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Abstract. We show that the Fourier transform of Patterson-Sullivan measures associated to con-
vex cocompact groups of isometries of real hyperbolic space decays polynomially quickly at infinity.
The proof is based on the L2-flattening theorem obtained in [17] combined with a method based
on dynamical self-similarity for ruling out the sparse set of potential frequencies where the Fourier
transform can be large.

1. Introduction

1.1. Background. The Fourier transform of a Borel probability measure µ on Rd is defined as
follows:

µ̂(ξ) :=

∫
Rd

e2πi⟨ξ,x⟩ dµ(x), ξ ∈ Rd. (1.1)

We say µ has polynomial Fourier decay if |µ̂(ξ)| = O(∥ξ∥−κ) for some κ > 0 as ∥ξ∥ → ∞.
Rates of decay of Fourier transforms of dynamically defined measures have been extensively

studied in recent years. Beyond its intrinsic interest, this question has found many applications
in other areas of mathematics; e.g. essential spectral gaps on hyperbolic manifolds [14, 8, 21],
the uniqueness problem [23], quantum chaos and fractal uncertainty principles [13], Diophantine
approximation [12], and geometric measure theory [35, 24] to name a few.

Moreover, the problem has motivated the development of many methods drawing on a wide
varying tools ranging from spectral gaps of the underlying dynamics [4, 7], to renewal theory [20],
sum-product phenomena [8, 21, 19], large deviation estimates for Fourier transforms [25, 1, 6], as
well as many related developments; cf. [3, 2, 16, 34, 23, 22, 37, 10] for a non-exhaustive list. We refer
the reader to the survey [33] for a comprehensive account of the history and recent developments in
the subject.

A common strategy that is implicit in many of the aforementioned results proceeds as follows:
(1) Find a mechanism to show that the Fourier transform has the desired rate of decay for a

large set of frequencies ξ.
(2) Use the dynamics (or the multiscale/convolution structure of µ) to express the Fourier

transform of µ at frequency ξ as an average of Fourier transforms of (scaled copies of) µ at
images of ξ by the dynamics.

(3) Show (through non-linearity of/Diophantine conditions on the dynamics) that images of ξ
by the dynamics are reasonably well-distributed in the space in such a way that they avoid
the potential exceptional set of frequencies arising in Step 1.

To demonstrate this strategy, consider the following basic estimate towards Step 1: if µ satisfies
the Frostman condition µ(B(x, r)) ≲ rα for some α > 0 and all balls of radius r ≥ 0, then the
Fourier transform decays like ∥ξ∥−α/2 on average, i.e.∫

∥ξ∥≤R
|µ̂(ξ)|2 dξ ≲ Rd−α, ∀R ≥ 1. (1.2)

This estimate roughly means that the exceptional set of potentially problematic frequencies have
(box) dimension at most d−α; cf. [24, Section 3.8]. Hence, we can obtain Fourier decay as soon as
we can show that the frequencies produced in Step 2 have dimension > d−α. Since the image of ξ
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under the dynamics tends to have a similar dimension to the support of µ itself, this procedure is
sufficient for establishing Fourier decay in many situations when the dimension of the support of µ
is > d/2.

However, in general, the estimate (1.2) is rather weak when α ≤ d/2. In that case, more involved
methods are necessary to either produce stronger estimates in Step 1 (e.g. large deviations methods)
or to produce better averaging and well-distribution schemes in Steps 2 and 3 (e.g. spectral gap and
renewal theory methods).

Recently, a very general estimate towards Step 1 was obtained in [17, Corollary 11.5] under natural
non-concentration hypotheses on the (not necessarily dynamically defined) measure µ. Namely, it
is shown1 that if µ does not concentrate near proper affine subsapces of Rd at many scales, then its
Fourier transform decays polynomially outside of a very sparse set of frequencies, i.e. for all ε > 0,
there is δ > 0 such that: ∣∣∣{∥ξ∥ ≤ R : |µ̂(ξ)| > R−δ

}∣∣∣ = O (Rε) . (1.3)

The goal of this article to show that (1.3) can be used in conjunction with the strategy out-
lined above to give efficient proofs of quantitative Fourier decay of dynamically defined measures.
We apply our method to a particular class of interest in applications, namely that of Patterson-
Sullivan measures for convex cocompact groups of isometries of real hyperbolic space. Since the
non-concentration conditions implying (1.3) are known to hold for large classes of dynamically-
defined measures2, we hope the simplicity of the method presented here will allow it to be extended
to yield Fourier decay results in much broader contexts.

1.2. Main result. Let Γ be a discrete, Zariski-dense, convex cocompact, group of isometries of real
hyperbolic space Hd+1, d ≥ 1. Let ΛΓ be the limit set of Γ on ∂Hd+1 and µ be the Patterson-Sullivan
probability measure on ΛΓ associated to Γ; cf. Section 2 for detailed definitions. The following is
the main result of this article.

Theorem 1.1. There exists κ > 0 such that the following holds for all φ ∈ C2, ψ ∈ C1 satisfying

∥φ∥C2 + ∥ψ∥C1 ≤ A, inf
x∈ΛΓ

∥∇xφ∥ > a,

for some constants a > 0 and A ≥ 1. There exists a constant C = C(A, a, µ) ≥ 1, so that for all
λ ̸= 0, we have ∣∣∣∣∫

ΛΓ

e2πiλφ(x)ψ(x) dµ(x)

∣∣∣∣ ≤ C|λ|−κ.

Remark 1.2. Our proof shows that the rate κ provided by Theorem 1.1 depends only on non-
concentration parameters of µ; cf. Section 2.6 for the precise definition of non-concentration. In
particular, the rate of decay does not change upon replacing Γ by a finite index subgroup since the
measure µ remains the same in this case [31].

Theorem 1.1 generalizes prior work of Bourgain and Dyatlov in the case of hyperbolic surfaces [8]
and of Li, Naud, and Pan in the case of Schottky hyperbolic 3-manifolds [21]. These prior results
are based on Bourgain’s sum-product theorem, while the proof of Theorem 1.1 is based on the
estimate (1.3), which was obtained using purely additive methods.

To keep the presentation clear, we restricted our setup to the case of convex cocompact groups.
Using the recurrence results obtained in [17], the proof of Theorem 1.1 can be adapted to handle
the general case of geometrically finite manifolds.

1Cf. Definition 2.2 and Theorem 2.3 for precise statements.
2E.g. Self-conformal measures [11], and Patterson-Sullivan measures for (cusped) geometrically finite manifolds [17].
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By the work of Dyatlov and Zahl [14], Theorem 1.1 is known to imply spectral bounds on the
resolvent of the Laplace operator which yield an essential spectral gap3 for the resolvent as well as
Selberg’s zeta function. Moreover, the size of the essential spectral gap obtained this way depends
explicitly on the decay rate κ in Theorem 1.1. In particular, Theorem 1.1 implies that the resolvent
admits a uniform essential spectral gap over all finite covers of Hd+1/Γ; cf. Remark 1.2. We note
that this essential spectral gap result was obtained independently in [5] by different methods and
an essential gap of size depending on Γ was obtained previously in [26, 29].

Acknowledgements. This author is partially supported under NSF grant DMS-2247713.

2. Preliminaries

2.1. Convex cocompact manifolds. The standard reference for the material in this section is [9].
Let G denote the group of orientation preserving isometries of real hyperbolic space, denoted Hd+1,
of dimension d ≥ 1. In particular, G ∼= SO(d+ 1, 1)0.

Fix a basepoint o ∈ Hd+1. Then, G acts transitively on Hd+1 and the stabilizer K of o is a
maximal compact subgroup of G. We shall identify Hd+1 with K\G. Denote by A = {gt : t ∈ R}
a one parameter subgroup of G inducing the geodesic flow on the unit tangent bundle of Hd+1.
Let M < K denote the centralizer of A inside K so that the unit tangent bundle T1Hd+1 may be
identified with M\G. In Hopf coordinates, we can identify T1Hd+1 with R× (∂Hd+1 × ∂Hd+1 \∆),
where ∂Hd+1 denotes the boundary at infinity and ∆ denotes the diagonal.

Let Γ < G be an infinite discrete subgroup of G. The limit set of Γ, denoted ΛΓ, is the set of
limit points of the orbit Γ · o on ∂Hd+1. Note that the discreteness of Γ implies that all such limit
points belong to the boundary. Moreover, this definition is independent of the choice of o in view of
the negative curvature of Hd+1. We often use Λ to denote ΛΓ when Γ is understood from context.
We say Γ is non-elementary if ΛΓ is infinite.

The non-wandering set for the geodesic flow is the closure of the set of vectors in the unit tangent
bundle whose orbit accumulates on itself. In Hopf coordinates, this set, denoted Ω, coincides with
the projection of R× (ΛΓ × ΛΓ −∆) mod Γ. We say Hd+1/Γ is convex cocompact if Ω is compact,
cf. [9]. Denote by N+ the expanding horospherical subgroup of G associated to gt, t ≥ 0.

Given g ∈ G, we denote by g+ the coset of P−g in the quotient P−\G, where P− = N−AM is
the stable parabolic group associated to {gt : t ≥ 0}. Similarly, g− denotes the coset P+g in P+\G.
Since M is contained in P±, such a definition makes sense for vectors in the unit tangent bundle
M\G. Geometrically, for v ∈ M\G, v+ (resp. v−) is the forward (resp. backward) endpoint of the
geodesic determined by v on the boundary of Hd+1. Given x ∈ G/Γ, we say x± belongs to Λ if the
same holds for any representative of x in G; this notion being well-defined since Λ is Γ invariant.

Notation. Throughout the remainder of the article, we fix a discrete, Zariski-dense, convex cocom-
pact group Γ of isometries of Hd+1.

2.2. Patterson-Sullivan measures. The critical exponent, denoted δΓ, is defined to be the infi-
mum over all real number s ≥ 0 such that the Poincaré series

PΓ(s, o) :=
∑
γ∈Γ

e−sd(o,γ·o) (2.1)

converges. This exponent coincides with the Hausdorff dimension of the limit set as well as the
topological entropy of the geodesic flow on the quotient orbifold Hd+1/Γ. We shall simply write δ
for δΓ when Γ is understood from context.

3That is to say a strip to the left of the critical line containing at most finitely many poles. The interested reader is
referred to the survey [13] for more on this topic.
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The Busemann function is defined as follows: given x, y ∈ Hd+1 and ξ ∈ ∂Hd+1, let γ : [0,∞) →
Hd+1 denote a geodesic ray terminating at ξ and define

βξ(x, y) = lim
t→∞

dist(x, γ(t))− dist(y, γ(t)).

A Γ-invariant conformal density of dimension s is a collection of Radon measures {νx} on the
boundary indexed by x ∈ Hd+1 which satisfy the following equivariance property:

γ∗νx = νγx, and
dνy
dνx

(ξ) = e−sβξ(x,y), ∀x, y ∈ Hd+1, ξ ∈ ∂Hd+1, γ ∈ Γ.

Patterson [27] and Sullivan [36] showed the existence of a unique (up to scaling) Γ-invariant
conformal density of dimension δΓ, denoted

{
µPSx : x ∈ Hd+1

}
. These measures are known as the

Patterson-Sullivan measures. We refer the reader to [30] and [28] and references therein for details
of the construction in much greater generality.

2.3. Stable and unstable foliations and leafwise measures. Recall that we fixed a basepoint
o ∈ Hd+1. In what follows, we use the following notation for pullbacks of the Patterson-Sullivan
measures to orbits of N+ under the visual map:

dµux(n) = e
δΓβ(nx)+ (o,nx)

dµPSo ((nx)+). (2.2)

These measures have simpler transformation formulas under the action of the geodesic flow and N+

which makes them relatively easier to analyze than the Patterson-Sullivan measures directly. In
particular, they satisfy the following equivariance property under the geodesic flow:

µugtx = eδtAd(gt)∗µ
u
x. (2.3)

Moreover, it follows readily from the definitions that for all n ∈ N+,

(n)∗µ
u
nx = µux, (2.4)

where (n)∗µ
u
nz is the pushforward of µunz under the map u 7→ un from N+ to itself. Finally, since

M normalizes N+, these conditionals are Ad(M)-invariant in the sense that for all m ∈M ,

µumx = Ad(m)∗µ
u
x. (2.5)

2.4. Local stable holonomy. In this Section, we recall the definition of (stable) holonomy maps
which are essential for our arguments. We give a simplified discussion of this topic which is sufficient
in our homogeneous setting homogeneous. Let x = u−y for some y ∈ Ω and u− ∈ N−

2 . Since the
product map N− × A ×M ×N+ → G is a diffeomorphism near identity, we can choose the norm
on the Lie algebra so that the following holds. We can find maps p− : N+

1 → P− = N−AM and
u+ : N+

2 → N+ so that

nu− = p−(n)u+(n), ∀n ∈ N+
2 . (2.6)

Then, it follows by (2.2) that for all n ∈ N+
2 , we have

dµuy(u
+(n)) = e

δβ(nx)+ (u+(n)y,nx)
dµux(n).

Moreover, by further scaling the metrics if necessary, we can ensure that these maps are diffeomor-
phisms onto their images. In particular, writing Φ(nx) = u+(n)y, we obtain the following change
of variables formula: for all f ∈ C(N+

2 ),∫
f(n) dµux(n) =

∫
f((u+)−1(n))e

−δβΦ−1(ny)(ny,Φ
−1(ny))

dµuy(n). (2.7)

Remark 2.1. To avoid cluttering the notation with auxiliary constants, we shall assume that the
N− component of p−(n) belongs to N−

2 for all n ∈ N+
2 whenever u− belongs to N−

1 .
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2.5. Notational convention. Throughout the article, given two quantities A and B, we use the
Vinogradov notation A ≪ B to mean that there exists a constant C ≥ 1, possibly depending on
Γ and the dimension of G, such that |A| ≤ CB. In particular, this dependence on Γ is suppressed
in all of our implicit constants, except when we wish to emphasize it. The dependence on Γ may
include for instance the diameter of the complement of our choice of cusp neighborhoods inside Ω
and the volume of the unit neighborhood of Ω. We write A ≪x,y B to indicate that the implicit
constant depends parameters x and y. We also write A = Ox(B) to mean A≪x B.

2.6. The L2-flattening theorem. In light of the formula (2.2), Theorem 1.1 amounts to studying
the Fourier transform of the measures µux. Moreover, the isomorphism N+ ∼= Rd allows us to view
these measures as living on Euclidean space.

The key ingredient in the proof of Theorem 1.1 is [17, Corollary 1.8] which relates Fourier decay
properties of measures on Euclidean space to the non-concentration properties of such measures
near proper affine subspaces. This result in particular implies that PS measures enjoy polynomial
Fourier decay outside of a very sparse set of frequencies.

We formulate here a special case of the aforementioned result which suffices for convex cocompact
manifolds and refer the reader to [17, Theorem 11.5] for a more general result that holds in the
presence of cusps.

Definition 2.2. We say that Borel measure µ on Rd is uniformly affinely non-concentrated if for
every ε > 0, there exists δ(ε) > 0 so that δ(ε) → 0 as ε → 0 and for all x ∈ supp(µ), 0 < r ≤ 1,
and every affine hyperplane W < Rd, we have

µ(W (εr) ∩B(x, r)) ≤ δ(ε)µ(B(x, r)), (2.8)

where W (r) and B(x, r) denote the r-neighborhood of V and the r-ball around x respectively. We
refer to δ(ε) as the non-concentration parameters of µ.

Theorem 2.3 ([17, Corollary 1.8]). Let µ be a compactly supported Borel probability measure on
Rd which is uniformly affinely non-concentrated and denote by µ̂ its Fourier transform. Then, for
every ε > 0, there is δ > 0 such that for all T ≥ 1,∣∣∣{∥ξ∥ ≤ T : |µ̂(ξ)| > T−δ

}∣∣∣ = Oε(T
ε),

where | · | denotes the Lebesgue measure on Rd. The implicit constant depends only on the non-
concentration parameters of µ and the diameter of its support.

We note that Theorem 2.3 was obtained by different methods for measures on the real line in [32].
We will be able to apply Theorem 1.1 to PS measures (or, more precisely, their shadows µux)

thanks to the following proposition.

Proposition 2.4 ([17, Corollary 12.2]). For every x ∈ N−
1 Ω, the measure µux

∣∣∣N+
1

is uniformly
affinely non-concentrated in the sense of Definition 2.2, with uniform parameters in x.

Remark 2.5. It is shown in [17, Corollary 12.2] that the non-concentration parameters of µux
depend only on the injectivity radius at x, which is in turn uniformly bounded above and below on
a neighborhood of the non-wandering set Ω due to convex cocompactness of Γ.

3. Proof of Theorem 1.1

The goal of this section is to provide the proof of Theorem 1.1. In light of the formula (2.2), it
suffices to prove polynomial Fourier decay for the measures µux for x in the non-wandering set Ω.
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Norms and Lie algebras. In what follows, we denote by n+ and n− the Lie algebras of N+ and
N− respectively. We fix an isomorphism of n+ and n− using a Cartan involution sending gt to g−t.
Moreover, we fix an isomorphism of n+ (and hence of n−) with Rd. Finally, we fix a Euclidean inner
product on Rd ∼= n+ ∼= n− denoted with ⟨·, ·⟩ which is invariant by the Adjoint action of the group
M ∼= SOd(R).

Reduction to linear phases. We begin with the following elementary lemma which reduces the
proof to the study of linear phase functions.

Lemma 3.1. To prove Theorem 1.1, it suffices to show that there exists κ > 0 so that for all
0 ̸= ξ ∈ Rd, x ∈ Ω, and ψ ∈ C1

c (N
+
1 ), we have∫

N+
1

ei⟨ξ,n⟩ψ(n) dµux(n) ≪Γ ∥ψ∥C1 ∥ξ∥−κ , (3.1)

where, by abuse of notation, if n = exp(v) for some v ∈ n+ ∼= Rd, we let ⟨ξ, n⟩ := ⟨ξ, v⟩.

Remark 3.2. In the remainder of this section, we fix ξ ∈ Rd and ψ ∈ C1
c (N

+
1 ). Our goal is to

prove the estimate (3.1).

Proof of Lemma 3.1. The proof is based on the uniformity of the estimate (3.1) as the basepoint
x varies in Ω which roughly translates to uniform Fourier decay (with linear phases) over pieces of
the measure of size |λ|−1/2−ε. We include a sketch of the argument for completeness.

Recall the notation of Theorem 1.1. Let {ρj} be a partition of unity of µux |N+ | . with bounded
multiplicity and such that each ρj is supported in a ball Bj of radius

r = |λ|−(1+κ)/(2+κ)

around a nj ∈ N+
1 . Here, κ is the exponent in (3.1). In view of [17, Prop. 9.9], we can choose such

partition of unity so that each ρj has first derivatives with norm O(r−1) and∑
j

µux(Bj) ≪ µux(N
+
1 ). (3.2)

Then, Taylor expanding φ to the second order around each nj , we obtain∫
N+

1

eiλφ(n)ψ(n) dµux ≤
∑
j

∣∣∣∣∣
∫
Bj

exp(i⟨λ∇φ(nj), nn−1
j ⟩)(ψρj)(n) dµux

∣∣∣∣∣
+O(∥ψ∥C0 ∥φ∥C2 |λ|r2µux(N+

1 )).

Next, we use a change of variables sending Bj to N+
1 and apply (2.3) and (2.4). More precisely, let

t = − log r, xj = gtnjx, ξj = rλ∇φ(nj), and ψj(n) := (ψρj)(Ad(g−t)(n)nj). Then, the jth term in
the above sum can be rewritten as follows:∫

Bj

exp(i⟨λ∇φ(nj), nn−1
j ⟩)(ψρj)(n) dµux = rδ

∫
N+

1

exp(i⟨ξj , n⟩)ψj(n) dµ
u
xj
.

Note that, since the geodesic flow scales the first derivatives of ρj by a factor of e−t, each ψj has
C1-norm O(∥ψ∥C1). Hence, since each xj belongs to Ω, (3.1) implies that∫

N+
1

eiλφ(n)ψ(n) dµux ≪A |rλ|−κa−κ
∑
j

rδ + |λ|r2.

Finally, in view of Sullivan’s shadow lemma (cf. Proposition 3.3 below), we have that µux(Bj) ≍ rδ.
This concludes the proof in light of (3.2). The decay exponent obtained in this manner is κ/(2+κ),
with κ as in (3.1). □
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Polynomial non-concentration estimates. We recall here well-known non-concentration esti-
mates for PS measures. The first estimate is a direct consequence of Sullivan’s shadow lemma.

Proposition 3.3 (Sullivan’s Shadow Lemma). For all y ∈ Ω and all r > 0, we have

µuy(N
+
r ) ≍Γ r

δ,

where δ is the critical exponent of Γ.

We also recall the following quantitative decay property of the measure of hyperplane neighbor-
hoods with respect to PS measures from [11]. Recall that N+ is an abelian group which we identify
with its Lie algebra n+ ∼= Rd via the exponential map.

Theorem 3.4 ([17, Theorem 11.17]). There exist constants C ≥ 1 and α > 0 such that for all
ε, r > 0, x ∈ Ω, and all affine hyperplanes L < N+, we have that

µux(N
+
r ∩ L(εr)) ≤ C(ε/r)αµux(N

+
r ),

where L(εr) denotes the εr-neighborhood of L in N+.

Remark 3.5. A suitable form of Theorem 3.4 was derived in [17] from the flattening theorem
in the case Γ is geometrically finite. However, the proof is much simpler in the case Γ is convex
cocompact and can be deduced from the fact that PS measures give 0 mass to proper subvarieties
of the boundary ([15, Corollary 9.4]) using the argument in [18, Section 8].

Partitions of unity and flow prisms. Given r > 0, we let N+
r (resp. P−

r ) the neighborhood of
identity of radius r inside N+ (resp. P− = MAN−). We refer to sets of the form P−

r N
+
s · x for

r, s > 0 and x ∈ G/Γ as flow boxes. We say that a collection of sets {Si} has multiplicity bounded
by a constant C ≥ 1 if for all x: ∑

i

1Si(x) ≤ C1∪iSi(x).

Let ι denote the smaller of 1/2 and the injectivity radius of G/Γ and set

ιξ := ι/ ∥ξ∥1/3 . (3.3)

The following lemma provides us with an efficient cover of Ω by “thin flow boxes" in the unstable
direction.

Lemma 3.6. The collection
{
P−
ι N

+
ιξ
· x : x ∈ Ω

}
admits a finite subcover Bξ such that

#Bξ ≪Γ ∥ξ∥δ/3 ,

where δ is the critical exponent of Γ. Moreover, Bξ has uniformly bounded multiplicity on Ω; i.e. for
all x ∈ Ω,

∑
B∈Bξ

1B(x) ≪Γ 1.

Proof. Let Q denote a cover of G/Γ by flow boxes of the form N+
ι P

−
ι · x, where ι is a fixed lower

bound on the injectivity radius of G/Γ as above. With the help of the Vitali covering lemma, such
cover can be chosen to have multiplicity CG ≥ 1 depending only on the dimension of G. We will
build our collection of boxes Bξ by refining this cover as follows.

Let Q0 denote the collection of boxes Q ∈ Q such that Q ∩ Ω ̸= ∅. By convex cocompactness,
we have that #Q0 ≍Γ 1. For each Q ∈ Q0, we fix some xQ ∈ Q ∩ Ω. Then, we can find a finite set
of points {ui : i ∈ IQ} ⊂ N+

2ι such that the points xi := uixQ belong to Ω. Moreover, these points
be chosen so that the balls N+

ιξ
· xi provide a cover of Ω ∩N+

ι · xQ with multiplicity bounded by a
constant CΓ ≥ 1 depending only Γ (i.e. CΓ is independent of ξ). This is again possible thanks to
the Vitali covering lemma and the fact that the measure µuxQ

∣∣∣N+
3ι

is doubling by Proposition 3.3.
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With this notation, we define Bξ as follows:

Bξ :=
{
P−
ι N

+
ιξ
· uixQ : i ∈ IQ, Q ∈ Q0

}
.

This bounded multiplicity in particular implies that

ιδξ ×#IQ ≍
∑
i∈IQ

µuxi
(N+

ιξ
) ≍ µuxQ

(N+
ι ) ≍ 1.

This estimate the desired the bound on the cardinality of Bξ. To bound the multiplicity of Bξ, let
x ∈ Ω be arbitrary, and note that∑

B∈Bξ

1B(x) =
∑
Q∈Q0

∑
i∈IQ

1P−
ι N+

ιξ
·uixQ

(x) ≤ CΓ

∑
Q∈Q0

1∪i∈IQ
P−
ι N+

ιξ
·uixQ

(x) ≤ CΓ#Q0 ≪Γ 1.

This concludes the proof. □

Let Bξ be the finite cover provided by Lemma 3.6 and let Pξ denote a partition of unity subor-
dinate to it. For each ρ ∈ Pξ, we denote by Bρ the element of Bξ containing the support of ρ. In
particular, such partition of unity can be chosen so that for all ρ ∈ Pξ, we have

∥ρ∥C1 ≪ ∥ξ∥1/3 . (3.4)

Moreover, by Lemma 3.6, we have

#Pξ ≤ #Bξ ≪Γ ∥ξ∥δ/3 . (3.5)

Transversals. We fix a system of transversals {Tρ} to the strong unstable foliation inside the boxes
Bρ. Since Bρ meets Ω for all ρ ∈ Pξ, we fix some yρ in the intersection Bρ ∩Ω. In this notation, we
have that

Bρ = P−
ι N

+
ιξ
· yρ, Tρ = P−

ι · yρ. (3.6)

We also let Mρ, Aρ, and N−
ρ be neighborhoods of identity in M,A and N− respectively so that

P−
ρ =MρAρN

−
ρ .

Saturation. Fix t > 0 to be chosen so that et is a small positive power of ∥ξ∥; cf. (3.38). Using
our partition of unity, we can write∫

N+
1

ei⟨ξ,n⟩ψ(n) dµux(n) =
∑
ρ∈Pξ

∫
N+

1

ei⟨ξ,n⟩ψ(n)ρ(gtnx) dµ
u
x(n). (3.7)

Here, we are using the fact that, since x ∈ Ω, then the restriction of the support of µux to N+
1

consists of points n ∈ N+
1 with nx ∈ Ω (or equivalently, that gtnx ∈ Ω) and that

∑
ρ ρ(y) = 1 for

all y ∈ Ω.
Our first step is to partition the integrals on the right side of (3.7) over N+

1 into pieces according
to the flow box they land in under flowing by gt. To simplify notation, we write

xt := gtx. (3.8)

We denote by N+
1 (t) a neighborhood of N+

1 defined by the property that the intersection

Bρ ∩ (Ad(gt)(N
+
1 (t)) · xt)

consists entirely of full local strong unstable leaves in Bρ. We note that since Ad(gt) expands N+

and Bρ has radius < 1, N+
1 (t) is contained inside N+

2 . Since ψ is compactly supported inside N+
1 ,

we have
χN+

1
(n)ψ(n) = χN+

1 (t)(n)ψ(n), ∀n ∈ N+. (3.9)

For simplicity, we set

ξt := e−tξ, ψt(n) := ψ(Ad(gt)
−1n), At := Ad(gt)(N

+
1 (t)).
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For ρ ∈ Pξ, we let Wρ,t denote the collection of connected components of the set

{n ∈ At : nxt ∈ Bρ} .
In view of (3.9), changing variables using (2.3) yields∑

ρ∈Pξ

∫
N+

1

ei⟨ξ,n⟩ψ(n)ρ(gtnx) dµ
u
x = e−δt

∑
ρ∈Pξ,W∈Wρ,t

∫
n∈W

ei⟨ξt,n⟩ψt(n)ρ(nxt) dµ
u
xt
. (3.10)

Centering the integrals. It will be convenient to center all the integrals in (3.10) so that their
basepoints belong to the transversals Tρ of the respective flow box Bρ; cf. (3.6).

Let Iρ,t denote an index set for Wρ,t. For W ∈ Wρ,t with index ℓ ∈ Iρ,t, let nρ,ℓ ∈W , mρ,ℓ ∈Mρ,
n−ρ,ℓ ∈ N−

ρ , and tρ,ℓ with |tρ,ℓ| ≪ ι be such that

xρ,ℓ := nρ,ℓ · xt = n−ρ,ℓmρ,ℓgtρ,ℓ · yρ ∈ Tρ. (3.11)

Note that since x and yρ both belong to Ω, we have that

xρ,ℓ ∈ Ω, n−ρ,ℓyρ ∈ Ω. (3.12)

For each such ℓ and W , let us denote Wℓ =Wn−1
ρ,ℓ and set

χ̃ρ,ℓ(t, n) := exp(i⟨ξt, nnρ,ℓ⟩). (3.13)

Changing variables using (2.3) and (2.4), we can rewrite the right side of (3.10) as follows:

e−δt
∑

ρ∈Pξ,W∈Wρ,t

∫
n∈W

ei⟨ξt,n⟩ψt(n)ρ(nxt) dµ
u
xt
(n)

= e−δt
∑
ρ∈Pξ

∑
ℓ∈Iρ,t

∫
n∈Wℓ

χ̃ρ,ℓ(t, n)ψt(nnρ,ℓ)ρ(nxρ,ℓ) dµ
u
xρ,ℓ

(n). (3.14)

Mass estimates. We record here certain counting estimates which will allow us to sum error terms
in later estimates over Pξ. Note that by definition of N+

1 (j), we have
⋃

ρ∈Pξ,W∈Wρ,t
W ⊆ At. Thus,

it follows that ∑
ρ∈Pξ,ℓ∈Iρ,t

µuxρ,ℓ
(Wℓ) ≪ µuxt

(At) = eδtµux(N
+
1 (t)) ≪ eδtµux(N

+
1 ), (3.15)

where the last inequality follows since N+
1 (j) ⊆ N+

2 using the doubling property of PS measures [17,
Proposition 3.1]. We also used the fact that the partition of unity Pξ has uniformly bounded
multiplicity.

Weak-stable holonomy. Fix some ρ ∈ Pξ. Recall the points yρ ∈ Tρ and n−ρ,ℓ ∈ N−
ρ satisfy-

ing (3.11). Let

p−ρ,ℓ := n−ρ,ℓmρ,ℓgtρ,ℓ . (3.16)

The product map N−×A×M×N+ → G is a diffeomorphism on a ball of radius 1 around identity;
cf. Section 2.4. Hence, given ℓ ∈ Iρ,t, we can define maps ϕℓ and p̃−ℓ from Wℓ to N+ and P−

respectively by the following formula

np−ρ,ℓ = p̃−ℓ (n)ϕℓ(n). (3.17)

We suppress the dependence on ρ and t to ease notation. Then, ϕℓ induces a map between the
strong unstable manifolds of xρ,ℓ and yρ, also denoted ϕℓ, and defined by

ϕℓ(nxρ,ℓ) = ϕℓ(n)yρ.

In particular, this induced map coincides with the local weak stable holonomy map inside Bρ.
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Note that we can find a neighborhood Wρ ⊂ N+ of identity of radius ≍ ιξ such that

ϕℓ(Wℓ) ⊆Wρ, (3.18)

for all ℓ ∈ Iρ,t. Moreover, by shrinking the radius ιξ of the flow boxes by an absolute amount
(depending only on the metric on G) if necessary, we may assume that all the maps ϕℓ are invertible
on Wρ. Hence, we can define the following:

p−ℓ (n) := p̃−ℓ (ϕ
−1
ℓ (n)) ∈ P−, ψ̃ρ,ℓ(t, n) := Jϕℓ(n)× ψt(ϕ

−1
ℓ (n)nρ,ℓ),

χρ,ℓ(t, n) := χ̃ρ,ℓ(t, ϕ
−1
ℓ (n)), ρℓ(n) := ρ(p−ℓ (n)nyρ), (3.19)

where Jϕℓ denotes the Jacobian of the change of variable ϕℓ; cf. (2.7).
Changing variables in the right side of (3.14), we obtain∑

ℓ∈Iρ,t

∫
n∈Wℓ

χ̃ρ,ℓ(t, n)ψ̃ρ,ℓ(t, n)ρ(nxρ,ℓ) dµ
u
xρ,ℓ

=
∑
ℓ∈Iρ,t

∫
Wρ

χρ,ℓ(t, n)ψ̃ρ,ℓ(t, n)ρℓ(n) dµ
u
yρ . (3.20)

Phase formula. The following lemma provides a formula for the stable holonomy maps ϕℓ defined
above (3.18) which are responsible for the oscillation of χρ,ℓ along N+. The elementary proof of
this lemma is given in Section 4.

Lemma 3.7. Let p−ρ,ℓ be as in (3.16) and let wρ,ℓ ∈ n− be such that n−ρ,ℓ = exp(wρ,ℓ). Define vectors
zρ,ℓ ∈ n− by

zρ,ℓ := −etρ,ℓm−1
ρ,ℓ · wρ,ℓ. (3.21)

Then, for every n = exp(v) ∈ N+
1/2, we have

log ϕ−1
ℓ (n) = etρ,ℓ−τ̃ℓ(v)mρ,ℓ ·

(
v +

∥v∥2

2
zρ,ℓ

)
,

where log ϕ−1
ℓ (n) is viewed as an element of n+ and τ̃ℓ : N+

1/2 → R+ is given by

τ̃ℓ(v) = log

(
1 + ⟨v, zρ,ℓ⟩+

∥v∥2 ∥zρ,ℓ∥2

4

)
.

It will be convenient for our estimates to simplify the expression for τ̃ℓ by removing the quadratic
term. This is the reason for our choice of flow boxes of width ≍ ∥ξ∥−1/3 along the strong unstable
manifold. In what follows, to simplify notation, we set

τℓ(v) = −tρ,ℓ + log (1 + ⟨v, zρ,ℓ⟩) , Γℓ(v) := e−τℓ(v)mρ,ℓ ·

(
v +

∥v∥2

2
zρ,ℓ

)
. (3.22)

Recall the points centering points nρ,ℓ defined in (3.11). The following corollary provides a first step
towards linearizing the phase in the oscillatory functions χρ,ℓ by replacing τ̃ℓ in Lemma 3.7 with τℓ
in (3.22).

Corollary 3.8. With the same notation as in Lemma 3.7, we have for all n = exp(v) ∈Wρ that

χρ,ℓ(t, n) = αρ,ℓ(t, n) +O(e−t),

where

αρ,ℓ(t, n) := exp(i⟨ξt, nρ,ℓ⟩)× exp (i⟨ξt,Γℓ(v)⟩) . (3.23)
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Proof. Recall from (3.19) and (3.13) that χρ,ℓ(t, n) = exp(i⟨ξt, ϕ−1
ℓ (n)nρ,ℓ⟩). We also recall that

ξt = e−tξ. Then, for all n = exp(v) ∈Wρ, we have that

|χρ,ℓ(t, n)− αρ,ℓ(t, n)| ≪ ∥v∥2 ∥ξt∥ ∥Γℓ(v)∥

Since Wρ has radius ≍ ιξ ≍ ∥ξ∥−1/3 (cf. (3.3)), we have that both v and Γℓ(v) have norm ≪ ∥ξ∥−1/3.
In particular, the upper bound above is O(e−t) as desired. □

Let us summarize our progress so far. To simplify notation, set

ψρ,ℓ(t, n) := ψ̃ρ,ℓ(t, n)× ρℓ(n). (3.24)

Then, in light of (3.7), (3.10), (3.14), (3.20), and Corollary 3.8, we find that∫
N+

1

ei⟨ξ,n⟩ψ(n) dµux = e−δt
∑
ρ∈Pξ

∫
Wρ

∑
ℓ∈Iρ,t

αρ,ℓ(t, n)ψρ,ℓ(t, n) dµ
u
yρ +O

(
e−t
)
. (3.25)

Cauchy-Schwarz. We are left with estimating integrals of the form:∫
Wρ

Ψρ(t, n) dµ
u
yρ , Ψρ(t, n) :=

∑
ℓ∈Iρ,t

αρ,ℓ(t, n)ψρ,ℓ(t, n). (3.26)

By Cauchy-Schwarz, we get∣∣∣∣∣
∫
Wρ

Ψρ(t, n) dµ
u
yρ

∣∣∣∣∣
2

≤ µuyρ(Wρ)

∫
Wρ

|Ψρ(t, n)|2 dµuyρ (3.27)

We begin by noting the following apriori bounds on Ψρ:

∥ψρ,ℓ∥L∞(Wρ)
≪ 1, ∥Ψρ∥L∞(Wρ)

≪ #Iρ,t. (3.28)

Partitioning the support. Using [17, Proposition 9.9], we can find a cover {Aj} of Wρ with balls
of radius

r = ∥ξ∥−1/2 (3.29)

centered around uj ∈ Wρ ∩ supp(µuyρ) and satisfying
∑

j µ
u
yρ(Aj) ≪ µuyρ(Wρ). By the triangle

inequality4 we have ∫
Wρ

|Ψρ(t, n)|2 dµuyρ ≤
∑
j

∫
Aj

|Ψρ(t, n)|2 dµuyρ . (3.30)

For k, ℓ ∈ Iρ,t, we let

ψk,ℓ(t, n) := ψρ,k(t, n)ψρ,ℓ(t, n), αk,ℓ(t, n) := αρ,k(t, n)αρ,ℓ(t, n).

Expanding the square, we get∑
j

∫
Aj

|Ψρ(t, n)|2 dµuyρ ≤
∑
j

∑
k,ℓ∈Iρ,t

∣∣∣∣∣
∫
Aj

αk,ℓ(t, n)ψk,ℓ(t, n) dµ
u
yρ

∣∣∣∣∣ .
Using (2.3) and (2.4), we change variables in the integrals using the maps taking each Aj onto N+

1 .
More precisely, recall that Aj is a ball of radius r around uj such that ujyρ ∈ Ω. Letting

τ = − log r, yjρ = gτujyρ, αj
k,ℓ(t, n) = αk,ℓ(t,Ad(g−τ )(n)uj),

ψj
k,ℓ(t, n) = ψk,ℓ(t,Ad(g−τ )(n)uj), (3.31)

4Cauchy-Schwarz allows us to have a non-negative integrand which in turn enables this step.
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we can rewrite the above sum as∑
j

∑
k,ℓ∈Iρ,t

∣∣∣∣∣
∫
Aj

αk,ℓ(t, n)ψk,ℓ(t, n) dµ
u
yρ

∣∣∣∣∣ ≤ rδ
∑
j

∑
k,ℓ∈Iρ,t

∣∣∣∣∣
∫
N+

1

αj
k,ℓ(t, n)ψ

j
k,ℓ(t, n)dµ

u
yjρ

∣∣∣∣∣ . (3.32)

One advantage of flowing forward by gτ is that it provides smoothing of the amplitude functions
ψk,ℓ. In particular, it follows by (3.4) that∥∥∥ψj

k,ℓ

∥∥∥
C1

≪ ∥ψ∥C1 × r × ∥ξ∥1/3 ≪ ∥ψ∥C1 ∥ξ∥−1/6 .

Applied to the right side of (3.32), we obtain∫
Wρ

|Ψρ(t, n)|2 dµuyρ = rδ
∑
j

∑
k,ℓ∈Iρ,t

∣∣∣∣∣
∫
N+

1

αj
k,ℓ(t, n)dµ

u
yjρ

∣∣∣∣∣+O(∥ψ∥C1 ∥ξ∥−1/6#I2ρ,tµ
u
yρ(Wρ)). (3.33)

Linearizing the phase. We now turn to estimating the sum of oscillatory integrals in (3.33).
Recall that uj denotes the center of the ball Aj for each j and let vj ∈ n+ be such that

uj = exp(vj).

Then, given n = exp(v) ∈ Aj , and recalling the maps Γℓ in (3.22), we get

Γℓ(v) = Γℓ(vj) +D(Γℓ(vj))(v − vj) +O(r2),

where D(Γℓ) denotes the derivative of Γℓ.
The following elementary lemma uses the explicit expression for Γℓ in (3.22) to simplify the form

of DΓℓ(vj).

Lemma 3.9. For all ℓ and j, we have

DΓℓ(vj) = e−τℓ(vj)mρ,ℓ +O(∥ξ∥−2/3).

Let

βjk,ℓ := rξt ·
(
e−τk(vj)mρ,k − e−τℓ(vj)mρ,ℓ

)
. (3.34)

Recall that ξt = e−tξ so that ∥ξt∥ r2 = e−t. Hence, by absorbing the constant terms into the
absolute value, we obtain from (3.33) and Lemma 3.9 that∫

Wρ

|Ψρ(t, n)|2 dµuyρ

= rδ
∑
j

∑
k,ℓ∈Iρ,t

∣∣∣∣∣
∫
N+

1

exp(i⟨βjk,ℓ, v⟩)dµ
u
yjρ

∣∣∣∣∣+O((e−t + e−t ∥ξ∥−1/6 + ∥ψ∥C1 ∥ξ∥−1/6)#I2ρ,tµ
u
yρ(Wρ)).

(3.35)

Proof of Lemma 3.9. Recall the definition of the vectors zρ,ℓ ∈ n−. To simplify notation, set

λℓ(vj) =
1

1 + ⟨vj , zρ,ℓ⟩
.

In particular, e−τℓ(vj) = etρ,ℓλℓ(vj). Then, using the formula for Γℓ in (3.22), we obtain

DΓℓ(vj) = etρ,ℓλℓ(vj)mρ,ℓ

[
−λℓ(vj)

(
vj · ztρ,ℓ +

∥vj∥2

2
zρ,ℓ · ztρ,ℓ

)
+ Id + zρ,ℓ · vtj

]
.
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Here, we are viewing vj and zρ,ℓ as (d×1)-column vectors and use vtj and ztρ,ℓ to denote the transpose
of vj and zρ,ℓ respectively. Now, observe that

λℓ(vj)vj = vj −
⟨vj , zρ,ℓ⟩

1 + ⟨vj , zρ,ℓ⟩
vj = vj +O(∥vj∥2).

The lemma now follows upon recalling that exp(vj) belongs to Wρ so that ∥vj∥ ≪ ∥ξ∥−1/3 in view
of our choice of flow boxes; cf. (3.3) and the discussion around it. □

Separation of frequencies. To apply the flattening theorem, it will be important to understand
the distribution of the frequencies βjk,ℓ. To this end, we have the following lemma which allows us
to avoid studying the separation of the holonomy matrices mρ,ℓ.

Lemma 3.10. For all j, k, ℓ, we have∥∥∥βjk,ℓ∥∥∥≫ ∥rξt∥ |e−τℓ(vj) − e−τk(vj)|,

where τℓ(vj) and τk(vj) are defined in (3.22).

Proof. In what follows, to simplify notation, we let

mk := mρ,k, ck := e−τk(vj), Qk := ckmk,

with the similar notation for the index ℓ in place of k defined analogously. The lemma is evident
when ck = cℓ. Hence, we may assume without loss of generality that ck > cℓ, and recall that these
functions are non-negative by definition; cf. (3.23).

Recall the elementary estimate ∥g · v∥ ≥ ∥v∥ /
∥∥g−1

∥∥ for any invertible linear map g and any

vector v ∈ Rd. This estimate implies the following lower bound for
∥∥∥βjk,ℓ∥∥∥:∥∥∥βjk,ℓ∥∥∥ ≥ r ∥ξt∥

∥(Qk −Qℓ)−1∥
=

r ∥ξt∥ ck∥∥∥(Id− cℓ
ck
mℓm

−1
k )−1

∥∥∥ .
That Id− cℓ

ck
mℓm

−1
k (and hence Qk−Qℓ) is invertible follows at once from the following estimate

on the norm of its inverse. Recall that the rotation matrices mk and mℓ have spectral radius 1.
In particular, since cℓ < ck, we may use the power series expansion of Id−Q, for matrices Q with
spectral radius < 1, get that∥∥∥∥(Id− cℓ

ck
mℓm

−1
k )−1

∥∥∥∥≪
∑
n≥0

(
cℓ
ck

)n

=
ck

ck − cℓ
.

The lemma follows by combining the above two estimates. □

To proceed, we recall that tρ,ℓ,mρ,ℓ, and n−ρ,ℓ = exp(wρ,ℓ) parametrize respectively the geodesic
flow, M , and strong stable coordinates of the transverse intersections of the expanded horospherical
disk gtN+

1 x with a fixed transversal Tρ of the flow box Bρ. We also recall that zρ,ℓ = etρ,ℓm−1
ρ,ℓwρ,ℓ

and τℓ(vj) = etρ,ℓ/(1 + ⟨vj , zρ,ℓ⟩.
Lemma 3.10 motivates the definition of the following subset of I2ρ,t parametrizing pairs (k, ℓ) for

which the frequencies βjk,ℓ are too small. Namely, we set

Small :=
{
(k, ℓ, j) :

∥∥∥βjk,ℓ∥∥∥ < 1
}
. (3.36)

Roughly speaking, elements of Ck,ℓ correspond to points vj lying in a small neighborhood of a
hyperplane orthogonal to m−1

ρ,ℓwρ,ℓ −m−1
ρ,kwρ,k. Theorem 3.4 will then provide us with a counting

estimate on Ck,ℓ. This is done in the following lemma.
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Lemma 3.11. Let α > 0 be the exponent provided by Proposition 2.4. Then, for every fixed
k, ℓ ∈ Iρ,t, we have

∑
j:(k,ℓ,j)∈Small

rδ ≪

 ∥ξ∥−1/6 et∥∥∥m−1
ρ,ℓwρ,ℓ −m−1

ρ,kwρ,k

∥∥∥
α

µuyρ(Wρ).

Proof. Let j be such that (k, ℓ, j) ∈ Small and recall that ξt = e−tξ and r = ∥ξ∥−1/2. To simplify
notation, we also let

uk,ℓ := m−1
ρ,ℓwρ,ℓ −m−1

ρ,kwρ,k.

Then, Lemma 3.10 and a direct calculation show that∣∣etρ,ℓ − etρ,k + etρ,ℓ+tρ,k⟨vj , uk,ℓ⟩
∣∣≪ ∥ξ∥−1/2 et.

Let ϵ1 = ∥ξ∥−1/2 et/ ∥uk,ℓ∥. It follows that vj belongs to a neighborhood of radius O(ϵ1) around an
affine hyperplane L parallel to the kernel of the linear functional v 7→ ⟨v, uk,ℓ⟩.

Recall thatAj denotes the ball of radius r around exp(vj) ∈Wρ and thatWρ has radius ≍ ∥ξ∥−1/3.
It follows we can find a radius ϵ2 ≍ ∥ξ∥−1/3 such that⋃

j:(k,ℓ,j)∈Small

Aj ⊆ L(ϵ1+r) ∩N+
ϵ2 ,

where L(ϵ1+r) denotes the (ϵ1 + r)-neighborhood of L. Furthermore, by the bounded multiplicity of
the cover {Aj} of Wρ and the fact that each Aj has measure ≍ rδ (cf. Proposition 3.3), we get that

∑
j:(k,ℓ,j)∈Small

rδ ≪ µuyρ

 ⋃
j:(k,ℓ,j)∈Small

Aj

 .

Hence, Theorem 3.4 implies that the above sum is O(µuyρ(Wρ)(ε1 + r)α/εα2 ), which concludes the
proof since r ≪ ϵ1. □

To apply Lemma 3.11, we need the following counting estimate on close by vectors of the form
m−1

ρ,ℓwρ,ℓ. It is a consequence of Theorem 3.4.

Lemma 3.12. For every k ∈ Iρ,t and η > 0, we have

#
{
ℓ ∈ Iρ,t :

∥∥∥m−1
ρ,ℓwρ,ℓ −m−1

ρ,kwρ,k

∥∥∥ < ∥ξ∥−η
}
≪
(
e−t + ∥ξ∥−η)α eδt, (3.37)

where α > 0 is the exponent provided by Theorem 3.4.

Proof. Let Bk denote the set on the left side of (3.37) and let ℓ be some element of Bk. Then, by
M -invariance of the norm, we have5

| ∥wρ,ℓ∥ − ∥wρ,k∥ | ≪ ∥ξ∥−η .

In particular, the vectors wρ,ℓ with ℓ ∈ Bk all belong to a neighborhood of width ≪ ∥ξ∥−η of the
sphere S of radius ∥wρ,k∥∞ around the origin in the norm metric.

The next ingredient is to note that the points wρ,ℓ are separated by an amount ≫ e−t. This follows
by a similar argument to the proof of [17, Proposition 9.13]6. In particular, there is ϵ1 ≍ (∥ξ∥−η+e−t)

5This estimate is again done to bypass studying the separation of the rotation matrices wρ,ℓ.
6This proof is based on injectivity radius considerations along with the fact that gt expands the stable manifold by
et in backward time.
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and ϵ2 ≍ e−t such that ⊔
ℓ∈Bk

N−
ϵ2 · exp(wρ,ℓ)yρ ⊆ N−

ϵ1 · S,

where N−
ϵ1 · S is the ϵ1-neighborhood of S.

To conclude the proof, let µsyρ denote the shadow of the PS measure on N− ·yρ defined analogously
to the measures µuyρ in (2.2). The above discussion implies that

#Bk ≪
µsyρ

(
N−

ϵ1 · S
)

minµsyρ(N
−
ϵ2 · exp(wρ,ℓ)yρ)

.

By (3.12), the points exp(wρ,ℓ) · yρ all belong to Ω. In particular, by Proposition 3.3, we have

µsyρ
(
N−

e−t · exp(wρ,ℓ)yρ
)
≍ e−δt.

On the other hand, by [11, Lemma 3.8], we have that N−
ϵ1 · S has measure O(ϵα1 )

7. The lemma now
follows. □

Reduction to L2-flattening. To simplify our error terms, we make the following choices:

η = 1/12, et = ∥ξ∥1/24 . (3.38)

In view of Lemmas 3.11 and 3.12, we introduce the following notation:

Closeη :=
{
(k, ℓ) ∈ I2ρ,t :

∥∥∥m−1
ρ,ℓwρ,ℓ −m−1

ρ,kwρ,k

∥∥∥ < ∥ξ∥−η
}
. (3.39)

We also define the following set of indices parametrizing measures µu
yjρ

for which many of the fre-

quencies βjk,ℓ are close together. Let J denote the index set for the indices j of the measures µu
yjρ

and set

Badη :=
{
j ∈ J : #

{
(k, ℓ) ∈ I2ρ,t : (k, ℓ, j) ∈ Small

}
> ∥ξ∥−α/48 × (eδt +#Iρ,t)#Iρ,t

}
. (3.40)

The following corollary allows us to estimate estimate the part of the sum corresponding to Badη.

Corollary 3.13. We have the following counting estimate on Badη:∑
j∈Badη

rδ ≪ ∥ξ∥−α/48 µuyρ(Wρ).

Proof. The corollary will follow from an application of Markov’s inequality to the estimates in
Lemmas 3.11 and 3.12 as follows. First, we note that∑

j∈J

∑
(k,ℓ)∈I2ρ,t

rδ1Small(k, ℓ, j)

=
∑

(k,ℓ)∈Closeη

∑
j∈J

rδ1Small(k, ℓ, j)︸ ︷︷ ︸
(I)

+
∑

(k,ℓ)/∈Closeη

∑
j∈J

rδ1Small(k, ℓ, j)︸ ︷︷ ︸
(II)

.

Then, by Lemma 3.12 and our choices in (3.38), the first sum is estimated as follows:

(I) ≪
(
e−t + ∥ξ∥−η)α × eδt#Iρ,tµ

u
yρ(Wρ) ≪ ∥ξ∥−α/24 × eδt#Iρ,tµ

u
yρ(Wρ).

For the second sum, we use Lemma 3.11 and the definition of Closeη to get

(II) ≪ ∥ξ∥(η−1/6)α eαt ×#I2ρ,tµ
u
yρ(Wρ) ≪ ∥ξ∥−α/24 ×#I2ρ,tµ

u
yρ(Wρ).

7Note that, similarly to the case of affine subspaces in Theorem 3.4, this estimate can be deduced from the fact that
PS measures give 0 mass to proper subvarieties of the boundary using the argument in [18, Section 8].
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Hence, the corollary follows by Markov’s inequality. □

To simplify notation, we set

E1 := max
{
∥ξ∥−1/24 , ∥ξ∥−α/48

}
. (3.41)

For w ∈ Rd, we let

νj := µu
yjρ

∣∣∣N+
1
, ν̂j(w) :=

∫
N+

ei⟨w,n⟩ dνj(n). (3.42)

Then, by (3.33) and Corollary 3.13, we obtain∫
Wρ

|Ψρ(t, n)|2 dµuyρ = rδ
∑

j /∈Badη

∑
k,ℓ∈Iρ,t

|ν̂j(βjk,ℓ)|+O
(
((∥ψ∥C1 + 1)× E1 ×#I2ρ,tµ

u
yρ(Wρ)

)
. (3.43)

For each j, the sum on the right side of the above estimate can be viewed as an average, when
properly normalized, over Fourier coefficients of the measure νj . Moreover, Corollary 3.13 guarantees
that the frequencies βjk,ℓ are sampled from a well-separated set. Hence, this average can be estimated
using the L2-Flattening Theorem, Theorem 2.3.

The role of L2-flattening. Let η2 > 0 be a small parameter to be chosen using Lemma 3.14 below.
Note that the total mass of νj , denoted |νj |, is µu

yjρ
(N+

1 ). For each k ∈ Iρ,t, define the following set,
which roughly speaking, consists of frequencies where ν̂j is large:

B(j, k, η2) :=
{
ℓ ∈ Iρ,t : |ν̂j(βjk,ℓ)| > ∥ξ∥−η2 |νj |

}
. (3.44)

Then, splitting the sum over frequencies according to the size of the Fourier transform ν̂j and
reversing our change variables to go back to integrating over Aj , we obtain

rδ
∑

j /∈Badη

∑
k,ℓ∈Iρ,t

|ν̂j(βjk,ℓ)|

≪
(

max
j /∈Badη ,k∈Iρ,t

#B(j, k, η2) + ∥ξ∥−η2 #Iρ,t

)
#Iρ,tµ

u
yρ(Wρ), (3.45)

The following key counting estimate for B(j, k, η2) is a consequence of the L2-flattening theorem,
Theorem 2.3.

Lemma 3.14. For every ε > 0, there is η2 > 0 such that for all j /∈ Badη and k ∈ Iρ,t, we have

#B(j, k, η2) ≪ε ∥ξ∥ε−α/96 ×
√
(eδt +#Iρ,t)#Iρ,t,

where α > 0 is the exponent provided by Theorem 3.4. Here, η2 is the constant provided by Theo-
rem 2.3 (denoted by δ in the notation of the theorem).

Proof. Recall the definition of the frequencies βjk,ℓ in (3.34). The rough idea behind the proof is
that. since j /∈ Badη, the frequencies βjk,ℓ are well-separated. This allows us to apply Theorem 2.3
on the Lebesgue measure of the set of frequencies where the Fourier transform is large to conclude
that the sets B(j, k, η2) are relatively small in size.

More precisely, Proposition 2.4 and Theorem 2.3 imply that there exists η2 > 0, depending on ε
(but not on the index j), such that the set

Q :=
{
βjk,ℓ : ℓ ∈ B(j, k, η2)

}
can be covered by Oε(∥ξ∥ε) balls Bi of radius 1/2.
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Let B̃i denote the set of indices ℓ ∈ B(j, k, η2) such that βjk,ℓ ∈ Bi. In particular, we have

#B(j, k, η2) ≤
∑
i

#B̃i. (3.46)

Moreover, we note that for ℓ1, ℓ2 ∈ B̃i, we have that βjk,ℓ1 − βjk,ℓ2 = βjℓ2,ℓ1 . Since Bi has radius 1/2,

we get that
∥∥∥βjℓ2,ℓ1∥∥∥ < 1. Hence, recalling the definition of the sets Small in (3.36), and letting

Smallj denote the set of pairs (p, q) ∈ I2ρ,t with (p, q, j) ∈ Small, we obtain

#B̃2
i ≤ #Smallj .

On the other hand, since j /∈ Badη, then by definition, we have that

#Smallj ≤ ∥ξ∥−α/48 × (eδt +#Iρ,t)#Iρ,t.

Since the sum in (3.46) has at most Oε(∥ξ∥ε) terms, this estimate completes the proof. □

Combining estimates and concluding the proof. Recall that α is the exponent provided by
Theorem 3.4. Let η2 > 0 be the exponent provided by Lemma 3.14 when applied with ε = α/200
and let κ be defined as follows:

κ = min {1/24, α/200, η2} . (3.47)

Then, by combining (3.25), (3.27), (3.43), (3.45), and Lemma 3.14, we obtain the following bound:∫
N+

1

ei⟨ξ,n⟩ψ(n) dµux(n) ≪Γ (∥ψ∥C1 + 1)× ∥ξ∥−κ

×

(
e−δt

∑
ρ

µuyρ(Wρ)#Iρ,t + e−3δt/4
∑
ρ

µuyρ(Wρ)(#Iρ,t)
3/4

)
.

The first sum on the right side is OΓ(1) in light of (3.15) and the fact that µuyρ(Wρ) ≍ muuxρ,ℓ
(Wℓ)

for all ℓ ∈ Iρ,t. That the second sum is also OΓ(1) is proved in the following lemma. This concludes
the proof of Theorem 1.1 apart from Lemma 3.7 which is proved in the next section.

Lemma 3.15. For every p ∈ (1,∞), we have that

e−δt/p
∑
ρ∈Pξ

µuyρ(Wρ) (#Iρ,t)
1/p ≪Γ 1.

Proof. Indeed, letting q be such that 1/p+ 1/q = 1, we obtain by Hölder’s inequality that

e−δt/p
∑
ρ∈Pξ

µuyρ(Wρ) (#Iρ,t)
1/p ≤ e−δt/p

∑
ρ∈Pξ

µuyρ(Wρ)

1/q

×

∑
ρ∈Pξ

µuyρ(Wρ)#Iρ,t

1/p

.

Since µuyρ(Wρ) ≍ muuxρ,ℓ
(Wℓ) for all ℓ ∈ Iρ,t, it follows by (3.15) that

e−δt
∑
ρ∈Pξ

µuyρ(Wρ)#Iρ,t ≪Γ 1.

Moreover, Proposition 3.3 implies that µuyρ(Wρ) ≍ ∥ξ∥−δ/3. Hence, the lemma follows in light of
(3.5). □
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4. Explicit formula for stable holonomy maps and Proof of Lemma 3.7

In this section, we give explicit formulas for the commutation relations between stable and un-
stable subgroups which we need for the proof of Lemma 3.7.

Consider the following quadratic form on Rd+2: for x = (xi) ∈ Rd+2,

Q(x) = 2x0xd+1 − |x1|2 − · · · − |xd|2.

Let SOR(Q) ∼= SO(d+1, 1) be the orthogonal group of Q; i.e. the subgroup of SLd+2(R) preserving
Q. Then, we have a surjective homomorphism SOR(Q) → G = Isom+(Hd+1) with finite kernel.
The geodesic flow is induced by the diagonal group

A =
{
gt = diag(et, Id, e

−t) : t ∈ R
}
,

where Id denotes the identity matrix in dimension d.
For x ∈ Rd, viewed as a row vector, we write xt for its transpose. We let ∥x∥2 := x · x, and

x · x denotes the sum of coordinate-wise products in the standard basis on Rd. Hence, N+ can be
parametrized as follows:

N+ =

n+(x) :=
1 x ∥x∥2

2
0 Id xt

0 0 1

 : x ∈ Rd

 . (4.1)

The group N− is parametrized by the transpose of the elements of N+. Recall that M = SOd(R)
denotes the centralizer of A inside the standard maximal compact subgroup K ∼= SOd+1(R) of G.
In particular, M is given by

M = {m(O) := diag(1, O, 1) : O ∈ SOd(R)} .

Finally, we recall that the product map N− ×A×M ×N+ → G is a diffeomorphism near identity.
We are now ready for the proof. Recall from (3.17) that ϕℓ(n) is defined to be the element of N+

satisfying np−ρ,ℓ ∈ N−AMϕℓ(n). In particular, ϕ−1
ℓ (n) is the unique element of N+ satisfying

n(p−ρ,ℓ)
−1 ∈ N−AMϕ−1

ℓ (n).

Hence, in view of the explicit parametrization above, in order to compute ϕ−1
ℓ (n), it suffices to

compute the top row of the matrix n(p−ρ,ℓ)
−1 and to note that

gsn
+(x) =

es esx es∥x∥2
2

0 Id xt

0 0 e−s

 ,

for all s ∈ R and x ∈ Rd. This allows us to extract the N+ component from the top row of n(p−ρ,ℓ)
−1

by scaling it suitably so that the top left entry is 1. In particular, the claimed formula follows by a
direct calculation upon recalling from (3.16) that p−ρ,ℓ = exp(wρ,ℓ)mρ,ℓgtρ,ℓ .
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