general
situations. This is the content of our next result in the setting where G = SL(2,R)r×SL(2,C)s for
some r, s ∈ N. The motivation for studying these problems in this particular setting comes from
questions in Diophantine approximation with number fields.

For g ∈ G, we denote by U+(g) the expanding horospherical subgroup of G associated with g
and by Lie(U+(g)) its Lie algebra. We also use u(z) to denote exp(z) for z ∈ Lie(U+(g)). For t ∈ R
and x = (xi) ∈ Rr × Cs, let

at =

((
et 0
0 e−t

))
16i6r+s

, u(x) =

((
1 xi
0 1

))
16i6r+s

.

Note that U+(a1) = {u(x) : x ∈ Rr × Cs} and for all g ∈ G, U+(ga1g
−1) = gU+(a1)g−1.
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For each k, let us write Gk = SL(2,R)rk × SL(2,C)sk . Thus, we can make the following identifi-
cations.

Lie(U)+(a1) ∼= Rr × Cs ∼=
l⊕

k=1

Rrk ⊕ Csk .

Given a map ψ = (ψi) : B → Ra × Cb such that ψ 6≡ 0, where B ⊂ R, the characteristic of ψ,
denoted by char(ψ) is defined to be

char(ψ) =
# {1 6 i 6 a : ψi ≡ 0}+ 2 ·# {a < i 6 a+ b : ψi ≡ 0}
# {1 6 i 6 a : ψi 6≡ 0}+ 2 ·# {a < i 6 a+ b : ψi 6≡ 0}

. (2.3)

We can now state our main result in this setting.

Theorem B. Suppose G = G1×· · ·×Gl is as above, Γ = Γ1×· · ·×Γl such that Γk is an irreducible
lattice in Gk, and gt is a split 1-parameter subgroup which is conjugate to at. For 1 6 k 6 l, let
ϕk : B → Rrk ⊕ Csk be a C1+ε-map for some ε > 0 and let ϕ = ⊕kϕk : B → Lie(U+(g1)) ∼=⊕l

k=1 Rrk ⊕ Csk . Denote by (ϕk)i the ith coordinate of ϕk and let

Z = {s ∈ B : (ϕ̇k)i(s) = 0, (ϕ̇k)i 6≡ 0 for some k, i} .
Assume that ϕ is not a constant map. Then, for every x0 ∈ X = G/Γ, the Hausdorff dimension of
the set of points s ∈ B\Z for which the forward trajectory (gtu(ϕ(s))x0)t>0 is divergent on average
is at most

1

2
+

1

2
max
1≤k≤l

char(ϕ̇k).

Moreover, if the above quantity is strictly less than 1, then parts (ii)− (iv) of Theorem A also hold
in this setting.

We remark that the upper bound in Theorem B is strictly less than 1 if and only if

# {1 6 i 6 rk : (ϕ̇k)i 6≡ 0}+ 2 ·# {rk < i 6 rk + sk : (ϕ̇k)i 6≡ 0} > rk + 2sk
2

, (2.4)

for all 1 ≤ k ≤ l.
Remark 2.5. An analogue of Theorem B holds for other products of real rank 1 Lie groups. The
upper bound formula for the dimension of divergent orbits will depend on the factors in the product,
but the rest of the proof goes through verbatim. We refer the reader to Theorem 11.6 for a result
for products of copies of SO(n, 1).

The bounded orbits in Theorem B were shown to be winning in the sense of Schmidt in [EGL16]
for C1-curves ϕ satisfying (2.4) and Γ an irreducible lattice. Our methods are rather different
in flavor and apply to a wider class of examples. Moreover, equidistribution of translates by gt
of submanifolds of U+(g1) of small codimension and satisfying certain curvature conditions was
established in [Ubi17].

Applications of Theorem B to Diophantine approximation by number fields are discussed in
Section 3.2.

2.4. SL(2,R) Actions on Homogeneous Spaces. The motivation for our next result comes
from problems in Diophantine approximation of square systems of linear forms. In particular,
Theorem C below is used to study the Hausdorff dimension of singular and badly approximable
square systems of linear forms belonging to a straight line with an invertible slope (Corollary 3.3).

Theorem C. Let B ⊂ R be an interval and suppose L is a semisimple algebraic Lie group defined
over Q, Γ an arithmetic lattice in L, and ρ : SL(2,R)→ L a non-trivial representation. Let

gt = ρ

((
et 0
0 e−t

))
, u(ϕ(s)) = ρ

((
1 s
0 1

))
, s ∈ B.

Then, for every x0 ∈ X = L/Γ, (i)− (iv) of Theorem A hold in this setting.
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Remark 2.6. An analogue of Theorem C is known for the action of SL(2,R) on strata of abelian
differentials. The 1/2 upper bound on the dimension of divergent orbits was established by Masur
in [Mas92]. This was recently extended in [AAE+17] to show that this upper bound in fact holds
for divergent on average orbits. Moreover, Kleinbock and Weiss showed that bounded orbits in that
setting have full Hausdorff dimension in [KW04]. The winning property of bounded orbits was later
obtained in [CCM13]. The proof of Theorem C uses the method of height functions and integral
inequalities and is valid for SL(2,R) actions on general metric spaces satisfying the hypotheses of
Theorem 5.2. In particular, the work of Eskin and Masur in [EM01] establishes these hypotheses
in the setting of SL(2,R) actions on strata of abelian differentials.

2.5. Paper Organization and Overview of Proofs. In Section 3, we discuss applications of
our main results to problems in Diophantine approximation. In Section 4, we prove a general result
for Lie group actions on metric spaces which implies the upper bound on the dimension of divergent
on average orbits as well as the almost sure non-divergence result of Theorems A (parts (i) and
(iii)), B and C as soon as the assumptions are verified.

The winning property of bounded trajectories is also obtained for general Lie group actions in
Section 5, where we discuss Schmidt’s game in detail. Finally, part (iv) of the above theorems
concerning growth of orbits is established under these abstract hypotheses in Section 6 where the
quantitative non-divergence of expanding translates of shrinking curve segments is established.

These general results assume the existence of a certain “height function” encoding recurrence of
orbits in the form of an integral inequality (Eq. (4.3)) roughly asserting that the average height of
the push-forward of a curve tends to decrease. This idea was introduced in [EMM98] and has been
used in numerous other contexts since. Our restriction on the class of curves is to insure that such
an inequality holds uniformly and - more importantly - in a form that we can iterate.

The construction of these functions along with establishing their main properties is carried out in
Sections § 8, § 9-11 and § 12. The proofs of Theorems A, B, and C are given in Sections 10.4, 11.1,
and 12.3. Corollary 2.4 is established in Section 13.

3. Applications to Diophantine Approximation

In this section, we state number theoretic consequences of our main results, particularly to
Diophantine approximation problems.

3.1. Diophantine Approximation on Spheres. Intrinsic Diophantine approximation on Sn
refers to approximating vectors in Sn using elements of the set Q = Qn+1 ∩ Sn, as opposed to
approximation by elements of all of Qn+1. Given a function φ : N→ (0,∞), we say that x ∈ Sn is
intrinsically φ-approximable if there exist infinitely many (p, q) ∈ Zn+1 × N such that p/q ∈ Sn
and ∥∥∥∥x− p

q

∥∥∥∥ < φ(q). (3.1)

Following [KM15], we denote by A(φ,Sn) the set of φ-approximable points and for τ > 0, we
let φτ (x) = x−τ . An analogue of Dirichlet’s classical theorem was obtained in [KM15, Theorem
1.1] showing that A(Cnφ1,Sn) = Sn for some constant Cn > 0. Moreover, it is shown that badly
approximable points on Sn exist in this setting [KM15, Theorem 1.2]. We say x ∈ Sn is badly
approximable if there exists a constant ε(x) > 0 such that x /∈ A(ε(x)φ1, Sn). The analogue of
Khinchin’s theorem was established in [KM15, Theorem 1.3].

We say that x ∈ Sn is intrinsically singular on average if for all ε > 0, the following holds.

lim
N→∞

1

N
#

{
1 6 ` 6 N :

∥∥∥∥x− p

q

∥∥∥∥ < ε2−`, 0 < |q| 6 2`
}

= 1. (3.2)

In [KM15], these Diophantine properties were connected to the dynamics of a diagonalizable flow
gt on SO(n+ 1, 1)/Γ, where Γ is an arithmetic lattice. This is done by associating to each x ∈ Sn,
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an element u(Zx) in the expanding horospherical subgroup of gt. Then, they show that x ∈ Sn is
badly approximable if and only if the orbit gtu(Zx)Γ is bounded in G/Γ. In [KM15, Theorem 1.5],
the property of being φ-approximable was connected to excursions of the orbit gtu(Zx)Γ into cusp
neighborhoods parametrized by φ. Using this correspondence with dynamics, one can show that x
is intrinsically singular on average if and only if the orbit gtu(Zx)Γ is divergent on average in G/Γ.
This correspondence when combined with Theorem A imply the following corollary.

Corollary 3.1. Suppose B ⊂ R is a compact interval and ϕ : B → Sn is a C1+ε-map for some
ε > 0 such that ϕ̇ does not vanish on B. Then, the following hold.

(1) The Hausdorff dimension of the set of points s ∈ B such that ϕ(s) is intrinsically singular
on average is at most 1/2.

(2) The set of points s ∈ B for which ϕ(s) is intrinsically badly approximable is winning for a
Schmidt game on B. In particular, this set is thick in B.

(3) For every γ > 0, the set of points s ∈ B for which ϕ(s) ∈ A(φ1+γ ,Sn) has Lebesgue measure
0.

3.2. Diophantine Approximation by Number Fields. Our next application concerns a gen-
eralization of the classical notion of Diophantine approximation of a real number by rationals to
approximation by elements in a number field. Suppose K is a finite extension of Q of degree d and
let OK denote its ring of integers. Denote by Σ the set of Galois embeddings of K into R and C,
where we choose one of the two complex conjugate embeddings. Let r (resp. s) denote the number
of real (resp. complex) embeddings in Σ so that d = r + 2s. Denote by KΣ = Rr × Cs and let
∆ : K → KΣ be the embedding defined by

∆(x) = (σ(x))σ∈Σ.

Let G = SL(2,R)r×SL(2,C)s. The map ∆ extends to an embedding of SL(2,OK) into G and we
let Γ = ∆(SL(2,OK)). Then, Γ is a non-uniform irreducible lattice in G and there exists a rational
structure on G so that Γ is an arithmetic lattice of Q-rank 1. Define the following elements of G.

gt =

((
et 0
0 e−t

))
σ∈Σ

, u(x) =

((
1 xσ
0 1

))
σ∈Σ

. (3.3)

We say x = (xσ)σ∈Σ ∈ KΣ is K-badly approximable if there exists ε(x) > 0 so that for all
p, q ∈ OK with q 6= 0,

max
σ∈Σ
{|σ(p) + xσσ(q)|}max

σ∈Σ
{|σ(q)|} > ε(x).

We say x is K-very well approximable if for some γ > 0, there exist infinitely many non-zero
pairs (p, q) ∈ O2

K such that

max
σ∈Σ
{|σ(p) + xσσ(q)|}max

σ∈Σ

{
|σ(q)|1+γ

}
< 1.

Finally, say x is K-singular on average if for all ε > 0, the following holds.

lim
N→∞

1

N
#

{
1 6 ` 6 N : max

σ∈Σ
{|σ(p) + xσσ(q)|} < ε2−`, 0 < max

σ∈Σ
{|σ(q)|} 6 2`

}
= 1. (3.4)

Analogues of Dirichlet’s theorem as well as the existence of badly approximable vectors have
been established in this setting. Moreover, it is shown in [EGL16] that x is K-badly approximable
if and only if the orbit gtu(x)Γ is bounded in G/Γ. The same correspondence implies that x is
K-singular on average if and only if the orbit gtu(x)Γ is divergent on average in G/Γ. Finally,
we note that the group gt above is split in this case and, in particular, Theorem B applies and gives
the following corollary.
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Corollary 3.2. Suppose B ⊂ R is a compact interval and ϕ = (ϕσ)σ∈Σ : B → Rr × Cs is a C1+ε-
map for some ε > 0 such that for each σ, either ϕ̇σ ≡ 0 or ϕ̇σ has finitely many zeros. Assume
further that

# {σ ∈ Σ : ϕ̇σ 6≡ 0, σ is real}+ 2 ·# {σ ∈ Σ : ϕ̇σ 6≡ 0, σ is complex} > r + 2s

2
. (3.5)

Then, the following hold.

(1) The Hausdorff dimension of the set of points s ∈ B for which ϕ(s) is K-singular on average
is at most

1

2
+

1

2

# {1 6 i 6 r : ϕ̇i ≡ 0}+ 2 ·# {r < i 6 r + s : ϕ̇i ≡ 0}
# {1 6 i 6 r : ϕ̇i 6≡ 0}+ 2 ·# {r < i 6 r + s : ϕ̇i 6≡ 0}

.

(2) The set of points s ∈ B for which ϕ(s) is K-badly approximable is winning for a Schmidt
game on B. In particular, this set is thick in B.

(3) The set of points s ∈ B for which ϕ(s) is K-very well approximable has Lebesgue measure
0.

As stated in the introduction, the winning property of badly approximable vectors in Corol-
lary 3.2 was obtained before in [EGL16] by different methods.

3.3. Square Systems of Linear Forms. Our next corollary is an application of Theorem C to
the study of the Diophantine properties of square matrices regarded as systems of linear forms. In
particular, we are interested in the dimension of badly approximable and singular matrices and the
measure of very well approximable matrices belonging to a straight line in Mn,n(R). We first recall
the precise definitions of these notions. We say a matrix Y ∈Mn,n(R) is badly approximable if
there exists ε(Y ) > 0 for all (p,q) ∈ Zm × Zn with q 6= 0:

‖p + Y · q‖ ‖q‖ > ε(Y ),

where for v = (v1, . . . , vn) ∈ Rn, ‖v‖ = max |vi|. We say Y is singular if for every ε > 0, there
exists N0 ∈ N so that for all N > N0, the following inequalities hold for some (p,q) ∈ Zn × Zn.{

‖p + Y q‖ 6 ε/N,
0 < ‖q‖ 6 N.

Finally, Y is very well approximable (VWA) if there exists ε > 0 and infinitely many q ∈ Zn
such that

‖Y q− p‖ < ‖q‖−1−ε for some p ∈ Zn.
These Diophantine properties can be studied through dynamics on the space of unimodular

lattices in R2n as follows. Let G = SL(2n,R), Γ = SL(2n,Z), and X = G/Γ. For t ∈ R and
Y ∈Mn,n(R), define the following elements of G.

gt =

(
etIn 0
0 e−tIn

)
, uY =

(
In Y
0 In

)
, (3.6)

where In denotes the identity matrix. As discussed in the introduction, Dani showed that Y is
badly approximable if and only if the forward orbit gtuY Γ is bounded in X. Similarly, Y is singular
if and only if the forward orbit gtuY Γ is divergent. Finally, by [KMW10, Proposition 3.1(a)], Y is
VWA if and only if

lim sup
t→∞

dX(gtuY Γ, x0)

t
> 0,

where dX(·, ·) is the Riemannian metric on X induced by the right invariant metric on G and x0 is
any base point in X.

Using this correspondence with dynamics, Theorem C has the following corollary.
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Corollary 3.3. Suppose ϕ : B → Mn,n(R) is defined by ϕ(s) = sY + Z for some Y ∈ GL(n,R)
and Z ∈Mn,n(R). Then, the following hold.

(1) The Hausdorff dimension of the set of points s ∈ B for which ϕ(s) is singular is at most
1/2.

(2) The set of points s ∈ B for which ϕ(s) is badly approximable is winning for a Schmidt game
on the real line. In particular, this set is thick.

(3) The Lebesgue measure of the set of points s ∈ B for which ϕ(s) is very well approximable
is 0.

In this setting, the homomorphism ρ : SL(2,R)→ G used to obtain Corollary 3.3 from Theorem C
is defined as follows.

ρ

((
et 0
0 e−t

))
= gt, ρ

((
1 s
0 1

))
= usY , ρ

((
1 0
s 1

))
=

(
In 0

sY −1 In

)
.

Finally, one applies Theorem C to the base point x0 = uZΓ.

4. The Contraction Hypothesis and Divergent Trajectories

In this section, we prove an abstract recurrence result for diagonalizable trajectories starting from
admissible curves in actions of Lie groups on metric spaces. Theorem 4.3 is the main result of this
section establishing, in particular, a bound on the dimension of divergent orbits. In later sections,
we verify the hypotheses of this theorem in the settings of the results stated in the introduction.

4.1. The Contraction Hypothesis for Lie Group Actions. Suppose G is a connected real Lie
group with Lie algebra g. Consider a non-trivial 1-parameter subgroup A = {gt : t ∈ R} which is
Ad-diagonalizable over R. Then, g decomposes under the adjoint action of gt into eigenspaces

g =
⊕
α∈A∗

gα.

where A∗ denotes the group of additive homomorphisms α : A→ R. In particular, for every t ∈ R,
α ∈ A∗ and Y ∈ gα, we have

Ad(gt)(Y ) = eα(t)Y. (4.1)

We are interested in studying gt-admissible curves ϕ as defined in the introduction. Note that the
vanishing set Z in the statements of the main theorems is a closed set. Since all the results stated
in the introduction concerning measure and Hausdorff dimension are local, we assume without loss
of generality that the curves we study are defined on a compact interval where Z = ∅. We make
a further simplification requiring that ϕ commutes with itself. The case [ϕ, ϕ̇] ≡ 0 of Theorem A
requires very minor modifications to our proofs. The following definition makes these reductions
more precise for purposes of reference in the later parts of the article.

Definition 4.1. A map ϕ : [−1, 1]→ g is gt-admissible if the following holds:

(1) ϕ is C1+γ for some γ > 0, i.e. it is continuously differentiable and the Hölder exponent of
its derivative ϕ̇ is γ.

(2) The image of ϕ is contained in a a subspace V of a single eigenspace gα for some α such
that α(t) > 0 for t > 0 and [V, V ] = 0.

(3) The derivative of ϕ does not vanish on [−1, 1].

Note that we only require the span of the image of ϕ to be an abelian subalgebra. In particular,
the ambient eigenspace gα need not be an abelian subspace.

The following is the key recurrence property for the action which underlies the results stated in
the introduction.
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Definition 4.2 (The Contraction Hypothesis). Suppose X is a metric space equipped with a G-
action. A gt-admissible curve ϕ : [−1, 1]→ gα ⊂ g is said to satisfy the β-contraction hypothesis
on X if there exists a proper function f : X → (0,∞] satisfying the following properties:

(1) The set Z = {f =∞} is G-invariant and f is bounded on compact subsets of X\Z.
(2) f is uniformly log Lipschitz with respect to the G action. That is for every bounded

neighborhood O of identity in G, there exists a constant CO ≥ 1 such that for g ∈ O and
all x ∈ X,

C−1
O f(x) 6 f(gx) 6 COf(x). (4.2)

(3) There exists c̃ ≥ 1 such that the following holds: for all t > 0, there exists b̃ = b̃(t) > 0 such
that for all x ∈ X and all s ∈ [−1, 1],

1

2

∫ 1

−1
f(gtu(rϕ̇(s))x) dr 6 c̃e−βα(t)f(x) + b̃, (4.3)

where u(Y ) = exp(Y ) for Y ∈ gα.

(4) For all M ≥ 1, the sets {x ∈ X : f(x) ≤M}, denoted by X≤M , are compact.

The function f will be referred to as a height function.

The notion of height functions was introduced to homogeneous dynamics in [EMM98]. It was
used in [KKLM17] to obtain sharp upper bounds on the dimension of singular systems of linear
forms. We note that allowing height functions to assume the value ∞ has proven useful in several
important applications [BQ11,EMM15].

The following is the main result of this section.

Theorem 4.3. Let G be a real Lie group and X be a metric space equipped with a G-action.
Suppose gt is an Ad-diagonalizable one-parameter subgroup of G and ϕ is a gt-admissible curve
satisfying the β-contraction hypothesis on X. Then, for all x ∈ X\ {f =∞}, the following hold.

(1) The Hausdorff dimension of the set of s ∈ [−1, 1] for which the trajectory gtu(ϕ(s))x is
divergent on average is at most 1− β.

(2) For Lebesgue almost every s, any weak-∗ limit of the measures 1
T

∫ T
0 δgtu(ϕ(s))x dt is a prob-

ability measure on X.

Throughout this section, we fix a metric space X equipped with a proper continuous G-action
and we fix a gt-admissible curve ϕ satisfying the β-contraction hypothesis on X.

We remark that if an orbit {gtx : t ≥ 0} is divergent on average for some x with f(x) <∞, then
for all M > 0,

1

T

∫ T

0
χM (gtx) dt→ 0,

where χM is the indicator function of X≤M = {y ∈ X : f(y) ≤M}.
The main applications of our results are to G actions on homogeneous spaces of G of the form

X = G/Γ where Γ is a lattice in G. The following lemma shows that the β-contraction hypothesis
is a property of the commensurability class of Γ and will allow us to reduce the task of establishing
the β-contraction hypothesis to irreducible lattices in the case G is semisimple.

Recall that two topological spaces X1 and X2 are commensurable if they have homeomorphic
finite-sheeted covering spaces.

Lemma 4.4. Suppose ϕ is a gt-admissible curve satisfying the β-contraction hypothesis for the
G-action on a metric space X and for some β > 0. Denote by gα the Ad(gt)-eigenspace of g
containing the image of ϕ. Then, the following hold.

(1) Suppose X ′ is a metric space which is commensurable to X with a common finite cover Y .
Assume that Y and X ′ are equipped with an action of G which is equivariant with respect
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to the covering maps Y → X and Y → X ′. Then, ϕ satisfies the β-contraction hypothesis
for the G-action on X ′ and for the same β.

(2) Suppose G′ is a Lie group with Lie algebra g′ and g′t is a 1-parameter R-diagonalizable
subgroup of G′. Suppose ϕ′ is a g′t-admissible curve satisfying the β′-contraction hypothesis
for the G′-action on a metric space X ′. Let g′α′ be the Ad(g′t)-eigenspace of g′ containing the
image of ϕ′. Assume further that α(t) = α′(t) for all t ∈ R. Then, ϕ⊕ϕ′ : [−1, 1]→ g⊕g′ is
(gt, g

′
t)-admissible and satisfies the (min(β, β′))-contraction hypothesis for the G×G′-action

on X ×X ′.

Proof. (1) Denote by p : Y → X and p′ : Y → X ′ the covering maps. Let f the height function on
X. Define a height function f ′ on X ′ by

f ′(x′) =
∑

y:p′(y)=x′

f(p(y)).

Since the above sum runs over finitely many points, whose cardinality is equal to the sheetedness
of the cover Y → X ′, then one verifies that f ′ satisfies all the properties in Definition 4.2.

(2) Denote by f and f ′ the height functions on X and X ′ respectively. Then, one defines a
function f + f ′ on X × X ′ by (f + f ′)(x, x′) = f(x) + f ′(x′). Then, f + f ′ provides the desired
height function on X ×X ′. �

4.2. Approximation by horocycles and the Markov property. The following elementary
lemma allows us to obtain an integral estimate over curves via integral estimates over tangents
while simultaneously providing us with a mechanism for iterating such integral estimates. This
iteration mechanism will play the same role as the Markov property in the context of random
walks.

Recall that γ > 0 denotes the Hölder exponent of the derivative of ϕ.

Lemma 4.5. There exists a constant C1 > 1, such that for all x ∈ X, natural numbers n with
n ≥ 1/γ, t > 0 and all subintervals J ⊂ [−1, 1] of radius at least e−α(nt), one has∫

J
f(g(n+1)tu(ϕ(s))x) ds 6 C1

∫
J

∫ 1

−1
f(gtu(rϕ̇(s))gntu(ϕ(s))x) dr ds. (4.4)

Proof. First, we note that for all r ∈ [−1, 1], we have

J ⊆ J ± re−α(nt) := (J + re−α(nt)) ∪ (J − re−α(nt)). (4.5)

Using positivity of f , (4.5) and a change of variable, we get∫
J
f(g(n+1)tu(ϕ(s))x) ds

=

∫ 1

0

∫
J
f(g(n+1)tu(ϕ(s))x) ds dr 6

∫ 1

0

∫
J±re−α(nt)

f(g(n+1)tu(ϕ(s))x) ds dr

=

∫ 1

−1

∫
J+re−α(nt)

f(g(n+1)tu(ϕ(s))x) ds dr =

∫ 1

−1

∫
J
f(g(n+1)tu(ϕ(s+ re−α(nt)))x) ds dr.

Then, Fubini’s theorem and the fact that ϕ is C1+γ imply the following.∫
J
f(g(n+1)tu(ϕ(s))x) ds 6

∫
J

∫ 1

−1
f(g(n+1)tu(ϕ(s) + re−α(nt)ϕ̇(s) +O(e−(1+γ)α(nt)))x) dr ds.

Moreover, by definition of gt and u(Y ), we have

gtu(Y )g−t = u(eα(t)Y ).
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Thus, by our assumption that n > 1/γ, we get∫
J
f(g(n+1)tu(ϕ(s))x) ds 6

∫
J

∫ 1

−1
f(u(O(1))g(n+1)tu(ϕ(s) + re−α(nt)ϕ̇(s))x) dr ds

=

∫
J

∫ 1

−1
f(u(O(1))gtu(rϕ̇(s))gntu(ϕ(s))x) dr ds.

Note that u(O(1)) belongs to a bounded neighborhood of identity independently of t and n. Hence,
by the log Lipschitz property of f , there exists a constant C1 > 1 such that for all y ∈ X,

f(u(O(1))y) 6 C1f(y).

This concludes the proof. �

4.3. Integral estimates and long excursions. The goal of this section is to prove an upper
bound on the measure of the set of trajectories with long excursions outside of fixed compact sets.
We show that such a measure decays exponentially in the length of the excursion. We remark that
our proof of this fact is different from the proof of a similar step in [KKLM17, Proposition 5.1].
Our method allows us to handle curves which are in general not subgroups that are normalized by
gt. The proof of [KKLM17], however, uses this point crucially.

For x ∈ X, M, t > 0 and natural numbers m,n ∈ N, we define the following sets

Bx(M, t,m;n) =
{
s ∈ [−1, 1] : f(gmtu(ϕ(s)x) < M, f(g(m+l)tu(ϕ(s))x) >M, for 1 ≤ l ≤ n

}
.

For every N ∈ N, let PN denote the partition of the interval [−1, 1] into N intervals of equal
length.

Proposition 4.6. There exists a constant c0 ≥ 1 such that for every t > 0 with eα(t) ∈ N, there
exists M0 = M0(t) > 0, so that for all M > M0 the following holds. For all natural numbers
m ≥ 1/γ and n ≥ 1 and all x ∈ X\ {f =∞}, one has that

|Bx(M, t,m;n) ∩ J0| 6 cn0e−βα(nt)|J0|,
for every interval J0 ∈ Peα(mt), where |·| denotes the Lebesgue measure on [−1, 1].

Proof. Let t > 0 be fixed. Let c̃ and b̃ = b̃(t) > 0 be as in (3) of Definition 4.2. Let T = b̃eβα(t)/c̃.
Then, for all x ∈ X with f(x) > T , using (4.3), we get

1

2

∫ 1

−1
f(gtu(rϕ̇(s))x) dr 6 2c̃e−βα(t)f(x).

Using (2) of Definition 4.2, we can find C̃1 ≥ 1 such that for all x ∈ X and all s ∈ [−1, 1], we have

C̃−1
1 f(x) 6 f(u(ϕ̇(s))x) 6 C̃1f(x). (4.6)

We define c0 and M0 as follows

c0 = 4C1C̃1c̃, M0 = C̃1T,

where C1 denotes the constant in Lemma 4.5. Suppose M > M0. To simplify notation, for each
k ∈ N, we let

B(M,k) := Bx(M, t,m; k).

For purposes of induction, we also define B(M, 0) as follows

B(M, 0) := {s ∈ [−1, 1] : f(gmtu(ϕ(s))x) > T} .
Let us also write Pk to denote Peα(kt) for simplicity.

Suppose J ∈ Pm+n−1 is such that J ∩B(M,n− 1) 6= ∅ and let s0 ∈ J ∩B(M,n− 1). Then, we
have f(g(m+n−1)tu(ϕ(s0))x) > M . Now, consider any s ∈ J . Writing ϕ(s) = ϕ(s0) + Oϕ̇(|J |), we
see that

f(g(m+n−1)tu(ϕ(s))x) > T.
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Indeed, this follows from (4.6) and the fact that M > C̃1T . Therefore, by Lemma 4.5 and the
choice of T , it follows that∫

J
f(g(m+n)tu(ϕ(s))x) ds 6 C1

∫
J

∫ 1

−1
f(gtu(rϕ̇(s))g(m+n−1)tu(ϕ(s))x) drds

6 4C1c̃e
−βα(t)

∫
J
f(g(m+n−1)tu(ϕ(s))x) ds. (4.7)

Now, consider an interval J0 ∈ Pm satisfying J0∩B(M,n) 6= ∅. Then, since B(M,n) is contained
in B(M,n− 1), we have that J0 ∩B(M,n− 1) 6= ∅. Next, note that the following inclusion holds.

B(M,n− 1) ∩ J0 ⊆
⋃

J∈Pm+n−1

J∩B(M,n−1)∩J0 6=∅

J.

In particular, by (4.7), we get∫
B(M,n−1)∩J0

f(g(m+n)tu(ϕ(s))x) ds 6
∑

J∈Pm+n−1

J∩B(M,n−1)∩J0 6=∅

∫
J
f(g(m+n)tu(ϕ(s))x) ds

6 4C1c̃e
−βα(t)

∑
J∈Pm+n−1

J∩B(M,n−1)∩J0 6=∅

∫
J
f(g(m+n−1)tu(ϕ(s))x) ds.

(4.8)

Since eα(t) ∈ N, for each 1 ≤ j ≤ k, the partition Pk is a refinement of Pj . This implies the
following inclusion. ⋃

J∈Pm+n−1

J∩B(M,n−1)∩J0 6=∅

J ⊆
⋃

J∈Pm+n−2

J∩B(M,n−1)∩J0 6=∅

J. (4.9)

Hence, the following inequality follows from (4.8), (4.9), and the fact that f is non-negative:∫
B(M,n−1)∩J0

f(g(m+n)tu(ϕ(s))x) ds 6 4C1c̃e
−βα(t)

∑
J∈Pm+n−2

J∩B(M,n−1)∩J0 6=∅

∫
J
f(g(m+n−1)tu(ϕ(s))x) ds.

(4.10)
Iterating (4.10), by induction, we obtain the following exponential decay integral estimate.∫
B(M,n−1)∩J0

f(g(m+n)tu(ϕ(s))x) ds 6 (4C1c̃)
ne−βα(nt)

∑
J∈Pm

J∩B(M,n−1)∩J0 6=∅

∫
J
f(gmtu(ϕ(s))x) ds

= (4C1c̃)
ne−βα(nt)

∫
J0

f(gmtu(ϕ(s))x) ds, (4.11)

where on the second line, we used the following consequence of Pm being a partition.

J ∈ Pm, J ∩ J0 6= ∅ =⇒ J = J0.

Suppose s0 ∈ J0∩B(M,n−1). Then, by definition of the setB(M,n−1), we have f(gmtu(ϕ(s0))x)
is at most M . Thus, arguing as before, using (4.6), we obtain the following inequality for all s ∈ J0,

f(gmtu(ϕ(s))x) 6 C̃1M. (4.12)

Combining this observation with (4.11), it follows that∫
B(M,n−1)∩J0

f(g(m+n)tu(ϕ(s))x) ds 6 (4C1c̃)
ne−βα(nt)C̃1M |J0|. (4.13)
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Hence, by Chebyshev’s inequality, we obtain

|B(M,n) ∩ J0| 6 cn0e−βα(nt)|J0|.

This completes the proof. �

The following corollary allows us to convert measure estimates into an estimate on covers.

Corollary 4.7. There exists a constant C2 > 1, depending only on the height function f and the
curve ϕ, such that the following holds. Suppose M0 and c0 are as in Proposition 4.6. Then, for all
M > C2M0, t > 0, m,n ∈ N with m ≥ 1/γ and x ∈ X\ {f =∞}, the number of elements of the
partition Peα((m+n)t) needed to cover the set Bx(M, t,m;n) ∩ J0, for any J0 ∈ Peα(mt), is at most

cn1e
(1−β)α(nt), where c1 = C2c0.

Proof. Using (2) of Definition 4.2, one can find a constant C2 > 1 so that the following holds. Let
J ∈ Peα((m+n)t) be such that J ∩Bx(M, t,m;n) ∩ J0 6= ∅. Then, for all s ∈ J and all 1 ≤ l ≤ n,

f(gmtu(ϕ(s))x) < C2M, f(g(m+l)tu(ϕ(s))x) > C−1
2 M.

In particular, J is contained in the set:

BC2
x (M, t,m;n) =

{
s : f(gmtu(ϕ(s)x) < C2M,f(g(m+l)tu(ϕ(s))x) > C−1

2 M, for 1 ≤ l ≤ n
}
.

Moreover, since Peα((m+n)t) is a refinement of Peα(mt) , it follows that

J ⊆ BC2
x (M, t,m;n) ∩ J0. (4.14)

The measure of the set BC2
x (M, t,m;n) can be estimated as in the proof of Proposition 4.6, where

in the last step of the proof, we use the estimate f(gmtu(ϕ(s))x) < C2M in place of that in (4.12).
We, thus, obtain that

|BC2
x (M, t,m;n) ∩ J0| 6 (C2c0)ne−βα(nt)|J0|, (4.15)

where c0 is the constant provided by Proposition 4.6. The corollary thus follows upon combin-
ing (4.14) and (4.15). �

4.4. Integral estimates and coverings. For x ∈ X, Q ⊆ X, t, δ > 0 and N ∈ N, we define the
following sets

Zx(Q,N, t, δ) = {s ∈ [−1, 1] : # {1 ≤ l ≤ N : gltu(ϕ(s))x /∈ Q} > δN} . (4.16)

To simplify notation, we denote the sets Zx(X≤M , N, t, δ) by Zx(M,N, t, δ) for all M > 0. The
following is the main covering result that will imply Theorem 4.3.

Proposition 4.8. There exists a constant C3 > 1 such that the following holds. For all t > 0 with
eα(t) ∈ N and x ∈ X\ {f =∞}, there exists M1 = M1(t, x) > 0 so that for all M > M1, δ > 0 and

N ∈ N, the set Zx(M,N, t, δ) can be covered by at most CN3 e
(1−δβ)α(Nt) intervals of radius e−α(Nt).

Proof. Using (2) of Definition 4.2, we have that

M̃1 := sup
s∈[−1,1],l∈[0,1/γ]

f(gltu(ϕ(s))x) <∞.

Let C2 > 1 be the constant in Corollary 4.7 and let M0 > 0 be as in Proposition 4.6. Define M1 as
follows

M1 := max
{
C2M0, M̃1

}
.

Consider a set Φ ⊆ {1, . . . , N} containing at least δN elements. Define the following set of
trajectories whose behavior is determined by Φ:

Z(Φ) = {s ∈ Zx(M,N, t, δ) : f(gltu(ϕ(s))x) > M iff l ∈ Φ} .
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Following [KKLM17], we decompose the set Φ into maximal connected intervals as follows:

Φ =

q⊔
i=1

Bi.

Thus, we may write the set {1, . . . , N} as disjoint union of maximal connected intervals in the
following manner:

{1, . . . , N} =

q⊔
i=1

Bi t
p⊔
j=1

Gj .

Let c1 ≥ 1 be the constant in Corollary 4.7. We claim that Z(Φ) can be covered by at most

cN1 e
α(Nt)−βα(|Φ|t) intervals of radius e−α(Nt), where |Φ| denotes the cardinality of Φ. Since the set

Zx(M,N, t, δ) is a union of at most 2N subsets of the form Z(Φ), the claim of the proposition
follows by taking C3 = 2c1.

Order the intervals Bi and Gj in the way they appear in the sequence 1 ≤ · · · ≤ N . For
1 ≤ r ≤ p+ q, let Rr denote the cardinality of the union of the first r intervals in this sequence. In
particular, Rp+q = N . We construct a cover by induction on r. In each step, we will show that if
we write

{1, . . . , Rr} =

r1⊔
i=1

Bi t
r2⊔
j=1

Gj ,

then the set Z(Φ) can be covered by

cRr1 eα(t)(Rr−β
∑r1
i=1 |Bi|)

intervals of radius e−α(Rrt) coming from the partition Peα(Rrt) . Note that by definition of M1, we

have 1 ∈ G1. Hence, R1 = |G1| and the first step of our induction is verified by taking all eα(R1t)

intervals of radius e−α(R1t) which are needed to cover [−1, 1].
Now, assume the claim holds for some r < p + q. Suppose that the (r + 1)-st interval in the

sequence of ordered intervals is of the form Gj for some 1 < j ≤ p. Let J0 ∈ Peα(Rrt) be an interval

of radius e−α(Rrt) in the cover constructed by the inductive hypothesis. Then, since eα(t) ∈ N, J0

contains e(α(Rr+1)−α(Rr))t = eα(|Gj |t) intervals of radius e−α(Rr+1t). Thus, by taking all such intervals
contained in each such J0, we get a new cover of the desired cardinality in step r + 1.

Now, assume the r + 1 interval in the sequence of ordered intervals is of the form Bi for some
1 ≤ i ≤ q. We wish to apply Corollary 4.7. By definition of M1, we have that M > C2M0.
Moreover, since [1, 1/γ]∩N is contained in G1, we have that Rr ≥ 1/γ. Thus, by Corollary 4.7, we
can cover the set Bx(M, t,Rr; |Bi|) ∩ J0 by

c
|Bi|
1 e(1−β)α(|Bi|t)

intervals of radius e−α((Rr+|Bi|)t). Moreover, we have that

Z(Φ) ⊆ Bx(M, t,Rr; |Bi|).

Thus, the inductive step holds in this case as well by the inductive hypothesis on the number of
the intervals J0 ∈ Peα(Rrt) needed to cover Z(Φ). �

4.5. Proof of Theorem 4.3. Having established Proposition 4.8, the proof of Theorem 4.3 follows
the same lines as in [KKLM17]. Let x ∈ X and let Zx ⊆ [−1, 1] denote the set of points s for which
the trajectory gtu(ϕ(s))x diverges on average. To prove part (1) of the theorem, we first note that
for all compact sets Q ⊂ X and for all 0 < δ < 1,

Zx ⊆ lim inf
N→∞

Zx(Q,N, t, δ) =
⋃
N0≥1

⋂
N≥N0

Zx(Q,N, t, δ), (4.17)
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where the sets Zx(Q,N, t, δ) were defined in (4.16). We wish to apply Proposition 4.8 by taking
Q = X≤M for an appropriate M .

Fix some t > 0 and let M1 = M1(t, x) > 0 be as in Proposition 4.8. Suppose M > M1 and

δ ∈ (0, 1). Then, Proposition 4.8 says that we can cover Zx(X≤M , N, t, δ) by at most CN3 e
(1−δβ)α(Nt)

intervals of radius e−α(Nt), where C3 ≥ 1 is a constant which is independent of x, t and N .
Then, we have

dimbox

 ⋂
N≥N0

Zx(Q,N, t, δ)

 ≤ lim
N→∞

N log(C3) + (1− δβ)α(Nt)

α(Nt)
=

log(C3) + (1− δβ)α(t)

α(t)
,

where for a set A ⊆ [−1, 1], dimbox(A) denotes its upper box dimension.
Since Zx is contained in countably many such sets by (4.17) and since the upper box dimension

dominates the Hausdorff dimension (which is stable under countable unions), we get that

dimH(Zx) 6
log(C3)

α(t)
+ 1− δβ,

where dimH denotes the Hausdorff dimension. Taking the limit as t → ∞ and δ → 1, we obtain
the desired dimension bound.

Part (2) of Theorem 4.3 follows from Proposition 4.8 and the Borel-Cantelli Lemma. More
precisely, it follows from the statement of the Proposition that the set Zx(M,N, t, δ) has measure

at most CN3 e
−δβα(Nt). Choosing t > 0 (and hence M) to be large enough, depending on δ and C3,

we see that the measures of these sets are summable in N .

5. Bounded Orbits and Schmidt Games

We describe a version of Schmidt’s games played on intervals of the real line. These games were
introduced in [KW13,KW10] in the general setting of connected Lie groups building on earlier ideas
of Schmidt [Sch66].

Fix a compact interval I0 ⊂ R and a positive constant σ > 0. For each t > 0, consider the
following contraction of R:

Φt(x) = e−σtx.

Denote by F = {Φt : t > 0} this one-parameter semigroup of contractions.
Now pick two real numbers a, b > 0 and, following [KW10,KW13], we define a game, played by

two players Alice and Bob. First, Bob picks t0 > 0 and x1 ∈ R so that the set B1 = Φt0(I0) + x1

is contained in I0. Then, Alice picks a translate A1 of Φa(B1) which is contained in B1, Bob picks
a translate B2 of Φb(A1) which is contained in A1, after that Alice picks a translate A2 of Φa(B2)
which is contained in B2, and so on. In other words, for k ∈ N, we set

tk = t0 + (k − 1)(a+ b), and sk = tk + a. (5.1)

Thus, at the kth step of the game, Alice picks a translate Ak of Φsk(I0) which is contained inside
Bk. Then, Bob picks a translate Bk+1 of Φtk+1

(I0) which is contained inside Ak. From compactness
of I0 and the definition of the sets Ak and Bk, we see that the following intersections⋂

k>1

Ak =
⋂
k>1

Bk (5.2)

are non-empty and consist of a single point. Note also that

diam(Ak) = e−σskdiam(I0), diam(Bk) = e−σtkdiam(I0), (5.3)

where the diameter of sets is with respect to the standard metric on R. This game is referred to as
the (a,b)−modified Schmidt game on I0.

A subset S ⊆ R is said to be (a,b)−winning if Alice can always pick her translates Ak so that
the point in the intersection (5.2) always belongs to S, no matter how Bob picks his translates Bk.
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We say S is a-winning if it is (a, b)-winning for all b > 0 and winning if it is a-winning for some
a.

5.1. Admissible Curves and Induced Games. Suppose G is a connected Lie group with Lie
algebra g and gt is a 1-parameter Ad-diagonalizable subgroup of G. Consider a gt-admissible curve
ϕ : I0 → g as defined in 4.1, where I0 is a compact interval in R. Then, gt induces a Schmidt game
on I0 in the sense described above as follows.

Suppose gα ⊂ g is the eigenspace for the Adjoint action of gt which contains the image of ϕ. The
Fα-induced game on I0 is given by the action of the one parameter semigroup Fα = {Φt : t > 0}
where for every x ∈ R,

Φt(x) = e−α(t)x = e−α(1)tx,

and α(t) is the eigenvalue of gt corresponding to the eigenspace gα as in (4.1).
The main result of this section states that the contraction hypothesis in addition to the following

continuity property of the height function f along unipotent orbits imply the winning property of
bounded orbits.

Assumption 5.1. There exists N ∈ N such that for every T,R > 0, there exists M1 > 0 such that
for all x ∈ X, Y ∈ gα, ‖Y ‖ ≤ R and M > M1, the following holds.

The set {|s| 6 T : f(u(sY )x) > M} has at most N connected components. (∗)

The following is the main result of this section.

Theorem 5.2. Let X be a metric space equipped with a proper G-action. Suppose gt is an Ad-
diagonalizable 1-parameter subgroup of G and ϕ : I0 → g is a gt-admissible curve (Def. 4.1)
satisfying the β-contraction hypothesis (Def. 4.2) on X for some β > 0. Assume further that the
height function f satisfies Assumption 5.1. Then, there exists a∗ > 0 such that for all x ∈ X with
f(x) <∞, the set {

s ∈ I0 : {gtu(ϕ(s))x : t > 0} is compact in X
}

(5.4)

is a-winning for the Fα-induced modified Schmidt game on I0 for all a > a∗.

Corollary 5.3 (Corollary 3.4, [KW10]). Under the same hypotheses of Theorem 5.2, the set in (5.4)
is thick in I0.

Remark 5.4. The contraction hypothesis alone, without Assumption 5.1, can be used to show
Corollary 5.3. This can be done by a straightforward adaptation of the argument in [KW04].

Proof of Theorem 5.2. Denote by f the height function in the definition of the β-contraction hy-
pothesis. Suppose c̃ > 1 is as in (4.3) and C1 > is the constant in the conclusion of Lemma 4.5.

Next, let CH denote the Hölder constant of ϕ̇. Let O denote a compact neighborhood of identity
in G containing the image under the exponential map of a ball of radius CH |I0| around 0 in g.
Denote by C = CO ≥ 1 a constant so that (4.2) holds.

Let N ∈ N be as in Assumption 5.1. Choose a∗ to be sufficiently large so that

α(a∗) >
log(40c̃C1C

2
O)

β
+ log (10(N + 1)) . (5.5)

Fix some a > a∗, b > 0 and x ∈ X. We show that there exists some M > 1 and a choice of
subintervals Ak for Alice so that for all k > 1 and all s ∈ Ak, we have

f(gtk+1
u(ϕ(s))x) 6M, (5.6)

where tk is given by (5.1). Thus, by Definition 4.2, this shows that the point s0 in the intersec-
tion (5.2) will have that gtu(ϕ(s0))x is bounded in X for all t > 0.
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By Definition 4.2, there exists a constant b̃ > 0 depending on a and b, so that the following holds
for all y ∈ X and all s ∈ I0.

1

2

∫ 1

−1
f(ga+bu(rϕ̇(s))y) dr 6 c̃e−βα(a+b)f(y) + b̃. (5.7)

Now, suppose that Bob chose some t0 > 0 and a subinterval B1 ⊂ I0 to initialize the game. Let
γ > 0 be the Hölder exponent of the derivative of ϕ and define M0 as follows:

M0 := sup
s∈I0,16j61/γ+1

f(gj(a+b)+t0u(ϕ(s))x).

By the properties of f in Definition 4.2 and the compactness of I0, it follows that M0 is finite.
Let T = eα(a+b)|I0|/2 and R = sups∈I0 ‖ϕ̇(s)‖. Let M1 > 0 be as in Assumption 5.1 applied with

T and R. Define M by

M = 40b̃C1C
2
O +M0 +M1CO, (5.8)

where α is such that gα is the eigenspace inside g containing the image of ϕ.
In the first b1/γ + 1c steps of the game, Alice may choose her intervals Ak ⊂ Bk anyway she

likes. By definition of M0 and M , (5.6) is satisfied for 1 6 k 6 1/γ + 1.
The rest of the proof consists of 2 steps. First, we show that no matter how Bob chooses his sets

Bk, the following integral estimate will always be satisfied for all k > 1/γ + 1:

1

|Bk|

∫
Bk

f(gtk+1
u(ϕ(s))x) ds 6 2c̃C1e

−βα(a+b) 1

|Bk|

∫
Bk

f(gtku(ϕ(s))x) ds+ 2b̃C1. (5.9)

Then, we show that the estimate (5.9) implies that Alice can choose her sets Ak ⊂ Bk so that (5.6)
is satisfied, completing the proof.

To show (5.9), let k > 1/γ + 1 and let Bk ⊂ I0 be a subinterval of length e−α(tk)|I0|. By an
argument identical to that of Lemma 4.5, it follows that∫

Bk

f(gtk+1
u(ϕ(s))x) ds 6 C1

∫
Bk

∫ 1

−1
f(ga+bu(rϕ̇(s))gtku(ϕ(s))x) drds.

Then, by (5.7), we get∫
Bk

f(gtk+1
u(ϕ(s))x) ds 6 2C1c̃e

−βα(a+b)

∫
Bk

f(gtku(ϕ(s))x) ds+ 2C1b̃|Bk|.

This proves (5.9). We complete the proof by induction, noting that (5.6) is satisfied for all 1 6 k 6
1/γ+1. Since Bk ⊂ Ak−1, by the induction hypothesis, we get that for all s ∈ Bk, f(gtku(ϕ(s))x) 6
M . Thus, the estimate in (5.9) becomes

1

|Bk|

∫
Bk

f(gtk+1
u(ϕ(s))x) ds 6 2c̃C1e

−βα(a+b)M + 2b̃C1.

By Chebyshev’s inequality, the fact that a > a∗ chosen in (5.5), and the choice of M in (5.8), we
obtain the following measure estimate:∣∣{s ∈ Bk : f(gtk+1

u(ϕ(s))x) > M/C2
O
}∣∣ 6 [2c̃C1C

2
Oe
−βα(a+b) +

2b̃C1C
2
O

M

]
|Bk|

6 |Bk|/10. (5.10)

Let s0 be the center of the interval Bk and let s ∈ Bk be any other point. Then, we have that

gtk+1
u(ϕ(s)) = u(O

(
eα(tk+1−(1+γ)tk)

)
)u(rϕ̇(s0))gtk+1

u(ϕ(s0)),
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where r = (s − s0)eα(tk+1) and γ is the Hölder exponent of ϕ̇. Since k ≥ 1/γ + 1, the element

u(O
(
eα(tk+1−(1+γ)tk)

)
) belongs to our chosen bounded neighborhood O of identity which is inde-

pendent of all the parameters. Hence, by the log Lipschitz property (4.2) of f , we obtain

f(u(rϕ̇(s0))gtk+1
u(ϕ(s0))x) > M/CO =⇒ f(gtk+1

u(ϕ(s))x) > M/C2
O, r = (s− s0)eα(tk+1).

(5.11)

Moreover, since |Bk| = e−α(tk)|I0|, we have |r| ≤ eα(a+b)|I0|/2 = T .
Thus, since M/CO > M1, by Assumption 5.1, the set{

|r| ≤ T : f(u(rϕ̇(s0))gtk+1
u(ϕ(s0))x) > M/CO

}
has at most N connected components. In particular, the complement of this set has at most N + 1
connected components (intervals).

Moreover, the measure estimate in (5.10), combined with (5.11), imply that∣∣{|r| ≤ T : f(u(rϕ̇(s0))gtk+1
u(ϕ(s0))x) > M/CO

}∣∣ 6 2T/10. (5.12)

Denote by Q the set on the left-hand side of (5.12). Suppose that each connected component of

[−T, T ]\Q has length at most 2e−α(a)T . Then, since [−T, T ]\Q has at most N + 1 components, we
get that

|[−T, T ]\Q| 6 2(N + 1)e−α(a)T < 2T/10,

by the choice of a. This contradicts the measure estimate in (5.12).

It follows that we can find a subinterval Ãk of [−T, T ] of length 2e−α(a)T which is disjoint from
the set in (5.12). Let Ak be defined as follows:

Ak = e−α(tk+1)Ãk + s0.

Then, Ak is a subinterval of Bk of length e−α(a)|Bk|. Moreover, applying the the log Lipschitz
property of f once more, we see that for all s ∈ Ak,

f(u(rϕ̇(s0))gtk+1
u(ϕ(s0))x) 6M/CO =⇒ f(gtk+1

u(ϕ(s))x) 6M, r = (s− s0)eα(tk+1).

This proves (5.6) and concludes the proof.
�

6. The Contraction Hypothesis and Shrinking Curves

The purpose of this section is to demonstrate the link between the contraction hypothesis and
the growth of orbits. In all the situations we consider, the height function f which satisfies the
contraction hypothesis also has the property that the ratio of 1+log f(·) and 1+d(·, x0) is uniformly
bounded from above and below for any fixed base point x0 ∈ G/Γ, where d(·, ·) is the Riemannian
metric on G/Γ.

In fact, we establish the much stronger statement on the quantitative non-divergence of expand-
ing translates of shrinking segments of admissible curves. In particular, Proposition 6.1 below
implies that orbits with linear growth have measure 0 using the Borel-Cantelli lemma along with
Chebyshev’s inequality. Throughout this section, we retain the same notation as in Section 4.

Proposition 6.1. Let G be a real Lie group and X be a metric space equipped with a proper G-
action. Suppose gt is an Ad-diagonalizable one-parameter subgroup of G and ϕ is a gt-admissible
curve satisfying the β-contraction hypothesis on X. Suppose δ ∈ [0, β) is fixed. Then, for all x0 ∈ X
with f(x0) <∞,

sup
t>0,s0∈[−1,1]
Jt+s0⊆[−1,1]

1

|Jt|

∫
Jt+s0

f(gtu(ϕ(s))x0) ds <∞,

where Jt := [−e−δα(t), e−δα(t)]. Moreover, the supremum can be taken to be uniform over base points
x0 ∈ {f 6M} for any M > 0.
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Proof. Let a choice of δ ∈ [0, β) be fixed. Suppose s0 ∈ [−1, 1] and n ≥ 0 is an integer. Fix t > 0

so that (4.3) holds with constants c̃ and b̃. By Lemma 4.5, we have∫
Jnt+s0

f(g(n+1)tu(ϕ(s))x0) ds 6 C1

∫
Jnt+s0

∫ 1

−1
f(gtu(rϕ̇(s))gntu(ϕ(s))x0) dr ds. (6.1)

Since C1 and c̃ are independent of t, we may assume that t > 0 is sufficiently large so that

2C1c̃e
−(β−δ)α(t) < 1.

Therefore, by (6.1) and (4.3), we get∫
Jnt+s0

f(g(n+1)tu(ϕ(s))x0) ds 6 2C1c̃e
−βα(t)

∫
Jnt+s0

f(gntu(ϕ(s))x0) ds+ 2C1b̃|Jnt|.

Next, for all n ≥ 1, since Jnt ⊆ J(n−1)t and f ≥ 0, we get∫
Jnt+s0

f(g(n+1)tu(ϕ(s))x0) ds 6 2C1c̃e
−βα(t)

∫
J(n−1)t+s0

f(gntu(ϕ(s))x0) ds+ 2C1b̃|Jnt|.

Moreover, since |J(n−1)t|/|Jnt| = eδα(t), the above inequality implies

1

|Jnt|

∫
Jnt+s0

f(g(n+1)tu(ϕ(s))x0) ds

6 2C1c̃e
−(β−δ)α(t) 1

|J(n−1)t|

∫
J(n−1)t+s0

f(gntu(ϕ(s))x0) ds+ 2C1b̃. (6.2)

Define M0 > 0 and M by

M0 =
1

2

∫ 1

−1
f(u(ϕ(s))x0) ds,

M = max

{
M0, 2C1c̃e

−(β−δ)α(t)M0 + 2C1b̃,
2C1b̃(

1− 2C1c̃e−(β−δ)α(t)
)} .

We claim that

sup
n>0,s0

1

|Jnt|

∫
Jnt+s0

f(g(n+1)tu(ϕ(s)x0) ds 6M. (6.3)

We proceed by induction on n. When n = 0, inequality (6.2), the definition of M0 and the fact
that M0 6 M show that the integrand in (6.3) is bounded above by M . Inequality (6.2) and the
definition of M finish the proof of the claim by induction.

The conclusion of the proposition follows from the log-smoothness of f . Furthermore, we note
that M can be chosen to be uniform over the base point x0 as it varies in sublevel sets of f as
evident from the definition of M0.

�

7. Dynamics in Linear Representations

This section is dedicated to proving estimates on the average rate of expansion of vectors in
linear representations of SL(2,R). The main result is Proposition 7.5. In subsection 7.3, we prove
an important fact regarding the orbit of a highest weight vector which will allow us to obtain precise
average expansion rates in the sequel.
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7.1. (C, α)-good functions. We recall the notion of (C,α)-good functions introduced by Klein-
bock and Margulis in [KM98] and used, in different form, in prior works of Dani, Margulis and
Shah.

Definition 7.1. A function f : Rm → R is (C,α)-good on some subset B ⊂ Rm of finite Lebesgue
measure if there exist constants C,α > 0 such that for any ε > 0, one has

|{x ∈ B : |f(x)| < ε}| ≤ C
(

ε

supx∈B |f(x)|

)α
|B|,

where, for a Borel set A ⊆ Rm, |A| denotes its Lebesgue measure.

The following lemma summarizes some basic properties of (C,α)-good functions which will be
useful for us. The proof follows directly from the definition.

Lemma 7.2. Let C,α > 0. Then,

(1) If f is a (C,α)-good function on B, then so is |f |.
(2) If f1, . . . , fn is a collection of (C,α)-good function on B, then so is maxk |fk|.

An important class of (C,α)-good functions is polynomials. The exact exponent will be of
importance to us and so we recall the following fact.

Proposition 7.3 (Proposition 3.2, [KM98]). For any k ∈ N, any polynomial in R[x] of degree at

most k is (2k(k + 1)1/k, 1/k)-good on any interval in R.

The following elementary lemma concerning polynomials will be useful for us.

Lemma 7.4. For each k ∈ N, there exists some ρ > 0, such that any polynomial p ∈ R[x] of degree

at most k of the form p(x) =
∑k

i=0 cix
i satisfies

sup
x∈[−1,1]

|p(x)| ≥ ρ max
0≤i≤k

|ci|.

Proof. Let k ∈ N and suppose the lemma does not hold. Then, there exists a sequence of vectors
vn ∈ Rk+1 with ‖vn‖∞ = 1 such that

sup
x∈[−1,1]

|pn(x)| < 1

n
, (7.1)

where for each n,

pn(x) =
∑

0≤i≤k
v(i)
n xi.

By passing to a subsequence, we may assume that vn converges to a vector v0 6= 0. Thus, pn
converges to p0 on [−1, 1] in the uniform norm. But, then, by (7.1), we have p0 ≡ 0 on [−1, 1].
This necessarily implies that v0 = 0 which is a contradiction. �

7.2. Expansion in SL(2,R) Representations. Throughout this section, we fix a one-parameter
Ad-diagonalizable subgroup of G = SL(2,R) which we denote by gt. Then, g = Lie(G) decomposes
as a direct sum of eigenspaces of Ad(gt) as follows:

g = g−α ⊕ g0 ⊕ gα, (7.2)

where α is a non-trivial character of the group A = {gt : t ∈ R} such that α(gt) > 0 for all t > 0 and
g0 consists of fixed vectors of Ad(gt). Let H0 ∈ g0 be such that gt = exp(tH0). Let X ∈ gα\ {0}
and let us denote the following one-parameter horocyclic subgroup

us = exp(sX).

Let P denote the set of all characters of A. Then, α induces a partial order 6 on P as follows:
λ 6 µ if and only if µ − λ is a positive multiple of α. Given any irreducible representation V of
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G, we can decompose V into weight spaces for the A action. The set of restricted weights of V
contains a unique maximal element for the partial order, called the highest weight. Denote the set
of all the highest weights of G by P+, i.e. P+ consists of characters of A which occur as highest
weights in some irreducible representation of G. From the representation theory of SL(2,R), we
can identify P+ with N ∪ {0}.

The following is the main result of this section.

Proposition 7.5. Suppose V is a non-trivial representation of G = SL(2,R) and let P+(V ) denote
the set of highest weights appearing in the decomposition of V into irreducible representations.
Define

λ := maxP+(V ), δλ := 2λ(H0)/α(H0),

where α is as in (7.2). Then, for all β ∈ (0, 1), there exists a constant D = D(β) ≥ 1 such that for
all t > 0 and all w ∈ V ,

1

2

∫ 1

−1
‖gtusw‖−β/δλ ds 6 De−βα(H0)t/2 ‖πλ(w)‖−β/δλ , (7.3)

where πλ : V → V denotes the SL(2,R)-equivariant projection onto the direct sum of irreducible
sub-representations of V with highest weight λ.

Proof. Suppose w ∈ V and write v = πλ(w). Then, we have that ‖gtusw‖ > ‖gtusv‖, for all t and
s. In particular, it suffices to prove (7.3) with v in place of w and we may assume that λ is the
only highest weight appearing in V .

Since SL(2,R) is semisimple, V decomposes into irreducible representations as follows:

V = V1 ⊕ · · · ⊕ Vr.

For 1 ≤ i ≤ r, let πi : V → Vi denote the associated projections and note that us commutes with
πi for all i. Note that all the Vi have the same dimension since they have the same highest weight.
Let n ∈ N be such that

dim(Vi) = n+ 1,

for all 1 ≤ i ≤ r. From the the description of SL(2,R) representations, we get that

n = δλ. (7.4)

Let 1 ≤ i ≤ r be fixed. By the standard description of irreducible SL(2,R) representations, Vi
decomposes into 1 dimensional eigenspaces for the action of gt as follows:

Vi = W
(i)
0 ⊕W

(i)
1 ⊕ · · · ⊕W

(i)
n ,

where we assume that W
(i)
0 denotes the highest weight subspace of Vi. In particular, for each

w ∈W (i)
0 ,

gtw = eλ(H0)tw.

Let ql : Vi →W
(i)
l denote the associated projections. Let

{
w

(i)
l : 0 ≤ l ≤ n

}
denote a basis of Vi

consisting of eigenvectors of gt and write

πi(v) =

n∑
l=0

c
(i)
l w

(i)
l .

Note that for each l, we have that

usw
(i)
l =

l∑
k=0

(
l

k

)
sl−kw

(i)
k .
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In particular, we get the following

q0(πi(usv)) = q0(usπi(v)) =

n∑
k=0

c
(i)
k s

kw
(i)
0 . (7.5)

Denote by ‖·‖∞ an `∞ norm on V with respect to the basis chosen above for each irreducible
representation. Note that all coordinates of πi(v) appear in the polynomial in (7.5). In particular,
this implies

‖gtusπi(v)‖∞ > ‖gtq0(πi(usv))‖∞ = eλ(H0)t ‖q0(πi(usv))‖∞ . (7.6)

Denote by Vλ the direct sum of the highest weight subspaces of V . More precisely, let

Vλ =
⊕

1≤i≤r
W

(i)
0 ,

and let π+ : V → V + denote the associated projection. Hence, for all w ∈ V , by (7.6), we have
that

‖gtw‖∞ > ‖gtπ+(w)‖∞ > e
λ(H0)t ‖π+(w)‖∞ . (7.7)

The polynomials in (7.5) have degree at most n = δλ. Hence, by Lemma 7.2 and Proposition 7.3,
we see that ‖π+(usv)‖∞ is (C, δλ)-good on [−1, 1] for C as in Proposition 7.3. Now, by (7.5) and
Lemma 7.4, there exists some ρ > 0 such that

sup
s∈[−1,1]

‖π+(usv)‖∞ > ρ ‖v‖∞ .

Thus, by definition of (C,α)-good functions, for any ε > 0, we have

|{s ∈ [−1, 1] : ‖π+(usv)‖∞ < ε ‖v‖∞}| 6 2C

(
ε

ρ

)1/δλ

. (7.8)

Denote by E(v, ε) the set on the left-hand side of inequality (7.8). Let β ∈ (0, 1).
Without loss of generality, we may assume ‖v‖∞ = 1. Then, for n ∈ N, by (7.7) and (7.8), we

get∫
E(v,2−nρ)\E(v,2−(n+1)ρ)

‖gtusv‖−β/δλ∞ ds 6 e−βλ(H0)t/δλ

∫
E(v,2−nρ)\E(v,2−(n+1)ρ)

‖π+(usv)‖−β/δλ∞ ds

6 e−βα(H0)t/22β(n+1)/δlρ−β/δλ2C2−n/δλ

= ρ−β/δλ21+β/δlC2−(1−β)n/δλe−βα(H0)t/2.

Now, note that (7.8) implies that |E(v, 0)| = 0. Hence, since

[−1, 1] = E(v, 0) t

(⊔
n>0

E(v, 2−nρ) \ E(v, 2−(n+1)ρ)

)
,

we get that

1

2

∫ 1

−1
‖gtusv‖−β/δλ∞ ds 6

ρ−β/δλ2β/δlC

1− 2(1−β)/δλ
e−βα(H0)t/2.

Thus, the claim of the Proposition follows since all norms are equivalent. �
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7.3. Avoidance of Non-Extremal Subspaces. The purpose of this section is to prove a useful
property of the orbit of a highest weight vector under a semisimple group. This property will allow
us to obtain precise expansion rates in the situations we are interested in.

Suppose G is a semisimple Lie group with Lie algebra g, and S is a maximal split torus in G
which we also identify with its Lie algebra. Denote by ∆ ⊂ S∗ the set of roots on which we fix an
order and denote by ∆+ the subset of positive roots. Define the following subalgebras of g

n+ =
⊕
α∈∆+

gα, b = g0 ⊕ n+,

where gα denotes the root space corresponding to α. Denote by N+ and B the subgroups of G
whose Lie algebras are n+ and b respectively.

We let W denote the Weyl group of (G,S,∆) and recall that W acts naturally on S∗. The
Bruhat decomposition of G [Bou02, Section 3, Theorem 1] implies

G =
⋃

w∈W
BwB. (7.9)

Given a representation V of G and a linear functional µ ∈ S∗, we denote by V µ the weight
subspace of V with weight µ.

Proposition 7.6. Suppose V is an irreducible representation of G with highest weight λ. Then,
for all 0 6= v ∈ V λ,

G · v
⋂ ⊕

µ∈S∗\W·λ

V µ = ∅.

Proof. Let 0 6= v ∈ V λ and g ∈ G. Denote by π : V →
⊕

w∈W V w·λ the projection parallel to the
weight spaces of S. It suffices to show that π(gv) 6= 0.

Using the Bruhat decomposition (7.9), we can write

g = b1wb2,

for some b1, b2 ∈ B and w ∈ W. The group B stabilizes the line R · v. In particular, we have that
gv ∈ b1wV λ ⊆ b1V w·λ.

We can further decompose b1 as follows.

b1 = n+m,

where n+ ∈ N+ and m ∈ CG(S) commutes with S. In particular, m preserves the eigenspaces of S
and thus we have

gv ∈ b1V w·λ = n+V w·λ. (7.10)

Let Y ∈ n+ be such that n+ = exp(Y ). Denote by ρ : G→ GL(V ) the representation of G on V
and let dρ : g→ gl(V ) denote its derivative. Then, since Y is nilpotent, so is dρ(Y ). In particular,
ρ(n+) = exp(dρ(Y )) is a polynomial in dρ(Y ) of the form

ρ(n+) = I + dρ(Y ) + · · ·+ dρ(Y )k

k!
, (7.11)

for some k ∈ N, where I is the identity map. From the standard representation theory of semisimple
Lie groups, we have

dρ(gα)V µ ⊆ V α+µ,

for any root α ∈ ∆ and any weight µ ∈ S∗. Thus, for each 1 ≤ j ≤ k, we see that

dρ(Y )jV w·λ ⊆ V κ, κ = w · λ+
∑
α∈∆+

kαα,
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for some non-negative integers kα, at least one of which is non-zero, and, in particular, V κ∩V w·λ =
{0}. Hence, in view of (7.11), for all w ∈ V w·λ, we have

πw·λ(ρ(n+)w) = w,

where πw·λ : V → V w·λ denotes the projection parallel to the eigenspaces of S. Combined
with (7.10), this shows that π(gv) 6= 0 as desired. �

8. The Contraction Hypothesis in Homogeneous Spaces of Rank One

Throughout this section, G is a simple Lie group of real rank 1 and Γ is a lattice in G. We
let X = G/Γ. The goal of this section is to construct a height function on X and show that it
satisfies the strong β-contraction hypothesis for admissible curves. The main result of this section,
Theorem 8.5, combined with those of Sections 4, 5 and 6 complete the proof of Theorem A.

8.1. Construction of a Height Function. Following [EM04] and [BQ11], we construct a proper
function α̃ : G/Γ→ R+ which will allow us to control recurrence of trajectories to compact sets.

By the work of Garland and Raghunathan in [GR70], there exist finitely many Γ-conjugacy
classes of maximal unipotent subgroups {Ui : 1 ≤ i ≤ p} of G such that Ui ∩ Γ is a lattice in Ui.
Moreover, for any sequence gn ∈ G such that gnΓ tends to infinity in G/Γ, after passing to a
subsequence, for each n, there exists γn ∈ Γ and i such that

gnγnu(gnγn)−1 n→∞−−−→ e,

for all u ∈ Ui. In addition, γn and i are determined uniquely for all n sufficiently large.
Given any faithful irreducible normed representation V of G, for each i, we fix a non-zero vector

vi which is fixed by Ui. By the Iwasawa decomposition, for any i and any sequence gn in G, one
has that gnvi → 0 if and only if gnug

−1
n → e for all u ∈ Ui. Moreover, the Γ orbit of the identity

coset in G/Ui is discrete. In particular, the orbit Γ · vi is discrete (and hence closed) for each i.
Thus, the function α̃ : G/Γ→ R+ defined by

α̃(gΓ) := max
w∈

⋃p
i=1 gΓ·vi

‖w‖−1 (8.1)

is proper. The following Lemma provides us with other properties of the function α̃.

Lemma 8.1. Suppose α̃ is as in (8.1). Then,

(1) Given a bounded neighborhood O of identity in G, there exists a constant CO > 1, such that
for all g ∈ O and all x ∈ X,

C−1
O α̃(x) ≤ α̃(gx) ≤ COα̃(x).

(2) For all M > 0, the set α̃−1([0,M ]) is compact.
(3) (cf. [GR70]) There exists a constant ε1 > 0 such that for all x = gΓ ∈ X, there exists at

most one vector v ∈
⋃
i gΓ · vi satisfying ‖v‖ ≤ ε1.

8.2. Rank One and Linear Expansion. We retain the same notation as in the previous section.
Suppose gt is a one-parameter subgroup of G which is Ad-diagonalizable over R. Since G has real
rank equal to 1, we can decompose the Lie algebra g of G into eigenspaces for the adjoint action of
gt as follows

g = g−2α ⊕ g−α ⊕ g0 ⊕ gα ⊕ g2α. (8.2)

Then, we can find H0 ∈ g0 so that

gt = exp(tH0), (8.3)

for all t > 0.
The following lemma is the form in which we use Proposition 7.5. The key point of the lemma

is that vectors expand at a maximal rate.
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Lemma 8.2. Suppose V is an irreducible real representation of G with highest weight λ and µ ∈
{α, 2α} is such that gµ 6= 0. Let δλ = 2λ(H0)/µ(H0) and suppose 0 6= v ∈ V is a highest weight
vector. Then, for all β ∈ (0, 1), there exists c̃ > 0 such that for all g ∈ G, Z ∈ gµ\ {0}, and all
t > 0, the following holds

1

2

∫ 1

−1
‖gtusgv‖−β/δλ ds 6 c̃e−βµ(H0)/2 ‖gv‖−β/δλ ,

where us = exp(sZ).

Proof. Let v ∈ V be a highest weight vector. Suppose µ and 0 6= Z ∈ gµ are given and let
us = exp(sZ). Since us is normalized by gt and G has rank 1, the Jacobson-Morozov theorem
implies that we can find Z− ∈ g−µ so that [Z,Z−] = H0. In particular, the sub-algebra h generated
by Z and Z− is isomorphic to sl2(R). Denote by H the corresponding subgroup of G.

Note that since H0 ∈ h, λ can be regarded as a weight for H in its induced representation on V .
In particular, V decomposes as a direct sum

V = Vλ ⊕ V0,

where Vλ is a direct sum of irreducible representations of H with highest weight λ and V0 is an
H-invariant complement. Hence, v ∈ Vλ. Denote by πλ : V → Vλ the H-equivariant projection.

Note that ‖gtusgv‖ > ‖gtusπλ(gv)‖ for all t and s. Hence, by Proposition 7.5, we get

1

2

∫ 1

−1
‖gtusgv‖−β/δλ ds 6

1

2

∫ 1

−1
‖gtusπλ(gv)‖−β/δλ ds 6 ce−βµ(H0)/2 ‖πλ(gv)‖−β/δλ , (8.4)

for some constant c > 1.
For a weight µ, denote by V µ the corresponding weight space. Since G has rank 1, its Weyl group

contains one non-trivial element sending λ to −λ. Thus, by Proposition 7.6, since V −λ⊕ V λ ⊆ Vλ,
we get that

G · v ∩ V0 = ∅. (8.5)

Since the stabilizer of the line R · v is a parabolic subgroup P and G = KP for a compact group
K, it follows from (8.5) that G · v projects to a compact subset of the projective space P (V ) which
is disjoint from the closed image of V0 in P (V ). In particular, there exists ε′ > 0 such that for all
g ∈ G,

‖πλ(gv)‖ > ε′ ‖gv‖ .
Combining this estimate with (8.4), we obtain the desired conclusion with c̃ = cε

−β/δλ
1 .

�

8.3. The Main Integral Estimate. The height function α̃ constructed in the previous sections
satisfies the following integral estimate.

Proposition 8.3. Suppose λ is the highest weight for G in V and µ ∈ {α, 2α} is such that gµ 6= 0.
Define the following exponent

δλ = 2λ(H0)/µ(H0).

Then, for every β ∈ (0, 1), there exists c̃ ≥ 1 such that the following holds: for all t > 0, there
exists b = b(t) > 0 such that for all x ∈ X and all Z ∈ gµ with ‖Z‖ = 1,

1

2

∫ 1

−1
α̃β/δλ(gt exp(rZ)x) dr 6 c̃e−βµ(H0)t/2α̃β/δλ(x) + b.

Proof. Let t > 0 be fixed and define

ω := sup
r∈[−1,1]

Z∈gλ,‖Z‖=1

max
{
‖gt exp(rZ)‖ ,

∥∥(gt exp(rZ))−1
∥∥} .
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Now, fix some Z ∈ gλ with ‖Z‖ = 1. For simplicity, we use the following notation

ur := exp(rZ).

Then, for all r ∈ [−1, 1] and all x ∈ X, we have

ω−1α̃(x) 6 α̃(gturx) 6 ωα̃(x), (8.6)

where ‖·‖ denotes the operator norm of the action of G on V . Let ε1 be as in (3) of Lemma 8.1.
Suppose x ∈ X is such that α̃(x) ≤ ω/ε1. Then, by (8.6), for any β > 0, we have that

1

2

∫ 1

−1
α̃β/δλ(gturx) dr 6 (ω2ε−1

1 )β/δλ . (8.7)

Now, suppose x ∈ X is such that α̃(x) ≥ ω/ε1 and write x = gΓ for some g ∈ G. Then, by

(3) of Lemma 8.1, there exists a unique vector v0 ∈
⋃
i gΓ · vi satisfying α̃(x) = ‖v0‖−1. Moreover,

by (8.6), we have that α̃(gturx) ≥ 1/ε1 for all r ∈ [−1, 1]. And, by definition of ω, for all r ∈ [−1, 1],
‖gturv0‖ ≤ ε1. Thus, applying (3) of Lemma 8.1 once more, we see that gturv0 is the unique vector
in
⋃
i gturgΓ · vi satisfying

α̃(gturx) = ‖gturv0‖−1 ,

for all r ∈ [−1, 1]. Moreover, since all the (minimal) parabolic subgroups of G are conjugate, we
see that the vectors vi all belong to the G-orbit of a highest weight vector ṽ.

Thus, we may apply Lemma 8.2 as follows. Fix some β ∈ (0, 1) and let c̃ > 1 be the constant in
the conclusion of the lemma.

1

2

∫ 1

−1
α̃β/δλ(gturx) dr =

1

2

∫ 1

−1
‖gturv0‖−β/δλ dr 6 c̃e

−βµ(H0)t
2 ‖v0‖−β/δλ = c̃e

−βµ(H0)t
2 α̃β/δλ(x).

Combining this estimate with (8.7), we obtain the desired estimate.
�

In order to obtain the winning property for bounded orbits, we need to show that the height
function α̃ satisfies Assumption 5.1. This is the content of the following lemma. Its proof is a
combination of (3) of Lemma 8.1 and the fact that polynomial maps have finitely many zeros.

Lemma 8.4. There exists N ∈ N, depending only on the dimension of G, such that for every
T,R > 0, there exists M0 > 0 such that for all x ∈ G/Γ, Y ∈ gα⊕g2α with ‖Y ‖ ≤ R and M ≥M0,
the following holds.

The set {|s| 6 T : α̃(u(sY )x) > M} has at most N connected components. (8.8)

Proof. Let T,R > 0, Y ∈ gα ⊕ g2α with ‖Y ‖ ≤ R and let us = u(sY ). Fix some x = gΓ ∈ X. Let
ε1 > 0 be the constant in (3) of Lemma 8.1. Define M0 as follows.

M0 = ε−1
1 sup {‖u(sZ)‖ : Z ∈ gα ⊕ g2α, ‖Z‖ ≤ R, |s| ≤ T} .

Let M ≥ M0. If α̃(usx) 6 M for all |s| ≤ T , then the set in (8.8) is empty and the claim follows.
On the other hand, if α̃(us0x) > M for some |s0| ≤ T , then, by definition of M , we see that
α̃(usx) > ε−1

1 for all |s| ≤ T . In particular, by (3) of Lemma 8.1, there exists a unique vector
w ∈

⋃
i gΓ · vi such that

α̃(usx) = ‖usw‖−1 , for all |s| ≤ T.
Note that for any vector w ∈ V , since us is a unipotent transformation, the map s 7→ ‖usw‖2 is
a polynomial of degree at most N , where N depends only on the dimension of V . Thus, since
polynomials have finitely many zeros, for any ε > 0, the set {|s| ≤ T : ‖usw‖ < ε} has a number of
connected components uniformly bounded above only in terms of N . This concludes the proof.

�
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Given a gt-admissible curve ϕ (Def. 4.1), applying Proposition 8.3 to the derivative ϕ̇ yields the
following.

Theorem 8.5. Suppose ϕ is a non-constant gt-admissible curve. Then, ϕ satisfies the β-contraction
hypothesis (Def. 4.2) for all β ∈ (0, 1/2) with a height function satisfying Assumption 5.1.

9. Height Functions and Reduction Theory

The purpose of this section is to construct a height function on arithmetic homogeneous spaces
and establish its main properties. This construction will be used in Section 10 to verify the β-
contraction hypothesis in the setting of Theorem B. The height function we use here was introduced
in [EM04]. It generalizes the construction for SL(n,R)/SL(n,Z) introduced in [EMM98] and builds
on ideas which were used for the problem of quantitative recurrence of unipotent flows in [DM91].
However, we follow the approach of [KW13] which replaces the method of systems of integral
inequalities with the notion of W -active Lie algebras.

Throughout this section, we assume G is a semisimple algebraic Lie group defined over Q with
Lie algebra g such that the real rank of G is at least 2. We fix a lattice Γ ⊂ G(Q). In particular,
the rational structure on g is Ad(Γ)-invariant. We let gZ denote an integer lattice of g with respect
to this Q-structure.

Suppose S is a maximal Q-split torus in G. We identify S with its Lie algebra and denote by S∗

its linear dual. Let C ⊆ S be a closed Weyl chamber and fix an order on the roots of S making C
positive. Denote by Π = {α1, . . . , αr} ∈ S∗ a set of simple positive roots. We assume that G/Γ is
not compact. In particular, r = rankQG ≥ 1. Let ∆+ denote the set of positive Q-roots. For each
root β, denote by gβ the corresponding root space. The reader is referred to [Bor91, Section 14]
for standard facts regarding root systems over Q.

For each 1 6 k 6 r, let Pk be the maximal standard parabolic Q-subgroup obtained from
Π\ {αk}. Then, each Pk is defined over Q. We note that every maximal parabolic Q-subgroup of
G is conjugate over G(Q) to Pk for some k.

We fix a maximal compact subgroup K of G which is fixed by a Cartan involution leaving S
invariant. In particular, G = KPk for all k.

9.1. Siegel Sets and Reduction Theory. A subset Ω ⊂ G is said to be a fundamental set for Γ
if the following hold.

(1) G = ΩΓ, and
(2) The set of elements γ ∈ Γ such that Ωγ ∩ Ω 6= ∅ is finite.

Let P0 = ∩kPk be the standard minimal parabolic subgroup associated with S and Π and let
U0 be the unipotent radical of P0. Denote by M0 ⊂ P0 the identity component of the maximal
Q-anisotropic subgroup of ZG(S).

A Siegel set S (relative to K,P0 and S) is a set of the form S = KStW , where W is a compact
subset of M0U0, t ≥ 0, and

St = {s ∈ S : αk(s) ≤ t, k = 1, . . . , r} . (9.1)

The following classical result, due to Borel and Harish-Chandra, shows that Siegel sets give rise to
fundamental sets for Γ.

Proposition 9.1 (Theorem 15.5, Proposition 15.6, [Bor69]). The space Γ\G(Q)/P0(Q) has finitely
many double cosets. Given a finite set of representatives F ⊂ G(Q), there exists a Siegel set S
such that Ω = SF is a fundamental set for Γ.

Through the remainder of this section, we fix a Siegel set S and a finite set F ⊂ G(Q) as in
Proposition 9.1. We denote by F−1 the set of inverses of the elements of F .
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9.2. The functions α̃k. Denote by Uk the unipotent radical of Pk and let dk = dimUk. Then,
each Uk is defined over Q. In particular, UkΓ is closed in G and Uk/Uk ∩ Γ is compact.

Let uk be the Lie algebra of Uk and let uk1 , . . . , ukdk ∈ uk ∩ gZ be an integral basis for uk. Define

puk as follows

puk = ui1 ∧ · · · ∧ uidk ∈
dk∧

g. (9.2)

Note that the stabilizer of the line span(puk) is Pk. For each 1 ≤ k ≤ r, consider the following
vector space

Vk = span

(
dk∧

(Ad(G))puk

)
. (9.3)

Then, the representation of G on each Vk is irreducible. Indeed, the vector puk is fixed by ⊕β∈∆+gβ

and is thus a highest weight vector and so Vk = span(
∧dk ad(g) ·puk) is irreducible. Moreover, since

puk ∈
∧dk gZ, F is a finite subset of G(Q), and Ad(Γ)(gZ) ⊆ gZ, we see that ΓF−1 · puk is discrete

since it is contained in
∧dk g 1

N
Z, for some N ∈ N depending on F .

We use ‖·‖ to denote a K-invariant norm on Vk, where K is our fixed maximal compact subgroup.
Define α̃k : G→ R+ as follows

α̃k(g) = max
{∥∥gγf−1 · puk

∥∥−1
: γ ∈ Γ, f ∈ F

}
. (9.4)

Note that the functions α̃k are Γ-invariant and can be regarded as functions on G/Γ. In particular,
we define a function f : G/Γ→ R+ as follows

f(x) = max
1≤k≤r

α̃
1/dk
k (g), (9.5)

for x = gΓ ∈ G/Γ. The following proposition shows that f encodes divergence in G/Γ.

Proposition 9.2. A subset L ⊆ G/Γ is bounded if and only if

max
1≤k≤r

sup
l∈L

α̃k(l) <∞.

Proof. This result is well-known and is present in several places in the literature. See for example
Steps 1 and 2 in the proof of Proposition 4.1 in [KW13]. We include a proof for completeness. The
direction “ ⇒ ” follows from the discreteness of the sets ΓF−1 · puk . Conversely, suppose xn is an
unbounded sequence in G/Γ and let gn ∈ SF be a representative of xn in the fundamental set for
Γ. Hence, we can write

gn = knwnsnfn,

with kn ∈ K, wn ∈ W , sn ∈ St and fn ∈ F such that, possibly after passing to a subsequence,
there is some 1 ≤ j ≤ r satisfying

αj(sn)→ −∞.
By the K-invariance of ‖·‖ and compactness of W , we get that

α̃j(xn) >
∥∥knwnsnfnf−1

n · puj
∥∥−1 �

∥∥sn · puj∥∥−1
.

Now, observe that puj is a weight vector for S with weight χjof the form

χj =
∑

nββ,

where the sum is taken over all positive roots β which have αj in their expansion in terms of
simple roots and nβ denotes the dimension of the root space corresponding to β. Finally, note
that since sn ∈ St, the values β(sn) are bounded above for all positive roots β. In particular,

sn · puj = eχj(sn)puj and χj(sn)→ −∞ which concludes the proof. �
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9.3. W-Active Lie Algebras and The Contraction Hypothesis in G/Γ. We recall here
several facts concerning unipotent radicals of parabolic subgroups which will be useful for us. The
first is the following observation due to Tomanov and Weiss [TW03].

Lemma 9.3 (Proposition 3.3 in [TW03]). There exists a compact neighborhood W of 0 in g such
that for all g ∈ G, the Lie algebra generated by Ad(g)(gZ) ∩W is unipotent.

Next, we record the following classical facts regarding intersections of parabolic groups.

Lemma 9.4. Suppose that P0 is a minimal parabolic subgroup and P is a parabolic subgroup of G.
Then, the following hold.

(i) If P0 contains the unipotent radical of P , then P0 ⊆ P .
(ii) [Bor91, Proposition 14.22(iii)] If Q is conjugate to P and Q contains the unipotent radical

of P , then Q = P .

Proof. Item (i) in fact follows from (ii). Let P ′0 ⊂ P be a minimal parabolic subgroup (over R)
containing the unipotent radical of P . Then, since all minimal parabolic subgroups are conju-
gate [Bor91, Proposition 21.12], there exists g ∈ G such that gP ′0g

−1 = P0 ⊆ gPg−1. In particular,
we can apply (ii) with Q = gPg−1 to get that P = Q and hence the claim follows. �

Following [KW13], we make the following key definition.

Definition 9.5. Given a neighborhood W ⊂ g of 0 and g ∈ G, we say a Lie sub-algebra u is
W-active for g if

Ad(g)(u) ⊆ span (Ad(g)(gZ) ∩W ) . (9.6)

The following is a key result obtained in [KW13].

Proposition 9.6 (Proposition 4.1 in [KW13]). For every compact neighborhood W of 0 in g and
every ω > 0, there exists M > 0 such that for all x = gΓ ∈ G/Γ with f(x) > M and all k, the set

Ψk(g) =
{
v ∈ ΓF−1 · puk : ‖g · v‖−1/dk > f(x)/ω

}
consists of W -active elements for g.

The above facts will be used in the form of the following corollary.

Corollary 9.7. Suppose W is a compact neighborhood of 0 in g as in the conclusion of Lemma 9.3.
Then, for every ω > 0, there exists M > 0 such that for all x = gΓ ∈ G/Γ with f(x) > M and all
k, the span of the set

Ψk(g) =
{
v ∈ ΓF−1 · puk : ‖g · v‖−1/dk > f(x)/ω

}
has dimension at most 1.

Proof. By Proposition 9.6, let M be chosen so that for each k, the set Ψk(g) consists of W -active
elements. For i = 1, 2, let vi = γif

−1
i · puk ∈ Ψk(g).

By Lemma 9.3, the Lie algebra generated by Ad(gγ1f
−1
1 )uk and Ad(gγ2f

−1
2 )uk is unipotent. In

particular, both Ad(gγ1f
−1
1 )(Uk) and Ad(gγ2f

−1
2 )(Uk) are contained in the same minimal parabolic

subgroup P0. By (i) of Lemma 9.4, for i = 1, 2, since Ad(gγif
−1
i )(Uk) is the unipotent radical of

Ad(gγif
−1
i )(Pk), it follows that P0 ⊆ Ad(gγif

−1
i )(Pk).

In particular, Ad(gγ2f
−1
2 )(Pk) contains the unipotent radical of Ad(gγ1f

−1
1 )(Pk). By (ii) of

Lemma 9.4, Ad(gγ2f
−1
2 )(Pk) = Ad(gγ1f

−1
1 )(Pk). Hence, since Pk is its own normalizer, we get

f2γ
−1
2 γ1f

−1
1 ∈ Pk.

In particular, since Pk normalizes uk,
v1 = cv2,

for some c 6= 0 (in fact, c ∈ 1
NZ for some N ∈ N depending on F ). �
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10. The Contraction Hypothesis in Arithmetic Homogeneous Spaces

In this section, we establish the contraction hypothesis for certain curves on arithmetic homo-
geneous spaces using the height function constructed in the previous section. The main result is
Theorem 10.7. Combined with the results in Sections 4, 5, and 6, we obtain, for a wide class
of curves on arithmetic homogeneous spaces, an explicit bound on the dimension of divergent on
average orbits, thickness of the set of bounded orbits, and quantitative non-divergence of translates
of shrinking curve segments. We retain the same notation as in the previous section.

10.1. Deformations of Maximal Representations and Linear Expansion. We introduce the
notion of deformations of a maximal representation of an sl2-triple to abstract the exact proper-
ties we require from the derivative of our curves which imply that they satisfy the β-contraction
hypothesis.

Definition 10.1. Given a bounded interval B ⊂ R and an sl2-triple (Y, h,X), we say a map
ρ : sl(2,R)×B → g is a deformation of a maximal representation if the following conditions
hold.

(1) ρ is continuous and for each s ∈ B, ρs := ρ|sl(2,R)×{s} is a faithful Lie algebra homomorphism.
In particular, ρs(X) 6= 0 for all s ∈ B.

(2) Hρ := ρs(h) belongs to (closure of) the positive Weyl chamber C ⊂ S and is independent
of s.

(3) For each s ∈ B, ρs(X) ∈
⊕

β∈∆+ gβ and ρs(sl(2,R)) is not contained in any conjugate of a
proper parabolic Q-subalgebra of g.

In the examples we study, the curves ϕ satisfy ϕ̇(s) = ρs(X) for some such ρ. In the remainder
of this section, we fix ρ : sl(2,R)×B → g a deformation of a maximal representation.

The simple roots Π induce a partial order on S∗ in the following natural way.

µ 6 ν ⇔ ν − µ =
∑
∆+

kαα for some kα ∈ N ∪ {0} .

In particular, given any irreducible representation V of G, defined over Q, the set of Q-weights of
S admits a maximal element which we call the highest Q-weight.

10.2. Maximal Representations and Linear Expansion. The following lemma is a direct
analogue of Lemma 8.2 in the setting of Lie groups of real rank equal to 1.

Lemma 10.2. Suppose V is an irreducible representation of G defined over Q with highest Q-weight
λ. Let δλ = λ(Hρ) and suppose 0 6= v ∈ V (Q) is a highest weight vector. Then, for all β ∈ (0, 1),
there exists c̃ > 0 and 0 < β′ 6 β such that for all g ∈ G, s ∈ B, and all t > 0,

1

2

∫ 1

−1
‖gtu(rρs(X))gv‖−β/δλ dr 6 c̃e−β

′t ‖gv‖−β/δλ ,

where gt = exp(tHρ) and u(rρs(X)) = exp(rρs(X)). Moreover, if rankQG = 1, we can take β′ = β.

Proof. The proof of Lemma 10.2 in the case rankQG = 1 is identical to that of Lemma 8.2. Indeed,
the key ingredients in the proof of Lemma 8.2 are Proposition 7.6 and the fact that the only
non-trivial Weyl group element sends the highest weight λ to −λ.

In the higher rank case, fix some s ∈ B and let h = (sl(2,R)× {s}). Then, we can decompose
V = V1⊕V h, where h acts trivially on V h and V1 is the h-invariant complement of V h and contains
no trivial sub-representations. Let π1 denote the h-equivariant projection onto V1.

Note that the stabilizer of R · v is a parabolic Q-subgroup of G. Thus, since ρ is a maximal
representation, we have that

G · v ∩ V h = ∅.
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In particular, arguing as in the proof of Lemma 8.2, this implies that there exists some ε > 0 such
that for all g ∈ G,

‖π1(gv)‖ > ε ‖gv‖ . (10.1)

Since ρ is continuous in s and B is compact, we note further that ε may be chosen uniformly over
s ∈ B since the spaces V h vary continuously.

Denote by P+(V ) the set of highest weights for h appearing in the decomposition of V into
irreducible representations. For each µ ∈ P+(V ), we let δµ = µ(Hρ) and Vµ be the direct sum of
irreducible sub-representations of V with highest weight µ. Let πµ : V → Vµ denote the associated
projection. Inequality (10.1) implies that there exists µ ∈ P+(V )\ {0} such that

‖πµ(gv)‖ � ‖π1(gv)‖ > ε ‖gv‖ . (10.2)

Define β′ as follows

β′ =
β

δλ
min

{
δµ : µ ∈ P+(V )\ {0}

}
. (10.3)

The Lemma now follows immediately from Proposition 7.5 applied to the projection of gv onto Vµ
with 0 6= µ ∈ P+(V ) and satisfying (10.2).

�

Remark 10.3. It is natural to ask whether the constant of proportionality between β′ and β
in (10.3) is optimal. When rankQ(G) > 1, the Weyl group typically contains more than one non-
trivial element. This fact played a key role in the (real and rational) rank 1 cases in showing that
β′ = β, allowing us to obtain the fastest possible contraction rate. In particular, it is not clear
whether it is possible to modify the argument in the proof of Lemma 10.2 to show that in the
case rankQ(G) > 1, the G-orbit of a highest weight vector avoids sub-representations of V with
non-maximal, non-zero highest weights for h. More precisely, it is not clear whether the analogue
of equation (8.5) holds in the setting of Lemma 10.2 when rankQ(G) > 1.

10.3. The Main Integral Estimate. For each 1 6 k 6 r, let χk ∈ S∗ denote the highest Q-
weight with respect to Π in the representation Vk defined in (9.3). Then, since ρs is a maximal
representation, for each 1 ≤ k ≤ r,

δk := χk(Hρ) 6= 0.

Indeed, otherwise, if δk = 0, this implies that Ad (ρ (sl(2,R)× {s})) annihilates puk . But, since Pk
is the normalizer of Uk, this implies that ρ (sl(2,R)× {s}) is contained in the Lie algebra of Pk,
contradicting the fact that ρs is maximal.

The following proposition is the main result of this section.

Proposition 10.4. For all 0 < β < mink dk/δk, there exists c0 > 1 and 0 < β′ 6 mink βδk/dk,
depending on β, so that the following holds. For every t > 0, there exists a positive constant b such
that for all x ∈ G/Γ and all s ∈ B,

1

2

∫ 1

−1
fβ(gtu(rρs(X))x) dr 6 c0e

−β′tfβ(x) + b,

where gt = exp(tHρ) and u(rρs(X)) = exp(rρs(X)). Moreover, if rankQG = 1, we can take
β′ = βδ1/d1.

Proof. Let W be a compact neighborhood of 0 for which Lemma 9.3 holds. Fix some t > 0 and
define ω as follows.

ω = sup
|r|61,s∈B

max
{
‖gtu(rρs(X))‖ ,

∥∥(gtu(rρs(X)))−1
∥∥} .



34 OSAMA KHALIL

Here ‖·‖ refers to the operator norm for the G action on
⊕

k

∧k g. Then, for all s ∈ B and
r ∈ [−1, 1] and all x ∈ G/Γ, we have

ω−1/d0f(x) 6 f(gtu(rρs(X))x) 6 ω1/d0f(x), (10.4)

where

d0 = min
1≤k≤r

dk. (10.5)

Let M > 0 be as in Corollary 9.7 applied to our chosen W and with ω2/d0 in place of ω. Suppose
that x0 ∈ G/Γ is such that f(x) 6M . Fix β ∈ (0, 1). Then, we have

1

2

∫ 1

−1
fβ(gtu(rρs(X))x0) dr 6 b, (10.6)

for b = ωβ/d0Mβ.
Now, suppose f(x0) > M and write x0 = gΓ for some g ∈ G. For each 1 ≤ k ≤ r, consider the

sets

Ψk(g) =
{
v ∈ ΓF−1 · puk : ‖g · v‖−1/dk > f(x0)/ω2/d0

}
.

We claim that for all s ∈ B and r ∈ [−1, 1], one has

f (gtu(rρs(X))x0) = max
{
‖gtu(rρs(X))g · v‖−1/dk : v ∈ Ψk(g), 1 ≤ k ≤ r

}
.

Indeed, suppose v ∈ ΓF−1 · puk satisfies f (gtu(rρs(X))x0) = ‖gtu(rρs(X))g · v‖−1/dk for some k
and some (s, r) ∈ B × [−1, 1]. Then, by definition of ω and (10.4), we obtain

ω1/dk ‖g · v‖−1/dk > ‖gtu(rρs(X))g · v‖−1/dk = f (gtu(rρs(X))x0) > f(x0)/ω1/d0 .

Hence, v ∈ Ψk(g) as desired. Say a vector v ∈ ΓF−1 · puk is primitive if v has minimal norm in
R · v ∩ ΓF−1 · puk . Next, we note that Corollary 9.7 implies that for each k, the set Ψk(g) contains
at most one primitive vector up to a sign. Denote by Ψ0

k(g) the following set.

Ψ0
k(g) = {v ∈ Ψk(g) : v is primitive} .

In order to apply Lemma 10.2, let δk = χk(Hρ) and γk = βδk/dk. The choice of β implies that
0 < γk < 1 for all 1 ≤ k ≤ r. Thus, by Lemma 10.2 applied with γk in place of β, there exists
0 < β′ 6 mink γk such that the following inequalities hold:

1

2

∫ 1

−1
fβ(gtu(rρs(X))x0) dr 6

∑
v∈Ψ0

k(g)
1≤k≤r

1

2

∫ 1

−1
‖gtu(rρs(X))g · v‖−β/dk

6 c̃e−β
′t

∑
v∈Ψ0

k(g)
1≤k≤rankQG

‖g · v‖−β/dk 6 2rc̃e−β
′tfβ(x0), (10.7)

where c̃ is as in the conclusion of Lemma 10.2. Combining (10.6) and (10.7) completes the proof. �

Remark 10.5. An analogue of Proposition 10.4 was obtained in [EM04, Section 3.2] in the context
of random walks on homogeneous spaces. It was assumed in [EM04] that the Zariski closure of the
group generated by the support of the measure generating the random walk is a semisimple group
which is not contained in any proper parabolic Q-subgroup of G. This assumption is replaced here
with the notion of a deformation of a maximal representation. Lemma 10.2 acts as a substitute
for the positivity of the top Lyapunov exponent in the context of random walks. In the case when
the rational rank of G is equal to 1, we also observe that we can obtain a precise contraction rate
which allows us to obtain a sharp dimension upper bound for divergent on average orbits.
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In the following lemma, we show that the height function f satisfies Assumption 5.1. Its proof
is very similar to the analogous Lemma 8.4 in rank 1.

Lemma 10.6. There exists N ∈ N, depending only on G, such that for every T,R > 0, there exists
M0 > 0 such that for all x ∈ G/Γ, Y ∈

⊕
β∈∆+ gβ with ‖Y ‖ ≤ R and M1 ≥ M0, the following

holds.

The set {|s| 6 T : f(u(sY )x) > M1} has at most N connected components. (10.8)

Proof. Let T,R > 0, Y ∈
⊕

β∈∆+ gβ with ‖Y ‖ ≤ R and let us = u(sY ). Fix some x = gΓ ∈ X and
define ω as follows:

ω = sup

‖u(sZ)‖ : Z ∈
⊕
β∈∆+

gβ, ‖Z‖ ≤ R, |s| ≤ T

 ,

where ‖·‖ refers to the operator norm on
⊕

k

∧k g. Arguing as in the proof of Proposition 10.4, let
W be a compact neighborhood of 0 for which Lemma 9.3 holds. Let M > 0 be as in Corollary 9.7
applied to W and ω2/d0 , where d0 is defined in (10.5). Now, define M0 as follows.

M0 = ω2/d0M.

Let M1 ≥ M0. If f(usx) 6 M1 for all |s| ≤ T , then the set in (10.8) is empty and the claim
follows. On the other hand, if f(us0x) > M1 for some s0 with |s0| ≤ T , then, by definition of M1

and ω, we see that f(usx) > M for all |s| ≤ T . For each 1 ≤ k ≤ r = rankQ(G), define the following
sets.

Ψ0
k(g) =

{
v ∈ ΓF−1 · puk : ‖g · v‖−1/dk > f(x)/ω2/d0 , v is primitive

}
.

By an argument identical to that in the proof of Proposition 10.4, it follows that

f (usx) = max
{
‖usg · v‖−1/dk : v ∈ Ψ0

k(g), 1 ≤ k ≤ r
}
,

for all |s| ≤ T and the sets Ψ0
k(g) contain at most one vector up to a sign for each k. In particular,

for each |s| ≤ T , f(usx) is a maximum over functions of the form ‖usw‖−1/dk for at most 2r vectors
w.

Finally, for any vector w ∈ V =
⊕

k

∧k g, the map s 7→ ‖usw‖2 is a polynomial of degree
at most d, where d depends only on the dimension of V . Thus, since polynomials have finitely
many zeros, for any ε > 0, the set {|s| ≤ T : ‖usw‖ < ε} has a number of connected components
uniformly bounded above only in terms of d. Moreover, each connected component of the set
{s : f(usx) > M1} is a union of connected components of sets of the form {s : ‖usg · v‖ < ε} for an
appropriate ε > 0. The claim now follows by taking N = 2rd.

�

Proposition 10.4 establishes the main contraction property of the function f while the other
properties in Definition 4.2 follow easily from the definition and Proposition 9.2. Thus, we have
established the following.

Theorem 10.7. Suppose G is a semisimple algebraic real Lie group defined over Q with Lie al-
gebra g and Γ is a lattice in G. Let ρ : sl(2,R) × B → g be a deformation of a maximal rep-
resentation (Def. 10.1) and let gt = exp(tHρ). Suppose ϕ : B → g is a differentiable curve
satisfying ϕ̇(s) = ρs(X) for each s ∈ B. Then, there exists 0 < β0 < 1 such that ϕ satisfies
the β-contraction hypothesis for all β ∈ (0, β0) with a height function satisfying Assumption 5.1.
Moreover, if rankQ(G) = 1, then β0 = 1/2.

Remark 10.8. An explicit estimate for β0 is given in (10.3) when rankQ(G) > 1.
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10.4. Proof of Theorem A. In light of Lemma 4.4, it suffices to prove the result when Γ is an
irreducible, non-uniform lattice in G. If rankRG = 1, i.e. G is a simple real Lie group of real rank
1 and finite center, then Theorem A follows from Theorem 8.5 which establishes the β-contraction
hypothesis for all β ∈ (0, 1/2) with a height function satisfying Assumption 5.1. One can thus
apply Theorems 4.3 and 5.2, and Proposition 6.1 to conclude.

When rankRG > 1, we wish to apply Theorem 10.7 in place of Theorem 8.5. Thanks to Margulis’
arithmeticity theorem, Γ is arithmetic, i.e. Γ is commensurable with GZ in some Q-structure on G.
It follows from [Mor15, 5.5.12] that Γ arises via a restriction of scalars construction1. The reader is
referred to [Mor15, Section 5.5] for more details. In particular, since G is a product of simple Lie
groups of real rank 1, we necessarily have that rankQΓ ≤ 1. Since we are assuming that G/Γ is not
compact, we thus have that rankQΓ = 1.

It remains to show that the curves considered in Theorem A arise as deformations of a maximal
representation. To this end, we only need to show that gt and u(ϕ̇(s)) are part of a maximal
SL(2)-triple for every s ∈ B.

For each 1 ≤ i ≤ k, write g
(i)
t = exp(tHi) for Hi ∈ gi. Using the fact that each simple factor

of G is a rank 1 group, it follows from the Jacobson-Morozov Lemma that for each 1 ≤ i ≤ k,
Hi and ϕ̇i(s) can be completed to an sl(2)-triple hi = 〈Yi(s), Hi, ϕ̇i(s)〉. One can then check that
h = 〈⊕ki=1Yi(s),⊕ki=1Hi, ϕ̇(s)〉 is the desired sl(2)-triple.

The maximality of h follows from the fact that the only proper parabolic Q-subgroups in G are
minimal and have an abelian Levi part in this case. In particular, h cannot be contained in any
proper parabolic Q-subalgebra of g as desired.

10.5. Examples of Maximal Representations. The goal of this subsection is to produce more
examples of deformations of maximal representations. In Section 11, we discuss the case G is a
product of SL(2)’s.

Observe that if a reductive subgroup H < G is contained in some proper parabolic R-subgroup
P < G, then H must be contained inside a Levi subgroup L < P . The centralizer ZP (L) of L in P
is a non-trivial R-split torus and is, thus, non-compact. This proves the following simple criterion
for checking whether an sl2-triple is maximal in the sense of Definition 10.1.

Lemma 10.9. If the centralizer ZG(H) of a reductive real Lie subgroup H < G is compact, then
H is not contained in any proper parabolic R-subgroup of G.

Note that if ZG(H) is compact, then ZG×G(∆(H)) is also compact, where ∆(H) denotes the
diagonal embedding of H inside G × G. We can use Lemma 10.9 to construct other examples as
follows.

Example 10.10. Let G = SO(p, 2) with p ≥ 1. Let H be a Q-subgroup isomorphic to SO(1, 2).
Then, ZG(H) ∼= SO(p − 1) is compact. Let A denote a Q-split torus inside H. Suppose B ⊂ R is
an interval and let

z : B → ZG(A)

be an arbitrary continuous map. Then, one can check that the map ρ : sl(2,R) × B → Lie(G)
defined by setting

ρ (sl(2,R)× {s}) = Ad(z(s)) (Lie(H))

is indeed a deformation of a maximal representation.

11. Specializing to Products of SL(2)

In this section, we specialize the results of the previous sections to the case G = SL(2,R)r ×
SL(2,C)s, in order to complete the proof of Theorem B. Moreover, we consider curves in this setting

1In fact, the complexifications of each simple factor of G must be isogenous, but we do not need this fact.
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which do not fit within the notion of maximal representations as defined in 10.1. The main result
of this section is Theorem 11.5.

Suppose Γ is a lattice in G. Then, up to finite index, and thanks to Lemma 4.4, we may assume
Γ = Γ1 × · · · × Γl, where each Γi is irreducible in a sub-product of G. In light of Lemma 4.4, it
suffices to establish the contraction hypothesis in each irreducible factor and thus we may assume
Γ is irreducible. If r + s = 1, then G has real rank 1 and this result was established in Section 8.
Thus, we may also assume that r+s > 1 and in particular that rankR(G) > 1. Define the following
elements of G:

gt =

((
et 0
0 e−t

))
16i6r+s

, u(x) =

((
1 xi
0 1

))
16i6r+s

. (11.1)

By Margulis’ arithmeticity theorem, there exists a rational structure on G so that Γ is commen-
surable with G(Z). In this section, we assume that the Q-rank of G is equal to 1 so that G/Γ is
not compact. Without loss of generality and to simplify notation, we will assume that gt is Q-split.
Hence, the group U = {u(x) : x ∈ Rr × Cs} is the unipotent radical of the minimal parabolic group
P0 associated with the Q-torus S = {gt : t ∈ R}. The group P0 has the following form.

P0 =

{((
∗ ∗
0 ∗

))}
.

For each i, let Gi denote the ith factor of G. Let g = ⊕r+si=1gi denote the Lie algebra of G, where
gi is the Lie algebra of Gi. For 1 ≤ i ≤ r + s, we let Hi ∈ gi denote the following element.

Hi =

(
1 0
0 −1

)
.

Recall that any irreducible representation V of G is isomorphic to a tensor product
⊗

iWi, where
each Wi is an irreducible representation of Gi. In particular, if λ ∈ S∗ is a highest weight for G in
V , then

λ =
∑
i

λi, (11.2)

where each λi ∈ (R ·Hi)
∗ is a highest weight for Gi in Wi. Given any such representation V with

highest weight λ and 0 6= x = (xi) ∈ Rr × Cs, we define the following exponents:

δi = λi(Hi), δx =
∑
i:xi 6=0

δi, ζx =
∑
i:xi=0

δi. (11.3)

The following Lemma acts as a substitute for Lemma 10.2 in this setting.

Lemma 11.1. Suppose V is a non-trivial irreducible representation for G and 0 6= v ∈ V is a
highest weight vector. Then, for all 0 < β < 1 and 0 6= x ∈ Rr × Cs, there exists c ≥ 1 such that
for all t > 0 and all g ∈ G, the following holds:

1

2

∫ 1

−1
‖gtu(rx) · gv‖−β/δx dr 6 ce−β

′t ‖gv‖−β/δx ,

where β′ is given by

β′ = β

[
1− ζx

δx

]
. (11.4)

Moreover, the constant c can be chosen uniformly as x varies in a fixed compact set.

Proof. Let 0 6= x = (xi) ∈ Rr × Cs be given and define y = (yi) ∈ Rr × Cs by

yi =

{
1/xi, xi 6= 0

0, otherwise.
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Denote by h = h(x) the subalgebra of g generated by

x =

((
0 xi
0 0

))
16i6r+s

, y =

((
0 0
yi 0

))
16i6r+s

.

Thus, in particular, h ∼= sl(2,R) with the following distinguished positive diagonalizable element.

h := [x,y] =
∑
i:xi 6=0

Hi.

Consider the following elements of G.

at = exp (th) , bt = gta−t = exp

(
t
∑
i:xi=0

Hi

)
.

Since the smallest eigenvalue of bt in V is exp (tζx), we get that

1

2

∫ 1

−1
‖gtu(rx) · gv‖−β/δx dr 6 eβtζx/δx

1

2

∫ 1

−1
‖atu(rx) · gv‖−β/δx dr. (11.5)

Denote by P+(V ) the set of highest weights for h appearing in the decomposition of V into
irreducible representations and denote by χ the maximal element in P+(V ). For each µ ∈ P+(V ),
we let Vµ be the direct sum of irreducible sub-representations of V with highest weight µ. Let
πµ : V → Vµ denote the associated projection.

Note that δx is the largest eigenvalue of h in V . In particular, we can apply Proposition 7.5 to
get the following estimate.

1

2

∫ 1

−1
‖atu(rx) · gv‖−β/δx dr 6 c1e

−βt ‖πχ(gv)‖−β/δx , (11.6)

for some constant c1 ≥ 1 depending only on β. From (11.5) and (11.6), to conclude the proof, it
remains to show the existence of a constant ε > 0 so that for all g ∈ G,

‖πχ(gv)‖ > ε ‖gv‖ . (11.7)

To do so, we wish to apply Proposition 7.6. For a weight η ∈ S∗, we denote by V η the weight
space for S with weight η. Note that V −λ ⊕ V λ ⊆ Vχ, where λ ∈ S∗ denote the highest weight for
G in V . This follows from (11.2) and the definition of h. In particular, by Proposition 7.6, we get
that

G · v
⋂ ⊕

µ∈P+(V )\{χ}

Vµ = ∅. (11.8)

Now, observe that no conjugate of h is contained in the Lie algebra of the group P0 since the
Levi part of P0 is abelian while h is semisimple. Moreover, the group P0 stabilizes the line R · v.
Arguing as in the proof of Lemma 8.2, we see that the image of G · v is compact in projective space
and disjoint from the closed image of

⊕
µ∈P+(V )\{χ} Vµ. Thus, (11.7) follows.

�

Remark 11.2. Consider the case V = V1 in Lemma 11.1, where V1 is the representation defined
in 9.3 and used to define the height function on G/Γ. Then, we have

δi =

{
2, if Gi = SL(2,R).

4, if Gi = SL(2,C).

and δV = 2r+ 4s. In particular, the exponent β′ defined in (11.4) is positive if x = (xi) ∈ Rr ×Cs
is such that

# {1 6 i 6 r : xi 6= 0}+ 2 ·# {r < i 6 r + s : xi 6= 0} > r + 2s

2
.
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Given 0 6= x ∈ Rr × Cs, define a height function fx : G/Γ→ R+ by

fx(x0) = α̃
1/δx
1 (x0), (11.9)

where α̃1 is defined in (9.4).
Thus, we can apply Lemma 11.1 in place of Lemma 10.2 and obtain the following direct analogue

of Proposition 10.4.

Proposition 11.3. For all 0 < β < 1, there exists c0 > 1, depending on β, so that the following
holds. For every t > 0, there exists a positive constant b such that for all x0 ∈ G/Γ and all
0 6= x ∈ Rr × Cs,

1

2

∫ 1

−1
fβx (gtu(rx)x0) dr 6 c0e

−β′tfβx (x0) + b,

where β′ is given by (11.4).

Remark 11.4. The proof of Proposition 10.4 in the Q-rank 1 case used the function f = α̃
1/d1
1 ,

where d1 = r + 2s is the dimension of the group U. However, this different exponent does not
change the main properties of f . In particular, the key ingredient, Corollary 9.7 still holds for our
definition of fx.

Given a non-constant differentiable map ϕ = (ϕi) : B → Lie(U+(g1)) ∼= Rr ⊕ Cs such that ϕ̇i is
either identically 0 or does not vanish on B for 1 ≤ i ≤ r+ s, we observe that δϕ̇(s) (eqn. (11.3)) is

independent of s. Thus, by taking our height function to be fβϕ̇(s) for any s, Proposition 11.3 along

with the results of Section 9 and 10 imply the following.

Theorem 11.5. Suppose G = SL(2,R)r×SL(2,C)s, Γ is an irreducible lattice in G and gt is a split
1-parameter subgroup. Let ϕ = (ϕi) : B → Lie(U+(g1)) ∼= Rr⊕Cs be a non-constant C1+ε-map for
some ε > 0 such that ϕ̇i is either identically 0 or does not vanish on B for 1 ≤ i ≤ r + s. Define
βϕ as follows:

βϕ :=
1

2

[
1− # {1 6 i 6 r : ϕ̇i ≡ 0}+ 2 ·# {r < i 6 r + s : ϕ̇i ≡ 0}

# {1 6 i 6 r : ϕ̇i 6≡ 0}+ 2 ·# {r < i 6 r + s : ϕ̇i 6≡ 0}

]
.

If βϕ > 0, then ϕ is a gt-admissible curve satisfying the β-contraction hypothesis for the G action
on G/Γ for all 0 < β < βϕ. Moreover, the β-contraction hypothesis holds with a height function
satisfying Assumption 5.1.

11.1. Proof of Theorem B. When Γ is irreducible, the result follows by combining Theorem 11.5
with Theorems 4.3 and 5.2, and Proposition 6.1. In particular, the dimension of divergent on average
orbits is at most 1− βϕ, where βϕ is as in Theorem 11.5. Note that this upper bound is less than
1 if and only if βϕ > 0.

11.2. Non-maximal Curves on Products of SO(d,1). The methods of this section can be used
with minor modifications to obtain an analogous result to Theorem B when G is a product of of
copies of SO(n, 1).

Theorem 11.6. Suppose G = G1×· · ·×Gk is such that for each 1 ≤ i ≤ k, Gi ∼= SO(di, 1) for some

di ≥ 2. Let Γ be an irreducible lattice in G. For each 1 ≤ i ≤ k, let g
(i)
t be a 1-parameter subgroup

of Gi which is Ad-diagonalizable over R, and suppose ϕi : B → Lie(U+(g
(i)
1 )) is a C1+ε-map for

some ε > 0. Assume that for each i, ϕ̇i is either non-vanishing or vanishes identically on B. Let

gt = (g
(i)
t )1≤i≤k and ϕ = ⊕ki=1ϕi. Assume that gt is split and ϕ is gt-admissible and non-constant.

Then, for every x0 ∈ X = G/Γ, the Hausdorff dimension of the set of points s ∈ B for which the
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forward orbit (gtu(ϕ(s))x0)t>0 is divergent on average is at most

1

2
+

1

2

∑
1≤i≤k,ϕ̇i≡0

(di − 1)∑
1≤i≤k,ϕ̇i 6≡0

(di − 1)
.

Moreover, if the above quantity is strictly less than 1, then parts (ii)− (iv) of Theorem A also hold
in this setting.

12. The Contraction Hypothesis for SL(2,R) Actions

In this section, we construct a family of functions that will allow us to control recurrence to
compact sets in SL(d,R)/SL(d,Z). This construction was introduced in [EMM98] and generalized
in [BQ11]. Here, we follow the approach of [BQ11]. The main result of this section, Theorem 12.5,
establishes the contraction hypothesis in the context of SL(2,R) actions completing the proof of
Theorem C.

We recall the set up and notation of Theorem C. Let L be a semisimple algebraic Lie group
defined over Q and let Γ be an arithmetic lattice in L. We let ρ : SL(2,R) → L be a non-trivial
homomorphism and let G denote the image of ρ. Let gt and us be as in the statement of Theorem C.

The aim of this section is to show that the “curve” us satisfies the β-contraction hypothesis for
the G-action on L/Γ. In light of Lemma 4.4, we have the freedom of replacing Γ by a commensurable
lattice without loss of generality.

In particular, we may regard L as a subgroup of S = SL(d,R) for some d ≥ 1 so that Γ = L∩Λ,
for Λ = SL(d,Z). Since L is defined over Q, we have that LΛ is closed in S and the homogeneous
space X = L/Γ ∼= L/L ∩ Λ can be regarded a closed subspace of X ′ = S/Λ. As a result, the
contraction hypothesis for the G-action on L/Γ will follow from that of the G-action on S/Λ.
Therefore, without loss of generality, we will assume through the remainder of this section that

L = SL(d,R), Γ = SL(d,Z), X = L/Γ.

Using the results in [BQ11], Shi showed in [Shi14] the β-contraction hypothesis for the G action
on X for some β > 0. We reproduce the proof in this section with some modifications to obtain a
more precise range for the exponent β.

12.1. The Contraction Hypothesis in Vector Spaces. As before, we first construct functions
in linear representations encoding divergence in X and then convert our linear estimates into a
height function on X. The relevant representation in this case is

⊕
i

∧iRd.
Let H0, Z ∈ Lie(G) ∼= sl(2,R) be such that

gt = exp(tH0), us exp(sZ). (12.1)

In particular, by definition of gt and us, we have

[H0, Z] = 2Z.

Denote by P+ the set of all possible highest weights appearing in linear representations of G.
From the representation theory of SL(2,R), the set P+ of highest weights can be identified with
N ∪ {0}. Given an arbitrary finite dimensional representation V of G and λ ∈ P+, we use V λ to
denote the direct sum of all irreducible subrepresentations of V whose highest weight is λ. We
denote by πλ : V → V λ the associated G-equivariant projection.

Following [BQ11], we define two sets of exponents. For i ∈ {1, . . . , d− 1} and λ ∈ P+, define

δi = i(d− i), δλ = λ(H0). (12.2)

In particular, we have
λ(H0) = 0⇔ λ = 0.
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For every ε > 0 and 0 < i < d, we define a function ϕε on
∧iRd as follows. For v ∈

∧iRd, let

ϕε(v) =

 min
λ∈P+\{0}

ε
δi
δλ ‖πλ(v)‖−1/δλ if ‖π0(v)‖ < εδi ,

0 otherwise.
(12.3)

Here, we use the convention 1/0 =∞.
The following Lemma is the form in which we use Proposition 7.5 in our setting.

Lemma 12.1. For every β ∈ (0, 1), there exists D > 1 such that for all t, ε > 0 and all v ∈
∧iRd

with 0 < i < d,
1

2

∫ 1

−1
ϕβε (gtusv) ds 6 De−βtϕβε (v).

Proof. First, we note that for all g ∈ G, π0(gv) = gπ0(v) = π0(v). In particular, if ϕε(v) = 0, then
‖π0(v)‖ = ‖π0(gtusv)‖ > εδi for all s and t and the statement follows in this case. Hence, we may
assume ϕε(v) 6= 0.

Moreover, since the integral of the minimum of finitely many functions is bounded by the mini-
mum of their integrals, it suffices to prove

1

2

∫ 1

−1
‖πλ(gtusv)‖−β/δλ ds =

1

2

∫ 1

−1
‖gtusπλ(v)‖−β/δλ ds 6 De−βt ‖πλ(v)‖−β/δλ , (12.4)

for each λ ∈ P+\ {0} and for some constant D depending only on β.
If πλ(v) = 0 for some λ, then the right-hand side of (12.4) is ∞ and the claim is proved in this

case. Now, suppose that πλ(v) 6= 0 for some λ ∈ P+\ {0}.
Denote by V =

(∧iRd
)
λ
, i.e. the image of

∧iRd under the projection πλ. From the represen-

tation theory of SL(2,R), we see that the dimension of an irreducible representation with weight λ
is equal to δλ + 1. In particular, choosing β ∈ (0, 1) allows us to apply Proposition 7.5 to get that

1

2

∫ 1

−1
‖gtusπλ(v)‖−β/δλ ds 6 De−βt ‖πλ(v)‖−β/δλ .

This proves (12.4) and completes the proof. �

12.2. The Contraction Hypothesis on X. The space X = S/Λ may be identified with the
space of unimodular lattices in Rd via the map gSL(d,Z) 7→ gZd. For x ∈ X, let P (x) denote the
set of all primitive subgroups of the lattice x. Recall that a subgroup of a lattice in Rd is primitive
if its Z basis can be completed to a basis of Rd as an R-vector space.

We say a monomial v1 ∧ · · · ∧ vi ∈
∧iRd is x-integral if the abelian subgroup of Rd generated by

{v1, . . . , vi} belongs to P (x).
Now, we define the function fε : X → [0,∞] by

fε(x) = maxϕε(v), (12.5)

where the maximum is taken over all non-zero x-integral monomials v ∈
∧iRd and all 0 < i < d.

Remark 12.2. The function fε can assume the value ∞. However, for any x ∈ X, one can choose
ε to be small enough so that fε(x) < ∞. In fact, one can choose such ε uniformly for compact
subsets of X by Mahler’s criterion.

Following the same lines as Proposition 5.3 in [BQ11], we obtain the following result.

Proposition 12.3. For all β ∈ (0, 1), there exists c0 > 1 such that for all t > 0, there exist
constants ε0, b > 0, depending on t, satisfying

1

2

∫ 1

−1
fβε0(gtusx) ds 6 c0e

−βtfβε0(x) + b,
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for all x ∈ X.

Proof. Suppose β ∈ (0, 1) and let D > 1 be the constant in the conclusion of Lemma 12.1. For a
compact set Q ⊂ G, define

ω(Q) = sup
g∈Q

max
{
‖g‖ ,

∥∥g−1
∥∥} , (12.6)

where ‖·‖ is the operator norm induced by the euclidean norm on V =
⊕d−1

i=1

∧iRd.
Fix some t > 0 and denote by ω the following constant.

ω = ω ({gtus : s ∈ [−1, 1]}) . (12.7)

Let ε0 > 0 be a constant to be determined later. Note that the exponents δλ in the definition of
ϕε0 satisfy

δλ > 1/α(H0),

for all 0 6= λ ∈ P+. Thus, by definition of ϕε0 , for all s ∈ [−1, 1] and all v ∈ V ,

ω−α(H0)ϕε0(v) 6 ϕε0(gtusv) 6 ωα(H0)ϕε0(v). (12.8)

It is shown in [BQ11, Claim 5.9] that given a compact subset Q of G, there exists constants C1 > 1
and ε0 > 0, depending on Q, such that whenever fε0(x) > C1, the set of x-integral monomials v,
satisfying

ϕε0(v) > fε0(x)/ω(Q)2α(H0), (12.9)

contains at most one vector up to a sign in each of
∧iRd with 0 < i < d. In particular, we may

apply this result to the compact set Q = {gtus : s ∈ [−1, 1]}.
Suppose x ∈ X satisfies fε0(x) > C1 and let Ψ denote the set of x-integral monomials satisfy-

ing (12.9). Then, Lemma 12.1 implies

1

2

∫ 1

−1
fβε0(gtusx) ds 6

∑
v∈Ψ

1

2

∫ 1

−1
ϕβε0(gtusv) ds 6 4dDe−βtfβε0(x).

Finally, if fε0(x) < C1 for some x ∈ X, then (12.8) implies that

1

2

∫ 1

−1
fβε0(gtusx) ds 6 ωα(H0)C1.

Thus, the statement of the Proposition follows by taking c0 = 4dD and b = ωα(H0)C1. �

Proposition 8.3 establishes that the functions fβε satisfy the main property in the β-contraction
hypothesis (Def. 4.2) for the G = SL(2,R) action on homogeneous spaces X. Properties (1), (2)
and (4) follow from Mahler’s compactness criterion and the lower semi-continuity of fε0 . Finally,
Assumption 5.1 follows from the following lemma.

Lemma 12.4. There exists N ∈ N, depending only on G and Γ, such that for every T > 0, there
exists M0 > 0 such that for all x ∈ G/Γ, and M1 ≥M0, the following holds.

The set {|s| 6 T : f(usx) > M1} has at most N connected components. (12.10)

Proof. The proof is identical to that of Lemma 10.6 and relies on the bounded cardinality of a set
of vectors analogous to the set Ψ in the proof of Proposition 12.3. �

Thus, we have established the following statement.

Theorem 12.5. Let B ⊂ R be an interval and suppose L is a semisimple algebraic Lie group
defined over Q, Γ an arithmetic lattice in L, and ρ : SL(2,R)→ L a non-trivial representation. Let

gt = ρ

((
et 0
0 e−t

))
, u(ϕ(s)) = ρ

((
1 s
0 1

))
, s ∈ B.
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Then, ϕ(s) is a gt-admissible curve satisfying the β-contraction hypothesis for the action of G =
ρ(SL(2,R)) on L/Γ for all β ∈ (0, 1/2), with a height function satisfying Assumption 5.1.

12.3. Proof of Theorem C. The result follows by combining Theorem 12.5 with Theorems 4.3
and 5.2, and Proposition 6.1.

13. Conclusions and Open Problems

The results of this article leave open several natural questions, which we now discuss.

13.1. Lower Bounds. It is known (cf. [KP17]) that when G = SL(2,R), then the upper bound
obtained in Theorem A on the dimension of divergent on average orbits coincides with the lower
bound. This fact can be used to deduce a lower bound on the dimension of divergent on average
orbits in a special case of Theorem A as follows.

Proof of Corollary 2.4. By Theorem A, we only need to establish the lower bound. First, we

observe2 that if the orbit (g
(1)
t u(ϕ1(s))x0)t>0 is divergent on average in SL(2,R)/Γ1, then the orbit

(gtu(ϕ(s))x0)t>0 is divergent on average in G/Γ. This follows from the fact that every compact
subset K ⊂ G/Γ is contained in a set of the form K1×K2, where K1 ⊂ SL(2,R)/Γ1 and K2 ⊂ G′/Γ′
are compact sets.

The assumption that ϕ1 is non-constant implies that ϕ1(B) is a compact non-trivial interval. It

follows from [KP17, Theorem 1.3] that the set of points r ∈ ϕ1(B) for which the orbit (g
(1)
t u(r)x0)t>0

is divergent on average has Hausdorff dimension 1/2. Since ϕ1 is Lipschitz, and Lipschitz maps do
not increase Hausdorff dimension, we obtain the desired lower bound. �

Corollary 2.4 leaves open the question of whether 1/2 is in fact a lower bound on the dimension of
divergent orbits (not divergent on average) when Γ is reducible. However, this corollary motivates
the following natural question.

Question 13.1. In the settings of Theorems A, B, and C: If G/Γ is not compact, is the Hausdorff
dimension of the divergent on average orbits of gt equal to the minimum of 1 and the upper bounds
obtained in loc. cit.?

13.1.1. A Counter Example. As noted in the introduction, Theorem B gives a meaningful upper
bound on the dimension of divergent on average orbits only when

# {1 6 i 6 rk : (ϕ̇k)i 6≡ 0}+ 2 ·# {rk < i 6 rk + sk : (ϕ̇k)i 6≡ 0} > rk + 2sk
2

, (13.1)

for all 1 ≤ k ≤ l. We now show that this condition cannot be relaxed in general.
Suppose G = SL(2,R) × SL(2,C) and Γ is an irreducible, non-uniform lattice in G. One may

construct such a lattice using the Galois embedding of SL(2,OK) into G, where OK is the ring of
integers in K = Q( 3

√
2) for example. Let ϕ : B → R× C be given by ϕ(s) = (s, 0) and let gt be as

in (3.3). Let x0 = gΓ for g ∈ G the Weyl “element” given by

g =

((
0 1
−1 0

)
,

(
0 1
−1 0

))
.

One can then check directly using the definition of the proper function f in (9.5) that f(gtu(ϕ(s))x0)
tends to ∞ as t → ∞ for every s ∈ B. Roughly the amount of expansion provided by the first
factor (an eigenvalue of 2) is negated by the contraction in the second factor (an eigenvalue of −4).

This, however, leaves open the question of whether the dimension of divergent on average orbits
is strictly less than 1 in the critical case when the 2 sides of inequality (13.1) are equal.

2Note that the converse is not true in general.
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13.2. More General Diagonal Flows. The notion of a deformation of a maximal representation
a priori restricts our results to curves whose tangents form an sl(2,R)-triple with the diagonal flow
in question. However, the proof of Theorem B (particularly Lemma 11.1) shows that our methods
apply to a more general class of curves which we now describe.

Suppose ρ is a deformation of a maximal representation and let gt = exp(tHρ) and ϕ(s) = ρs(X).
For each k, let V +

k denote the gt-expanding subspace of the vector space Vk defined in 9.3. Suppose
A is a maximal R-split torus containing gt, which we identify with its Lie algebra. Denote by
A+(Hρ) the cone inside A of semisimple elements H ′ which have positive eigenvalues on V +

k for
each k. Note that Hρ ∈ A+(Hρ) by definition. Given any H ′ ∈ A+(Hρ) such that ϕ is exp(tH ′)-
admissible, one can check that the proofs of the integral estimates obtained in Section 10 go through
with exp(tH ′) in place of gt, with a contraction rate depending the eigenvalues of H ′. However, it
is not clear whether the upper bounds on the dimension of divergent orbits for the flows obtained
in this manner are sharp.
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