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Abstract. We develop a unified approach for establishing rates of decay for the Fourier transform
of a wide class of dynamically defined measures. Among the key features of the method is the
systematic use of the L2-flattening theorem obtained in [51], coupled with non-concentration esti-
mates for the derivatives of the underlying dynamical system. This method yields polylogarithmic
Fourier decay for Diophantine self-similar measures, and polynomial decay for Patterson-Sullivan
measures of convex cocompact hyperbolic manifolds, Gibbs measures associated to non-integrable
C2 conformal systems, as well as stationary measures for carpet-like non-conformal iterated function
systems. Applications include an essential spectral gap on convex cocompact hyperbolic manifolds
independent of the doubling constant through a fractal uncertainty principle and an equidistribution
theorem for typical vectors on self-similar sets and other fractals in Rd.

1. Introduction

1.1. Background and summary of main results. The Fourier transform of a Borel probability
measure µ on Rd is defined as follows:

µ̂(ξ) :=

∫
Rd

e2πi⟨ξ,x⟩ dµ(x), ξ ∈ Rd. (1.1)

Rates of decay of |µ̂(ξ)| as ∥ξ∥ → ∞ for µ arising from dynamical systems have been extensively
studied in recent years (see survey [79] for history and recent developments). Beyond its intrinsic
interest, this question has found many applications in other areas of mathematics; e.g. essential
spectral gaps on hyperbolic manifolds [31, 17, 55], the uniqueness problem [58], quantum chaos and
fractal uncertainty principles [29], normality to arbitrary integer bases [26], and geometric measure
theory [82, 61] to name a few, see Section 1.7 for further discussion. Moreover, this problem has
motivated the development of many new methods. These methods draw on a wide variety of tools
ranging from spectral gaps of the underlying dynamics [5, 13], to renewal theory [54], sum-product
phenomena [17, 55, 53], large deviation estimates for Fourier transforms [63, 2, 12, 14], and many
more; cf. [4, 3, 45, 80, 58, 57, 94, 21] for a non-exhaustive list.

In this article, we systematically develop a unified approach to obtain rates of Fourier decay for
a wide class of dynamically defined measures. Our strategy can be summarized as follows:

Step 1. Averaging.
Use the dynamics (or the multiscale/convolution structure of µ) to express the Fourier transform

of µ at frequency ξ as an average over the Fourier transforms of measures µx, x ∈ X, evaluated at
a range of frequencies determined by ξ and the underlying dynamics. The family {µx} is typically
given by scaled images of µ under the dynamics or rescaled restrictions of µ to pieces of its support.

Step 2. Flattening.
Find a mechanism to show that for each x ∈ X, the Fourier transform of µx has the desired

rate of decay for a large set of frequencies. Here it is crucial that the size of the set of exceptional
frequencies can be bounded independently of x.

Step 3. Separation.
Show (through a non-linearity or Diophantine assumption on the dynamics) that the frequencies

appearing in the average in Step 1 are sufficiently well-distributed that they have a suitably small
intersection with the exceptional set of frequencies arising in Step 2.
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A key to this strategy is provided by recent developments towards Step 2, where verifiable
criteria have been shown to imply polynomial Fourier decay1 outside a sparse set of frequencies;
cf. Theorem 1.3 below. In particular, such criteria are known to hold for a very wide class of
dynamically defined measures, thus distilling the difficulty in implementing the above strategy to
achieving the separation in Step 3. In this article, we develop techniques for overcoming this
difficulty, thus yielding the following broad range of results.

(1) Polylogarithmic Fourier decay for self-similar measures satisfying Diophantine conditions
either on their contraction ratios or their rotation parts: Theorems 1.5 and 1.7.

(2) Polynomial Fourier decay for Patterson-Sullivan measures of convex cocompact hyper-
bolic manifolds: Theorem 1.9.

(3) Polynomial Fourier decay for Gibbs measures for conformal IFSs satisfying a spectral
gap assumption: Theorem 1.12.

(4) Polynomial Fourier decay for the stationary measures of a class of carpet like non-
conformal IFSs exhibiting non-linearity in each principal direction: Theorem 1.19.

Note that polylogarithmic decay is optimal for self-similar measures under our hypotheses; cf. Re-
marks 1.8 and 1.10 for further discussion of the rates of decay in Items 1 and 2. Important recent
developments have yielded several special cases of the above results in low dimensions by a variety
of different methods. These are recalled below in detail. We remark that our argument provides
a new streamlined proof in all these cases, in addition to extending them to arbitrary dimensions,
and to new settings such as Item 4. This requires handling the significant added difficulty posed
by the presence of subspaces of intermediate dimension, which is also a well-known difficulty in the
related study of Fractal Uncertainty Principles in higher dimensions addressed in Corollary 1.22
below; cf. [29, 22, 11, 23] and Section 1.7.2 for further discussion.

Variants of our strategy have been utilized in prior works, with perhaps the earliest precursor
being Kaufman’s work on non-linear pushforwards of homogeneous self-similar measures on the line,
where the analog of Step 2 was achieved using Erdős-Kahane arguments [50]. Our strategy also
bears similarities to the one employed by Bourgain and Dyatlov in [17], who considered Patterson-
Sullivan measures in dimension one, achieving the analog of Step 2 using Bourgain’s discretized
sum-product theorem [15, 16]. In both cases, the argument was tailored to the special structure
of the setting in question (linearity in the former, and non-linearity in the latter). By contrast,
one of the new features of our approach is that it avoids Erdős-Kahane and sum-product estimates,
rendering it applicable to a much broader range of settings in a unified fashion.

The above results also have the following applications:

(1) Normality and equidistribution of vectors in fractal sets: let µ be one of the measures
in Items 1-4 above viewed as a measure on Rd. Let A be any expanding integer matrix on
Rd. Then, µ-almost every x is A-normal, i.e., the orbit (Anx)n≥1 is equidistributed mod 1
for µ-almost every x: Corollary 1.21.

(2) Essential spectral gaps and Fractal Uncertainty Principles: let Γ be a Zariski-dense
convex cocompact group of isometries of real hyperbolic space Hd+1 with limit set ΛΓ, critical
exponent δΓ ≤ d/2, and quotient manifold M = Hd+1/Γ. Then, ΛΓ satisfies a generalized
Fractal Uncertainty Principle with exponent β = d/2−δΓ+ε, ε > 0 and, hence, the resolvent
of the Laplace-Beltrami operator ∆M of M admits an essential spectral gap of size β. The
improvement ε depends only on the non-concentration parameters of the PS measure of Γ,
but not on its doubling constant: Corollary 1.22.

1We say that that a measure µ has polynomial Fourier decay if |µ̂(ξ)| = O(∥ξ∥−κ) for some κ > 0 as ∥ξ∥ → ∞.
Similarly, we say that µ has polylogarithmic Fourier decay if |µ̂(ξ)| = O((log ∥ξ∥)−κ) for some κ > 0 as ∥ξ∥ → ∞.
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Details and context of the above applications are discussed in detail in Section 1.7 below.

1.2. Discussion of the method. As noted above, a very general result towards Step 2 was
obtained in [51, Corollary 11.5] using methods from additive combinatorics. Before recalling this
result, it will be convenient to make the following definition.

Definition 1.1. We say that a Borel measure µ on Rd is uniformly affinely non-concentrated if for
every ε > 0, there exists δ(ε) > 0 so that δ(ε) → 0 as ε → 0 and for all x ∈ supp(µ), 0 < r ≤ 1,
and every affine hyperplane W < Rd, we have

µ(W (εr) ∩B(x, r)) ≤ δ(ε)µ(B(x, r)), (1.2)

where W (r) and B(x, r) denote the r-neighborhood of W and the r-ball around x respectively. We
refer to the function δ(ε) as the non-concentration parameters of µ.

Remark 1.2. It can be shown by an inductive argument that a measure µ is uniformly affinely
non-concentrated if and only if (1.2) holds with δ(ε) = Cεα for some constants C ≥ 1 and α > 0.
Hence, we often refer to such µ as being (C,α)-affinely non-concentrated when we wish to emphasize
the dependence on these parameters.

The following result shows that affine non-concentration is sufficient to guarantee polynomial
Fourier decay outside a sparse set of frequencies.

Theorem 1.3 ([51, Corollary 11.5]). Let µ be a compactly supported, Borel probability measure on
Rd, which is uniformly affinely non-concentrated. Then, µ is polynomially decaying on average, that
is, for every ϵ > 0, there exists effectively computable τ = τ(ϵ) > 0, depending only on ϵ and the
non-concentration parameters on µ, such that the set{

∥ξ∥ ≤ T : |µ̂(ξ)| > T−τ}
can be covered by Oϵ(T

ϵ) balls of radius 1. Moreover, the implicit constants in the Oϵ(T
ϵ) bound

only depend upon the non-concentration parameters of µ as well as the diameter of its support.

Special cases of Theorem 1.3 for measures on R were known before by different methods by works
of Kaufman [50] and Tsujii [91] for self-similar measures, and by Rossi-Shmerkin [77] more generally.

In light of Theorem 1.3, the main difficulty in implementing the above strategy lies in achieving
Step 3 concerning separation of the images of the frequency under the dynamics. We note that
such separation is the heart of the difficulty in obtaining Fourier decay. Indeed, all the other steps
of the above strategy, including the conclusion of Theorem 1.3, apply equally well to the Hausdorff
measure on Cantor’s middle thirds set. However, it is well-known that the Fourier transform of
this measure does not tend to 0 at infinity [61]. Nonetheless, we believe that the directness of the
strategy will enable it to be applied in much broader contexts than those covered in this article.

Remark 1.4. We end this discussion with some remarks on the scope of Theorem 1.3, and hence
of the method developed in this article.

(1) It is shown in [51, Corollary 11.5] that the conclusion of Theorem 1.3 holds under a much
weaker non-concentration hypothesis which allows concentration to happen at some scales
and on small measure sets. This property is satisfied for instance by Patterson-Sullivan
measures for cusped real hyperbolic manifolds.

(2) In [14], it was observed that the proof of Theorem 1.3 goes through under the following
weaker form of (1.2) allowing the ball on the right side to have a larger radius:

µ(W (εr) ∩B(x, r)) ≤ δ(ε)µ(B(x, cr)), (1.3)

where c ≥ 1 is a fixed constant. This property holds for instance for certain self-similar
measures which do not satisfy (1.2), e.g. in the absence of separation conditions.

We now describe in detail the main results of this article.
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1.3. Self-similar systems. Consider a self-similar iterated function system (IFS) of the form Φ =
{x 7→ fa(x) = raOax+ ta : a ∈ A}, where A is a finite set, |ra| ∈ (0, 1), Oa ∈ O(d) and ta ∈ Rd. We
say that Φ is affinely irreducible if Φ does not preserve an affine subspace of Rd. Given a probability
vector p = (pa)a∈A then it is well-known that there exists a unique Borel probability measure
satisfying

µ =
∑
a∈A

pafaµ.

Here, faµ denotes the pushforward of µ under fa. We call this measure the self-similar measure
corresponding to Φ and p. Throughout this paper we will always assume that our IFS is non-trivial
in the sense that the similarities do not all share a common fixed point. This ensures that the
associated self-similar measures are non-atomic.

The Fourier decay properties of self-similar measures are well studied in the literature. Recently
Rapaport [74] completed a classification of those self-similar measures satisfying

lim sup
∥ξ∥→∞

|µ̂(ξ)| > 0.

This built upon earlier work of Brémont [21] and Varjú-Yu [94].
Far less in known about explicit rates of decay when µ̂(ξ) → 0 as ∥ξ∥ → ∞. In dimension d = 1, a

result of Solomyak [85] states that typical self-similar measures in R have polynomial Fourier decay.
That being said, polynomial Fourier decay has only been verified under certain restrictive algebraic
assumptions on the contractions ratios. See the articles of Dai, Feng, and Wang [24], and Streck
[88].

Li and the third author in [58] have shown that, under the assumption that the log-contraction
ratios log |ra|/ log |rb|, a ̸= b, contain a Diophantine number: for some c > 0 and l > 2 we have for
all rational numbers p/q that: ∣∣∣∣ log |ra|log |rb|

− p

q

∣∣∣∣ ≥ c

ql
,

then |µ̂(ξ)| → 0 polylogarithmically. This happens for example if the IFS contains contractions
by 1/2 and 1/3. Li and the third author’s proof used ideas from renewal theory. We also refer
the reader to [4] where similar results are proven under a weaker Diophantine condition. Varjú-
Yu [94] considered the complementary case where the contraction ratios are all integer powers of a
common number. In this setting, they proved polylogarithmic Fourier decay for self-similar measures
satisfying certain number theoretic assumptions.

In higher dimensions, the work of Lindenstrauss and Varjú [60] introduced a representational
theoretic method to bound Fourier transforms of self-similar measures with dense rotation parts
Oa. In dimension d ≥ 3, this method implies sub-polynomial Fourier decay for all self-similar
measures, where the rotational components Oa of the contractions give a dense subgroup; cf. the
survey [79]. Moreover, under a spectral gap condition for the transfer operator f 7→

∑
a∈A paf ◦O−1

a

on L2(SO(d)), d ≥ 3, it is possible to show that the associated self-similar measure has polynomial
Fourier decay.

Our first result for self-similar measures is a higher dimensional generalization of the aforemen-
tioned result of Li and Sahlsten [58].

Theorem 1.5. Let Φ = {x 7→ fa(x) = raOax+ ta}a∈A be an affinely irreducible self-similar IFS
such that two contractions have log-contraction ratio log |ra|

log |rb| which is Diophantine. Then every self-
similar measure for this IFS has polylogarithmic Fourier decay.

Remark 1.6 (Optimality of Theorem 1.5). We emphasize that we do not impose any separation
assumptions on the IFS in Theorem 1.5. Moreover, the affine irreduciblility assumption appearing in
this theorem is necessary. Indeed, if it is not satisfied, then any measure supported on the invariant
set of Φ cannot be Rajchman as such measure will be supported on a finite union of proper invariant
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affine subspaces. Finally, in the upcoming article [70], Paukkonen, Sahlsten, and Streck construct
an inhomogeneous self-similar measure in R, satisfying the assumptions of Theorem 1.5, for which
there exists C > 0 and a sequence of frequencies (ξn) tending to infinity such that for all n ∈ N
one has C−1 ≤ |µ̂(ξn)|

√
log |ξn| ≤ C. Thus, polylogarithmic Fourier decay is the best rate of decay

possible under the assumptions of Theorem 1.5.

It is also possible to use the Diophantine properties of the orthogonal matrices in our IFS to
prove Fourier decay results. Before stating our result in this direction we need to introduce some
notation. Given a matrix O ∈ SO(2), then O acts on R2 by rotating anticlockwise by 2πθ for some
θ ∈ [0, 1]. We define θO to be the unique θ defined this way. Moreover, given a self-similar IFS
{x 7→ fa(x) = raOax+ ta}a∈A acting on R2 such that Oa ∈ SO(2) for all a ∈ A, we define θa = θOa .
We say that a pair of real numbers (θ1, θ2) is Diophantine if there exists C, l > 0 such that for any
non-zero (p, q, r) ∈ Z we have

|pθ1 + qθ2 + r| ≥ C

max {|p|, |q|}l
.

With this terminology we can state our theorem.

Theorem 1.7. Let Φ = {x 7→ fa(x) = raOax+ ta}a∈A be a self-similar IFS acting on R2 such that
Oa ∈ SO(2) for all a ∈ A, and there exists two contractions such that (θa, θb) is Diophantine. Then
every self-similar measure for this IFS has polylogarithmic Fourier decay.

Remark 1.8. Although we do not pursue this here, we remark that the exponent appearing in our
polylogarithmic rate of Fourier decay provided by our proof of Theorems 1.5 and 1.7 can be made
explicit. Explicit rates obtained in this manner depend only on the Diophantine exponent l as well
as on the function τ = τ(ϵ) provided by the polynomial Fourier decay on average hypothesis; cf.
Theorem 1.3. In particular, when the self-similar measure is uniformly affinely non-concentrated,
the proof of Theorem 1.3 provides explicit bounds on the average decay rate τ(ϵ), which in turn
depend only on the non-concentration parameters of µ. Additionally, in the case of one-dimensional
self-similar measures, arguments of the first author together with Banaji in [12] can also be used to
provide explicit bounds on τ(ϵ).

1.4. Patterson-Sullivan measures. Our next result concerns Patterson-Sullivan (PS for short)
measures for convex cocompact hyperbolic manifolds. In this setting, the driving mechanism behind
Fourier decay comes from non-linearity of the dynamics. Namely, the fact that the strong stable
and unstable foliations of the geodesic flow are not jointly integrable.

To formulate our result, let Γ be a discrete, Zariski-dense, convex cocompact, group of isometries
of real hyperbolic space Hd+1, d ≥ 1. Let ΛΓ be the limit set of Γ on ∂Hd+1 and µ be the Patterson-
Sullivan probability measure on ΛΓ; cf. Section 2.2 for detailed definitions. The following is our
main result in this setting.

Theorem 1.9. There exists κ > 0 such that the following holds for all φ ∈ C2(∂Hd+1), ψ ∈
C1(∂Hd+1) satisfying

∥φ∥C2 + ∥ψ∥C1 ≤ A, inf
x∈ΛΓ

∥∇xφ∥ > a,

for some constants a > 0 and A ≥ 1. There exists a constant C = C(A, a, µ) ≥ 1, so that for all
λ ̸= 0, we have ∣∣∣∣∫

ΛΓ

e2πiλφ(x)ψ(x) dµ(x)

∣∣∣∣ ≤ C|λ|−κ.

Theorem 1.9 generalizes prior work of Bourgain and Dyatlov in the case of hyperbolic surfaces
[17] and of Li, Naud, and Pan in the case of Schottky hyperbolic 3-manifolds [55]. These results are
based on Bourgain’s sum-product theory, while the proof of Theorem 1.9 is based on Theorem 1.3,
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which was obtained using purely additive methods. Another feature of our proof of Theorem 1.9
compared to [17, 55] is that it does not require any symbolic coding of the action of Γ on ΛΓ.

Remark 1.10. (1) Our proof shows that the rate κ provided by Theorem 1.9 depends only on
non-concentration parameters of µ in the sense of Definition 1.1. In particular, the rate of
decay does not change upon replacing Γ by a finite index subgroup since the measure µ
remains the same in this case [76].

(2) PS measures for convex cocompact manifolds are known to be (C,α)-uniformly affinely
non-concentrated [25]. In this language, the exponent of polynomial Fourier decay obtained
in [17, 55] is shown to depend only on the exponent α, while the exponent provided by
Theorem 1.9 depends on both C and α. Roughly speaking, this difference comes from the
fact that the rates provided by Bourgain’s sum-product theorem depend only on α, while
those provided by the flattening theorem, Theorem 1.3, depend on both C and α. On the
other hand, the flexible nature of Theorem 1.3 enables our unified approach to the variety of
different settings considered in this article. It is thus of interest to strengthen Theorem 1.3
to remove such dependence on the constant C; cf. Remark 1.23 for further consequences.

To keep the presentation clear, we restricted our setup to the case of convex cocompact groups.
Using the recurrence results obtained in [51], the proof of Theorem 1.9 can be adapted to handle
the general case of geometrically finite manifolds.

Theorem 1.9 has immediate applications in the setting of Fractal Uncertainty Principles. We will
explain this in detail in Section 1.7.2.

1.5. Gibbs measures for self-conformal iterated function systems and their subshifts.
Next, let us consider the problem of studying Fourier transforms of iterated function systems Φ =
{fa}a∈A for general C2 contractions fa : [0, 1]d → [0, 1]d, a ∈ A, where d ≥ 1. In this context, we
say that an iterated function system is conformal if for every a ∈ A and x ∈ [0, 1]d the Jacobian of
fa evaluated at x satisfies

Dxfa = λa(x)Oa(x)

for some λa(x) ∈ (−1, 1) \ {0} and Oa(x) ∈ O(d), i.e. an iterated function system is conformal
if, for every a ∈ A and x ∈ [0, 1]d, the Jacobian is a similarity map. Given x ∈ [0, 1]d and
a = (a1, . . . , an) ∈ An, we also define

λa(x) =

n∏
i=1

λai(fai+1,...an(x)).

It follows from the chain rule that
|λa(x)| = ∥Dxfa∥

for any a ∈ ∪∞
n=1An and x ∈ [0, 1]d.

In this context, we will prove Fourier decay results for Gibbs measures associated to subshifts of
finite type and C1 potentials. This framework incorporates self-similar measures. However, instead
of using the number-theoretic properties of an IFS, this section will focus on how the non-linearity
within the IFS can be used to prove polynomial Fourier decay. Such an assumption rules out
self-similar measures.

1.5.1. Background. The idea that the non-linearity present within an IFS can be used as a tool for
proving Fourier decay is well-established within the literature. In the case d = 1, the first result in
this direction was due to Kaufman [49]. For each N ∈ N, he considered the set BN consisting of
those badly approximable numbers whose digits in the continued fraction expansion are bounded
above by N . Kaufman proved that BN supports a measure that has polynomial Fourier decay for
N ≥ 3. This result was later extended by Queffélec and Ramaré [73] to the case N = 2, and later
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to the case of more general invariant measures for the Gauss map by Jordan and the third author
[45].

In [17], Bourgain and Dyatlov introduced a new method to study Fourier transforms of measures
using ideas from Additive Combinatorics. They applied this method to prove polynomial Fourier
decay for Patterson-Sullivan measures for limit sets of Fuchsian groups. This method was subse-
quently refined by the third author and Stevens [80], and applied to a more general class of iterated
functions systems.

In recent years, more substantial progress has been made in this one-dimensional setting. In
particular, the first and third authors in [13], and Algom, Rodriguez-Hertz, and Wang [5], estab-
lished polynomial Fourier decay for a large class of self-conformal measures without any separation
assumptions on the underlying IFS. These results were recently built upon by the first author and
Banaji [12], and by Algom et al. [2], who independently proved that if an IFS consists of analytic
contractions one of which is not an affine map, then every self-conformal measure has polynomial
Fourier decay.

In an as yet unpublished work, Avila, Lyubich and Zhang [10] proved polylogarithmic Fourier
decay for certain measures coming from C1+α iterated function systems. We also refer the reader
to the papers [3, 4] for further results in this direction. In higher dimensions, we know far less.
A result of Leclerc [53] gives sufficient conditions for the Julia set of a hyperbolic rational map to
support a measure with polynomial Fourier decay. More recently, a generalization of the results
of [13, 5] was obtained in [6] for irreducible Cω-IFSs in dimension d = 2.

1.5.2. Statement of results. As mentioned above, our results hold under a spectral gap hypothesis
on the underlying conformal IFS. To properly formulate this result, we need to introduce some
preliminaries.

Let Φ = {fa}a∈A be an iterated function system. As the maps are contracting, there exists a
unique non-empty compact set satisfying the relation

XΦ =
⋃
a∈A

fa(XΦ).

For each a ∈ A we let Xa = fa(X). We say that Φ satisfies the strong separation condition if

Xa ∩Xb = ∅

for distinct a, b ∈ A. XΦ can be viewed as the image of the full shift AN under the map π : AN → XΦ

given by
π(a) = lim

n→∞
(fa1 ◦ · · · ◦ fan)(x0),

where x0 ∈ XΦ is an arbitrary point. By considering a small neighborhood of each Xa, it can be
shown that under the strong separation condition for each a ∈ A there exists an open set Ua ⊂ Rd
satisfying the following properties:

• Ua ∩ Ub = ∅ for a ̸= b
• If we let U := ∪a∈AUa then fa(U) ⊂ Ua for each a ∈ A.

In what follows, when an IFS satisfies the strong separation condition we will fix a choice of Ua for
each a ∈ A and a corresponding U.

Given a #A×#A matrix A taking values in {0, 1} we can define the associated subshift of finite
type to mean the subset ΣA ⊂ AN given by

ΣA = {(ai) ∈ A∞ : A(ai, ai+1) = 1} .

Thus each such matrix A defines a compact subset XA ⊂ XΦ via the projection XA = π(ΣA). We
will always assume that ΣA is topologically mixing, this is equivalent to An > 0 for all n sufficiently
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large. We write WA as the set of all admissible words, that is, words that exist as a prefix of any
word in ΣA. Given a = (a1, . . . , an) ∈ WA we define

XA
a = π ({(bi) ∈ ΣA : b1, . . . bn = a}) .

When the choice of matrix A is implicit, we will by an abuse of notation write Xa instead of XA
a .

Given a,b ∈ WA we write a⇝ b if ab ∈ WA. Let us assume that Φ satisfies the strong separation
condition, given a point x ∈ U then x ∈ Ub for some unique b ∈ A, we write a ⇝ x for a ∈ WA if
a⇝ b.

Given a subshift of finite type ΣA and a C1 function ψ : U → R, if x ∈ U, a ∈ A and a ⇝ x,
then we define wa(x) = eψ(fa(x)). More generally, given a = (a1, . . . , an) ∈ WA such that a⇝ x, we
define wa(x) = e

∑n−1
j=0 ψ(faj+1...an (x)). We define the pressure of ψ to be

P (ψ) = lim
n→∞

1

n
log
( ∑

a∈An:a∈WA

sup
x∈ΣA:a⇝x

wa(x)
)
.

For a proof that the pressure of a C1 function always exists see [95]. For each ψ, there exists a unique
probability measure µψ supported on XA called the Gibbs measure of ψ. The defining property of
this measure is that it satisfies the Gibbs condition: There exists C > 0 such that for all a ∈ WA

and x ∈ XA satisfying a⇝ x we have

C−1 ≤
µψ(Xa)

wa(x)enP (ψ)
≤ C. (1.4)

Gibbs measures are well studied within the ergodic theory community. See [20] and [67] for a more
thorough introduction to these measures.

Given a conformal IFS Φ satisfying the strong separation condition, a subshift of finite type ΣA
and a C1 potential ψ : U → R satisfying P (ψ) = 0, we define the twisted transfer operators Lib,
b ∈ R, by the formula

Libh(x) :=
∑
a∈A
a⇝x

wa(x)|λa(x)|ibh(fa(x)), h ∈ C1,b(U), x ∈ U,

in the Banach space C1,b(U) of differentiable functions equipped with the norm

∥h∥b := ∥h∥∞ +
supx∈U ∥Dxh∥

|b|
.

Definition 1.11. Let Φ, ΣA, and ψ be given. We say that (Φ,ΣA, ψ) has a spectral gap if there
exists 0 < ρ, υ < 1 such that for all large enough |b|, n ∈ N and h ∈ C1,b(U), we have

∥Lnibh∥b ≪ ρn|b|υ∥h∥b.

Our main result in this section is the following general theorem.

Theorem 1.12. Let Φ be a conformal IFS satisfying the strong separation condition, let ΣA be a
subshift of finite type, and let ψ be a C1 potential satisfying P (ψ) = 0. Assume that (Φ,ΣA, ψ) has
a spectral gap and suppose that µψ is uniformly affinely non-concentrated. Then, µψ has polynomial
Fourier decay.

To the best of the authors’ knowledge, Theorem 1.12 is the first polynomial Fourier decay result
for self-conformal iterated function systems and Gibbs measures in arbitrary dimensions.

It is a well established fact that a suitable uniform non-integrability (UNI) condition can imply
the existence of a spectral gap for a twisted transfer operator. See for instance the works of Naud
[64] and Stoyanov [87, Theorem 1.1] who adapted Dolgopyat’s method [28] to prove spectral gap
results. We also refer the reader to the works of Avila, Gouëzel and Yoccoz [9], Sarkar-Winter [81]
and Li-Pan [56] for similar spectral gap results. The uniform non-integrability condition we will
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work with is the following definition. It is inspired by the UNI condition introduced by Li and Pan
[56, Lemma 4.5] in the context of Patterson-Sullivan measures.

Definition 1.13 (UNI). Let Φ be a conformal IFS satisfying the strong separation condition and
ΣA be a subshift of finite type. We say that the pair (Φ,ΣA) satisfies the Uniform Non-Integrability
(UNI) condition if there exists ϵ0 > 0 such that the following holds for infinitely many n ∈ N: There
exists x ∈ XA such that for any unit vector e ∈ Rd there exists a1,a2 ∈ WA ∩ An such that:

• We have
|∂e (log |λa1(x)| − log |λa2(x)|)| ≥ ϵ0.

• a1 ⇝ x and a2 ⇝ x.

Roughly speaking, the UNI condition holds if for infinitely many n one can find an x ∈ ΣA at
which we can observe non-linearity in all directions. We include some further discussion on this
definition and some examples of iterated function systems satisfying it at the end of this subsection.
The significance of our UNI condition is demonstrated by the following proposition.

Proposition 1.14 (Spectral gap). Let Φ be a conformal IFS satisfying the strong separation con-
dition and ΣA be a subshift of finite type. Suppose that (Φ,ΣA) satisfies the UNI condition, then
for any C1 potential ψ satisfying P (ψ) = 0, there exists 0 < ρ < 1 such that for all large enough |b|,
n ∈ N and h ∈ C1,b(U), we have

∥Lnibh∥b ≪ ρn|b|1/2∥h∥b.
In particular, if (Φ,ΣA) satisfies the UNI condition, then for any C1 potential ψ satisfying P (ψ) = 0
the triple (Φ,ΣA, ψ) has a spectral gap.

The proof of Proposition 1.14 is provided in Appendix C. Our proof of Proposition 1.14 relies
heavily on arguments due to Li and Pan [56], and to Naud [64].

Given a Gibbs measure µψ associated to some C1 potential ψ, it can be shown that µψ is the
Gibbs measure for another C1 function ψ′ that satisfies P (ψ′) = 0. Combining this observation with
Theorem 1.12 and Proposition 1.14 yields the following statement.

Theorem 1.15. Let Φ be a conformal IFS satisfying the strong separation condition and ΣA be a
subshift of finite type. Suppose that (Φ,ΣA) satisfies the UNI condition. Then any Gibbs measure
µψ that is uniformly affinely non-concentrated has polynomial Fourier decay.

In [56] Li and Pan introduced the following seemingly stronger uniform non-integrability condi-
tion: there exists r > 0 and ϵ0 > 0 such that for any large n ∈ N, any x ∈ XA and unit vector
e ∈ Rd, there exist a1,a2 ∈ WA ∩ An such that:

• For all y ∈ B(x, r) we have

|∂e (log |λa1(y)| − log |λa2(y)|)| ≥ ϵ0.

• For all y ∈ B(x, r) we have a1 ⇝ y and a2 ⇝ y.
This condition and our UNI condition are in fact equivalent. We include a proof of this fact in
Appendix D. This proof follows an argument of Avila, Gouëzel and Yoccoz [9]. It will be this latter
condition that we will use in Appendix C during our proof of Proposition 1.14.

Remark 1.16. (a) Our proof of Theorem 1.12 relies on showing that the derivatives arising
from our IFS satisfy a non-concentration property. We prove that this property holds using
our spectral gap assumption. A similar non-concentration statement is needed in the proof
of Theorem 1.9. However, in our proof of Theorem 1.9 we do not use a spectral gap for
the transfer operator and instead use explicit formulas for the derivatives directly. It would
be interesting if the non-concentration of the derivatives in the setting of Theorem 1.12
could be also deduced directly from a suitable UNI condition without using a spectral gap
assumption. We leave this as an interesting problem to pursue.
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(b) In dimension d = 1, Theorem 1.12 was proved in the work of the third author and Stevens
[80], but as in Bourgain and Dyatlov [17], it relied on Bourgain’s sum product theorem.
Here we do not need it, so Theorem 1.12 also gives a new proof in the case d = 1.

(c) For dimension d = 2, Theorem 1.12 extends the recent work of Leclerc [53], regarding Fourier
dimension of Julia sets, which used a spectral gap result for twisted transfer operators
provided by Oh-Winter [65]. More recently, in dimension d = 2, the spectral gap theorem of
Oh-Winter was generalized in [6] to prove polynomial Fourier decay for stationary measures
for nonlinear Cω conformal IFSs without any separation assumptions for the underlying IFS.
For comparison, Theorem 1.12 only requires the IFS to be C2 and it applies in arbitrary
dimensions and to general Gibbs measures.

(d) Theorem 1.15 is a statement that guarantees polynomial Fourier decay for Gibbs measures
assuming the subshift satisfies a non-linearity assumption that is formulated in terms of
the Jacobian matrices {Dxfa = λa(x)Oa(x)}a∈A. In particular, we use properties of the
contraction ratios {λa(·)}a∈A to prove our result. In the spirit of Theorem 1.7, it would be
interesting if an analogous result to Theorem 1.12 could be proved using properties of the
orthogonal matrices {Oa(·)}a∈A instead.

1.5.3. Examples. In this subsection, we discuss examples where the hypotheses of Theorems 1.12
and 1.15 are satisfied.

Whether a Gibbs measure satisfies the uniformly affinely non-concentrated property is a well
investigated problem. In the context of the full shift, the simplest example of a Gibbs measure
satisfying this property is when ψ is the geometric potential, Φ satisfies the strong separation
condition and dimH(XΦ) > d − 1. Under these assumptions it is well known that µψ(B(x, r)) ≍
rdimH(X) for any x ∈ XΦ. It is straightforward to apply these properties to prove that µψ satisfies
the uniformly affinely non-concentrated property. In the case of arbitrary Gibbs measures we refer
the reader to [25, 93] and the references therein. In particular, Theorem 1.5 from [93] (see also
Theorem 1.10 from [25]) shows that under natural assumptions on the conformal IFS and the Gibbs
measure µψ, if the attractor of the IFS is not contained in a proper real analytic submanifold of Rd
then the Gibbs measure µψ will be uniformly affinely non-concentrated.

Turning our attention to our UNI hypothesis, the condition in Definition 1.13 is inspired by the
work of Li and Pan [56], where a similar condition was introduced in the context of PS measures
on limit sets of cusped, geometrically finite, groups of Möbius transformations. In light of the
close relationship between such limit sets and attractors of conformal IFSs, it seems possible to
extend the techniques of the proof of Theorem 1.12 to recover the polynomial Fourier decay result
of Theorem 1.9 as well as its generalizations to other Gibbs measures. To this end, the results of [56]
can be adapted to construct a coding of limit sets of convex cocompact groups using suitable Markov
systems satisfying our UNI hypotheses. As noted before, this method yields worse dependence of the
rates of decay on geometric non-concentration properties of the measure due to our use of spectral
gap results in the proof.

Nonetheless, motivated by this connection, we provide explicit further examples of attractors of
conformal IFSs in Rd satisfying the hypotheses of Theorem 1.15. The examples we give are based
on certain involution Möbius transformations on Rd (see (1.5) below). We note that, in dimension
d ≥ 3, Liouville’s Theorem (see [44, Chapter 5]) states that any conformal mapping is either of
this form or is a similarity map, so the class of maps in this example is not very restrictive. Our
examples will be formulated in the special case when ΣA is the full shift AN, but they can easily be
adapted to incorporate more general subshifts of finite type.

Example 1.17. Let Φ = {fa : [0, 1]d → [0, 1]d}a∈A be a conformal IFS. Assume that Φ contains
d+ 1 contractions of the form

fai(x) = tai +
λaiOai(x− uai)

|x− uai |2
(1.5)
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where tai ∈ Rd, uai ∈ Rd \ [0, 1]d, λai ∈ (0, 1), and Oai ∈ O(d). Let us also suppose that the set of
vectors {uai}d+1

i=1 do not belong to an affine subspace of Rd. Maps satisfying (1.5) have the following
useful property: Let x ∈ [0, 1]d and e ∈ Rd be a unit vector. Then for each ai we have

∂e log |λai(x)| = −2⟨x− uai , e⟩
|x− uai |2

. (1.6)

This fact was proved in [56, Lemma 6.75]. It can be shown to hold by a direct calculation. Let us
also assume now that Φ contains a similarity given by:

fas(x) = λasOasx+ tas

for some tas ∈ Rd, λas ∈ (0, 1), and Oas ∈ O(d).
We now bring our attention to proving that the UNI condition is satisfied by any conformal IFS

satisfying the above conditions. Let n ∈ N be arbitrary and x ∈ XΦ. Then for any unit vector
e ∈ Rd and ai we have

∂e

(
log |λan−1

s ai
(x)| − log |λans (x)|

)
=∂e

(
log λn−1

as |λai(x)| − log λnas
)

=∂e log |λai(x)|

=− 2⟨x− uai , e⟩
|x− uai |2

,

where the final line follows by (1.6). In particular, the expression obtained for ∂e(log |λan−1
s ai

(x)| −
log |λans (x)|) does not depend upon n. Thus, the UNI condition is satisfied if for any unit vector
e ∈ Rd we can find ai such that

⟨x− uai , e⟩ ≠ 0.

Such an ai has to exist because of our assumption that the set of vectors {uai}d+1
i=1 do not belong to

an affine subspace of Rd.
We emphasise that it is possible to choose the contractions in this example in such a way that

dimH(XΦ) > d− 1 and the strong separation condition is satisfied by Φ. Thus by the discussion in
above, the Gibbs measure corresponding to the geometric potential would in this case provide an
explicit example where Theorem 1.15 guarantees polynomial Fourier decay.

We end this discussion with several remarks and questions. Firstly, it is easy to check that the
set of C2 conformal IFSs satisfying our UNI condition is open, while the above example shows that
this set is non-empty. Moreover, close examination of Example 1.17 suggests that failure of the UNI
condition places algebraic relations among the maps in the IFS. It is thus natural to expect that
our UNI condition holds generically.

This discussion, along with Liouville’s Theorem, raises the following question: Suppose Φ is a
conformal IFS acting on Rd for d ≥ 3. If Φ contains a map of the form described by (1.5), then
must Φ satisfy the UNI condition? If this question could be answered in the affirmative, then
Theorem 1.15 would go a long way towards classifying polynomial Fourier decay for Gibbs measures
in dimension d ≥ 3.

Finally, in view of the restriction placed by Liouville’s Theorem on conformal IFSs in dimensions
d ≥ 3, it is natural to consider generalizations of Theorem 1.15 by relaxing the conformality hy-
pothesis to non-algebraic systems provided by Quasiconformal- or Quasiregular Mappings, with the
price of lack of regularity of the distortion function x 7→ log |f ′a(x)|. The study of such systems has
received a lot of attention in recent years; cf. [43, 62, 66]. In particular, it is of interest to extend
the proofs of Theorems 1.12 and 1.15 to these closely related systems thus yielding a wider source
of examples of polynomial Fourier decay; see Section 1.8.2 for further discussion of this direction.
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1.6. Non-conformal systems. Our techniques also allow us to prove polynomial Fourier decay for
certain stationary measures arising from non-conformal iterated function systems. It is well-known
that such measures are more difficult to analyze than self-similar and self-conformal measures.
Indeed the question of whether such a measure is uniformly affinely non-concentrated is far more
delicate than in the self-similar and self-conformal setting. As such our knowledge of the Fourier
decay properties of stationary measures for non-conformal iterated function systems is far less
extensive.

A result of Solomyak [86] demonstrates that amongst parameterised families of self-affine measures
one should expect a typical member to have polynomial Fourier decay. A result of Li and the third
author [57] established polynomial Fourier decay for self-affine measures when the underlying IFS
satisfies suitable algebraic assumptions. To the best of the authors’ knowledge, our main result
(Theorem 1.19) is the first general result in this setting that establishes polynomial Fourier decay
using the non-linearity within the IFS.

The family of non-conformal IFSs we consider is defined as follows. Suppose that, for each 1 ≤
i ≤ d, we are given a C2 IFS

{
f
(i)
a : a ∈ Ai

}
acting on [0, 1]. Given a = (a1, . . . , ad) ∈ A1×· · ·×Ad

we define the map
Fa(x1, . . . , xd) = (f (1)a1 (x1), . . . , f

(d)
ad

(xd)).

Using this notation, given any A ⊂ A1×· · ·×Ad we can define a new IFS {Fa}a∈A acting on [0, 1]d.
We will call such an IFS a restricted product IFS.

Given a restricted product IFS {Fa}a∈A and a probability vector p = (pa)a∈A, we let µp denote
the unique Borel probability measure satisfying

µp =
∑
a∈A

paFaµp.

We call µp a stationary measure.
In this setting, it is reasonable to expect that if the IFS is suitably non-linear then every stationary

measure will have polynomial Fourier decay. In this section our notion of non-linearity comes from
the following definition.

Definition 1.18. Let Φ = {fa} be a C2 IFS acting on [0, 1] with attractor XΦ. We say that Φ
satisfies the Uniform Non-integrability (UNI) condition if there exists ϵ0 > 0 such that for all n ∈ N
sufficiently large there exists a,b ∈ An satisfying

ϵ0 <
∣∣(log |f ′a| − log |f ′b|)′(x)

∣∣ 2
for all x ∈ XΦ.

The Fourier decay properties of measures arising from iterated function systems satisfying this
UNI condition have been well studied (see [5, 13, 80]). In the context of one dimensional C2 iterated
function systems, it is known (see for example [5]) that if an IFS Φ cannot be C2 conjugated to a
linear IFS, i.e. there exists no C2 diffeomorphism h : R → R such that {ga := h ◦ fa ◦ h−1}a∈A
satisfies g′′a(x) = 0 for all x ∈ XΦ and a ∈ A, then Φ satisfies the UNI condition. Using the argument
given in the proof of Proposition D.1 it can be shown that this UNI condition is equivalent to that
given in Definition 1.13 when d = 1. This justifies our terminology. We choose to use this definition
as it coincides with the UNI condition used in [13].

Our main result in this section is the following statement.

Theorem 1.19. Let {Fa}a∈A be a restricted product IFS. Assume that the following properties are
satisfied:

2This definition often also includes the upper bound |(log |f ′
a| − log |f ′

b|)′(x)| < ϵ1 for all x ∈ XΦ for some ϵ1 > 0.
However the existence of such an ϵ1 > 0 follows automatically from the regularity of the underlying IFS. Hence we
omit it.
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(1) For each 1 ≤ i ≤ d, the one-dimensional IFS
{
f
(i)
a

}
a∈Ai

satisfies the strong separation

condition.
(2) For each a ∈ A and 1 ≤ i ≤ d, there exists a′ ∈ A such that aj = a′j for all j ̸= i and

ai ̸= a′i.
(3) For each 1 ≤ i ≤ d, there exists a ∈ A such that the IFS{

f
(i)
a′i

: (a′1, . . . , a
′
d) ∈ A, a′j = aj ∀j ̸= i

}
satisfies the UNI condition.

Then, every stationary measure has polynomial Fourier decay.

To help illuminate Theorem 1.19 we include an example of an IFS satisfying its assumptions: Let

Φ :=

{
f(i,j)(x, y) =

(
1

x+ i
,

1

y + j

)
: (i, j) ∈ {(1, 2), (1, 3), (2, 1), (2, 3), (3, 1), (3, 2)}

}
.

Theorem 1.19 implies that all of the stationary measures for this IFS have polynomial Fourier decay.

Remark 1.20. The significance of defining our restricted product IFSs using products of one-
dimensional IFSs, as opposed to products of d-dimensional IFSs, is that this property will allow us
to disintegrate a stationary measure into an integral of random one-dimensional measures. These
random measures were studied in [13]. In particular, our proof of Theorem 1.19 will rely upon
a result from [13] which establishes a spectral gap for typical random compositions of transfer
operators (see Proposition 6.5). Hence, a higher dimensional generalization of the results in [13]
would lead to a version of Theorem 1.19 for products of higher dimensional IFSs.

1.7. Applications. We now discuss some of the consequences of the results presented here to
equidistribution of vectors in fractal sets and quantum chaos.

1.7.1. Equidistribution of vectors on fractals. The study of Diophantine properties of typical points
in the supports of dynamically defined measures has witnessed considerable activity in recent years;
cf. [26, 84, 27, 42, 72] for instance and references therein.

In dimension one, an underlying principle behind many of the results in the subject can be
summarized as follows: the continued fraction expansion as well as the digit expansions in different
bases of a typical point should be independent of one another. Higher dimensional results also echo
analogous principles.

This principle is exemplified by the following results. Host’s theorem [42], and its generalization
in [40], assert that if multiplicatively independent integers p, q ∈ N and a ×p-invariant and ergodic
measure µ on [0, 1) of positive entropy are given, then the ×q-orbit of µ-almost every point is
equidistributed with respect to Lebesgue measure; see also [39] for a Fourier analytic proof of this
result.

A second example is given by a result of Simmons and Weiss [84] asserting that if µ is a non-
trivial self-similar measure on [0, 1), then the orbit of µ-almost every point under the Gauss map is
equidistributed towards the unique absolutely continuous Gauss measure.

Much less is known in higher dimensions. In [84], the authors obtain higher dimensional analogues
of their aforementioned results for the Gauss map. In [27] Dayan, Ganguly and Weiss show almost
sure A-normality for certain self-affine measures with linear parts given by negative powers of A and
satisfying additional Diophantine conditions on their translation parts. In both cases, the results
are based on measure rigidity results for certain random walks on homogeneous spaces.

In this vein, Fourier decay has provided an important avenue for obtaining new results for mea-
sures that are not amenable to analysis by other methods. Most notably, in [26], Davenport, Erdős,
and LeVeque (DEL) showed that any3 probability measure µ on Rd with polylogarithmic Fourier

3The reference [26] considered the case of dimension 1, see Appendix A for a proof in dimension d ≥ 2.
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decay has that µ-almost every x is A-normal with respect to any expanding integer matrix A, i.e.,
the orbit (Anx)n∈N is equidistributed in the torus Rd/Zd when reduced mod 1; cf. [72] for a recent
extension of this result. Here, a matrix is expanding if its determinant has modulus larger than
one. In light of this criterion, our results provide numerous new examples where the above principle
holds.

Corollary 1.21. Let µ be any of the measures in the Theorems 1.5, 1.7 , 1.9, 1.12 or 1.19. Then,
we have that µ-almost every x is A-normal with respect to any expanding integer valued matrix A.

We also note that Corollary 1.21 opens the possibility of generalizing the results of [72] to higher
dimensions.

1.7.2. Fractal Uncertainty Principles, spectral gaps, and scattering resonances. Our next application
concerns essential spectral gaps for Laplacians on convex cocompact hyperbolic manifolds. To
properly place our results in context, we introduce the relevant notions and previous progress on
this problem.

Let Γ be a convex cocompact subgroup of Isom+(Hd+1), d ≥ 1, and denote by M the quotient
manifold Hd+1/Γ. As before, we let δΓ denote the Hausdorff dimension of the limit set ΛΓ of Γ. We
let ∆M denote the Laplace-Beltrami operator on M and for λ ∈ C with sufficiently large imaginary
part, we define the resolvent of ∆M by R(λ) := (−∆M − d2

4 − λ2)−1.
A topic of very active interest concerns meromorphic continuation of the analytic family of op-

erators λ 7→ R(λ) as well as the existence and location of its poles. Results of this type have
important applications to rates of decay of solutions to wave equations in quantum chaos as well as
to rates of decay of correlation in the field of hyperbolic dynamics. We refer the reader to [32] for
an introduction to the modern aspects of the topic.

In this regard, Patterson-Sullivan theory based on studying fractal geometric properties of PS
measures supported by ΛΓ provides a powerful method for establishing such results. It follows
from this theory that R(λ) is well-defined and analytic on the domain Im(λ) > −βPS , for βPS =
max {0, d/2− δΓ}. Moreover, λ = −βPS is the only pole for R(λ) on the line λ = −βPS . The
constant βPS is referred to as the Patterson-Sullivan (PS) gap. We say that R(λ) has an essential
spectral gap of size β ≥ βPS if R(λ) admits a meromorphic continuation with at most finitely many
poles to the domain Im(λ) ≥ −β.

The topic of producing essential spectral gaps and studying their dependence on geometric invari-
ants of the underlying manifold has received considerable interest in recent years. When δΓ ≤ d/2,
Naud [64] in the case d = 1 and Stoyanov [87] in higher dimensions proved the existence of an
essential spectral gap using a refinement of the Dolgopyat method [28]. In a major breakthrough,
Bourgain and Dyatlov [18] produced an improvement over the PS gap in the regime δΓ > d/2 and
d = 1 using tools from harmonic analysis by proving a Fractal Uncertainty Principle for Ahlfors-
David regular sets (see the definition (1.7) below). Extending the results of [18] to higher dimensions
remains a major open problem, due to counterexamples arising from affinely concentrated sets [29].
See the work by Cohen [23] for a recent breakthrough on this question and e.g. related works
[11, 8, 22, 37].

In [31], Dyatlov and Zahl introduced the notion of Fractal Uncertainty Principle (FUP) that
provides a way to produce essential spectral gaps with explicit dependence on the geometry of M .
We recall this notion here. Two setsX,Y ⊂ Rd are said to satisfy the generalized FUP with exponent
β > 0 if for any open set U ⊂ Rd×Rd, compact subset V ⊂ U , smooth functions Φ ∈ C3(U,R) and
G ∈ C1(U,C) satisfying supp(G) ⊂ V and ∥Φ∥C3 + ∥G∥C1 ≤ CΦ,G, inf |∂2xyΦ| ≥ C−1

Φ,G, for some
constant CΦ,G > 0, then for any 0 < ρ < 1 and h≪ 1, we have

∥1X(hρ)B(h)1Y (hρ)∥L2(Rd)→L2(Rd) ≤ Chβ, (1.7)
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where B(h) is the Fourier integral operator defined by

B(h)u(x) = 1

(2πh)d/2

∫
Rd

exp
( iΦ(x, y)

h

)
G(x, y)u(y) dy,

for all u ∈ L2(Rd) and x ∈ Rd. In [31], it is shown that if the generalized FUP holds for X = Y = ΛΓ

with some exponent β > 0, then there is an essential spectral gap of size β > 0. In particular, it
follows from their results that if δΓ ≤ d/2 and µΓ has polynomial Fourier decay with rate κ > 0, then
the generalized FUP holds with exponent β = βPS + ε, for a constant ε > 0 depending explicitly
on κ.

When d = 1, using Dolgopyat’s method [28], Dyatlov and Jin [30] proved that ΛΓ satisfies a
generalized FUP with exponent β = βPS + ε for a constant ε > 0 depending on the Hausdorff
dimension of the limit set δΓ and the Ahlfors-David regularity constant CΓ of the PS measure µΓ.
Here, CΓ ≥ 1 is a constant satisfying

C−1
Γ rδΓ ≤ µΓ(B(x, r)) ≤ CΓr

δΓ , r > 0, x ∈ supp(µ). (1.8)

Dependence on such constants is a byproduct of the use of Dolgopyat’s method.
To remove the CΓ dependency, Bourgain and Dyatlov [17] proved that, in the case d = 1, the PS

measures have polynomial Fourier decay with a rate depending only on the Hausdorff dimension
δΓ. When δΓ ≤ 1/2, this in particular produced an essential spectral gap of size independent of the
constant CΓ. Their proof used Bourgain’s sum-product theorem as well as the non-linearity of the
action of Γ on its limit set ΛΓ by Möbius transformations. See also [55] for an extension of this
result to the case of Schottky Kleinian groups in the case d = 2.

In higher dimensions, Backus, Leng and Tao [11] generalized the work of Dyatlov and Jin [30]
using Dolgopyat’s method [28]. They obtained an improvement over the PS gap that depends on
the non-concentration properties of µΓ as well as the upper doubling constant constant CD of the
PS measure. Here, CD ≥ 1 is a constant such that

µΓ(B(x, 2r)) ≤ CDµΓ(B(x, r)), r > 0, x ∈ supp(µ).

Note that we can always choose CD ≤ 2δΓC2
Γ, where CΓ is as in (1.8). See also [22] for related results

by different methods. However, the question of producing an improvement that is independent of
such constant à la Bourgain and Dyatlov remains open in higher dimensions.

Now, the advantage of Theorem 1.9 is that it relies on the L2-flattening theorem and non-
concentration estimates for PS measures while avoiding Dolgopyat’s method. In particular, we are
able to produce an improvement over the PS gap that is independent of the doubling constant CD.

Corollary 1.22. Let Γ be a discrete, Zariski-dense, convex cocompact, group of isometries of real
hyperbolic space Hd+1, d ≥ 1. Assume δΓ ≤ d/2. Then there exists ε > 0 such that the limit set
ΛΓ satisfies the generalized Fractal Uncertainty Principle with exponent β = d

2 − δΓ + ε and that
there exists an essential spectral gap of size d

2 − δΓ + ε. Here ε depends on the constants C and α
such that the Patterson-Sullivan measure µΓ is (C,α)-uniformly affinely non-concentrated, but not
on the doubling constant CD.

Remark 1.23. Corollary 1.22 is a partial generalization of the results of Bourgain and Dyatlov to
higher dimensions. A full generalization requires the removal of the dependence on the constant C
coming from uniform non-concentration. This can be achieved by removing the dependence of the
function τ(ϵ) in the flattening Theorem 1.3 on C.

1.8. Generalizations and future directions. We end the introduction with some discussions of
possible generalizations and future directions this work could take.
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1.8.1. Lower regularity. Firstly given the interest in quantum chaos problems in variable curvature
[32], it would be interesting to obtain generalizations of our Fourier decay and FUP results for
Patterson-Sullivan measures in this context, where one has to contend with the additional difficulty
arising from lower regularity of the dynamics. In a similar vein, our proof of Theorem 1.12 is re-
stricted to C2 IFSs, so it would also be interesting to have polynomial decay for C1+α self-conformal
IFSs, possibly using methods of Tsujii-Zhang [92]. The problem of studying lower regularity also
relates deeply to the UNI condition we use and going beyond the conformal category, which we
discuss below.

1.8.2. UNI condition and Julia sets in quasiregular dynamics. Given that Liouville’s theorem on
the rigidity of conformal maps in dimensions d ≥ 3, in developing analogues of complex dynamics
in higher dimensions, the study of analogues of this theory for wider classes of maps known as
quasiconformal- and quasiregular maps has received considerable interest; see e.g. [44, 62, 66, 47, 48]
and references therein. In dimension d = 2, by a result of Oh and Winter [65], if f : S2 → S2 is a
hyperbolic rational map, then τ = log |f ′| satisfies a Non-Local Integrability property on the Julia
set Jf (which is related to UNI, see [64, Proposition 5.5]) if and only if f is not conjugated to the
power map z 7→ zd for any integer d ̸= 0. This was adapted by Leclerc [53] to prove polynomial
Fourier decay for equilibrium states on Julia sets for such rational hyperbolic maps not conjugated
to z 7→ zd.

In dimensions d ≥ 3, analogues of hyperbolic rational maps are given by Uniformly Quasiregular
(UQR) Maps f : M → M on a Riemannian manifold M [66, 43]. These maps are known to have
a fractal Julia set only when M is a rational homology sphere [47]. In this situation in d = 3,
the analogues for the power maps z 7→ zd come from certain Lattès map constructions [62]. In
particular, it is natural to expect that maps not conjugated to such Lattès maps provide a potential
source of Julia sets with equilibrium states having polynomial Fourier decay. However, the problem
with UQR maps is that they no longer satisfy the smoothness properties, which would allow us
to define e.g. the UNI condition using ∂e log |f ′| as log |f ′| is not generally even Hölder. Similar
complications also appear in the case of Thurston maps of S2, where Li and Zheng [59] generalized
the work of Oh and Winter with a notion of α-strong non-integrability condition allowing them
to prove a spectral gap theorem. It would be an interesting problem to pursue these notions in
dimensions d ≥ 3 for Julia sets of UQR maps in order to prove and classify Fourier decay for the
equilibrium states for these systems.

1.8.3. Non-conformal measures. In a different direction, it would be interesting to extend our meth-
ods to obtain rates of decay for self-affine measures recovering and generalizing [57]. Similarly, it
would be interesting to see if the L2 flattening approach could improve the results on polynomial
decay for Furstenberg measures on projective spaces arising as stationary measures for random
matrix products in the cases that have not yet been studied.

1.8.4. Self-similar measures. Given that we are able to get polylogarithmic Fourier decay for a wide
class of self-similar measures, this raises the question of whether our method can be pushed to obtain
polynomial decay for self-similar measures beyond known cases, see [79] for further discussion of the
existing examples.

1.8.5. Beyond stationary measures. Finally, going beyond the deterministic category, there has re-
cently been a lot of activity in the study of Fourier decay properties of randomly defined measures
such as spatially independent martingales [83], Liouville Quantum Gravity [34], random multiplica-
tive cascades [36] and random Cantor measures in the study of Fractal Uncertainty Principles [38].
It would be interesting to explore whether the statistical multiscale structure of these measures can
be be used as a substitute for Step 1 in our strategy towards studying rates of Fourier decay.
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1.9. Organisation of the article. For convenience of the reader, the proofs of the results for
different classes of measures appearing in the introduction are presented in such a way that they
can be read independently of one another.

After collecting general preliminaries and notations in Section 2, we prove Theorems 1.5 and 1.7
in Section 3. Section 4 is dedicated to the case of Patterson-Sullivan measures where we prove
Theorem 1.9. In Section 5, the general non-linear self-conformal case is established and, finally, in
Section 6, we address the non-conformal case.

The reader will find that the overall structure of the proof in the case of self-similar, self-conformal,
and non-conformal systems is very similar due to the presence of a natural underlying symbolic
coding of the dynamics. In the case of PS measures, we do not rely on any coding and instead prove
Theorem 1.9 directly using dynamics of the geodesic flow as a substitute for the shift. However, the
strategy remains the same in all cases.

The article has four appendices establishing for completeness some results not readily available in
the literature. In Appendix A, we prove a higher dimensional generalization of the Davenport-Erdős-
LeVeque criterion for equidistribution which yields Corollary 1.21 when combined with our results
on Fourier decay. Appendix B is dedicated to the proof of an auxiliary estimate on multinomial
distributions required for the proof of the self-similar case. In Appendix C, we provide a proof of
Proposition 1.14 on the spectral gap of twisted transfer operators. Finally, in Appendix D we prove
Proposition D.1 which establishes equivalence of the UNI criterion we use to the one introduced by
Li and Pan [56] in their work on exponential mixing.

Acknowledgements. S.B. is supported by an EPSRC New Investigator Award (EP/W003880/1).
O.K. is partially supported under NSF grant DMS-2247713 and DMS-2337911. T.S. is supported
by the Academy of Finland via the project Quantum chaos of large and many body systems, grant
Nos. 347365, 353738. The proof in Appendix A was done by the third author and Jonathan Fraser
in an unpublished preprint, and we thank Jonathan for allowing us to include it in the appendix.
We also thank Jialun Li for comments on an earlier draft.

2. Preliminaries

In this section, we collect some notation and technical results that we use throughout the article.

2.1. Preliminaries for iterated function systems and thermodynamic formalism. Given
a finite set A we let A∗ = ∪∞

n=1An denote the corresponding set of finite words. Given a =
(a1, . . . , an) ∈ A∗ we let |a| denote its length and let a− = (a1, . . . , an−1) denote a with the last
digit removed. Given a,b ∈ A∗ we let a ∧ b denote the maximal common prefix of a and b. We
define a ∧ b analogously for a,b ∈ AN.

Suppose now that we are given an IFS {fa}a∈A then given a = (a1, . . . , an) ∈ A∗ we let

fa = fa1 ◦ · · · ◦ fan .
Suppose in addition that our IFS consisted of similarities so fa(x) = raOax+ta for some |ra| ∈ (0, 1),
Oa ∈ O(d) and ta ∈ Rd, then given a = (a1, . . . , an) ∈ A∗ we let

ra =
n∏
i=1

rai and Oa = Oa1 · · ·Oan .

Similarly, suppose we are given a probability vector p = (pa)a∈A then we for any a ∈ A∗ we let

pa =

n∏
i=1

pai .

Suppose now that {fa}a∈A is a C2 conformal IFS acting on [0, 1]d. Then, there exists C > 0 such
that

∥Dxfa −Dyfa∥ ≤ C∥x− y∥
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for all x, y ∈ [0, 1]d and a ∈ A. Moreover, we have the following stronger statement that follows
from [7, Lemma 7.3].

Lemma 2.1. Let {fa}a∈A be a C2 self-conformal IFS acting on [0, 1]d. Then there exists C > 0
such that

∥Dxfa −Dyfa∥ ≤ C sup
z∈[0,1]d

∥Dzfa∥∥x− y∥

for all x, y ∈ [0, 1]d and a ∈ A∗.

Lemma 2.1 will play a crucial role in this paper when we want to linearize a function fa. We also
have the following well known result [69, Lemma 2.2]

Lemma 2.2. Let {fa}a∈A be a C2 self-conformal IFS acting on [0, 1]d. Then there exists C > 0
such that for any a ∈ A∗ we have

C−1Diam(fa([0, 1]
d) ≤ ∥Dxfa∥ ≤ CDiam(fa([0, 1]

d)

for all x ∈ [0, 1]d.

We also recall some useful properties of Gibbs measures. Suppose ψ : U → R is a C1 potential
satisfying P (ψ) = 0. Under this assumption it can be shown that a Gibbs measure µψ satisfies the
following invariance property: ∫

g dµψ =

∫ ∑
a⇝x

wa(x)g(fa(x)) dµψ (2.1)

for all g : XA → C continuous. For a proof of (2.1) in the symbolic setting we refer the reader to
[67]. Using the Gibbs property (1.4), it can be shown that Gibbs measures satisfy the following
quasi-Bernoulli property. Let a,b ∈ WA be such that ab ∈ WA. Then, there exists C > 1 such
that

C−1µψ(Xa)µψ(Xb) ≤ µψ(Xab) ≤ Cµψ(Xa)µψ(Xb). (2.2)

2.2. Preliminaries on Patterson-Sullivan measures. We collect here some preliminary facts
needed for the proof of Theorem 1.9.

2.2.1. Convex cocompact manifolds. The standard reference for the material in this section is [19].
Let G denote the group of orientation preserving isometries of real hyperbolic space, denoted Hd+1,
of dimension d ≥ 1. In particular, G ∼= SO(d+ 1, 1)0.

Fix a basepoint o ∈ Hd+1. Then, G acts transitively on Hd+1 and the stabilizer K of o is a
maximal compact subgroup of G. We shall identify Hd+1 with K\G. Denote by A = {gt : t ∈ R} a
one parameter subgroup of G inducing the geodesic flow on the unit tangent bundle of Hd+1. Let
M < K denote the centralizer of A inside K.

Let Γ < G be an infinite discrete subgroup of G. The limit set of Γ, denoted ΛΓ, is the set of
limit points of the orbit Γ · o on ∂Hd+1. Note that the discreteness of Γ implies that all such limit
points belong to the boundary. Moreover, this definition is independent of the choice of o in view of
the negative curvature of Hd+1. We often use Λ to denote ΛΓ when Γ is understood from context.
We say Γ is non-elementary if ΛΓ is infinite.

The non-wandering set for the geodesic flow, denoted by Ω ⊆ G/Γ, is the closure of the set of
periodic A-orbits. We say Γ is convex cocompact if Ω is compact, cf. [19]. Denote by N+ (resp.
N−) the expanding (resp. contracting) horospherical subgroup of G associated to gt, t ≥ 0.

Given g ∈ G, we denote by g+ the coset of P−g in the quotient P−\G, where P− = N−AM is
the stable parabolic group associated to {gt : t ≥ 0}. Similarly, g− denotes the coset P+g in P+\G.
Since M is contained in P±, such a definition makes sense for vectors in the unit tangent bundle
M\G. Geometrically, for v ∈ M\G, v+ (resp. v−) is the forward (resp. backward) endpoint of the
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geodesic determined by v on the boundary of Hd+1. Given x ∈ G/Γ, we say x± belongs to Λ if the
same holds for any representative of x in G; this notion being well-defined since Λ is Γ invariant.

2.2.2. Patterson-Sullivan measures. The critical exponent, denoted δΓ, is defined to be the infimum
over all real number s ≥ 0 such that the Poincaré series

PΓ(s, o) :=
∑
γ∈Γ

e−sd(o,γ·o) (2.3)

converges. This exponent coincides with the Hausdorff dimension of the limit set as well as the
topological entropy of the geodesic flow on the quotient orbifold Hd+1/Γ. We shall simply write δ
for δΓ when Γ is understood from context.

The Busemann function is defined as follows: given x, y ∈ Hd+1 and ξ ∈ ∂Hd+1, let γ : [0,∞) →
Hd+1 denote a geodesic ray terminating at ξ and define

βξ(x, y) = lim
t→∞

dist(x, γ(t))− dist(y, γ(t)).

A Γ-invariant conformal density of dimension s is a collection of Radon measures {νx} on the
boundary indexed by x ∈ Hd+1 which satisfy the following equivariance property:

γ∗νx = νγx, and
dνy
dνx

(ξ) = e−sβξ(x,y), ∀x, y ∈ Hd+1, ξ ∈ ∂Hd+1, γ ∈ Γ.

Patterson [68] and Sullivan [89] showed the existence of a unique (up to scaling) Γ-invariant
conformal density of dimension δΓ, denoted

{
µPSx : x ∈ Hd+1

}
. These measures are known as the

Patterson-Sullivan measures (PS measures for short). We refer the reader to [75] and [71] and
references therein for details of the construction in much greater generality.

2.2.3. Stable and unstable foliations and leafwise measures. Recall that we fixed a basepoint o ∈
Hd+1. In what follows, we use the following notation for pullbacks of the Patterson-Sullivan measures
to orbits of N+ under the visual map: for x ∈ G/Γ,

dµux(n) = e
δΓβ(nx)+ (o,nx)

dµPSo ((nx)+). (2.4)

These measures have simpler transformation formulas under the action of the geodesic flow and N+

which makes them relatively easier to analyze than the Patterson-Sullivan measures directly. In
particular, they satisfy the following equivariance property under the geodesic flow:

µugtx = eδtAd(gt)∗µ
u
x. (2.5)

Moreover, it follows readily from the definitions that for all n ∈ N+,

(n)∗µ
u
nx = µux, (2.6)

where (n)∗µ
u
nz is the pushforward of µunz under the map u 7→ un from N+ to itself. Finally, since

M normalizes N+, these conditionals are Ad(M)-invariant in the sense that for all m ∈M ,

µumx = Ad(m)∗µ
u
x. (2.7)

2.2.4. Norms, metrics, and Lie algebras. We denote by n+ and n− the Lie algebras of N+ and N−

respectively. We fix an isomorphism of n+ and n− using a Cartan involution sending gt to g−t.
Moreover, we fix an isomorphism of n+ (and hence of n−) with Rd. Finally, we fix a Euclidean inner
product on Rd ∼= n+ ∼= n− denoted with ⟨·, ·⟩ which is invariant by the Adjoint action of the group
M ∼= SOd(R) and induces the respective metrics on the groups N+ and N−. Given r > 0, we let
N+
r (resp. P−

r ) the neighborhood of identity of radius r inside N+ (resp. P− :=MAN−).
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2.2.5. Local stable holonomy. In this section, we recall the definition of (stable) holonomy maps
which are essential for our arguments. We give a simplified discussion of this topic which is sufficient
in our homogeneous setting. Let x = u−y for some y ∈ Ω and u− ∈ N−

2 . Since the product map
N− ×A×M ×N+ → G is a diffeomorphism near the identity, we can choose the norm on the Lie
algebra so that the following holds. We can find maps p− : N+

1 → P− = N−AM and u+ : N+
2 → N+

so that

nu− = p−(n)u+(n), ∀n ∈ N+
2 . (2.8)

Then, it follows by (2.4) that for all n ∈ N+
2 , we have

dµuy(u
+(n)) = e

δβ(nx)+ (u+(n)y,nx)
dµux(n).

Moreover, by further scaling the metrics if necessary, we can ensure that these maps are diffeomor-
phisms onto their images. In particular, writing Φ(nx) = u+(n)y, we obtain the following change
of variables formula: for all f ∈ C(N+

2 ),∫
f(n) dµux(n) =

∫
f((u+)−1(n))e

−δβΦ−1(ny)+ (ny,Φ−1(ny))
dµuy(n). (2.9)

Remark 2.3. To avoid cluttering the notation with auxiliary constants, we shall assume that the
N− component of p−(n) belongs to N−

2 for all n ∈ N+
2 whenever u− belongs to N−

1 .

2.3. Notational convention. Throughout this article, given two quantities A and B we will write
A ≪ B if there exists a constant C > 0 such that A ≤ CB. When we want to emphasize that C
depends on another quantity, say x, we write A ≪x B. We also write A = O(B) to mean A ≪ B
and A = Ox(B) to mean A≪x B. When A≪ B and B ≪ A then we write A ≍ B.

3. Self-similar measures: Proof of Theorems 1.5 and 1.7

3.1. Sketch of the proof. Before giving the proof of Theorems 1.5 and 1.7, we provide a sketch
of the argument. The ideas underpinning this argument are also used in our later proofs. Suppose
that our IFS is acting on R and consists of two maps {fa(x) = rax+ ta, fb(x) = rbx+ tb} . Moreover
suppose that C, l > 0 are such that ∣∣∣∣ log |ra|log |rb|

− p

q

∣∣∣∣ ≥ C

ql

for all (p, q) ∈ Z× N. Let ξ ∈ R be given. We define the following cut-off set

Aξ :=

a ∈ A∗ :

|a|∏
j=1

|raj | <
(log |ξ|)3l

|ξ|
and

|a|−1∏
j=1

|raj | ≥
(log ∥ξ∥)3l

∥ξ∥

 .

Appealing to the self-similarity of µ it can be shown that

|µ̂(ξ)| ≤
∑
a∈Aξ

pa|µ̂(raξ)| (3.1)

The significance of (3.1) is that it bounds |µ̂(ξ)| from above by an average of |µ̂(·)| evaluated at
different frequencies.

At this point, we can employ our Diophantine assumption to show that |raξ − rbξ| ≤ 1 if and
only if ra = rb. This implies that the frequencies we are averaging over in (3.1) form a large well
separated set. It is a consequence of this well-separated property and Theorem 3.5 below that the
term |µ̂(raξ)| decays polylogarithmically in |ξ|. The contribution to

∑
a∈Aξ

pa|µ̂(raξ)| coming from
those remaining terms can be bounded by a probabilistic argument.

What makes this argument more challenging in the full generality of Theorem 1.5 is that to
meaningfully apply the Diophantine assumption to bound the distance between ra∥ξ∥ and rb∥ξ∥
for some ξ ∈ Rd, we require the products determining ra and rb to have the same number of
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contractions coming from digits belonging to A \ {a, b}. This issue is overcome by a suitable
conditioning argument.

3.2. Proof of Theorem 1.5. We fix ξ such that ∥ξ∥ ≫ 1. Let a1, a2 ∈ A be such that log |ra1 |
log |ra2 |

is
Diophantine. Let l ≥ 2 and C > 0 be the corresponding parameters such that∣∣∣∣ log |ra1 |log |ra2 |

− p

q

∣∣∣∣ ≥ C

ql

for all (p, q) ∈ Z× N. We define

ξ̃ =
(log ∥ξ∥)3l

∥ξ∥
.

Given a word a ∈ A∗ and a ∈ A we let

|a|a = # {1 ≤ j ≤ |a| : aj = a} .

At this point we fix δ, ϵ > 0 to both be sufficiently small that

ϵ− 1/2(#A− 1) + (1/2 + δ)(#A− 2) < 0. (3.2)

which allow us to define

n(ξ) :=

⌊(
1− 1

(− log ξ̃)1/2−δ

)
− log ξ̃

−
∑

a∈A pa log |ra|

⌋
and Ea(ξ) :=

(− log ξ̃)1/2+δ

−#A log |ra|
, a ∈ A.

We say that a word a is good if a ∈ An(ξ) and for all a ∈ A we have the following strong upper and
lower bounds for |a|a:

pan(ξ)− Ea(ξ) ≤ |a|a ≤ pan(ξ) + Ea(ξ).

Let Gξ be the set of good words. The following lemma records some useful properties of good words.

Lemma 3.1. Let a ∈ Gξ. Then

ξ̃ ≤ |ra| ≪ ξ̃e2(log ∥ξ∥)
1/2+δ

and there exists C1, C2 > 0 such that∑
a∈An(ξ):a/∈Gξ

pa ≤ C1e
−C2(log ∥ξ∥)2δ

Proof. The proof is a direct calculation using the definitions. Let a ∈ Gξ. By the definition of Gξ
we have

log |ra| =
∑
a∈A

log |ra||a|a ≥
∑
a∈A

(pan(ξ) + Ea(ξ)) log |ra|

≥
∑
a∈A

log |ra|

(
pa

(
1− 1

(− log ξ̃)1/2−δ

)
− log ξ̃

−
∑

a∈A pa log |ra|
+ Ea(ξ)

)

= log ξ̃

(
1− 1

(− log ξ̃)1/2−δ

)
− (− log ξ̃)1/2+δ

= log ξ̃.
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This establishes the first property. For the second property, we similarly have

|ra| =
∏
a∈A

|ra||a|a ≤
∏
a∈A

|ra|pan(ξ)−Ea(ξ)

≪ exp

(∑
a∈A

log |ra|

(
pa

(
1− 1

(− log ξ̃)1/2−δ

)
− log ξ̃

−
∑

a∈A pa log |ra|
− Ea(ξ)

))

= exp

(
log ξ̃

(
1− 1

(− log ξ̃)1/2−δ

)
+ (− log ξ̃)1/2+δ

)
= exp

(
log ξ̃ + 2(− log ξ̃)1/2+δ

)
.

Recalling the definition of ξ̃, we have that − log ξ̃ ≤ log ∥ξ∥. Combining this with the above implies

|ra| ≪ ξ̃e2(log ∥ξ∥)
1/2+δ

.

The final statement in this lemma follows from an application of Hoeffding’s inequality [41].
□

We consider the following cut off set

Aξ :=
{
a ∈ A∗ : |ra| < ξ̃ and |ra− | ≥ ξ̃

}
, (3.3)

and its subset

Ãξ :=
{
a ∈ Aξ : a|

n(ξ)
1 ∈ Gξ

}
. (3.4)

Lemma 3.2. The following properties hold:
• If a ∈ Ãξ then for all a ∈ A we have

|a|a ≥ pan(ξ)− Ea(ξ)

and there exists C > 0 such that for all a ∈ A we have

|a|a ≤ pan(ξ) + Ea(ξ) + C(log ∥ξ∥)1/2+δ.
• There exists C1, C2 > 0 such that∑

a∈Aξ:a/∈Ãξ

pa ≤ C1e
−C2(log ∥ξ∥)2δ .

Proof. Let a ∈ Ãξ. Then, the lower bound for |a|a follows from the corresponding lower bound
in the definition of a good word. The upper bound for |a|a follows from the corresponding upper
bound in the definition of a good word together with the fact that if a ∈ Ãξ then

|a| − |a|n(ξ)1 ≪ (log ∥ξ∥)1/2+δ. (3.5)

(3.5) follows since if b ∈ Gξ, then for C sufficiently large we have

|rb|
(
max
a∈A

{|ra|}
)C(log ∥ξ∥)1/2+δ

≪ ξ̃e2(log ∥ξ∥)
1/2+δ

(
max
a∈A

{|ra|}
)C(log ∥ξ∥)1/2+δ

< ξ̃,

where in the first inequality we have used the second property in Lemma 3.1.
To prove the final part of this lemma we begin by remarking that by Lemma 3.1 we know that

if a ∈ Gξ we have ra ≥ ξ̃. Thus all of the descendants of a belonging to Aξ are elements of Ãξ.
Therefore ∑

a∈Aξ:a/∈Ãξ

pa =
∑

a∈An(ξ):a/∈Gξ

pa.
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Our upper bound for
∑

a∈Aξ:a/∈Ãξ
pa therefore follows from the corresponding bound in Lemma

3.1. □

We are now at a point where we want to use our Diophantine assumption. To use this assumption
effectively we need to condition on the number of occurrences of a digit a ∈ A \ {a1, a2}. With this
goal in mind, we let

K =
{
(|a|a)a∈A\{a1,a2} : a ∈ Ãξ

}
⊂ N#A−2. (3.6)

It follows from Lemma 3.2 and the definition of ξ̃ that if a ∈ Ãξ, then |a|a belongs to an interval of
length at most a constant multiple of (log ∥ξ∥)1/2+δ for any a ∈ A. Therefore we have the important
bound

#K ≪ (log ∥ξ∥)(#A−2)(1/2+δ). (3.7)

The following lemma shows that if we condition on an element of K then the contraction ratios will
be well separated. This is the only place where we use our Diophantine assumption.

Lemma 3.3. Let a,a′ ∈ Ãξ be such that |a|a = |a′|a for all a ∈ A \ {a1, a2} , and suppose that
either |a|a1 ̸= |a′|a1 or |a|a2 ̸= |a′|a2 , then

||ra|∥ξ∥ − |ra′ |∥ξ∥| > 1

for ∥ξ∥ sufficiently large.

Proof. For convenience, we let

ϱ = (|a′|a1 − |a|a1) log |r1|+ (|a′|a2 − |a|a2) log |r2|.

Then, we have the following

||ra|∥ξ∥ − |ra′ |∥ξ∥| = |ra|∥ξ∥
∣∣∣∣1− |ra′ |

|ra|

∣∣∣∣ = |ra|∥ξ∥ |1− eϱ| . (3.8)

It also follows from the definition of Aξ and ξ̃ that

|ra|∥ξ∥ ≫ (log ∥ξ∥)3l. (3.9)

Using our Diophantine assumption we have

|1− eϱ| ≥ |ϱ| = (|a′|a1 − |a|a1) log |r2|
∣∣∣∣ log |r1|log |r2|

− (|a′|a2 − |a|a2)
(|a′|a1 − |a|a1)

∣∣∣∣
≫ 1

(|a′|a1 − |a|a1)l

≫ 1

(log ∥ξ∥)l
. (3.10)

In the final line we used that if a ∈ Aξ, then we must have |a| ≪ log ∥ξ∥. Substituting (3.9) and
(3.10) into (3.8), we obtain

||ra|∥ξ∥ − |ra′ |∥ξ∥| ≫ (log ∥ξ∥)3l

(log ∥ξ∥)l
.

Our result follows. □

Before proceeding with the proof of our theorem we need the following upper bound for proba-
bilities coming from a multinomial distribution.
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Lemma 3.4. Let (pa)a∈A be a probability vector and n ∈ N, then

n!∏
a∈A ka!

∏
a∈A

pkaa ≪ n−1/2(#A−1)

for any (ka)a∈A ∈ N#A satisfying
∑

a∈A ka = n. Here the underlying constants only depend upon
the probability vector.

The proof of Lemma 3.4 is straightforward but somewhat lengthy. Thus for the purpose of our
exposition, we have deferred this argument to Appendix B.

We also need the following result concerning polynomial decay on average. It is shown in [14]
that self-similar measures satisfy the non-concentration inequality (1.3). The authors also observe
that the proof of Theorem 1.3 goes through under this weaker hypothesis. Hence, combined with
Theorem 1.3, this implies the following higher dimensional generalization of a result of Tsujii [91].

Theorem 3.5. Let Φ be a self-similar IFS. Then every self-similar measure is polynomially decaying
on average if and only if Φ is affinely irreducible.

Equipped with Lemma 3.4 and Theorem 3.5 we can now complete our proof of Theorem 1.5.

Proof of Theorem 1.5. Using the self-similarity of the measure and Lemma 3.2 we have

|µ̂(ξ)| =
∣∣∣∣∫ e2πi⟨ξ,x⟩ dµ

∣∣∣∣ =
∣∣∣∣∣∣
∑
a∈Aξ

pa

∫
e2πi⟨ξ,raOax+ta⟩ dµ

∣∣∣∣∣∣
≤
∑
a∈Ãξ

pa|µ̂(raOTa ξ)|+ C1e
−C2(log ∥ξ∥)2δ .

Thus to prove our theorem it suffices to show that∑
a∈Ãξ

pa|µ̂(raOTa ξ)| ≪ (log ∥ξ∥)−ν , (3.11)

for some ν > 0. By Theorem 3.5 we know that our self-similar measure is polynomially decaying on
average. We use this property for T = (log ∥ξ∥)3l. In particular, for our fixed value of ϵ satisfying
(3.2), there exists τ > 0 such that the set{

ζ ∈ Rd : ∥ζ∥ ≤ (log ∥ξ∥)3l and |µ̂(ζ)| ≥ (log ∥ξ∥)−τ
}

can be covered by Oϵ((log ∥ξ∥)ϵ) balls of length 1. Taking the modulus of those frequencies ζ
satisfying |µ̂(ζ)| ≥ (log ∥ξ∥)−τ gives us the following more useful bound. Let

Bad :=
{
n ∈ N : ∃ζ ∈ Rd s.t. ∥ζ∥ ≤ (log ∥ξ∥)3l, |µ̂(ζ)| ≥ (log ∥ξ∥)−τ and ∥ζ∥ ∈ [n, n+ 1]

}
. (3.12)

Then, #Bad = Oϵ((log ∥ξ∥)ϵ).
To proceed, we use a conditioning argument on elements of the set K introduced in (3.6). To

this end, given k ∈ K and a ∈ A \ {a1, a2}, we let ka denote the component of k corresponding to
the letter a. For simplicity, let us use Good to denote the set (∪n∈Bad[n, n+ 1])c. Hence, using the
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definition of Bad, we obtain∑
a∈Ãξ

pa|µ̂(raOTa ξ)| =
∑
k∈K

∑
a∈Ãξ

|a|a=ka∀a∈A\{a1,a2}

pa|µ̂(raOTa ξ)|

=
∑
n∈Bad

∑
k∈K

∑
a∈Ãξ

|a|a=ka∀a∈A\{a1,a2}

paχ[n,n+1](|ra|∥ξ∥)|µ̂(raOTa ξ)|

+
∑
k∈K

∑
a∈Ãξ

|a|a=ka∀a∈A\{a1,a2}

paχGood(|ra|∥ξ∥)|µ̂(raOTa ξ)|

≤
∑
n∈Bad

∑
k∈K

∑
a∈Ãξ

|a|a=ka∀a∈A\{a1,a2}

paχ[n,n+1](|ra|∥ξ∥)|µ̂(raOTa ξ)|

+
∑
k∈K

∑
a∈Ãξ

|a|a=ka∀a∈A\{a1,a2}

pa(log ∥ξ∥)−τ

≤
∑
n∈Bad

∑
k∈K

∑
a∈Ãξ

|a|a=ka∀a∈A\{a1,a2}

paχ[n,n+1](|ra|∥ξ∥)|µ̂(raOTa ξ)|+ (log ∥ξ∥)−τ .

Thus, our proof is complete if we can show that∑
n∈Bad

∑
k∈K

∑
a∈Ãξ

|a|a=ka∀a∈A\{a1,a2}

paχ[n,n+1](|ra|∥ξ∥)|µ̂(raOTa ξ)| ≪ (log(∥ξ∥)−ν , (3.13)

for some ν > 0.
The crucial step towards verifying (3.13) is to note that by Lemma 3.3, for any n ∈ N and

k ∈ K, if a,b ∈ Ãξ satisfy |a|a = |b|a for all a ∈ A \ {a1, a2} and |ra|∥ξ∥, |rb|∥ξ∥ ∈ [n, n+ 1], then
|a|a1 = |b|a1 and |a|a2 = |b|a2 . Assuming such words exist, we denote the unique values for |a|a1
and |a|a2 by j1(k, n) and j2(k, n) respectively. Using this observation, we have∑

n∈Bad

∑
k∈K

∑
a∈Ãξ

|a|a=ka∀a∈A\{a1,a2}

paχ[n,n+1](|ra|∥ξ∥)|µ̂(raOTa ξ)|

≤
∑
n∈Bad

∑
k∈K

∑
a∈Ãξ

|a|a=ka∀a∈A\{a1,a2}
|a|a1=j1(k,n), |a|a2=j2(k,n)

pa

=
∑
n∈Bad

∑
k∈K

(∑
a∈A\{a1,a2} ka + j1(k, n) + j2(k, n)

)
!∏

a∈A\{a1,a2} ka!j1(k, n)!j2(k, n)!
pj1(k,n)a1 pj2(k,n)a2

∏
a∈A\{a1,a2}

pkaa .

Since
∑

a∈A\{a1,a2} ka + j1(k, n) + j2(k, n) is the length of a word in Ãξ, it follows that∑
a∈A\{a1,a2}

ka + j1(k, n) + j2(k, n) ≍ log ∥ξ∥.
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Using this fact together with (3.7), Lemma 3.4, and the fact #Bad = Oϵ((log ∥ξ∥)ϵ) we have∑
n∈Bad

∑
k∈K

∑
a∈Ãξ

|a|a=ka∀a∈A\{a1,a2}

paχ[n,n+1](ra∥ξ∥)|µ̂(raOTa ξ)|

≪
∑
n∈Bad

∑
k∈K

(log ∥ξ∥)−1/2(#A−1)

≪
∑
n∈Bad

(log ∥ξ∥)−1/2(#A−1)+(1/2+δ)(#A−2)

≪(log ∥ξ∥)ϵ−1/2(#A−1)+(1/2+δ)(#A−2)

Recall now that by (3.2) we fixed ϵ, δ > 0 to be sufficiently small so that the exponent appearing in
the last line in the above is negative. Thus (3.13) holds and our proof is complete. □

3.3. Proof of Theorem 1.7. The proof of Theorem 1.7 is almost identical to the proof of Theorem
1.5 so we only indicate the small change required.

Let a1, a2 ∈ A be such that (θa1 , θa2) is Diophantine. We then fix ξ ∈ Rd. We define ξ̃, Gξ, Aξ

and Ãξ as above. The proof of Theorem 1.7 proceeds in an identical way to the proof of Theorem
1.5 until we get to Lemma 3.3. We have the following analogue of this lemma.

Lemma 3.6. Let {fa(x) = raOax+ ta}a∈A be an IFS acting on R2 satisfying the assumptions of
Theorem 1.7. Let a,a′ ∈ Ãξ be such that |a|a = |a′|a for all a ∈ A\{a1, a2} and suppose that either
|a|a1 ̸= |a′|a1 or |a|a2 ̸= |a′|a2 then

∥raOTa ξ − ra′OTa′ξ∥ > 1

for ∥ξ∥ sufficiently large.

Proof. Let a,a′ satisfy the assumptions of the lemma. Iterating our self-similar IFS if necessary,
we can assume without loss of generality that ra1 > 0 and ra2 > 0. Using the fact that elements of
SO(2) commute and are distance preserving we have∥∥∥∥OTa ξ

∥ξ∥
−OTa′

ξ

∥ξ∥

∥∥∥∥ =
∥∥∥(OTa1)|a|a1 (OTa2)|a|a2e− (OTa1)

|a′|a1 (OTa2)
|a′|a2e

∥∥∥
where e = (1, 0). Focusing on this latter expression, it follows from our Diophantine assumption
and the fact |a|, |a′| ≪ log ∥ξ∥ that∥∥∥(OTa1)|a|a1 (OTa2)|a|a2e− (OTa1)

|a′|a1 (OTa2)
|a′|a2e

∥∥∥≫ d((|a|a1 − |a′|a1)θ1 + (|a|a2 − |a′|a2)θ2,Z)

≫ 1

(log ∥ξ∥)l
.

Combining the bound above with the bounds |ra|∥ξ∥ ≫ (log ∥ξ∥)3l and |ra′ |∥ξ∥ ≫ (log ∥ξ∥)3l we
have

∥raOTa ξ − ra′OTa′ξ∥ =

∥∥∥∥ra∥ξ∥OTa ξ

∥ξ∥
− ra′∥ξ∥OTa′

ξ

∥ξ∥

∥∥∥∥
≥ ∥ξ∥

∏
a∈A\{a1,a2}

|ra||a|a
∥∥∥∥r|a|a1a1 r

|a|a2
a2 OTa

ξ

∥ξ∥
− r

|a′|a1
a1 r

|a′|a2
a2 OTa′

ξ

∥ξ∥

∥∥∥∥
≥ min {|ra|∥ξ∥, |ra′ |∥ξ∥}

∥∥∥∥(OTa ξ

∥ξ∥
−OTa′

ξ

∥ξ∥

)∥∥∥∥
≫ (log ∥ξ∥)3l

(log ∥ξ∥)l
.
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In the penultimate line we have used the fact that if u, v ∈ R2 \ {0} have unit length and r1, r2 ≥ 0
satisfy r1 ≤ r2 then ∥r1u − r1v∥ ≤ ∥r1u − r2v∥. The final bound obtained above certainly exceeds
1 for ∥ξ∥ sufficiently large. Thus our result follows. □

The Diophantine assumptions on our IFS imply that it is affinely irreducible and Theorem 3.5
can be applied. What remains of our proof is analogous to the proof of Theorem 1.5, the only
difference being that the role played by Lemma 3.3 is now played by Lemma 3.6.

4. Patterson-Sullivan measures: Proof of Theorem 1.9

The goal of this section is to provide the proof of Theorem 1.9. Throughout this section, we fix
a discrete, Zariski-dense, convex cocompact group Γ of isometries of Hd+1, d ≥ 1.

4.1. Reduction to linear phases. Since PS measures are absolutely continuous with respect to
the conditional measures µux with smooth Radon-Nikodym derivatives, cf. (2.4), it suffices to prove
the conclusion of Theorem 1.9 for µux for some x ∈ G/Γ in place of the PS measure µ. In fact, we
prove a stronger statement which establishes uniform bounds for the measures µux as x varies in the
non-wandering set Ω.

We begin with the following elementary lemma which reduces the proof to the study of linear
phase functions.

Lemma 4.1. To prove Theorem 1.9, it suffices to show that there exists κ > 0 so that for all
0 ̸= ξ ∈ Rd, x ∈ Ω, and ψ ∈ C1

c (N
+
1 ), we have∫

N+
1

ei⟨ξ,n⟩ψ(n) dµux(n) ≪Γ ∥ψ∥C1 ∥ξ∥−κ , (4.1)

where, by abuse of notation, if n = exp(v) for some v ∈ n+ ∼= Rd, we let ⟨ξ, n⟩ := ⟨ξ, v⟩.

Remark 4.2. In the remainder of this section, we fix ξ ∈ Rd and ψ ∈ C1
c (N

+
1 ). Our goal is to

prove the estimate (4.1).

Proof of Lemma 4.1. The proof is based on the uniformity of the estimate (4.1) as the basepoint
x varies in Ω which roughly translates to uniform Fourier decay (with linear phases) over pieces of
the measure of size |λ|−1/2−ε. We include a sketch of the argument for completeness.

Recall the notation of Theorem 1.9. Let {ρj} be a partition of unity of supp(µux |N+ ) with
bounded multiplicity and such that each ρj is supported in a ball Bj of radius

r = |λ|−(1+κ)/(2+κ)

around a nj ∈ N+
1 . Here, κ is the exponent in (4.1). In view of [51, Prop. 9.9], we can choose such

partition of unity so that each ρj has first derivatives with norm O(r−1) and∑
j

µux(Bj) ≪ µux(N
+
1 ). (4.2)

Then, Taylor expanding φ to the second order around each nj , we obtain∫
N+

1

eiλφ(n)ψ(n) dµux ≤
∑
j

∣∣∣∣∣
∫
Bj

exp(i⟨λ∇φ(nj), nn−1
j ⟩)(ψρj)(n) dµux

∣∣∣∣∣
+O(∥ψ∥C0 ∥φ∥C2 |λ|r2µux(N+

1 )).

Next, we use a change of variables sending Bj to N+
1 and apply (2.5) and (2.6). More precisely, let

t = − log r, xj = gtnjx, ξj = rλ∇φ(nj), and ψj(n) := (ψρj)(Ad(g−t)(n)nj). Then, the jth term in
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the above sum can be rewritten as follows:∫
Bj

exp(i⟨λ∇φ(nj), nn−1
j ⟩)(ψρj)(n) dµux = rδ

∫
N+

1

exp(i⟨ξj , n⟩)ψj(n) dµuxj .

Note that, since the geodesic flow scales the first derivatives of ρj by a factor of e−t, each ψj has
C1-norm O(∥ψ∥C1). Hence, since each xj belongs to Ω, (4.1) implies that∫

N+
1

eiλφ(n)ψ(n) dµux ≪A |rλ|−κa−κ
∑
j

rδ + |λ|r2.

Finally, in view of Sullivan’s shadow lemma (cf. [51, Theorem 3.4]), we have that µux(Bj) ≍ rδ.
This concludes the proof in light of (4.2). The decay exponent obtained in this manner is κ/(2+κ),
with κ as in (4.1). □

4.2. Polynomial non-concentration estimates. We recall here well-known non-concentration
estimates for PS measures. The first estimate is a direct consequence of Sullivan’s shadow lemma.

Proposition 4.3 (Sullivan’s Shadow Lemma, cf.[89]). For all y ∈ Ω and all r > 0, we have

µuy(N
+
r ) ≍Γ r

δ,

where δ is the critical exponent of Γ.

We also recall the following quantitative decay property of the measure of hyperplane neighbor-
hoods with respect to PS measures from [25]. Recall that N+ is an abelian group which we identify
with its Lie algebra n+ ∼= Rd via the exponential map. In light of this identification, the following
result shows that PS measures (or, more precisely, their shadows µux) are non-concentrated in the
sense of Definition 1.1. This will allow us to apply Theorem 1.3 in the proof of Theorem 1.9 as well as
provide quantitative estimates on separation of frequencies arising over the course of implementing
the strategy discussed in the introduction.

Theorem 4.4 ([51, Theorem 12.1]). There exist constants C ≥ 1 and α > 0 such that for all
ε, r > 0, x ∈ Ω, and all affine hyperplanes L < N+, we have that

µux(N
+
r ∩ L(εr)) ≤ Cεαµux(N

+
r ),

where L(εr) denotes the εr-neighborhood of L in N+.

Remark 4.5. The reference [51, Theorem 12.1] shows that, in the more general setting of geomet-
rically finite groups, one has µux(N+

r ∩ L(εr)) ≤ t(ε)V (x)µux(N
+
r ), for a function t(ε) → 0 as ε → 0

and for a function V (x) that is uniformly bounded above and below on compact sets. The proof
is much simpler in the case Γ is convex cocompact and in fact yields the apriori stronger bound
t(ε) ≤ Cεα. In fact, when Γ is convex cocompact, Theorem 4.4 can be deduced directly from the
fact that PS measures give 0 mass to proper subvarieties of the boundary ([33, Corollary 9.4]) using
the argument in [52, Section 8].

4.3. Proof of Theorem 1.9. The remainder of the section is dedicated to the proof of the esti-
mate (4.1). We fix ξ ∈ Rd, x ∈ Ω, and ψ ∈ C1

c (N
+
1 ). Our argument is dynamical in nature using the

self-similar structure of the measures µux under the geodesic flow, cf. (2.5) and (2.6), to implement
the strategy described in the introduction.

Partitions of unity and flow prisms. As a first step, we find convenient partitions of the space
by flow boxes. Namely, we refer to sets of the form P−

r N
+
s · x for r, s > 0 and x ∈ G/Γ as flow

boxes. We say that a collection of sets {Si} has multiplicity bounded by a constant C ≥ 1 if for all
x:
∑

i 1Si(x) ≤ C1∪iSi(x). Let ι denote the smaller of 1/2 and the injectivity radius of G/Γ and set

ιξ := ι/ ∥ξ∥1/3 . (4.3)

The following lemma provides an efficient cover of Ω by “thin flow boxes" in the unstable direction.
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Lemma 4.6. The collection
{
P−
ι N

+
ιξ
· x : x ∈ Ω

}
admits a finite subcover Bξ such that #Bξ ≪Γ

∥ξ∥δ/3 , where δ is the critical exponent of Γ. Moreover, Bξ has uniformly bounded multiplicity on
Ω; i.e. for all x ∈ Ω,

∑
B∈Bξ

1B(x) ≪Γ 1.

Proof. Let Q denote a cover of G/Γ by flow boxes of the form P−
ι N

+
ι · x, where ι is a fixed lower

bound on the injectivity radius of G/Γ as above. With the help of the Vitali covering lemma, such
cover can be chosen to have multiplicity CG ≥ 1 depending only on the dimension of G. We will
build our collection of boxes Bξ by refining this cover as follows.

Let Q0 denote the collection of boxes Q ∈ Q such that Q ∩ Ω ̸= ∅. By convex cocompactness,
we have that #Q0 ≍Γ 1. For each Q ∈ Q0, we fix some xQ ∈ Q ∩ Ω. Then, we can find a finite set
of points {ui : i ∈ IQ} ⊂ N+

2ι such that the points xi := uixQ belong to Ω. Moreover, these points
can be chosen so that the balls N+

ιξ
· xi provide a cover of Ω ∩ N+

ι · xQ with uniformly bounded
multiplicity thanks to the Vitali covering lemma applied to N+.

With this notation, we define Bξ as follows:

Bξ :=
{
P−
ι N

+
ιξ
· uixQ : i ∈ IQ, Q ∈ Q0

}
.

This bounded multiplicity in particular implies that

ιδξ ×#IQ ≍
∑
i∈IQ

µuxi(N
+
ιξ
) ≍ µuxQ(N

+
ι ) ≍ 1.

This estimate implies the desired the bound on the cardinality of Bξ in light of (4.3). To bound the
multiplicity of Bξ, let x ∈ Ω be arbitrary, and note that for AQ := ∪i∈IQP−

ι N
+
ιξ
· uixQ, we have∑

B∈Bξ

1B(x) =
∑
Q∈Q0

∑
i∈IQ

1P−
ι N

+
ιξ
·uixQ(x) ≪

∑
Q∈Q0

1AQ
(x) ≪ #Q0 ≪Γ 1.

□

Let Bξ be the finite cover provided by Lemma 4.6 and let Pξ denote a partition of unity subor-
dinate to it. For each ρ ∈ Pξ, we denote by Bρ the element of Bξ containing the support of ρ. In
particular, such partition of unity can be chosen so that for all ρ ∈ Pξ, we have

∥ρ∥C1 ≪ ∥ξ∥1/3 . (4.4)

Moreover, by Lemma 4.6, we have

#Pξ ≤ #Bξ ≪Γ ∥ξ∥δ/3 . (4.5)

Transversals. We fix a system of transversals {Tρ} to the strong unstable foliation inside the boxes
Bρ. Since Bρ meets Ω for all ρ ∈ Pξ, we fix some yρ in the intersection Bρ ∩Ω. In this notation, we
write

Bρ = P−
ι N

+
ιξ
· yρ, Tρ = P−

ι · yρ. (4.6)

We also let Mρ, Aρ, and N−
ρ be neighborhoods of identity in M,A and N− respectively so that

P−
ι =MρAρN

−
ρ .

Saturation. Fix t > 0 to be chosen so that et is a small positive power of ∥ξ∥; cf. (4.38). Using
our partition of unity, we can write∫

N+
1

ei⟨ξ,n⟩ψ(n) dµux(n) =
∑
ρ∈Pξ

∫
N+

1

ei⟨ξ,n⟩ψ(n)ρ(gtnx) dµ
u
x(n). (4.7)

Here, we are using the fact that, since x ∈ Ω, then the restriction of the support of µux to N+
1

consists of points n ∈ N+
1 with nx ∈ Ω (or equivalently, that gtnx ∈ Ω) and that

∑
ρ ρ(y) = 1 for

all y ∈ Ω.
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Our first step is to partition the integrals on the right side of (4.7) over N+
1 into pieces according

to the flow box they land in under flowing by gt. To simplify notation, we write

xt := gtx. (4.8)

We denote by N+
1 (t) a neighborhood of N+

1 defined by the property that the intersection

Bρ ∩ (Ad(gt)(N
+
1 (t)) · xt)

consists entirely of full local strong unstable leaves in Bρ. We note that since Ad(gt) expands N+

and Bρ has radius < 1, N+
1 (t) is contained inside N+

2 . Since ψ is compactly supported inside N+
1 ,

we have
χN+

1
(n)ψ(n) = χN+

1 (t)(n)ψ(n), ∀n ∈ N+. (4.9)

For simplicity, we set

ξt := e−tξ, ψt(n) := ψ(Ad(gt)
−1n), At := Ad(gt)(N

+
1 (t)).

For ρ ∈ Pξ, we let Wρ,t denote the collection of connected components of the set

{n ∈ At : nxt ∈ Bρ} .
In view of (4.9), changing variables using (2.5) yields∑

ρ∈Pξ

∫
N+

1

ei⟨ξ,n⟩ψ(n)ρ(gtnx) dµ
u
x = e−δt

∑
ρ∈Pξ,W∈Wρ,t

∫
n∈W

ei⟨ξt,n⟩ψt(n)ρ(nxt) dµ
u
xt . (4.10)

Centering the integrals. It will be convenient to center all the integrals in (4.10) so that their
basepoints belong to the transversals Tρ of the respective flow box Bρ; cf. (4.6).

Let Iρ,t denote an index set for Wρ,t. For W ∈ Wρ,t with index ℓ ∈ Iρ,t, let nρ,ℓ ∈W , mρ,ℓ ∈Mρ,
n−ρ,ℓ ∈ N−

ρ , and tρ,ℓ with |tρ,ℓ| ≪ ι be such that

xρ,ℓ := nρ,ℓ · xt = n−ρ,ℓmρ,ℓgtρ,ℓ · yρ ∈ Tρ. (4.11)

Note that since x and yρ both belong to Ω, we have that

xρ,ℓ ∈ Ω, n−ρ,ℓyρ ∈ Ω. (4.12)

For each such ℓ and W , let us denote Wℓ =Wn−1
ρ,ℓ and set

χ̃ρ,ℓ(t, n) := exp(i⟨ξt, nnρ,ℓ⟩). (4.13)

Changing variables using (2.5) and (2.6), we can rewrite the right side of (4.10) as follows:

e−δt
∑

ρ∈Pξ,W∈Wρ,t

∫
n∈W

ei⟨ξt,n⟩ψt(n)ρ(nxt) dµ
u
xt(n)

= e−δt
∑
ρ∈Pξ

∑
ℓ∈Iρ,t

∫
n∈Wℓ

χ̃ρ,ℓ(t, n)ψt(nnρ,ℓ)ρ(nxρ,ℓ) dµ
u
xρ,ℓ

(n). (4.14)

Mass estimates. We record here certain counting estimates which will allow us to sum error terms
in later estimates over Pξ. Note that by definition of N+

1 (j), we have
⋃
ρ∈Pξ,W∈Wρ,t

W ⊆ At. Thus,
it follows that∑

ρ∈Pξ,ℓ∈Iρ,t

µuxρ,ℓ(Wℓ) ≪ µuxt(At) = eδtµux(N
+
1 (t)) ≪ eδtµux(N

+
2 ) ≪ eδtµux(N

+
1 ), (4.15)

where the last inequality follows since N+
1 (j) ⊆ N+

2 using the doubling property of PS measures [51,
Proposition 3.1]. We also used the fact that the partition of unity Pξ has uniformly bounded
multiplicity.
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Weak-stable holonomy. Fix some ρ ∈ Pξ. Recall the points yρ ∈ Tρ and n−ρ,ℓ ∈ N−
ρ satisfy-

ing (4.11). Let

p−ρ,ℓ := n−ρ,ℓmρ,ℓgtρ,ℓ . (4.16)

The product map N− × A ×M × N+ → G is a diffeomorphism on a ball of radius 1 around the
identity; cf. Section 2.2.5. Hence, given ℓ ∈ Iρ,t, we can define maps ϕℓ and p̃−ℓ from Wℓ to N+ and
P− respectively by the following formula

np−ρ,ℓ = p̃−ℓ (n)ϕℓ(n). (4.17)

We suppress the dependence on ρ and t to ease notation. Then, ϕℓ induces a map between the
strong unstable manifolds of xρ,ℓ and yρ, also denoted ϕℓ, and defined by

ϕℓ(nxρ,ℓ) = ϕℓ(n)yρ.

In particular, this induced map coincides with the local weak stable holonomy map inside Bρ.
Note that we can find a neighborhood Wρ ⊂ N+ of identity of radius ≍ ιξ such that

ϕℓ(Wℓ) ⊆Wρ, (4.18)

for all ℓ ∈ Iρ,t. Moreover, by shrinking the radius ιξ of the flow boxes by an absolute amount
(depending only on the metric on G) if necessary, we may assume that all the maps ϕℓ are invertible
on Wρ. Hence, we can define the following:

p−ℓ (n) := p̃−ℓ (ϕ
−1
ℓ (n)) ∈ P−, ψ̃ρ,ℓ(t, n) := Jϕℓ(n)× ψt(ϕ

−1
ℓ (n)nρ,ℓ),

χρ,ℓ(t, n) := χ̃ρ,ℓ(t, ϕ
−1
ℓ (n)), ρℓ(n) := ρ(p−ℓ (n)nyρ), (4.19)

where Jϕℓ denotes the Jacobian of the change of variable ϕℓ; cf. (2.9).
Changing variables in the right side of (4.14), we obtain∑
ℓ∈Iρ,t

∫
n∈Wℓ

χ̃ρ,ℓ(t, n)ψ̃ρ,ℓ(t, n)ρ(nxρ,ℓ) dµ
u
xρ,ℓ

=
∑
ℓ∈Iρ,t

∫
Wρ

χρ,ℓ(t, n)ψ̃ρ,ℓ(t, n)ρℓ(n) dµ
u
yρ . (4.20)

Phase formula. The following lemma provides a formula for the stable holonomy maps ϕℓ defined
above (4.18) which are responsible for the oscillation of χρ,ℓ along N+. The elementary proof of
this lemma is given in Section 4.4.

Lemma 4.7. Let p−ρ,ℓ be as in (4.16) and let wρ,ℓ ∈ n− be such that n−ρ,ℓ = exp(wρ,ℓ). Define vectors
zρ,ℓ ∈ n− by

zρ,ℓ := −etρ,ℓm−1
ρ,ℓ · wρ,ℓ. (4.21)

Then, for every n = exp(v) ∈ N+
1/2, we have

log ϕ−1
ℓ (n) = etρ,ℓ−τ̃ℓ(v)mρ,ℓ ·

(
v +

∥v∥2

2
zρ,ℓ

)
,

where log ϕ−1
ℓ (n) is viewed as an element of n+ and τ̃ℓ : N+

1/2 → R+ is given by

τ̃ℓ(v) = log

(
1 + ⟨v, zρ,ℓ⟩+

∥v∥2 ∥zρ,ℓ∥2

4

)
.
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It will be convenient for our estimates to simplify the expression for τ̃ℓ by removing the quadratic
term. This is the reason for our choice of flow boxes of width ≍ ∥ξ∥−1/3 along the strong unstable
manifold. In what follows, to simplify notation, we set

τℓ(v) = −tρ,ℓ + log (1 + ⟨v, zρ,ℓ⟩) , Γℓ(v) := e−τℓ(v)mρ,ℓ ·

(
v +

∥v∥2

2
zρ,ℓ

)
. (4.22)

Recall the centering points nρ,ℓ defined in (4.11). The following corollary provides a first step
towards linearizing the phase in the oscillatory functions χρ,ℓ by replacing τ̃ℓ in Lemma 4.7 with τℓ
in (4.22).

Corollary 4.8. With the same notation as in Lemma 4.7, we have for all n = exp(v) ∈Wρ that

χρ,ℓ(t, n) = aρ,ℓ(t, n) +O(e−t),

where

aρ,ℓ(t, n) := exp(i⟨ξt, nρ,ℓ⟩)× exp (i⟨ξt,Γℓ(v)⟩) . (4.23)

Proof. Recall from (4.19) and (4.13) that χρ,ℓ(t, n) = exp(i⟨ξt, ϕ−1
ℓ (n)nρ,ℓ⟩). We also recall that

ξt = e−tξ. Then, for all n = exp(v) ∈Wρ, we have that

|χρ,ℓ(t, n)− aρ,ℓ(t, n)| ≪ ∥v∥2 ∥ξt∥ ∥Γℓ(v)∥

Since Wρ has radius ≍ ιξ ≍ ∥ξ∥−1/3 (cf. (4.3)), we have that both v and Γℓ(v) have norm ≪ ∥ξ∥−1/3.
In particular, the upper bound above is O(e−t) as desired. □

Let us summarize our progress so far. To simplify notation, set

ψρ,ℓ(t, n) := ψ̃ρ,ℓ(t, n)× ρℓ(n). (4.24)

Then, in light of (4.7), (4.10), (4.14), (4.20), and Corollary 4.8, we find that∫
N+

1

ei⟨ξ,n⟩ψ(n) dµux = e−δt
∑
ρ∈Pξ

∫
Wρ

∑
ℓ∈Iρ,t

aρ,ℓ(t, n)ψρ,ℓ(t, n) dµ
u
yρ +O

(
e−t
)
. (4.25)

Cauchy-Schwarz. We are left with estimating integrals of the form:∫
Wρ

Ψρ(t, n) dµ
u
yρ , Ψρ(t, n) :=

∑
ℓ∈Iρ,t

aρ,ℓ(t, n)ψρ,ℓ(t, n). (4.26)

By Cauchy-Schwarz, we get∣∣∣∣∣
∫
Wρ

Ψρ(t, n) dµ
u
yρ

∣∣∣∣∣
2

≤ µuyρ(Wρ)

∫
Wρ

|Ψρ(t, n)|2 dµuyρ (4.27)

We begin by noting the following apriori bounds on Ψρ:

∥ψρ,ℓ∥L∞(Wρ)
≪ 1, ∥Ψρ∥L∞(Wρ)

≪ #Iρ,t. (4.28)
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Partitioning the support. Using [51, Proposition 9.9], we can find a cover {Aj} of Wρ with balls
of radius

r = ∥ξ∥−1/2 (4.29)

centered around uj ∈ Wρ ∩ supp(µuyρ) and satisfying
∑

j µ
u
yρ(Aj) ≪ µuyρ(Wρ). By the triangle

inequality4 we have ∫
Wρ

|Ψρ(t, n)|2 dµuyρ ≤
∑
j

∫
Aj

|Ψρ(t, n)|2 dµuyρ . (4.30)

For k, ℓ ∈ Iρ,t, we let

ψk,ℓ(t, n) := ψρ,k(t, n)ψρ,ℓ(t, n), ak,ℓ(t, n) := aρ,k(t, n)aρ,ℓ(t, n).

Expanding the square, we get∑
j

∫
Aj

|Ψρ(t, n)|2 dµuyρ ≤
∑
j

∑
k,ℓ∈Iρ,t

∣∣∣∣∣
∫
Aj

ak,ℓ(t, n)ψk,ℓ(t, n) dµ
u
yρ

∣∣∣∣∣ .
Using (2.5) and (2.6), we change variables in the integrals using the maps taking each Aj onto N+

1 .
More precisely, recall that Aj is a ball of radius r around uj such that ujyρ ∈ Ω. Letting

τ = − log r, yjρ = gτujyρ, ajk,ℓ(t, n) = ak,ℓ(t,Ad(g−τ )(n)uj),

ψjk,ℓ(t, n) = ψk,ℓ(t,Ad(g−τ )(n)uj), (4.31)

we can rewrite the above sum as∑
j

∑
k,ℓ∈Iρ,t

∣∣∣∣∣
∫
Aj

ak,ℓ(t, n)ψk,ℓ(t, n) dµ
u
yρ

∣∣∣∣∣ ≤ rδ
∑
j

∑
k,ℓ∈Iρ,t

∣∣∣∣∣
∫
N+

1

ajk,ℓ(t, n)ψ
j
k,ℓ(t, n)dµ

u
yjρ

∣∣∣∣∣ . (4.32)

One advantage of flowing forward by gτ is that it provides smoothing of the amplitude functions
ψk,ℓ. In particular, it follows by (4.4) that∥∥∥ψjk,ℓ∥∥∥

C1
≪ ∥ψ∥C1 × r × ∥ξ∥1/3 ≪ ∥ψ∥C1 ∥ξ∥−1/6 .

Applied to the right side of (4.32), we obtain∫
Wρ

|Ψρ(t, n)|2 dµuyρ = rδ
∑
j

∑
k,ℓ∈Iρ,t

∣∣∣∣∣
∫
N+

1

ajk,ℓ(t, n)dµ
u
yjρ

∣∣∣∣∣+O(∥ψ∥C1 ∥ξ∥−1/6#I2ρ,tµ
u
yρ(Wρ)). (4.33)

Linearizing the phase. We now turn to estimating the sum of oscillatory integrals in (4.33).
Recall that uj denotes the center of the ball Aj for each j and let vj ∈ n+ be such that

uj = exp(vj).

Then, given n = exp(v) ∈ Aj , and recalling the maps Γℓ in (4.22), we get

Γℓ(v) = Γℓ(vj) +D(Γℓ(vj))(v − vj) +O(r2),

where D(Γℓ) denotes the derivative of Γℓ.
The following elementary lemma uses the explicit expression for Γℓ in (4.22) to simplify the form

of DΓℓ(vj).

Lemma 4.9. For all ℓ and j, we have

DΓℓ(vj) = e−τℓ(vj)mρ,ℓ +O(∥ξ∥−2/3).

4Cauchy-Schwarz allows us to have a non-negative integrand which in turn enables this step.
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Let

bjk,ℓ := rξt ·
(
e−τk(vj)mρ,k − e−τℓ(vj)mρ,ℓ

)
. (4.34)

Recall that ξt = e−tξ so that ∥ξt∥ r2 = e−t. Hence, by absorbing the constant terms into the
absolute value, we obtain from (4.33) and Lemma 4.9 that∫

Wρ

|Ψρ(t, n)|2 dµuyρ

= rδ
∑
j

∑
k,ℓ∈Iρ,t

∣∣∣∣∣
∫
N+

1

exp(i⟨bjk,ℓ, v⟩)dµ
u
yjρ

∣∣∣∣∣+O((e−t + e−t ∥ξ∥−1/6 + ∥ψ∥C1 ∥ξ∥−1/6)#I2ρ,tµ
u
yρ(Wρ)).

(4.35)

Proof of Lemma 4.9. Recall the definition of the vectors zρ,ℓ ∈ n−. To simplify notation, set

λℓ(vj) =
1

1 + ⟨vj , zρ,ℓ⟩
.

In particular, e−τℓ(vj) = etρ,ℓλℓ(vj). Then, using the formula for Γℓ in (4.22), we obtain

DΓℓ(vj) = etρ,ℓλℓ(vj)mρ,ℓ

[
−λℓ(vj)

(
vj · ztρ,ℓ +

∥vj∥2

2
zρ,ℓ · ztρ,ℓ

)
+ Id + zρ,ℓ · vtj

]
.

Here, we are viewing vj and zρ,ℓ as (d×1)-column vectors and use vtj and ztρ,ℓ to denote the transpose
of vj and zρ,ℓ respectively. Now, observe that

λℓ(vj)vj = vj −
⟨vj , zρ,ℓ⟩

1 + ⟨vj , zρ,ℓ⟩
vj = vj +O(∥vj∥2).

The lemma now follows upon recalling that exp(vj) belongs to Wρ so that ∥vj∥ ≪ ∥ξ∥−1/3 in view
of our choice of flow boxes; cf. (4.3) and the discussion around it. □

Separation of frequencies. To apply Theorem 1.3, it will be important to understand the distri-
bution of the frequencies bjk,ℓ. To this end, we have the following lemma which allows us to avoid
studying the separation of the holonomy matrices mρ,ℓ.

Lemma 4.10. For all j, k, ℓ, we have∥∥∥bjk,ℓ∥∥∥≫ ∥rξt∥ |e−τℓ(vj) − e−τk(vj)|,

where τℓ(vj) and τk(vj) are defined in (4.22).

Proof. In what follows, to simplify notation, we let

mk := mρ,k, ck := e−τk(vj), Qk := ckmk,

with the similar notation for the index ℓ in place of k defined analogously. The lemma is evident
when ck = cℓ. Hence, we may assume without loss of generality that ck > cℓ, and recall that these
functions are non-negative by definition; cf. (4.23).

Recall the elementary estimate ∥g · v∥ ≥ ∥v∥ /
∥∥g−1

∥∥ for any invertible linear map g and any
vector v ∈ Rd. This estimate implies the following lower bound:∥∥∥bjk,ℓ∥∥∥ ≥ r ∥ξt∥

∥(Qk −Qℓ)−1∥
=

r ∥ξt∥ ck∥∥∥(Id− cℓ
ck
mℓm

−1
k )−1

∥∥∥ .
That Id− cℓ

ck
mℓm

−1
k (and hence Qk−Qℓ) is invertible follows at once from the following estimate

on the norm of its inverse. Recall that the rotation matrices mk and mℓ have spectral radius 1.
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In particular, since cℓ < ck, we may use the power series expansion of Id−Q, for matrices Q with
spectral radius < 1, to get that∥∥∥∥(Id− cℓ

ck
mℓm

−1
k )−1

∥∥∥∥≪
∑
n≥0

(
cℓ
ck

)n
=

ck
ck − cℓ

.

The lemma follows by combining the above two estimates. □

To proceed, we recall that tρ,ℓ,mρ,ℓ, and n−ρ,ℓ = exp(wρ,ℓ) parametrize respectively the geodesic
flow, M , and strong stable coordinates of the transverse intersections of the expanded horospherical
disk gtN+

1 x with a fixed transversal Tρ of the flow box Bρ. We also recall that zρ,ℓ = etρ,ℓm−1
ρ,ℓwρ,ℓ

and τℓ(vj) = etρ,ℓ/(1 + ⟨vj , zρ,ℓ⟩.
Lemma 4.10 motivates the definition of the following subset of I2ρ,t parametrizing pairs (k, ℓ) for

which the frequencies bjk,ℓ are too small. Namely, we set

Small :=
{
(k, ℓ, j) :

∥∥∥bjk,ℓ∥∥∥ < 1
}
. (4.36)

Roughly speaking, elements of Ck,ℓ correspond to points vj lying in a small neighborhood of a
hyperplane orthogonal to m−1

ρ,ℓwρ,ℓ −m−1
ρ,kwρ,k. Theorem 4.4 will then provide us with a counting

estimate on Ck,ℓ. This is done in the following lemma.

Lemma 4.11. Let α > 0 be the exponent provided by Theorem 4.4. Then, for every fixed k, ℓ ∈ Iρ,t,
we have ∑

j:(k,ℓ,j)∈Small

rδ ≪

 ∥ξ∥−1/6 et∥∥∥m−1
ρ,ℓwρ,ℓ −m−1

ρ,kwρ,k

∥∥∥
α

µuyρ(Wρ).

Proof. Let j be such that (k, ℓ, j) ∈ Small and recall that ξt = e−tξ and r = ∥ξ∥−1/2. To simplify
notation, we also let

uk,ℓ := m−1
ρ,ℓwρ,ℓ −m−1

ρ,kwρ,k.

Then, Lemma 4.10 and a direct calculation show that∣∣etρ,ℓ − etρ,k + etρ,ℓ+tρ,k⟨vj , uk,ℓ⟩
∣∣≪ ∥ξ∥−1/2 et.

Let ϵ1 = ∥ξ∥−1/2 et/ ∥uk,ℓ∥. It follows that vj belongs to a neighborhood of radius O(ϵ1) around an
affine hyperplane L parallel to the kernel of the linear functional v 7→ ⟨v, uk,ℓ⟩.

Recall thatAj denotes the ball of radius r around exp(vj) ∈Wρ and thatWρ has radius ≍ ∥ξ∥−1/3.
It follows we can find a radius ϵ2 ≍ ∥ξ∥−1/3 such that⋃

j:(k,ℓ,j)∈Small

Aj ⊆ L(ϵ1+r) ∩N+
ϵ2 ,

where L(ϵ1+r) denotes the (ϵ1 + r)-neighborhood of L. Furthermore, by the bounded multiplicity of
the cover {Aj} of Wρ and the fact that each Aj has measure ≍ rδ (cf. Proposition 4.3), we get that

∑
j:(k,ℓ,j)∈Small

rδ ≪ µuyρ

 ⋃
j:(k,ℓ,j)∈Small

Aj

 .

Hence, Theorem 4.4 implies that the above sum is O(µuyρ(Wρ)(ϵ1 + r)α/ϵα2 ), which concludes the
proof since r ≪ ϵ1. □

To apply Lemma 4.11, we need the following counting estimate on close by vectors of the form
m−1
ρ,ℓwρ,ℓ. It is a consequence of Theorem 4.4.
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Lemma 4.12. For every k ∈ Iρ,t and η > 0, we have

#
{
ℓ ∈ Iρ,t :

∥∥∥m−1
ρ,ℓwρ,ℓ −m−1

ρ,kwρ,k

∥∥∥ < ∥ξ∥−η
}
≪
(
e−t + ∥ξ∥−η

)α
eδt, (4.37)

where α > 0 is the exponent provided by Theorem 4.4.

Proof. Let Bk denote the set on the left side of (4.37) and let ℓ be some element of Bk. Then, by
M -invariance of the norm, we have5

| ∥wρ,ℓ∥ − ∥wρ,k∥ | ≪ ∥ξ∥−η .

In particular, the vectors wρ,ℓ with ℓ ∈ Bk all belong to a neighborhood of width ≪ ∥ξ∥−η of the
sphere S of radius ∥wρ,k∥∞ around the origin in the norm metric.

The next ingredient is to note that the points wρ,ℓ are separated by an amount ≫ e−t. This follows
by a similar argument to the proof of [51, Proposition 9.13]6. In particular, there is ϵ1 ≍ (∥ξ∥−η+e−t)
and ϵ2 ≍ e−t such that ⊔

ℓ∈Bk

N−
ϵ2 · exp(wρ,ℓ)yρ ⊆ N−

ϵ1 · S,

where N−
ϵ1 · S is the ϵ1-neighborhood of S.

To conclude the proof, let µsyρ denote the shadow of the PS measure on N− ·yρ defined analogously
to the measures µuyρ in (2.4). The above discussion implies that

#Bk ≪
µsyρ

(
N−
ϵ1 · S

)
minµsyρ(N

−
ϵ2 · exp(wρ,ℓ)yρ)

.

By (4.12), the points exp(wρ,ℓ) · yρ all belong to Ω. In particular, by Proposition 4.3, we have

µsyρ
(
N−
e−t · exp(wρ,ℓ)yρ

)
≍ e−δt.

On the other hand, by [25, Lemma 3.8], we have that N−
ϵ1 · S has measure O(ϵα1 )

7. The lemma now
follows. □

Reduction to L2-flattening. To simplify our error terms, we make the following choices:

η = 1/12, et = ∥ξ∥1/24 . (4.38)

In view of Lemmas 4.11 and 4.12, we introduce the following notation:

Closeη :=
{
(k, ℓ) ∈ I2ρ,t :

∥∥∥m−1
ρ,ℓwρ,ℓ −m−1

ρ,kwρ,k

∥∥∥ < ∥ξ∥−η
}
. (4.39)

We also define the following set of indices parametrizing measures µu
yjρ

for which many of the fre-

quencies bjk,ℓ are close together. Let J denote the index set for the indices j of the measures µu
yjρ

and set

Badη :=
{
j ∈ J : #

{
(k, ℓ) ∈ I2ρ,t : (k, ℓ, j) ∈ Small

}
> ∥ξ∥−α/48 × (eδt +#Iρ,t)#Iρ,t

}
. (4.40)

The following corollary allows us to estimate estimate the part of the sum corresponding to Badη.

Corollary 4.13. We have the following counting estimate on Badη:∑
j∈Badη

rδ ≪ ∥ξ∥−α/48 µuyρ(Wρ).

5This estimate is again done to bypass studying the separation of the rotation matrices wρ,ℓ.
6This proof is based on injectivity radius considerations along with the fact that gt expands the stable manifold by
et in backward time.
7Note that, similarly to the case of affine subspaces in Theorem 4.4, this estimate can be deduced from the fact that
PS measures give 0 mass to proper subvarieties of the boundary using the argument in [52, Section 8].
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Proof. The corollary will follow from an application of Markov’s inequality to the estimates in
Lemmas 4.11 and 4.12 as follows. First, we note that∑

j∈J

∑
(k,ℓ)∈I2ρ,t

rδ1Small(k, ℓ, j)

=
∑

(k,ℓ)∈Closeη

∑
j∈J

rδ1Small(k, ℓ, j)︸ ︷︷ ︸
(I)

+
∑

(k,ℓ)/∈Closeη

∑
j∈J

rδ1Small(k, ℓ, j)︸ ︷︷ ︸
(II)

.

Then, by Lemma 4.12 and our choices in (4.38), the first sum is estimated as follows:

(I) ≪
(
e−t + ∥ξ∥−η

)α × eδt#Iρ,tµ
u
yρ(Wρ) ≪ ∥ξ∥−α/24 × eδt#Iρ,tµ

u
yρ(Wρ).

For the second sum, we use Lemma 4.11 and the definition of Closeη to get

(II) ≪ ∥ξ∥(η−1/6)α eαt ×#I2ρ,tµ
u
yρ(Wρ) ≪ ∥ξ∥−α/24 ×#I2ρ,tµ

u
yρ(Wρ).

Hence, the corollary follows by Markov’s inequality. □

To simplify notation, we set

E1 := max
{
∥ξ∥−1/24 , ∥ξ∥−α/48

}
. (4.41)

For w ∈ Rd, we let

νj := µu
yjρ

∣∣∣N+
1
, ν̂j(w) :=

∫
N+

ei⟨w,n⟩ dνj(n). (4.42)

Then, by (4.33) and Corollary 4.13, we obtain∫
Wρ

|Ψρ(t, n)|2 dµuyρ = rδ
∑

j /∈Badη

∑
k,ℓ∈Iρ,t

|ν̂j(bjk,ℓ)|+O
(
((∥ψ∥C1 + 1)× E1 ×#I2ρ,tµ

u
yρ(Wρ)

)
. (4.43)

For each j, the sum on the right side of the above estimate can be viewed as an average, when
properly normalized, over Fourier coefficients of the measure νj . Moreover, Corollary 4.13 guarantees
that the frequencies bjk,ℓ are sampled from a well-separated set. Hence, this average can be estimated
using the L2-Flattening Theorem, Theorem 1.3.

The role of L2-flattening. Let η2 > 0 be a small parameter to be chosen using Lemma 4.14 below.
Note that the total mass of νj , denoted |νj |, is µu

yjρ
(N+

1 ). For each k ∈ Iρ,t, define the following set,
which roughly speaking, consists of frequencies where ν̂j is large:

B(j, k, η2) :=
{
ℓ ∈ Iρ,t : |ν̂j(bjk,ℓ)| > ∥ξ∥−η2 |νj |

}
. (4.44)

Then, splitting the sum over frequencies according to the size of the Fourier transform ν̂j and
reversing our change variables to go back to integrating over Aj , we obtain

rδ
∑

j /∈Badη

∑
k,ℓ∈Iρ,t

|ν̂j(bjk,ℓ)| ≪
(

max
j /∈Badη ,k∈Iρ,t

#B(j, k, η2) + ∥ξ∥−η2 #Iρ,t
)
#Iρ,tµ

u
yρ(Wρ), (4.45)

The following key counting estimate for B(j, k, η2) is a consequence of the L2-flattening theorem,
Theorem 1.3.

Lemma 4.14. For every ε > 0, there is η2 > 0 such that for all j /∈ Badη and k ∈ Iρ,t, we have

#B(j, k, η2) ≪ε ∥ξ∥ε−α/96 ×
√
(eδt +#Iρ,t)#Iρ,t,
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where α > 0 is the exponent provided by Theorem 4.4. Here, η2 is the constant provided by Theo-
rem 1.3 (denoted by δ in the notation of the theorem).

Proof. Recall the definition of the frequencies bjk,ℓ in (4.34). The rough idea behind the proof is
that. since j /∈ Badη, the frequencies bjk,ℓ are well-separated. This allows us to apply Theorem 1.3
to the set of frequencies where the Fourier transform is large to conclude that the sets B(j, k, η2)
are relatively small in size.

More precisely, Theorem 4.4 and Theorem 1.3 imply that there exists η2 > 0, depending on ε
(but not on the index j), such that the set

Q :=
{
bjk,ℓ : ℓ ∈ B(j, k, η2)

}
can be covered by Oε(∥ξ∥ε) balls Bi of radius 1/2.

Let B̃i denote the set of indices ℓ ∈ B(j, k, η2) such that bjk,ℓ ∈ Bi. In particular, we have

#B(j, k, η2) ≤
∑
i

#B̃i. (4.46)

Moreover, we note that for ℓ1, ℓ2 ∈ B̃i, we have that bjk,ℓ1 − bjk,ℓ2 = bjℓ2,ℓ1 . Since Bi has radius 1/2,

we get that
∥∥∥bjℓ2,ℓ1∥∥∥ < 1. Hence, recalling the definition of the sets Small in (4.36), and letting

Smallj denote the set of pairs (p, q) ∈ I2ρ,t with (p, q, j) ∈ Small, we obtain

#B̃2
i ≤ #Smallj .

On the other hand, since j /∈ Badη, then by definition, we have that

#Smallj ≤ ∥ξ∥−α/48 × (eδt +#Iρ,t)#Iρ,t.

Since the sum in (4.46) has at most Oε(∥ξ∥ε) terms, this estimate completes the proof. □

Combining estimates and concluding the proof. Recall that α is the exponent provided by
Theorem 4.4. Let η2 > 0 be the exponent provided by Lemma 4.14 when applied with ε = α/200
and let κ be defined as follows:

κ = min {1/24, α/200, η2} . (4.47)

Then, by combining (4.25), (4.27), (4.43), (4.45), and Lemma 4.14, we obtain the following bound:∫
N+

1

ei⟨ξ,n⟩ψ(n) dµux(n) ≪Γ (∥ψ∥C1 + 1)× ∥ξ∥−κ

×

(
e−δt

∑
ρ

µuyρ(Wρ)#Iρ,t + e−3δt/4
∑
ρ

µuyρ(Wρ)(#Iρ,t)
3/4

)
.

The first sum on the right side is OΓ(1) in light of (4.15) and the fact that µuyρ(Wρ) ≍ µuxρ,ℓ(Wℓ) for
all ℓ ∈ Iρ,t. That the second sum is also OΓ(1) is proved in the following lemma. This concludes
the proof of Theorem 1.9 apart from Lemma 4.7 which is proved in the next section.

Lemma 4.15. For every p ∈ (1,∞), we have that

e−δt/p
∑
ρ∈Pξ

µuyρ(Wρ) (#Iρ,t)
1/p ≪Γ 1.

Proof. Indeed, letting q be such that 1/p+ 1/q = 1, we obtain by Hölder’s inequality that

e−δt/p
∑
ρ∈Pξ

µuyρ(Wρ) (#Iρ,t)
1/p ≤ e−δt/p

∑
ρ∈Pξ

µuyρ(Wρ)

1/q

×

∑
ρ∈Pξ

µuyρ(Wρ)#Iρ,t

1/p

.
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Since µuyρ(Wρ) ≍ µuxρ,ℓ(Wℓ) for all ℓ ∈ Iρ,t, it follows by (4.15) that

e−δt
∑
ρ∈Pξ

µuyρ(Wρ)#Iρ,t ≪Γ 1.

Moreover, Proposition 4.3 implies that µuyρ(Wρ) ≍ ∥ξ∥−δ/3. Hence, the lemma follows in light of
(4.5). □

4.4. Explicit formula for stable holonomy maps and Proof of Lemma 4.7. In this section,
we give explicit formulas for the commutation relations between stable and unstable subgroups
which we need for the proof of Lemma 4.7.

Consider the following quadratic form on Rd+2: for x = (xi) ∈ Rd+2,

Q(x) = 2x0xd+1 − |x1|2 − · · · − |xd|2.
Let SOR(Q) ∼= SO(d+1, 1) be the orthogonal group of Q; i.e. the subgroup of SLd+2(R) preserving
Q. Then, we have a surjective homomorphism SOR(Q) → G = Isom+(Hd+1) with finite kernel.
The geodesic flow is induced by the diagonal group

A =
{
gt = diag(et, Id, e

−t) : t ∈ R
}
,

where Id denotes the identity matrix in dimension d.
For x ∈ Rd, viewed as a row vector, we write xt for its transpose. We let ∥x∥2 := x · x, and

x · x denotes the sum of coordinate-wise products in the standard basis on Rd. Hence, N+ can be
parametrized as follows:

N+ =

n+(x) :=
1 x ∥x∥2

2
0 Id xt

0 0 1

 : x ∈ Rd
 . (4.48)

The group N− is parametrized by the transpose of the elements of N+. Recall that M = SOd(R)
denotes the centralizer of A inside the standard maximal compact subgroup K ∼= SOd+1(R) of G.
In particular, M is given by

M = {m(O) := diag(1, O, 1) : O ∈ SOd(R)} .

Finally, we recall that the product map N− × A ×M ×N+ → G is a diffeomorphism near to the
identity.

We are now ready for the proof. Recall from (4.17) that ϕℓ(n) is defined to be the element of N+

satisfying np−ρ,ℓ ∈ N−AMϕℓ(n). In particular, ϕ−1
ℓ (n) is the unique element of N+ satisfying

n(p−ρ,ℓ)
−1 ∈ N−AMϕ−1

ℓ (n).

Hence, in view of the explicit parametrization above, in order to compute ϕ−1
ℓ (n), it suffices to

compute the top row of the matrix n(p−ρ,ℓ)
−1 and to note that

gsn
+(x) =

es esx es∥x∥2
2

0 Id xt

0 0 e−s

 ,

for all s ∈ R and x ∈ Rd. This allows us to extract the N+ component from the top row of n(p−ρ,ℓ)
−1

by scaling it suitably so that the top left entry is 1. In particular, the claimed formula follows by a
direct calculation upon recalling from (4.16) that p−ρ,ℓ = exp(wρ,ℓ)mρ,ℓgtρ,ℓ .

5. Self-conformal measures: Proof of Theorem 1.12

Throughout this section we fix Φ, ΣA, and ψ satisfying the assumptions of Theorem 1.12. To
simplify our notation we will denote the Gibbs measure µψ by µ.
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5.1. The Gibbs property and bounding the Fourier transform by an average. Let ξ ∈
Rd \ {0}. The first step in our proof is to bound |µ̂(ξ)| from above by an average of the Fourier
transform over multiple frequencies using (2.1).

Let us define the following partition of ΣA depending upon ξ:

Aξ :=

{
b ∈ WA : sup

x∈[0,1]d
∥Dfb(x)∥ ≤ |ξ|−2/3 and sup

x∈[0,1]d
∥Dfb−(x)∥ > |ξ|−2/3

}
.

For a word b ∈ WA we let µb denote the normalised restriction of µb to the cylinder Xb, i.e.

µb :=
µ|Xb

µ(Xb)
.

For each b ∈ WA we also fix a point xb ∈ Xb arbitrarily. Given ξ ∈ Rd \ {0} and a word b ∈ WA

we let
µb,ξ := S∗

∥ξ∥2/3µb,

where S∥ξ∥2/3 : Rd → Rd is given by S∥ξ∥2/3(x) := ∥ξ∥2/3 · x. We then have the following key
decomposition of the Fourier transform using the Fourier transforms of µb,ξ at random frequencies
sampled using the derivative matrices:

Proposition 5.1. If ξ ∈ Rd \ {0} and n(ξ) = ⌊c log ∥ξ∥⌋ for some constant c > 0, we have

|µ̂(ξ)| ≤
∑
b∈Aξ

µ(Xb)
∑

a∈An(ξ)

a⇝b

wa(xb)

∣∣∣∣µ̂b,ξ ((Dxbfa)
T ξ

∥ξ∥2/3

)∣∣∣∣+O(∥ξ∥−1/3).

Proof. Applying (2.1) and then splitting our integral over cylinder sets Xb we have∫
e2πi⟨ξ,x⟩ dµ(x) =

∫ ∑
a∈An(ξ)

a⇝x

wa(x)e
2πi⟨ξ,fa(x)⟩ dµ(x)

=
∑
b∈Aξ

∑
a∈An(ξ)

a⇝b

∫
Xb

wa(x)e
2πi⟨ξ,fa(x)⟩ dµ(x)

=
∑
b∈Aξ

µ(Xb)
∑

a∈An(ξ)

a⇝b

∫
wa(x)e

2πi⟨ξ,fa(x)⟩ dµb(x)

In the penultimate line we used that for a point x ∈ Xb we have a⇝ x if and only if a⇝ b. Using
our assumption P (ψ) = 0, we see that the Gibbs property (1.4) gives a constant C > 0 such that
|wa(x)| ≤ C for all x ∈ X. Using this inequality together with the fact our potential ψ is C1 we can
show that for any x, y ∈ XA we have

|wa(x)− wa(y)| = |wa(x)||1− eSnψ(fa(y))−Snψ(fa(x))| ≪ |x− y|. (5.1)

Thus for any b ∈ Aξ and x ∈ Xb we have

|wa(x)− wa(xb)| ≪ ∥ξ∥−2/3

since |x− xb| ≪ |ξ|−2/3 by Lemma 2.2. Thus∑
b∈Aξ

µ(Xb)
∑

a∈An(ξ)

a⇝b

∫
wa(x)e

2πi⟨ξ,fa(x)⟩ dµb(x)

=
∑
b∈Aξ

µ(Xb)
∑

a∈An(ξ)

a⇝b

wa(xb)

∫
e2πi⟨ξ,fa(x)⟩ dµb(x) +O(∥ξ∥−2/3).
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Now, towards the claim, we need to linearize fa(x) for x ∈ Xb using the value of the derivative
at xb ∈ Xb. For this purpose, given t ∈ [0, 1] let xt = xb + t(x− xb). Using this notation we have

fa(x) = fa(xb) +
(∫ 1

0
Dxtfa dt

)
(x− xb). (5.2)

By Lemma 2.1 we have

∥Dxtfa −Dxbfa∥ ≪ sup
x∈[0,1]d

∥Dfa(x)∥ · ∥xt − xb∥ = O(∥ξ∥−2/3)

because ∥xt − xb∥ ≪ ∥ξ∥−2/3 for all t ∈ [0, 1]. This in turn implies that for x ∈ Xb we have∥∥∥(∫ 1

0
Dxtfa −Dxbfa dt

)
(x− xb)

∥∥∥≪ ∥ξ∥−2/3∥x− xb∥ ≪ ∥ξ∥−4/3.

Thus by (5.2) we have

fa(x) = fa(xb) +Dxbfa(x− xb) +O(∥ξ∥−4/3).

By the 1-Lipschitz property of x 7→ eix and Cauchy-Schwartz inequality, we have for the matrix
Ab = Dxbfa and a vector vb = fa(xb)−Dxbfaxb that∣∣∣ ∫ e2πi⟨ξ,fa(x)⟩ − e2πi⟨ξ,Abx+vb⟩ dµb(x)

∣∣∣≪ ∥ξ∥ sup
x∈Xb

∥fa(x)−Abx− vb∥ ≪ ∥ξ∥−1/3.

Thus we have proved:∫
e2πi⟨ξ,x⟩ dµ(x) =

∑
b∈Aξ

µ(Xb)
∑

a∈An(ξ)

a⇝b

wa(xb)

∫
e2πi⟨ξ,fa(xb)+Dxb

fa(x−xb)⟩ dµb(x) +O(∥ξ∥−1/3).

Taking absolute values and applying the triangle inequality this implies:∫
e2πi⟨ξ,x⟩ dµ(x) ≤

∑
b∈Aξ

µ(Xb)
∑

a∈An(ξ)

a⇝b

wa(xb)

∣∣∣∣∫ e2πi⟨ξ,Dxb
fax⟩ dµb(x)

∣∣∣∣+O(∥ξ∥−1/3).

Recalling the definition of µb,ξ = S∗
∥ξ∥2/3µb, where S∥ξ∥2/3(x) = ∥ξ∥2/3 · x, and taking the transpose

of the matrices appearing in our inner product yields:∫
e2πi⟨ξ,x⟩ dµ(x) ≤

∑
b∈Aξ

µ(Xb)
∑

a∈An(ξ)

a⇝b

wa(xb)

∣∣∣∣∫ e
2πi⟨(Dxb

fa)T
ξ

∥ξ∥2/3
,x⟩
dµb,ξ(x)

∣∣∣∣+O(∥ξ∥−1/3)

=
∑
b∈Aξ

µ(Xb)
∑

a∈An(ξ)

a⇝b

wa(xb)

∣∣∣∣µ̂b,ξ ((Dxbfa)
T ξ

∥ξ∥2/3

)∣∣∣∣+O(∥ξ∥−1/3).

This completes the proof. □

5.2. Affine non-concentration of the averaged measures. To successfully apply Theorem 1.3
to to the measures µb,ξ appearing in Proposition 5.1, we need to show that they are uniformly affinely
non-concentrated and that the non-concentration parameters can be taken to be independent of b
and ξ. This property is guaranteed by the following proposition.

Proposition 5.2. Assume that µ is uniformly affinely non-concentrated. Then there exists δ′ :
(0,∞) → (0,∞) satisfying the following:

(1) δ′(ϵ) → 0 as ϵ→ 0.
(2) For every ξ ̸= 0, b ∈ Aξ, x ∈ supp(µb,ξ), 0 < r ≤ 1, ε > 0 and affine hyperplane W < Rd

we have
µb,ξ(W

(ϵr) ∩B(x, r)) ≤ δ′(ϵ)µ(B(x, r))
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Proof. Fix ξ ̸= 0 and b ∈ Aξ. Let r ∈ (0, 1] and ϵ > 0. Then for any x ∈ supp(µb,ξ) and affine
hyperplane W < Rd there exists V < Rd and y ∈ Xb such that

µb,ξ(W
(ϵr) ∩B(x, r)) = µb(V

(ϵ·∥ξ∥−2/3r) ∩B(y, r · ∥ξ∥−2/3))

=
µ|Xb

(V (ϵ·∥ξ∥−2/3r) ∩B(y, r · ∥ξ∥−2/3))

µ(Xb)

≤ µ(V (ϵ·∥ξ∥−2/3r) ∩B(y, r · ∥ξ∥−2/3))

µ(Xb)

≤ δ(ϵ)µ(B(y, r · ∥ξ∥−2/3))

µ(Xb)
.

Where in the final line we let δ : (0,∞) → (0,∞) be as in the definition of uniformly affinely
non-concentrated. Therefore to complete our proof it remains to show that

µ(B(y, r · ∥ξ∥−2/3))

µ(Xb)
≪ µb,ξ(B(x, r)),

which by the definition of µb,ξ is equivalent to

µ(B(y, r · ∥ξ∥−2/3)) ≪ µ(Xb ∩B(y, r · ∥ξ∥−2/3)). (5.3)

Recall that Diam(Xb) ≍ ∥ξ∥−2/3 since b ∈ Aξ. It follows from this observation and the Strong
Separation Condition that that there exists k ∈ N depending only upon the underlying IFS such
that one of two cases must occur:

(1) Xba ⊂ B(y, r∥ξ∥−2/3) ∩XA ⊂ Xb1,...,b|b|−k
for some a ∈ Ak.

(2) There exists a ∈ A∗ and a∗ ∈ Ak such that Xbaa∗ ⊂ B(y, r∥ξ∥−2/3) ∩XA ⊂ Xba.

In the first case, it follows from the quasi-Bernoulli property of µ (2.2) that

µ(Xb ∩B(y, r · ∥ξ∥−2/3)) ≥ µ(Xba) ≫ µ(Xb1,...b|b|−k
) ≥ µ(B(y, r∥ξ∥−2/3).

Again appealing to the quasi-Bernoulli property of µ, in the second case we have

µ(Xb ∩B(y, r · ∥ξ∥−2/3)) ≥ µ(Xbaa∗) ≫ µ(Xba) ≥ µ(B(y, r∥ξ∥−2/3).

Thus (5.3) holds and our proof is complete. □

5.3. Spectral gap and non-concentration of frequencies. We now fix the parameter c appear-
ing in Proposition 5.1. We assume that c is sufficiently small that∥∥∥(Dfa(xb))T ξ

|ξ|2/3
∥∥∥ ≥ ∥ξ∥1/6 (5.4)

for any a ∈ An(ξ) and b ∈ WA with a ⇝ b. The final part we need for our proof of Theorem 1.12
is the following proposition. It is in the proof of this proposition that we will use our spectral gap
assumption.

Proposition 5.3. There exists γ > 0 such that for any b ∈ Aξ and integer n ∈ N satisfying
∥ξ∥1/6 ≤ n ≤ ∥ξ∥1/3 we have∑

a∈An(ξ)

a⇝b

wa(xb)χ[n,n+1]

(∥∥∥(Dxbfa)
T ξ

∥ξ∥2/3
∥∥∥) = O(∥ξ∥−γ).
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Proof. Let n ∈ N satisfy ∥ξ∥1/6 ≤ n ≤ ∥ξ∥1/3. Observe that

∥∥∥(Dxbfa)
T ξ

∥ξ∥2/3
∥∥∥ ∈ [n, n+ 1] ⇔

∣∣∣ n(ξ)∏
i=1

λai(fai+1...an(xb))
∣∣∣ · ∥∥∥ ξ

|ξ|2/3
∥∥∥ ∈ [n, n+ 1]

⇔ log
∣∣∣ n(ξ)∏
i=1

λai(fai+1...an(xb))
∣∣∣ ∈ In,ξ

for

In,ξ = [log(∥ξ∥−1/3n), log(∥ξ∥−1/3(n+ 1))].

Thus we have

∑
a∈An(ξ)

a⇝b

wa(xb)χ[n,n+1]

(∥∥∥(Dxbfa)
T ξ

∥ξ∥2/3
∥∥∥) =

∑
a∈An(ξ)

a⇝b

wa(xb)χIn,ξ

log

∣∣∣∣∣∣
n(ξ)∏
i=1

λai(fai+1...an(xb))

∣∣∣∣∣∣


(5.5)
By the mean value theorem

|In,ξ| ≍
1

n
≤ |ξ|−1/6.

We replace In,ξ with an interval Ĩn,ξ that contains In,ξ and is of length |ξ|−δ where

δ < min {1/6,−c log ρ} .

Here ρ ∈ (0, 1) is as in the definition of spectral gap and c is as in (5.4). We let hn,ξ be a smooth
mollifier approximating χĨn,ξ

such that hn,ξ ≥ χĨn,ξ
, ∥hn,ξ∥1 ≪ |ξ|−δ and ∥h′′n,ξ∥1 ≪ |ξ|δ as in

[13, 80]. Using Fourier inversion we have the following

∑
a∈An(ξ)

a⇝b

wa(xb)χIn,ξ

log

∣∣∣∣∣∣
n(ξ)∏
i=1

λai(fai+1...an(xb))

∣∣∣∣∣∣


≤
∑

a∈An(ξ)

a⇝b

wa(xb)hn,ξ

log

∣∣∣∣∣∣
n(ξ)∏
i=1

λai(fai+1...an(xb))

∣∣∣∣∣∣


=
∑

a∈An(ξ)

a⇝b

wa(xb)

∫ ∞

−∞
ĥn,ξ(η)e

−2πiη log |
∏n(ξ)|

i=1 λai (fai+1...an (xb))| dη

=
∑

a∈An(ξ)

a⇝b

wa(xb)

∫ ∞

−∞
ĥn,ξ(η)

n(ξ)∏
i=1

|λai(fai+1...an(xb))|2πiη dη

=

∫ ∞

−∞
ĥn,ξ(η)L

n(ξ)
2πiη(1)(xb)dη.
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Let Θ > 0 be some parameter such that our spectral gap bound can be applied for |η| ≥ Θ. Splitting
the integral above we have:∫ ∞

−∞
ĥn,ξ(η)L

n(ξ)
2πiη(1)(xb)dη =

∫
|η|<Θ

ĥn,ξ(η)L
n(ξ)
2πiη(1)(xb)dη +

∫
|η|≥Θ

ĥn,ξ(η)L
n(ξ)
2πiη(1)(xb)dη

≪|ĥn,ξ(0)|+
∫
|η|≥Θ

ĥn,ξ(η)L
n(ξ)
2πiη(1)(xb)dη

≪|ξ|−δ +
∫
|η|≥Θ

ĥn,ξ(η)L
n(ξ)
2πiη(1)(xb)dη

Applying our spectral gap bound we have

∥Ln(ξ)2πiη1∥∞ ≪ ρn(ξ)|η|υ

for some υ ∈ (0, 1). Since n(ξ) = ⌊c log ∥ξ∥⌋, this gives us:∣∣∣∣∣
∫
|η|≥Θ

ĥn,ξ(η)L
n(ξ)
2πiη(1)(xb)dη

∣∣∣∣∣ ≤
∫
|η|≥Θ

|ĥn,ξ(η)|ρn(ξ)|η|υ dη

≪∥ξ∥c log ρ
∫
|η|≥Θ

|ĥn,ξ(η)||η|υ dη.

Using integration by parts it can be shown that

|ĥn,ξ(η)| ≪
1

1 + |η|2
(∥hn,ξ∥1 + ∥h′′n,ξ∥1).

Substituting this bound into the above yields:

∥ξ∥c log ρ
∫
|η|≥Θ

|ĥn,ξ(η)||η|υ dη ≤∥ξ∥c log ρ
∫
|η|≥Θ

|η|υ

1 + |η|2
(∥hn,ξ∥1 + ∥h′′n,ξ∥1) dη

≪∥ξ∥c log ρ(∥hn,ξ∥1 + ∥h′′n,ξ∥1)

≪∥ξ∥δ+c log ρ.

In the penultimate line we used that υ ∈ (0, 1) thus
∫
|η|≥Θ

|η|υ
1+|η|2 dη ≪ 1. In the final line we used

that ∥hn,ξ∥1 ≤ ∥ξ∥−δ and ∥h′′n,ξ∥1 ≤ ∥ξ∥δ. By the definition of δ we know that δ + c log ρ < 0. This
completes the proof of this proposition. □

5.4. Proof of Theorem 1.12. Equipped with the propositions above we can now prove Theorem
1.12. By Proposition 5.1, we have

|µ̂(ξ)| ≤
∑
b∈Aξ

µ(Xb)
∑

a∈An(ξ)

a⇝b

wa(xb)

∣∣∣∣µ̂b,ξ ((Dxbfa)
T ξ

∥ξ∥2/3

)∣∣∣∣+O(∥ξ∥−1/3).

Thus to prove our result it suffices to show that∑
b∈Aξ

µ(Xb)
∑

a∈An(ξ)

a⇝b

wa(xb)

∣∣∣∣µ̂b,ξ ((Dxbfa)
T ξ

∥ξ∥2/3

)∣∣∣∣ = O(∥ξ∥−η), (5.6)

for some η > 0.
Let γ be as in Proposition 5.3. Applying Theorem 1.3, we can assert that there exists τ > 0 such

that for each b ∈ Aξ, if we let

Badξ,b :=
{
n ∈ Z : |n| ≤ |ξ|1/3, ∃η ∈ Rd such that ∥η∥ ∈ [n, n+ 1] and |µ̂b,ξ(η)| ≥ ∥ξ∥−τ

}
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then
#Badξ,b = Oγ(∥ξ∥γ/2). (5.7)

We emphasise that the underyling constants in (5.7) do not depend upon b or ξ. This follows from
Proposition 5.2 which asserts that the non-concentration parameters can be taken to be independent
of b and ξ. By our choice of c we know that∥∥∥∥(Dxbfa)

T ξ

∥ξ∥2/3

∥∥∥∥ ≥ ∥ξ∥1/6

for all b ∈ Aξ and a ∈ An(ξ) satisfying a ⇝ b. Therefore we can apply Proposition 5.3 to the
frequencies appearing in (5.6). In particular, using this proposition and (5.7) we have

∑
b∈Aξ

µ(Xb)
∑

a∈An(ξ)

a⇝b

wa(xb)

∣∣∣∣µ̂b,ξ ((Dxbfa)
T ξ

∥ξ∥2/3

)∣∣∣∣
≤
∑
b∈Aξ

µ(Xb)
∑

n∈Badξ,b

∑
a∈An(ξ)

a⇝b

wa(xb)χ[n,n+1]

(∥∥∥∥(Dxbfa)
T ξ

∥ξ∥2/3

∥∥∥∥)

+
∑
b∈Aξ

µ(Xb)
∑

a∈An(ξ)

a⇝b

wa(xb)

∣∣∣∣µ̂b,ξ ((Dxbfa)
T ξ

∥ξ∥2/3

)∣∣∣∣χ(∪n∈Badξ,b
[n,n+1])c

(∥∥∥∥(Dxbfa)
T ξ

∥ξ∥2/3

∥∥∥∥)

≪
∑
b∈Aξ

µ(Xb)
∑

n∈Badξ,b

∥ξ∥−γ +
∑
b∈Aξ

µ(Xb)
∑

a∈An(ξ)

a⇝b

wa(xb)∥ξ∥−τ

≪
(
∥ξ∥−γ/2 + ∥ξ∥−τ

)
.

In the final line we used the trivial estimates:∑
b∈Aξ

µ(Xb) = 1 and
∑

a∈An(ξ)

a⇝b

wa(xb) ≪ 1.

Therefore, (5.6) holds and our proof is complete.

6. Non-conformal systems: Proof of Theorem 1.19

6.1. Outline of the argument. We begin this section by outlining our proof of Theorem 1.19.
Given a frequency ξ ∈ Rd, we will begin by picking a dominant direction 1 ≤ i∗ ≤ d such that
max1≤i≤d |ξi| = |ξi∗ |. Without loss of generality we can take i∗ = 1. We will then disintegrate our
stationary measure in this direction to express it as an integral of random measures. Each of these
random measures will be of the form µb × δxb , where µb is a probability measure on [0, 1] and δxb
is simply a Dirac mass supported on a point xb ∈ [0, 1]d−1.

The fact that our random measures are of this form and max1≤i≤d |ξi| = |ξ1| will mean that to
prove Theorem 1.19, it is sufficient to show that a typical µb will have polynomial Fourier decay.
This will be done by using the strategy employed throughout this paper.

To this end, we will bound µ̂b(ξ1) from above by an average of Fourier transforms over a set of
measures and a set of frequencies. We will show that the measures appearing in this average are all
uniformly affinely non-concentrated and the underlying non-concentration parameters can be taken
to be independent of the measure (Proposition 6.4). We will also show that the set of frequencies
appearing in this average typically satisfy a non-concentration property (Proposition 6.8). We will
then apply Theorem 1.3 to prove the desired Fourier decay result.
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The major difference in our proof when compared to Theorem 1.12 is that the measures µb are no
longer self-conformal measures and only satisfy a weaker form of dynamical self-conformality (see
Lemma 6.1). It is a consequence of this weaker form of self-conformality that we do not consider a
single transfer operator in our analysis, but instead must consider a family of transfer operators and
how they behave under random compositions. Here we will rely heavily on work on the first and third
authors [13], which establishes that a spectral gap typically exists for these random compositions
under the third assumption of Theorem 1.19.

The aforementioned technique of disintegrating a stationary measure in terms of simpler, albeit
random, measures has its origins in a paper of Galicer et al [35]. It has subsequently been applied to
problems relating to absolute continuity of self-similar measures [46, 78], normal numbers in fractal
sets [1], and Fourier transforms of fractal measures [12].

6.2. Beginning our proof and disintegrating µ. Let us begin our proof of Theorem 1.19 by
fixing a restricted product IFS {Fa}a∈A satisfying the assumptions of this theorem and a probability
vector p = (pa)a∈A. To ease our notation we will denote the corresponding stationary measure
by µ instead of µp. Let us also fix ξ ∈ Rd. Without loss of generality we will assume that
max1≤i≤d |ξ| = |ξ1|. Thus to prove our result it suffices to show that

|µ̂(ξ)| ≪ |ξ1|−η (6.1)

for some η > 0. Our first step towards proving (6.1) is to disintegrate our measure µ. This is done
in Proposition 6.2 after introducing the necessary notation.

Let π : A → A2×· · ·×Ad be the map given by π(a1, . . . , ad) = (a2, . . . , ad). We define B = π(A)
and define a new probability vector q = (qb)b∈B by the formula

qb =
∑

a:π(a)=b

pa.

We let Q be the probability measure on BN corresponding to q. Given b = (b1, . . . , bd−1) ∈ B we
define F̃b : [0, 1]

d−1 → [0, 1]d−1 to be the contraction given by

F̃b(x1, . . . , xd−1) = (f
(2)
b1

(x1), . . . , f
(d)
bd−1

(xd−1)).

Given b ∈ B, we let Ab =
{
a ∈ A1 : (a, b) ∈ A

}
. For b = (bi) ∈ BN, we also define Σb =

∏∞
i=1Abi

and let xb ∈ [0, 1]d−1 be the point given by the formula

xb := lim
n→∞

(F̃b1 ◦ · · · ◦ F̃bn)(0)

We define a Bernoulli measure on Σb according to the rule

mb([a1, . . . , an]) =

n∏
i=1

pabi
qbi

and πb : Σb → [0, 1] according to the rule

πb(a) = lim
n→∞

(f (1)a1 ◦ · · · ◦ f (1)an )(0).

We let
Xb := πb(Σb) and µb := πbmb.

We remark that it follows from the second assumption in Theorem 1.19 that #Ab ≥ 2 for all b ∈ B.
Consequently, there exists γ ∈ (0, 1) such that

max
b∈B

max
a∈Ab

pab
qb

≤ γ. (6.2)

We let σ : BN → BN be the left shift map given by σ((bi)
∞
i=1) = (bi+1)

∞
i=1. The following lemma

shows that the measures µb exhibit a form of dynamical self-conformality.



FOURIER DECAY FROM L2-FLATTENING 47

Lemma 6.1. Let b ∈ BN. Then for all n ∈ N we have

µb =
∑

a∈Ab1
×···×Abn

mb([a])faµσn(b).

Proof. Let b ∈ BN and n ∈ N. By considering µb and µσn(b) as weak star limits of weighted Dirac
masses we have

µb = lim
M→∞

∑
a∈Ab1

×···AbM

mb([a])δfa(0)

= lim
M→∞

∑
a∈Ab1

×···Abn

mb([a])
∑

a′∈Abn+1
×···AbM

mσn(b)([a
′])δfaa′ (0)

= lim
M→∞

∑
a∈Ab1

×···Abn

mb([a])fa

 ∑
a′∈Abn+1

×···AbM

mσn(b)([a
′])δfa′ (0)


=

∑
a∈Ab1

×···×Abn

mb([a])faµσn(b).

□

The following proposition is our aforementioned disintegration result.

Proposition 6.2. We have

µ =

∫
BN
µb × δxb dQ.

Proof. Consider the Borel probability measure µ̃ given by

µ̃ =

∫
BN
µb × δxb dQ.

We will show that µ̃ satisfies
µ̃ =

∑
a∈A

paFaµ̃. (6.3)

Since the stationary measure µ is the unique Borel probability measure satisfying this equation, our
result will follow.

Using Lemma 6.1, we have

µ̃ =

∫
BN
µb × δxb dQ =

∫
BN

∑
a∈Ab1

mb([a])faµσ(b) × δxb dQ

=

∫
BN

∑
a∈Ab1

mb([a])faµσ(b) × F̃b1δxσ(b)
dQ

=

∫
BN

∑
a∈Ab1

mb([a])Fab1

(
µσ(b) × δxσ(b)

)
dQ

=
∑
b∈B

∑
a∈Ab

pab
qb

∫
b:b1=b

Fab

(
µσ(b) × δxσ(b)

)
dQ.

In the final line we used that
mb([a]) =

pab
qb
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if b1 = b. Now using the fact that Q is a σ-invariant product measure and Fab
(
µσ(b) × δxσ(b)

)
does

not depend on the first digit of b, we have∑
b∈B

∑
a∈Ab

pab
qb

∫
b:b1=b

Fab

(
µσ(b) × δxσ(b)

)
dQ =

∑
b∈B

∑
a∈Ab

pab
qb

× qb

∫
BN
Fab (µb × δxb) dQ

=
∑
b∈B

∑
a∈Ab

pab

∫
BN
Fab (µb × δxb) dQ

=
∑
a∈A

pa

∫
BN
Fa (µb × δxb) dQ

=
∑
a∈A

paFaµ̃.

Thus, µ̃ satisfies (6.3) and our proof is complete. □

We finish this subsection by recording one consequence of Proposition 6.2 with regards to the
Fourier transform of µ:

|µ̂(ξ)| =
∣∣∣∣∫ e2πi⟨ξ,x⟩ dµ

∣∣∣∣ = ∣∣∣∣∫
BN

∫
e2πi⟨ξ,x⟩d(µb × δxb) dQ(b)

∣∣∣∣
=

∣∣∣∣∫
BN
e2πi⟨(ξi)

d
i=2,xb⟩

∫
e2πiξ1x dµb dQ(b)

∣∣∣∣
≤
∫
BN

|µ̂b(ξ1)| dQ(b). (6.4)

The significance of (6.4) is that it tells us that to prove (6.18) it is sufficient to show that outside
of a set of small Q measure, each µb has polynomial Fourier decay.

6.3. Bounding the Fourier transform by an average. Let us now focus on µ̂b(ξ1). We show
in Proposition 6.3 that µ̂b(ξ1) is bounded above by an expression involving an average of Fourier
transforms. Importantly Theorem 1.3 can be meaningfully applied to this average.

To this end, we let
n(ξ1) = ⌊c log |ξ1|⌋ (6.5)

for some c > 0 chosen to be sufficiently small that

min
a∈An(ξ1)

1

min
x∈[0,1]

|f (1)a (x)| ≥ ξ
−1/3
1 . (6.6)

To each b ∈ BN we associate the set

Aξ1,b :=

c ∈
∞⋃
j=1

j∏
l=1

Abn(ξ1)+l
: Diam(fc([0, 1])) < ξ

−2/3
1 , Diam(fc−([0, 1])) ≥ ξ

−2/3
1

 .

For each c ∈ Aξ1,b we pick xc ∈ πσn(ξ1)(b)([c]). Given b ∈ BN and c ∈ Aξ1,b we let µc,σn(ξ1)(b),ξ1
be

the pushforward of
µσn(ξ1)(b)|π

σn(ξ1)(b)
([c])

µσn(ξ1)(b)(πσn(ξ1)(b)([c]))

under x→ ξ
2/3
1 x. The following statement bounds |µ̂b(ξ1)| by an average of ̂µc,σn(ξ1)(b),ξ1

taken over
all c ∈ Aξ1,b and a range of frequencies plus a polynomially small error.
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Proposition 6.3. For any b ∈ BN we have

|µ̂b(ξ1)| ≤
∑

a∈Ab1
×···×Abn(ξ1)

mb([a])
∑

c∈Aξ1,b

mσn(ξ1)(b)([c])| ̂µc,σn(ξ1)(b),ξ1
(ξ

1/3
1 (f

(1)
a )′(xc))|+O(|ξ1|−1/3)

Proof. Fix b ∈ BN. Using Lemma 6.1 we have

|µ̂b(ξ1)| =
∣∣∣∣∫ e2πiξ1x dµb

∣∣∣∣ =
∣∣∣∣∣∣∣

∑
a∈Ab1

×···×Abn(ξ1)

mb([a])

∫
e2πiξ1f

(1)
a (x) dµσn(ξ1)(b)

∣∣∣∣∣∣∣
We now split the latter integrals over cylinder sets determined by element of Aξ1,b:∣∣∣∣∣∣∣

∑
a∈Ab1

×···×Abn(ξ1)

mb([a])

∫
e2πiξ1f

(1)
a (x) dµσn(ξ1)(b)

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
∑

a∈Ab1
×···×Abn(ξ1)

mb([a])
∑

c∈Aξ1,b

∫
π
σn(ξ1)(b)

([c])
e2πiξ1f

(1)
a (x) dµσn(ξ1)(b)

∣∣∣∣∣∣∣
For each a ∈ Ab1

× · · · × Abn(ξ1)
we can linearize f (1)a (x) around xc and use Lemma 2.1 to derive

the bound
f
(1)
a (x) = f

(1)
a (xc) + (f

(1)
a )′(xc)(x− xc) +O(|ξ1|−4/3) (6.7)

for all x ∈ πσn(ξ1)(b)([c]). Here we have used the definition of Aξ1,b. Applying (6.7) in the above we
have∣∣∣∣∣∣∣

∑
a∈Ab1

×···×Abn(ξ1)

mb([a])
∑

c∈Aξ1,b

∫
π
σn(ξ1)(b)

([c])
e2πiξ1f

(1)
a (x) dµσn(ξ1)(b)

∣∣∣∣∣∣∣
≤

∑
a∈Ab1

×···×Abn(ξ1)

mb([a])
∑

c∈Aξ1,b

∣∣∣∣∣∣
∫
π
σn(ξ1)(b)

([c])
e2πiξ1(f

(1)
a )′(xc)x dµσn(ξ1)(b)

∣∣∣∣∣∣+O(|ξ1|−1/3)

=
∑

a∈Ab1
×···×Abn(ξ1)

mb([a])
∑

c∈Aξ1,b

mσn(ξ1)(b)([c])

∣∣∣∣∫ e2πiξ
1/3
1 (f

(1)
a )′(xc)x dµc,σn(ξ1)(b),ξ

∣∣∣∣+O(|ξ1|−1/3)

=
∑

a∈Ab1
×···×Abn(ξ1)

mb([a])
∑

c∈Aξ1,b

mσn(ξ1)(b)([c])
∣∣∣ ̂µc,σn(ξ1)(b),ξ1

(ξ
1/3
1 (f

(1)
a )′(xc))

∣∣∣+O(|ξ1|−1/3).

This completes our proof. □

6.4. Affine non-concentration of the averaged measures. In light of the above proposition,
to successfully apply Theorem 1.3 to prove Theorem 1.19, we need to show that each µc,σn(ξ1)(b),ξ

is uniformly affinely non-concentrated and the non-concentration parameters do not depend upon
our choice of measure. This fact is established in the following proposition.

Proposition 6.4. There exists C,α > 0 such that for any b ∈ BN, ξ1 ∈ R, c ∈ Aξ1,b, x ∈
supp(µc,σn(ξ1)(b),ξ1

), y ∈ R, r ∈ (0, 1] and ϵ > 0 we have

µc,σn(ξ1)(b),ξ1
(B(x, r) ∩B(y, ϵr)) ≤ Cϵαµc,σn(ξ1)(b),ξ1

(B(x, r)).
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Proof. Let us fix b ∈ BN, ξ1 ∈ R and c ∈ Aξ1,b. Let x ∈ supp(µc,σn(ξ1)(b),ξ1
), r ∈ (0, 1] and ϵ > 0.

Then, by definition, for any y ∈ R we have

µc,σn(ξ1)(b),ξ1
(B(x, r) ∩B(y, ϵr))

=
µσn(ξ1)(b)|π

σn(ξ1)(b)
([c])(B(x · ξ−2/3

1 , r · ξ−2/3
1 ) ∩B(y · ξ−2/3

1 , ϵr · ξ−2/3
1 ))

µσn(ξ1)(b)(πσn(ξ1)(b)([c]))

≤
µσn(ξ1)(b)(B(x · ξ−2/3

1 , r · ξ−2/3) ∩B(y · ξ−2/3
1 , ϵr · ξ−2/3

1 ))

µσn(ξ1)(b)(πσn(ξ1)(b)([c]))

=
µσn(ξ1)(b)(B(x′, r · ξ−2/3

1 ) ∩B(y′, ϵr · ξ−2/3
1 ))

µσn(ξ1)(b)(πσn(ξ1)(b)([c]))
. (6.8)

Where in the last line we have adopted the notation: x′ = x·ξ−2/3
1 ∈ πσn(ξ1)(b)([c]) and y′ = y ·ξ−2/3

1 .

We begin our proof by analysing the sets appearing in the numerator in (6.8). Without loss of
generality we can assume that y′ ∈ Xσn(ξ1)(b).

It is useful at this point to recall that the IFS
{
f
(1)
a

}
a∈A

satisfies the strong separation condition.

Therefore, if X1 ⊂ R denotes the attractor for this IFS, we have f (1)a (X1)∩f (1)a′ (X1) = ∅ for distinct
a, a′ ∈ A1. Therefore

min
a̸=a′

d
(
f (1)a (X1), f

(1)
a′ (X1)

)
> 0.

It is a consequence of Lemma 2.2 and this property that for a,a′ ∈ A∗
1 we have

d
(
f
(1)
a (X1), f

(1)
a′ (X1)

)
≍ Diam

(
f|a∧a′|([0, 1])

)
. (6.9)

Since πσn(ξ1)(b)([d]) ⊂ f
(1)
d (X1) for all d ∈ ∪∞

j=1

∏j
i=1Abn(ξ1)+i

, (6.9) implies

d(πσn(ξ1)(b)([d]), πσn(ξ1)(b)([d
′])) ≍ Diam(f|d∧d′|([0, 1])) (6.10)

for distinct d,d′ ∈ ∪∞
j=1

∏j
i=1Abn(ξ1)+i

.

We let d = (di) ∈
∏∞
i=1Abn(ξ1)+i

be the unique sequence satisfying πσn(ξ1)(b)(d) = x′. Since
x′ ∈ πσn(ξ1)(b)([c]) the sequence d must begin with c. Let m ∈ N be minimal such that

πσn(ξ1)(b)([d1, . . . , dm]) ⊂ B(x′, r · ξ−2/3
1 ).

It follows from (6.10) that a bounded number of (d′1, . . . , d′m) ∈
∏m
i=1Abn(ξ1)+i

satisfy

πσn(ξ1)(b)([d
′
1, . . . , d

′
m]) ∩B(x′, r · ξ−2/3

1 ) ̸= ∅. (6.11)

It also follows from (6.10) that there exists l ∈ N depending only on our IFS, such that if d′ satisfies
(6.11) then di = d′i for all 1 ≤ i ≤ m− l. Therefore for such a (d′1, . . . , d

′
m) we have

mσn(ξ1)(b)([d1, . . . , dm]) ≍ mσn(ξ1)(b)([d
′
1, . . . , d

′
m]).

Combining these observations we have

µσn(ξ1)(b)(B(x′, r · ξ−2/3
1 ) ≍ mσn(ξ1)(b)([d1, . . . , dm]). (6.12)

Let us now consider B(y′, ϵr · ξ−2/3
1 ). Let e = (ei) ∈ Σσn(ξ1)(b) be the unique sequence satisfying

πσn(ξ1)(b)(e) = y′. Let m′ ≥ m be minimal such that

πσn(ξ1)(b)([e1, . . . , em′ ]) ⊂ B(y′, ϵrξ
−2/3
1 ).
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By an analogous argument to that given above, we must have

µσn(ξ1)(b)(B(y′, ϵrξ
−2/3
1 )) ≍ mσn(ξ1)(b)([e1, . . . , em′ ]). (6.13)

Using the fact that our IFS is uniformly contracting, it can be shown that m′ −m ≥ ⌊d log ϵ−1⌋ for
some d > 0 depending only on our IFS. Using this inequality and recalling the definition of γ given
by (6.2), we have

µσn(ξ1)(b)(B(y′, ϵrξ
−2/3
1 )) ≪ mσn(ξ1)(b)([e1, . . . , em′ ])

≪ mσn(ξ1)(b)([e1, . . . , em])ϵ
−d log γ

≪ mσn(ξ1)(b)([d1, . . . , dm])ϵ
−d log γ . (6.14)

In the last line we used that (e1, . . . , em) must satisfy (6.11) therefore ei = di for 1 ≤ i ≤ m − l
and so mσn(ξ1)(b)([e1, . . . , em]) ≍ mσn(ξ1)(b)([d1, . . . , dm]). Summarizing, it follows from (6.8), (6.12),
(6.13) and (6.14) that

µc,σn(ξ1)(b),ξ(B(x, r) ∩B(y, ϵr)) ≤
µσn(ξ1)(b)(B(x′, r · ξ−2/3

1 ) ∩B(y′, ϵr · ξ−2/3
1 ))

µσn(ξ1)(b)(πσn(ξ1)(b)([c]))

≪
µσn(ξ1)(b)(B(y′, ϵr · ξ−2/3

1 ))

µσn(ξ1)(b)(πσn(ξ1)(b)([c]))

≪ ϵ−d log γ
µσn(ξ1)(b)(B(x′, r · ξ−2/3

1 ))

µσn(ξ1)(b)(πσn(ξ1)(b)([c]))
.

Taking α = −d log γ, we see that to complete our proof it remains to show that

µσn(ξ1)(b)(B(x′, r · ξ−2/3
1 ))

µσn(ξ1)(b)(πσn(ξ1)(b)([c]))
≪ µc,σn(ξ1)(b),ξ(B(x, r)).

This is equivalent to

µσn(ξ1)(b)(B(x′, r · ξ−2/3
1 )) ≪ µσn(ξ1)(b)|π

σn(ξ1)(b)
([c])(B(x′, r · ξ−2/3

1 )). (6.15)

It is useful to recall at this point that by the definition of Aξ1,b we know that

Diam(πσn(ξ1)(b)([c])) ≍ ξ
−2/3
1 . (6.16)

Therefore, it follows from (6.10) that there exists r0 > 0 depending only on our IFS such that if
r < r0 then

µσn(ξ1)(b)|π
σn(ξ1)(b)

([c])(B(x′, r · ξ−2/3
1 )) = µσn(ξ1)(b)(B(x′, r · ξ−2/3

1 )).

Therefore (6.15) holds for r ≤ r0. For r ≥ r0, one can appeal to (6.16) and the fact d begins with
c to show that

mσn(ξ1)(b)([d1, . . . , dm]) ≍ mσn(ξ1)(b)([c]).

It is also straightforward to show that

µσn(ξ1)(b)|π
σn(ξ1)(b)

([c])(B(x′, r · ξ−2/3
1 )) ≍ mσn(ξ1)(b)([c]).

Thus (6.15) follows for r ≥ r0 by these observations and (6.12). This completes our proof. □
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6.5. Spectral gap and non-concentration of frequencies. The final step in the proof of The-
orem 1.19 is to show that the set of frequencies{

ξ
1/3
1 (f

(1)
a )′(xc) : a ∈ Ab1

× · · · × Abn(ξ1)

}
appearing in Proposition 6.3 satisfy a non-concentration property. This is established in Proposi-
tion 6.8 below. The key ingredient is a spectral gap for certain random transfer operators (Propo-
sition 6.5).

More precisely, to each b ∈ BN and b ∈ R, we associate a transfer operator that acts on C1(U):

L(b)
ib h(x) =

∑
a∈Ab1

mb([a])|(f (1)a )′(x)|ibh(fa(x)).

Iterating this formula we have

(L(σn−1(b))
ib ◦ · · · ◦ L(b)

ib )h(x) =
∑

a∈Ab1
×···×Abn

mb([a])|(f
(1)
a )′(x)|ibh(f (1)a (x)) (6.17)

for any b ∈ BN, h ∈ C1(U), n ∈ N and x ∈ U .
The following statement asserts that a random operator L(σn−1(b))

ib ◦ · · · ◦ L(b)
ib has a spectral gap

for all b ∈ BN outside of a small measure set. It is in the proof of this proposition where we use the
third assumption in Theorem 1.19.

Proposition 6.5. There exists ρ1 ∈ (0, 1) and Θ > 0 such that the following statements are true:
• For all n ∈ N there exists Ωn ∈ BN such that

∥L(σn−1(b))
ib ◦ · · · ◦ L(b)

ib ∥∞ ≪ ρn1 |b|1/2∥h∥b
for all b ∈ Ωn, h ∈ C1(U) and |b| > Θ.

• There exists δ > 0 such that Ωn satisfies Q(Ωcn) ≪ e−δn for all n ∈ N.

Sketch of proof of Proposition 6.5. We do not include a full proof of Proposition 6.5 because it is
essentially contained in [13]. See Theorem 3.2 and (3.9) from this paper. We give a rough outline of
the argument for convenience of the reader. The third assumption in Theorem 1.19 implies that the
IFS

{
f
(1)
a : a ∈ Ab

∗

}
must satisfy the UNI property for some b∗ ∈ B. A large deviation argument

tells us that outside of an exponentially small measure set, for a typical b ∈ BN, a significant
proportion of the operators appearing in the composition L(σn−1(b))

ib ◦ · · · ◦ L(b)
ib will equal L(b

∗
)

ib .

The existence of the desired spectral gap for the single operator L(b
∗
)

ib goes back to Naud [64] and
Stoyanov [87]. By adapting Naud’s argument, the first author and third author showed in [13] that
if L(b

∗
)

ib appeared sufficiently many times within L(σn−1(b))
ib ◦ · · · ◦ L(b)

ib then we have the desired
spectral gap. Combining this with our large deviation bound implies Proposition 6.5.

□

Remark 6.6. We remark that in [13] the separation assumption for our IFS is that f (1)a ([0, 1]) ∩
f
(1)
a′ ([0, 1]) = ∅ for distinct a, a′ ∈ A1. This is a stronger assumption than the strong separation

condition. Nevertheless it is possible to adapt the arguments in [13] to weaken this assumption to
the strong separation condition.

Remark 6.7. We note that Proposition 6.5 gives a spectral gap in terms of the ∥ · ∥∞ norm instead
of the usual ∥ · ∥b norm. Despite the spectral gap being phrased in terms of this norm, it causes no
issues in our proof of Theorem 1.19.

Equipped with Proposition 6.5, we can now prove our non-concentration statement for frequen-
cies.
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Proposition 6.8. There exists κ > 0 such that for any b ∈ Ωn(ξ1), c ∈ Aξ1,b and n ∈ N satisfying
|ξ1|1/6 ≤ n ≤ |ξ1|1/3 we have∑

a∈Ab1
×···×Abn(ξ1)

mb([a])χ[n,n+1](ξ
1/3
1 |(f (1)a )′(xc)|) = O(|ξ1|−κ).

Proof. The proof of Proposition 6.8 is analogous to Proposition 5.3. Thus, we only explain how the
random transfer operators appear in our analysis. This is the only point where the proof differs.

As in the proof of Proposition 5.3, we can replace χ[n,n+1] with a smooth function hn,ξ1 that
satisfies

χ[n,n+1](ξ
1/3
1 |(f (1)a )′(xc)|) ≤ hn,ξ1(log |(f

(1)
a )′(xc)|)

and for which we have useful bounds on the L1 norm of its second derivative. Applying the above
and the Fourier inversion formula, we have the following:∑

a∈Ab1
×···×Abn(ξ1)

mb([a])χ[n,n+1](ξ
1/3|(f (1)a )′(xc)|)

≤
∑

a∈Ab1
×···×Abn(ξ1)

mb([a])hn,ξ(log |(f
(1)
a )′(xc)|)

≤
∑

a∈Ab1
×···×Abn(ξ1)

mb([a])

∫
ĥn,ξ(η)e

−2πiη log |(f (1)a )′(xc)| dη

=
∑

a∈Ab1
×···×Abn(ξ1)

mb([a])

∫
ĥn,ξ(η)|(f

(1)
a )′(xc)|−2πiη dη

=

∫
ĥn,ξ(η)

∑
a∈Ab1

×···×Abn(ξ1)

mb([a])|(f
(1)
a )′(xc)|−2πiη dη

=

∫
ĥn,ξ(η)(L

(σn(ξ1)−1(b))
−2πiη ◦ · · · ◦ L(b)

−2πiη)(1)(xc) dη,

where, in the last line, we used (6.17). The rest of our proof is identical to the proof of Proposition
5.3. We split out integral into two parts, one part that can be controlled using the bound |ĥn,ξ(η)| ≤
|ĥn,ξ(0)|, and one part on which we use our assumption b ∈ Ωn(ξ1) and the spectral gap guaranteed
by Proposition 6.5. □

6.6. Conclusion of the proof of Theorem 1.19. Recall that, by our assumption, we have
max1≤i≤d |ξi| = |ξ1| and, hence. it suffices to show that (6.1) holds. By (6.4) and Proposition 6.3,
we have

|µ̂(ξ)| ≤ O(|ξ1|−1/3)

+

∫ ∑
a∈Ab1

×···×Abn(ξ1)

mb([a])
∑

c∈Aξ1,b

mσn(ξ1)(b)([c])| ̂µc,σn(ξ1)(b),ξ1
(ξ

1/3
1 (f

(1)
a )′(xc))| dQ(b).

So to complete our proof it is sufficient to show that∫ ∑
a∈Ab1

×···×Abn(ξ1)

mb([a])
∑

c∈Aξ1,b

mσn(ξ1)(b)([c])| ̂µc,σn(ξ1)(b),ξ1
(ξ

1/3
1 (f

(1)
a )′(xc))| dQ(b) ≪ |ξ1|−η

(6.18)
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for some η > 0. We begin by splitting our outer integral. Let Ωn(ξ) be as in Proposition 6.5. It
follows from this proposition that∫ ∑

a∈Ab1
×···×Abn(ξ1)

mb([a])
∑

c∈Aξ1,b

mσn(ξ1)(b)([c])| ̂µc,σn(ξ1)(b),ξ1
(ξ

1/3
1 (f

(1)
a )′(xc))| dQ(b)

≪ |ξ1|−η1

+

∫
Ωn(ξ1)

∑
a∈Ab1

×···×Abn(ξ1)

mb([a])
∑

c∈Aξ1,b

mσn(ξ1)(b)([c])| ̂µc,σn(ξ1)(b),ξ1
(ξ

1/3
1 (f

(1)
a )′(xc))| dQ(b)

= |ξ1|−η1

+

∫
Ωn(ξ1)

∑
c∈Aξ1,b

mσn(ξ1)(b)([c])
∑

a∈Ab1
×···×Abn(ξ1)

mb([a])| ̂µc,σn(ξ1)(b),ξ1
(ξ

1/3
1 (f

(1)
a )′(xc))| dQ(b),

(6.19)

for some η1 > 0. For each c ∈ Aξ1,b, b ∈ BN and τ > 0, we let

Badc,b,τ :=
{
n ∈ Z : |n| ≤ |ξ1|1/3 and ∃ζ ∈ [n, n+ 1] satisfying | ̂µc,σn(ξ1)(b),ξ1

(ζ)| ≥ |ξ1|−τ
}
.

By Proposition 6.4, we know that each µc,σn(ξ1)(b),ξ1
is uniformly affinely non-concentrated and that

the non-concentration parameters can be chosen independently of the measure. As such, we can
apply Theorem 1.3 to assert that there exists τ > 0 such that

#Badc,b,τ = Oκ(|ξ1|κ/2), (6.20)

where κ is as in Proposition 6.8. Crucially the underlying constants in (6.20) do not depend upon
c, b or ξ. Using Proposition 6.8 and (6.6), we see that for any c ∈ Aξ1,b and b ∈ Ωn(ξ1) we have∑

a∈Ab1
×···×Abn(ξ1)

mb([a])| ̂µc,σn(ξ1)(b),ξ1
(ξ

1/3
1 (f

(1)
a )′(xc))|

≤
∑

n∈Badc,b,τ

∑
a∈Ab1

×···×Abn(ξ1)

mb([a])χ[n,n+1](ξ
1/3
1 (f

(1)
a )′(xc))

+
∑

a∈Ab1
×···×Abn(ξ1)

mb([a])χ(∪n∈Badc,b,τ
[n,n+1])c(ξ

1/3
1 (f

(1)
a )′(xc))| ̂µc,σn(ξ1)(b),ξ1

(ξ
1/3
1 (f

(1)
a )′(xc))|

≤
∑

n∈Badc,b,τ

|ξ1|−κ +
∑

a∈Ab1
×···×Abn(ξ1)

mb([a])|ξ1|−τ

≪|ξ1|−min{κ/2,τ}. (6.21)

In the last line, we used (6.20). Substituting (6.21) into (6.19), we have∫
Ωn(ξ1)

∑
c∈Aξ1,b

mσn(ξ1)(b)([c])
∑

a∈Ab1
×···×Abn(ξ1)

mb([a])| ̂µc,σn(ξ1)(b),ξ(ξ
1/3
1 (f

(1)
a )′(xc))| dQ+ |ξ1|−η1

≪
∫
Ωn(ξ1)

|ξ1|−min{κ/2,τ}
∑

c∈Aξ1,b

mσn(ξ1)(b)([c]) dQ+ |ξ1|−η1

≤|ξ1|−min{κ/2,τ,η1}.

Thus, (6.18) holds and our proof is complete.
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Appendix A. Higher dimensional Davenport-Erdős-LeVeque criterion

The purpose of this appendix is to give the proof of the following:

Theorem A.1. Let µ be a probability measure on Rd with polylogarithmic Fourier decay. Then, µ
almost every x is A-normal for any expanding integer valued matrix A.

The strategy of proof for Theorem A.1 is similar to that implemented by Queffélec and Ramaré
[73] for the one dimensional version of the DEL criterion. The third author and Jonathan Fraser
wrote a proof of Theorem A.1 in an unpublished note. We thank Jonathan for his permission to
include the argument here.

To prove Theorem A.1, we need the following Lemma.

Lemma A.2 (Lemma 7.3 [73]). Suppose (rN ) ⊂ (0,∞) is a sequence of reals such that
∑∞

N=1
rN
N <

∞. Then there is a subsequence Nj → ∞, j ∈ N, such that
∑∞

j=1 rNj <∞ and limj→∞
Nj+1

Nj
= 1.

Proof of Theorem A.1. Let µ be a measure on the d-torus Td for which there exists some α > 0 and
C > 0 such that the Fourier transform satisfies |µ̂(ξ)| ≤ C| log |ξ||−α for all ξ ∈ R2 with |ξ| > 1.
Also, let T (x) = Ax mod 1, x ∈ Td for some A ∈ Zd×d. Fix k ∈ Zd \ {0} and for N ∈ N write

SN (x) :=
1

N

N∑
n=1

exp(2πik · Tn(x)),

where k has been suppressed from the notation. Weyl’s equidistribution criterion in Td (see e.g. [90,
Proposition 1.1.2]) says that (xn) ⊂ Td is equidistributed in Td if and only if for any k ∈ Zd \{0} we
have limN→∞

1
N

∑N
n=1 exp(2πik · xn) = 0. Thus it is enough to prove that SN (x) → 0 as N → ∞

for µ almost every x. Note that from this one can deduce that the result holds simultaneously for
all expanding toral endomorphisms since such maps are represented by two dimensional matrices
with integer coefficients and so there are only countably many possibilities.

Let rN :=
∫
|SN (x)|2 dµ(x). For each x ∈ Td as A has integer entries, we know that exp(2πik ·

Tn(x)) = exp(2πi(A∗)n(k) · x). Then we may estimate

rN =
1

N2

N∑
m,n=1

∫
exp(−2πik · (Tm(x)− Tn(x))) dµ(x)

=
1

N2

N∑
m,n=1

∫
exp(−2πi((A∗)m(k)− (A∗)n(k)) · x) dµ(x)

≤ 1

N
+

2

N2

N∑
m=2

m−1∑
n=1

|µ̂((A∗)m(k)− (A∗)n(k))|.

Let σd = inf{|Ax| : |x| = 1} be the smallest singular value of A, which is the same as the smallest
singular value of A∗. Thus we have for any n ∈ N and y ∈ Rd that |(A∗)ny| ≥ σnd |y|. Since
σd > 1, we have σnd → ∞ as n → ∞. Thus there exists n0 ∈ N such that whenever m,n ∈ N with
m > n ≥ n0, we have

σnd ≥ 1 +
1

σd − 1
≥ 1 +

1

σm−n
d − 1

=
σm−n
d

σm−n
d − 1

.

Thus for m > n ≥ n0 we can bound (σm−n
d − 1)σnd ≥ σm−n

d , giving

|(A∗)m(k)− (A∗)n(k)| ≥ ||(A∗)m(k)| − |(A∗)n(k)|| ≥ (σm−n
d − 1)σnd |k| ≥ σm−n

d
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again, valid for m > n ≥ n0. By the Fourier decay and |(A∗)ny| ≥ σnd |y| we obtain
N∑
m=2

m−1∑
n=1

|µ̂((A∗)m(k)− (A∗)n(k))| ≤ N(n0 − 1) +
N∑
m=2

m−1∑
n=n0

|µ̂((A∗)m(k)− (A∗)n(k))|

≲ N +
N∑
m=2

m−1∑
n=n0

(log |(A∗)m(k)− (A∗)n(k)|)−α

≤ N +
N∑
m=2

m−1∑
n=n0

(log σm−n
d )−α

= N + log(σd)
−α

N∑
m=2

m−1∑
n=n0

1

(m− n)α

= O(N +N2−α),

Since α > 0 we have that
∑∞

N=1
rN
N < ∞. Thus by Lemma A.2 there is a subsequence Nj → ∞,

j ∈ N, such that
∑∞

j=1 rNj < ∞ and limj→∞
Nj+1

Nj
= 1. In particular, the former condition yields

that ∫ ∞∑
j=1

|SNj (x)|2 dµ(x) <∞

and so SNj (x) → 0 for µ almost every x as j → ∞. Now we just check that the latter condition
actually yields SN (x) → 0 for µ almost every x as N → ∞, which is what we need. Fix N ∈ N and
find j ∈ N such that Nj ≤ N ≤ Nj+1. This yields that

|NSN (x)−NjSNj (x)| =
∣∣∣ N∑
n=Nj+1

exp(−2πik · Tn(x))
∣∣∣ ≤ N −Nj ≤ Nj+1 −Nj .

Hence

|SN (x)| ≤ |SNj (x)|+
Nj+1 −Nj

Nj
,

which converges to 0 as j → ∞ at µ almost every x. □

Appendix B. Proof of Lemma 3.4

In this section we will prove lemma 3.4. Let us recall its statement.

Lemma B.1. Let (pa)a∈A be a probability vector and n ∈ N, then

n!∏
a∈A ka!

∏
a∈A

pkaa ≪ n−1/2(#A−1)

for any (ka)a∈A ∈ N#A satisfying
∑

a∈A ka = n. Here the underlying constants only depend upon
the probability vector.

Proof. Let (k∗a)a∈A be such that

max
(ka)a∈A:

∑
a∈A ka=n

n!∏
a∈A ka!

∏
a∈A

pkaa =
n!∏

a∈A k
∗
a!

∏
a∈A

pk
∗
a
a .

We claim that (k∗a)a∈A must satisfy

k∗a ∈ {⌊pan⌋ − 10#A, . . . , ⌊pan⌋+ 10#A} (B.1)
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for all a ∈ A. Suppose for instance that k∗a′ < ⌊pa′n⌋ − 10#A for some a′ ∈ A, then there must
exists a′′ ∈ A such that k∗a′′ ≥ ⌊pa′′n⌋+ 2. We have

n!

(k∗a′ + 1)!(k∗a′′ − 1)!
∏
a∈A\{a′,a′′} k

∗
a!
p
k∗
a′+1

a′ p
k∗
a′′−1

a′′

∏
a∈A\{a′,a′′}

pk
∗
a
a

=
k∗a′′pa′

(k∗a′ + 1)pa′′

n!∏
a∈A k

∗
a!

∏
a∈A

pk
∗
a
a (B.2)

However, we have the following lower bound for
k∗
a′′pa′

(k∗
a′+1)pa′′

:

k∗a′′pa′

(k∗a′ + 1)pa′′
≥ (⌊pa′′n⌋+ 2)pa′

(⌊pa′n⌋ − 10#A)pa′′
≥ pa′′pa′n+ pa′

pa′pa′′n− 10#Apa′′
> 1. (B.3)

Substituting (B.3) into (B.2) we have

n!

(k∗a′ + 1)!(k∗a′′ − 1)!
∏
a∈A\{a′,a′′} k

∗
a!
p
k∗
a′+1

a′ p
k∗
a′′−1

a′′

∏
a∈A\{a′,a′′}

pk
∗
a
a >

n!∏
a∈A k

∗
a!

∏
a∈A

pk
∗
a
a .

However this contradicts our assumption that (k∗a) was maximizing. The case where k∗a′ > ⌊pa′n⌋−
10#A follows similarly. Thus we have proved our claim.

We now claim that if (ka)a∈A satisfies

ka ∈ {⌊pan⌋ − 10#A, . . . , ⌊pan⌋+ 10#A} (B.4)

for all a ∈ A then
n!∏

a∈A k
∗
a!

∏
a∈A

pk
∗
a
a ≪ n!∏

a∈A ka!

∏
a∈A

pkaa . (B.5)

We remark that if (ka) satisfies (B.4) then

n!∏
a∈A k

∗
a!

∏
a∈A

pk
∗
a
a

can be obtained from
n!∏

a∈A ka!

∏
a∈A

pkaa

by multiplying the latter term a bounded number of times by terms each of which is bounded above
by

maxa∈A {⌊pan⌋+ 10#A}maxa∈A {pa}
mina∈A {⌊pan⌋ − 10#A}mina∈A {pa}

. (B.6)

Since (B.6) is uniformly bounded from above our claim follows.
It follows from (B.5) that to prove our lemma we just need to show that the desired bound holds

for a specific (ka) satisfying (B.4). This we do now. Pick a′ ∈ A arbitrarily, then by Stirling’s
formula we have

n!

(n−
∑

a∈A\{a′}⌊pan⌋)!
∏
a∈A\{a′}⌊pan⌋!

p
(n−

∑
a∈A\{a′}⌊pan⌋)

a′

∏
a∈A\{a′}

p⌊pan⌋a

≪
√
nnnp

(n−
∑

a∈A\{a′}⌊pan⌋)
a′√

(n−
∑

a∈A\{a′}⌊pan⌋)(n−
∑

a∈A\{a′}⌊pan⌋)
(n−

∑
a∈A\{a′}⌊pan⌋)

∏
a∈A\{a′}

p
⌊pan⌋
a√

⌊pan⌋⌊pan⌋⌊pan⌋
.
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The following bounds are straightforward to verify

(pan)
⌊pan⌋

⌊pan⌋⌊pan⌋
≪ 1 and

(pa′n)
(n−

∑
a∈A\{a′}⌊pan⌋)

(n−
∑

a∈A\{a′}⌊pan⌋)
(n−

∑
a∈A\{a′}⌊pan⌋)

≪ 1. (B.7)

Substituting (B.7) into the above yields:
n!

(n−
∑

a∈A\{a′}⌊pan⌋)!
∏
a∈A\{a′}⌊pan⌋!

p
(n−

∑
a∈A\{a′}⌊pan⌋)

a′

∏
a∈A\{a′}

p⌊pan⌋a

≪
√
n√

(n−
∑

a∈A\{a′}⌊pan⌋)
∏
a∈A\{a′}

√
pan

≪n−1/2(#A−1).

Thus our result follows. □

Appendix C. Proof of Proposition 1.14

The purpose of this section is to prove Proposition 1.14, which we recall here:

Proposition C.1 (Spectral gap). Let Φ be a conformal IFS satisfying the strong separation condi-
tion and ΣA be a subshift of finite type. Suppose that (Φ,ΣA) satisfies the UNI condition, then for
any C1 potential ψ satisfying P (ψ) = 0, there exists 0 < ρ < 1 such that for all large enough |b|,
n ∈ N and h ∈ C1,b(U), we have

∥Lnibh∥b ≪ ρn|b|1/2∥h∥b.
In particular, if (Φ,ΣA) satisfies the UNI condition, then for any C1 potential ψ satisfying P (ψ) = 0
the triple (Φ,ΣA, ψ) has a spectral gap.

In our proof of this proposition we will make use of a uniform non-integrability condition intro-
duced in [56]. It follows from Proposition D.1 that this condition is equivalent to our UNI condition.
Thus in this section, by Proposition D.1 we may freely assume the existence of r > 0 and ϵ0 > 0
such that the following holds for any large n ∈ N. For any x ∈ XA and unit vector e ∈ Rd, there
exist a1,a2 ∈ WA ∩ An such that:

• For all y ∈ B(x, r) we have

|∂e (log |λa1(y)| − log |λa2(y)|)| ≥ ϵ0.

• For all y ∈ B(x, r) we have a1 ⇝ y and a2 ⇝ y.
Without loss of generality we may assume that our (untwisted) transfer operator satisfies∑

a∈A
a⇝x

wa(x) = 1 (C.1)

for all x ∈ XA. This is permissible as one can conjugate our transfer operator by a multiplication
operator so that the resulting transfer operator satisfies (C.1). Moreover, it can be shown that if
this new operator satisfies the conclusion of Proposition 1.14, then our original transfer operator
also satisfies this conclusion. Thus there is no loss of generality in making this assumption. For
further details of this reduction we refer the reader to [64, Section 5.1].

Recall that U =
⋃
a∈A Ua is a choice of open set satisfying XΦ ⊂ U , where the Ua are disjoint

open sets with fa(U) ⊂ Ua for all a ∈ A.
In our proof of Proposition 1.14 we will make regular use of the following set of functions: For

A > 0 let
CA := {u ∈ C1(U) : u > 0, ∥Dxu∥ ≤ Au(x)}.
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We record here a useful property of the cone CA. If u ∈ CA then

e−A|x−y| ≤ u(x)

u(y)
≤ eA|x−y| (C.2)

for all x, y ∈ U.
We will also make regular use of the following lemma. It records various well known bounded

distortion estimates whose proofs we omit.

Lemma C.2. Let Φ = {fa}a∈A be a conformal IFS satisfying the strong separation condition and
ψ : U → R be a C1 potential. Then there exists C1, C2, C3 > 0 such that the following statements
are true:

• For any x, y ∈ XΦ and a ∈ A∗ we have

e−C1|x−y| ≤ wa(x)

wa(y)
≤ eC1|x−y|.

• For any x ∈ XΦ and a ∈ A∗ we have

∥Dxwa∥ ≤ C2wa(x).

• For any x ∈ XΦ and a ∈ A∗ we have

∥Dx log |λa|∥ ≤ C3.

C.1. Construction of Dolgopyat operators. In what follows we will fix an IFS Φ and a subshift
of finite type ΣA such that the assumptions of Proposition 1.14 hold. We will also fix a C1 potential
ψ satisfying P (ψ) = 0. In this section we will denote the corresponding Gibbs measure by µ.

In this section we will define a family of Dolgopyat operators (N J
b )J∈Eb that will allow us to

prove Proposition 1.14 via properties of complex transfer operators. First of all, let us fix A > 1
sufficiently large such that

(C2 + 2|b|+A|b|γn) ≤ A|b| (C.3)
and

(2C2 + 2C3|b|+ 2A|b|γn) ≤ A|b| (C.4)
for all |b| > 1 and n sufficiently large. This is slightly abusing notation with the matrix A defining
the subshift of finite type. Here γ ∈ (0, 1) is the uniform contraction factor in our IFS and C2, C3 > 0
are as in Lemma C.2.

We now state the key proposition where the UNI condition manifests.

Proposition C.3. There exist η0 = η0(Φ,ΣA) ∈ (0, 1), D = D(Φ,ΣA) > 0, ϵ1 = ϵ1(Φ,ΣA) and
ϵ2 = ϵ2(Φ,ΣA) > 0 such that for N ∈ N sufficiently large, |b| > 1, H ∈ CA|b|, and u ∈ C1(U), if u

satisfies |u| ≤ H and ∥Du∥ ≤ A|b|H, then for any y ∈ XA there exists x′ ∈ XA ∩ B
(
y, ϵ1D|b|

)
such

that
B
(
x′, ϵ2|b|

)
⊂ B

(
y, ϵ1D|b|

)
and for which we have the following: there exists a1,a2 ∈ WA ∩ AN such that a1 ⇝ x and a2 ⇝ x

for all x ∈ B
(
y, ϵ1D|b|

)
, and one of the following holds for all x ∈ B

(
x′, ϵ2|b|

)
:∣∣∣wa1(x)|λa1(x)|ibu(fa1(x)) + wa2(x)|λa2(x)|ibu(fa2(x))
∣∣∣ (C.5)

≤ η0wa1(x)H(fa1(x)) + wa2(x)H(fa2(x)),

or ∣∣∣wa1(x)|λa1(x)|ibu(fa1(x)) + wa2(x)|λa2(x)|ibu(fa2(x))
∣∣∣ (C.6)

≤ wa1(x)H(fa1(x)) + η0wa2(x)H(fa2(x))
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The proof of Proposition C.3 will be given in Section C.3 below. Having found the parameters
η0, D, ε1, ε2 in Proposition C.3, we can now define the family of Dolgopyat operators.

Definition C.4 (Dolgopyat operators (N J
b )J∈Eb). Assume |b| > 1 is fixed and N ∈ N is a large

number so that Proposition 1.14 applies. We now define our Dolgopyat operators. We fix a maximal
set of points {yl}l∈S(b) ⊂ XA with some index set S(b) such that

B

(
yl,

ϵ1D

|b|

)
∩B

(
yl′ ,

ϵ1D

|b|

)
= ∅

for distinct l, l′ ∈ S(b). By Proposition C.3, applied to yl for each l ∈ S(b), we can always find a
point x′l ∈ B

(
yl,

ϵ1D
|b|

)
satisfying

B

(
x′l,

ϵ2
|b|

)
⊂ B

(
yl,

ϵ1D

|b|

)
and a word al ∈ AN satisfying al ⇝ x for all x ∈ B

(
yl,

ϵ1D
|b|

)
such that either (C.5) holds with

a1 = al or (C.6) holds with a2 = al. Let η0 ∈ (0, 1) be the value from Proposition C.3 and
fix η ∈ [η0, 1), then we can choose a C1 function χ : U → [η, 1] such that χ(x) = 1 outside of
∪l∈S(b)fal

(B(x′l,
ϵ2
|b|)) and χ(x) = η within ∪l∈S(b)fal

(B(x′l,
ϵ2
3|b|)). Moreover, we can choose η in such

a way that ∥D(χ ◦ fa)∥ ≤ |b| for all a ∈ AN . We can also freely assume η ≥ 1/2. We emphasize
that the function χ only depends upon the pairs {(x′l,al)}l∈S(b). We let

Eb :=

(x′l,al)l∈S(b) :
B
(
x′l,

ϵ2
|b|

)
⊂ B

(
yl,

ϵ1D
|b|

)
and

al ∈ AN satisfies al ⇝ x ∀x ∈ B
(
yl,

ϵ1D
|b|

)  .

Given J ∈ Eb we define the Dolgopyat operator N J
b on C1(U) according to the rule

N J
b (H) := LN0 (χH).

Crucially, Dolgopyat operators satisfy the following key properties, which we will prove using
Proposition C.3, the doubling property of the Gibbs measure µ, and basic inequalities for complex
transfer operators.

Lemma C.5 (Key properties of Dolgopyat operators). There exists N ∈ N, A > 1 and ρ ∈ (0, 1)
such that for |b| sufficiently large the Dolgopyat operators (N J

b )J∈Eb on C1(U) satisfy the following
properties:

(1) The cone CA|b| is stable under N J
b for all J ∈ Eb, that is, if H ∈ CA|b|, then

∥DxN J
b (H)∥ ≤ A|b|N J

b (H)(x), x ∈ U.

(2) For all H ∈ CA|b| and J ∈ Eb,∫
|N J

b H|2dµ ≤ ρ

∫
|H|2dµ.

(3) Given H ∈ CA|b| and u ∈ C1(U) such that |u| ≤ H and ∥Du∥ ≤ A|b|H, there exists J ∈ Eb
such that

|LNibu| ≤ N J
b (H)

and
∥D(LNibu)∥ ≤ A|b|N J

b (H).

The proof of this lemma will be given in Section C.4 below.



FOURIER DECAY FROM L2-FLATTENING 61

C.2. Reduction of spectral gap to Dolgopyat operators. Let us now show how Proposition
1.14 follows using Lemma C.5. Our proof is based upon arguments of Naud [64]. For the purposes
of brevity we will omit certain calculations from our proof.

Proof of Proposition 1.14. We start by proving that Lemma C.5 implies an L2 decay statement.
Let u ∈ C1(U) satisfy ∥u∥b ≤ 1. Set H = ∥u∥b1. Then H ∈ CA|b| and |u| ≤ H, ∥Du∥ ≤
|b|∥u∥b ≤ A|b|H. Thus by the definition of Lib and iterating Lemma C.5(3), we get for all n ≥ 1,
|LnNib u| ≤ N Jn

b N Jn−1

b . . .N J1
b H and ∥DLnNb u∥ ≤ A|b|N Jn

b N Jn−1

b . . .N J1
b H for some J1, . . . , Jn ∈ Eb.

Hence ∫
X
|LnNb u|2 dµ ≤

∫
X
|N Jn

b N Jn−1

b . . .N J1
b H|2 dµ ≤ ρn

∫
X
|H|2 dµ ≤ ρn. (C.7)

Now we will show how (C.7) leads to a spectral gap. We will use the following well known inequal-
ities: Let u ∈ C1(U). There exists C1, C2 > 0 and ρ1 ∈ (0, 1) such that

(i) supx∈U ∥DxLnibu∥ ≤ C1|b|∥Ln0u∥∞ + ρn1∥Ln0 (∥Du∥)∥∞
(ii) ∥Lnibu∥∞ ≤

∫
|u| dµ+ C2ρ

n
1 supx∈U ∥Dxu∥

We remark that the key inequality for complex transfer operators (i) was proved in [67] in the
symbolic setting and (ii) follows from the quasi-compactness of Lib.

Now we prove our spectral gap result. Fix h ∈ C1,b(U) with ∥h∥b ≤ 1. Using the above and the
Cauchy-Schwartz inequality, we have

|L2nN
ib h(x)| ≤ |LnNib (LnNib h)(x)| ≤ LnN0 (|(LnNib h|)(x)

≪ (LnN0 (|(LnNib h|2)(x))1/2

≤
(∫

X
|LnNib h|2 dµ+ C2ρ

nN
1 sup

x∈U
∥Dx|LnNib h|2∥

)1/2

≪
(∫

X
|LnNib h|2 dµ+ C2ρ

nN
1 |b|

)1/2

.

In the penultimate line we used the second of the inequalities listed above. In the final line we
used the product rule, the first of the inequalities listed above, and the fact ∥h∥b ≤ 1 to assert that
supx∈U ∥Dx|LnNib h|2∥ ≪ |b|. Now using (C.7) we have

|L2nN
ib h(x)| ≪

(
ρn + C2ρ

nN
1 |b|

)1/2 ≪ max{ρ1/4N , ρ1/41 }2nN |b|1/2.
This implies

∥L2nN
ib ∥∞ ≪ max{ρ1/4N , ρ1/41 }2nN |b|1/2∥h∥b. (C.8)

This establishes the sup norm part of our spectral gap bound. It remains to prove the derivative
part. Using the first of the inequalities listed above we have:

1

|b|
sup
x∈U

∥DxL2nN
ib h∥ ≤ C1∥LnN0 (LnNib h)∥∞ +

ρn1
|b|

∥LnN0 (∥DLnNib h∥)∥∞

≪ C1∥LnN0 (LnNib h)∥∞ + ρn1∥LnNib h∥b.
The first term in the above can be bounded using similar ideas to those used above to establish
(C.8). The second term can be bounded by evaluating DxLnNib h and bounding accordingly. □

C.3. Proof of Proposition C.3. Let us now prove Proposition C.3. To this end we will need the
following two lemmas. Firstly, we need the following higher dimensional analogue of Lemma 5.11
from [64]:

Lemma C.6. Let Z ⊂ U be a set satisfying Diam(Z) ≤ c
|b| . Let H ∈ CA|b| and u ∈ C1(U) satisfy

|u| ≤ H and ∥Du∥ ≤ A|b|H. Then for c sufficiently small, we have either |u(x)| ≤ 3
4H(x) for all

x ∈ Z, or |u(x)| ≥ 1
4H(x) for all x ∈ Z.



62 SIMON BAKER, OSAMA KHALIL, AND TUOMAS SAHLSTEN

Proof. The proof is same as in [64] and we include it for completeness. If x0 ∈ Z has |u(x0)| ≤
1
4H(x0), then at any x ∈ Z, we have for all small enough c > 0:

|u(x)| ≤ |u(x)− u(x0)|+
1

4
H(x0) ≤ A|b|diam (Z) sup

x∈Z
H +

1

4
H(x0) ≤ (cA+ 1

4)e
AcH(x) ≤ 3

4
H(x).

In the penultimate inequality we used (C.2). □

We also recall the following triangle lemma that follows from applying trigonometric identities:

Lemma C.7 (Triangle lemma). Let z1, z2 ≥ 0 be two complex numbers such that |z1/z2| ≤ L and
2π − ϵ ≥ |arg(z1)− arg(z2)| ≥ ϵ > 0. Then there exists 0 < δ(L, ϵ) < 1 such that

|z1 + z2| ≤ (1− δ)|z1|+ |z2|.

Proof of Proposition C.3. Let N ∈ N be large and |b| > 1. Let us also fix H ∈ CA|b| and u ∈ C1(U)
satisfying the assumptions of Proposition C.3. Let y ∈ XA. Let ϵ1 > ϵ2 > 0 be parameters that
only depend upon Φ and ΣA. Using properties of Φ and the fact ΣA is topologically mixing, by the
strong separation of the IFS Φ, there exists D > D′ > 2 depending only on Φ and ΣA such that
there exists x′ ∈ XA satisfying

x′ ∈ B

(
y,
ϵ1D

|b|

)
\B

(
y,
ϵ1D

′

|b|

)
and

B

(
x′,

ϵ2
|b|

)
⊂ B

(
y,
ϵ1D

|b|

)
.

Let B1 = B
(
y, ϵ2|b|

)
, B2 = B

(
x′, ϵ2|b|

)
. Let B̂ be the smallest ball containing B1 ∪ B2. We can

assume that ϵ1 and ϵ2 are sufficiently small that B̂ ⊂ B(y, r). Here r is as in the uniform non-
integrability condition stated at the beginning of this section (recall that by Proposition D.1 this is
equivalent to our UNI condition). We remark that for any x1 ∈ B1 and x2 ∈ B2 we have

ϵ1
b

≤ ∥x1 − x2∥ ≤ (D + 2)
ϵ1
b
. (C.9)

Let e0 = (y−x′)
∥y−x′∥ . Applying the uniform non-integrability condition stated at the start of this

section for this e0 and y, we see that there exists a1,a2 ∈ WA ∩ AN such that

|∂e0 (log |λa1(x)| − log |λa2(x)|)| ≥ ϵ0 (C.10)

and
a1 ⇝ x and a2 ⇝ x

for all x ∈ B(y, r).
Since our IFS is contracting, and we can choose ϵ1 to be small, we can assume that for m ∈ {1, 2}

the set fam(B̂) is sufficiently small so that we can apply Lemma C.6 and assert that for m ∈ {1, 2}
either |u(fam(x))| ≤ 3

4H(fam(x)) for all x ∈ B̂ or |u(fam(x))| ≥ 1
4H(fam(x)) for all x ∈ B̂. If

|u(fam(x))| ≤ 3
4H(fam(x)) for all x ∈ B̂ for some m ∈ {1, 2} then our result follows immediately.

Thus we will assume in what follows that

|u(fam(x))| ≥
1

4
H(fam(x)) (C.11)

for all x ∈ B̂ for m ∈ {1, 2}.
For x ∈ B̂, we set

z1(x) = wa1(x)|λa1(x)|ibu(fa1(x)) and za2(x) = wa2(x)|λa2(x)|ibu(fa2(x)).
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We claim that there exists M > 0 such that either |z1(x)|/|z2(x)| ≤ M for all x ∈ B̂ or
|z2(x)/z1(x)| ≤ M for all x ∈ B̂. Using (C.11) and our assumptions on u we see that for all
x ∈ B̂ we have

wa1(x)H(fa1(x))

4wa2(x)H(fa2(x))
≤
∣∣∣∣z1(x)z2(x)

∣∣∣∣ ≤ 4wa1(x)H(fa1(x))

wa2(x)H(fa2(x))
.

If there exists x0 ∈ B̂ such that

wa1(x0)H(fa1(x0))

wa2(x0)H(fa2(x0))
≤ 1,

then using (C.2), and Lemma C.2, for all x ∈ B̂ we have

wa1(x)H(fa1(x))

wa2(x)H(fa2(x))
≤ wa1(x0)e

(2D+2)ϵ1(A+C1)H(fa1(x0))

wa2(x0)e
−(2D+2)ϵ1(A+C1)H(fa2(x0))

≤ e2(2D+2)ϵ1(A+C1).

Here C1 > 0 is as in Lemma C.2. Thus in this case we can take M := 4e2(2D+2)ϵ1(A+C1). Similarly
it can be shown that a suitable M ′ exists such that if

wa1(x)H(fa1(x))

wa2(x)H(fa2(x))
≥ 1

for all x ∈ B̂ then |z2(x)/z1(x)| ≤M ′ for all x ∈ B̂. This completes the proof of our claim.
For each m ∈ {1, 2} define the function gm : [0, 1] → C by gm(t) = zm(y+ t(x

′− y)). Then define
Lm : [0, 1] → C by

Lm(t) =

∫ t

0

g′m(s)

gm(s)
ds+ l0,m

where l0,m satisfies el0,m = zm(y). Lm is well defined as gm(t) ̸= 0 for all t ∈ [0, 1] and eLm(t) = zm(t)
for all t ∈ [0, 1]. Set Φ(t) = Im(L1(t))−Im(L2(t)). Since the potential ψ defining the Gibbs measure
is differentiable, we have:

Φ′(t) = Im

(
g′1(t)

g(t)
− g′2(t)

g2(t)

)
= Im

(
∂e0wa1(y + t(x′ − y))∥x′ − y∥|λa1(y + t(x′ − y))|ibu(fa1(y + t(x′ − y)))

wa1(y + t(x′ − y))|λa1(y + t(x′ − y))|ibu(fa1(y + t(x′ − y)))

)
+ Im

(
wa1(y + t(x′ − y))ib∂e0(log |λa1(y + t(x′ − y))|)|x′ − y|u(fa1(y + t(x′ − y)))

wa1(y + t(x′ − y))u(fa1(y + t(x′ − y)))

)
+ Im

(
wa1(y + t(x′ − y))|λa1(y + t(x′ − y))|ibDfa1 (y+t(x

′−y))uDy+t(x′−y)fa1(x
′ − y)

w1(y + t(x′ − y))|λa1(y + t(x′ − y))|ibu(fa1(y + t(x′ − y)))

)

− Im

(
∂e0wa2(y + t(x′ − y))∥x′ − y∥|λa2(y + t(x′ − y))|ibu(fa2(y + t(x′ − y)))

wa2(y + t(x′ − y))|λa2(y + t(x′ − y))|ibu(fa2(y + t(x′ − y)))

)
− Im

(
wa2(y + t(x′ − y))ib∂e0(log |λa2(y + t(x′ − y))|)|x′ − y|u(fa2(y + t(x′ − y)))

wa2(y + t(x′ − y))u(fa2(y + t(x′ − y)))

)
− Im

(
wa2(y + t(x′ − y))|λa2(y + t(x′ − y))|ibDfa2 (y+t(x

′−y))uDy+t(x′−y)fa2(x
′ − y)

wa2(y + t(x′ − y))|λa2(y + t(x′ − y))|ibu(fa2(y + t(x′ − y)))

)
.
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Note that the first and fourth term are equal to 0 as we are taking imaginary parts of real numbers.
Thus after some cancellation we are left with the identity:

Φ′(t) = b∥x′ − y∥
(
∂e0(log |λa1(y + t(x′ − y))| − log |λa2(y + t(x′ − y))|)

)
+ Im

(
Dfa1 (y+t(x

′−y))uDy+t(x′−y)fa1(x
′ − y)

u(fa1(y + t(x′ − y)))

)

− Im

(
Dfa2 (y+t(x

′−y))uDy+t(x′−y)fa2(x
′ − y)

u(fa2(y + t(x′ − y)))

)
.

By our assumptions on u and (C.11), we have∣∣∣∣∣Dfa1 (y+t(x
′−y))uDy+t(x′−y)fa1(x

′ − y)

u(fa1(y + t(x′ − y)))

∣∣∣∣∣ ≤ 4A|b|H(fa1(y + t(x′ − y)))γn0 |x′ − y|
H(fa1(y + t(x′ − y))

= 4A|b|γN |x′ − y|.

Similarly, ∣∣∣∣∣Dfa2 (y+t(x
′−y))uDy+t(x′−y)fa2(x

′ − y)

u(fa2(y + t(x′ − y)))

∣∣∣∣∣ ≤ 4A|b|γN |x′ − y|.

Appealing to bounded distortions it can be shown that there exists m > 0 depending only on our
IFS such that ∣∣∂e0(log |λa1(y + t(x′ − y))| − log |λa2(y + t(x′ − y))|)

∣∣ ≤ m, (C.12)
for any t ∈ [0, 1] (see also (D.1)). Combining (C.10) and (C.12) with the above we have(

ϵ0 − 8AγN
)
|b|∥x′ − y∥ ≤ |Φ′(t)| ≤

(
m+ 8AγN

)
|b|∥x′ − y∥.

Thus for N sufficiently large we have
ϵ0|b|
2

∥x′ − y∥ ≤ |Φ′(t)| ≤ 2m|b|∥x′ − y∥.

Therefore
ϵ0|b|
2

∥x′ − y∥ ≤ |Φ(1)− Φ(0)| ≤ 2m|b|∥x′ − y∥.

By (C.9) we have
ϵ1
|b|

≤ ∥x′ − y∥ ≤ (D + 2)
ϵ1
|b|
.

This implies
ϵ0ϵ1
2

≤ |Φ(1)− Φ(0)| ≤ 2m(D + 2)ϵ1.

Now choose ϵ1 sufficiently small that (2m(D+2)+ ϵ0/2)ϵ1 ≤ π and let ϵ′ = ϵ0ϵ1
8 . Suppose now that

Φ(1),Φ(0) ∈ ∪k∈Z[2πk − ϵ′, 2πk + ϵ′].

Since |Φ(1) − Φ(0)| ≤ 2m(D + 2)ϵ1 we cannot have Φ(1) ∈ [2πk1 − ϵ′, 2πk1 + ϵ′] and Φ(0) ∈
[2πk2 − ϵ′, 2πk2 + ϵ′] for k1 ̸= k2. As we would then have

2m(D + 2)ϵ1 ≥ |Φ(1)− Φ(0)| ≥ 2π − 2ϵ′ = 2π − ϵ0ϵ1
4

which is not possible given our choice of ϵ1. Therefore we must have
ϵ0ϵ1
2

≤ |Φ(1)− Φ(0)| ≤ 2ϵ′ =
ϵ0ϵ1
4
.

Which is also not possible. Recall now the definition of Φ(t) = Im(L1(t)) − Im(L2(t)), where for
m ∈ {1, 2} one defined Lm(t) =

∫ t
0
g′m(s)
gm(s) ds+ l0,m and gm(t) = zm(y+ t(x

′− y)). It follows from the
above that we cannot have

|arg(z1(y))− arg(z2(y))| < ϵ′
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and
|arg(z1(x′))− arg(z2(x

′))| < ϵ′

for both y and x′ simultaneously.
Let us assume that

|arg(z1(x′))− arg(z2(x
′))| ≥ ϵ′.

The other case when |arg(z1(y))− arg(z2(y))| ≥ ϵ′ follows similarly. Appealing to the bound

|∂e (log |λa1(y)| − log |λa2(y)|)| ≤ m

which holds for all y ∈ U and unit vectors e ∈ Rd, it can be shown using a similar argument to that
given above describing how arguments change along paths that there exists ϵ2 > 0 depending only
on our IFS such that if x ∈ B

(
x′, ϵ2|b|

)
⊂ B

(
y, ϵ1D|b|

)
then

|arg(z1(x))− arg(z2(x))| ≥ ϵ′/2.

Applying Lemma C.7 and our assumption |u| ≤ H, we can assert that there exists η0 = η0(M, ϵ′)

such that one of the following holds for all x ∈ B
(
x′, ϵ2|b|

)
: either∣∣∣wa1(x)|λa1(x)|ibu(fa1(x)) + wa2(x)|λa2(x)|ibu(fa2(x))

∣∣∣ ≤ η0wa1(x)H(fa1(x)) + wa2(x)H(fa2(x)),

or∣∣∣wa1(x)|λa1(x)|ibu(fa1(x)) + wa2(x)|λa2(x)|ibu(fa2(x))
∣∣∣ ≤ wa1(x)H(fa1(x)) + η0wa2(x)H(fa2(x)),

depending on whether |z1(x)|/|z2(x)| ≤ M for all x ∈ B
(
x′, ϵ2|b|

)
or |z2(x)|/|z1(x)| ≤ M for all

x ∈ B
(
x′, ϵ2|b|

)
. This completes our proof. □

C.4. Verifying Lemma C.5. Let us now verify all the parts of Lemma C.5. We first note that
Proposition C.3 gives the following immediate corollary:

Corollary C.8. Let N ∈ N be sufficiently large and |b| > 1. If u ∈ C1(U) satisfies |u| ≤ H and
∥Du∥ ≤ A|b|H, then there exists J ∈ Eb such that

|LNibu| ≤ N J
b (H).

Notice the corollary above gives us the first part of item 3 from Lemma C.5. It remains to prove
the remaining parts.

We now prove the first part of Lemma C.5.

Proof of Lemma C.5(1). Let J ∈ Eb and H ∈ CA|b|. Then we have

N J
b (H) =

∑
a∈AN

a⇝x

wa(x)χ(fa(x))H(fa(x)).

Applying the product rule for differentiation this yields

DxN J
b (H) =

∑
a∈AN

a⇝x

Dxwaχ(fa(x))H(fa(x)) + wa(x)Dxχ(fa)H(fa(x)) + wa(x)χ(fa(x))DxH(fa).

We will focus on each of the terms appearing in this summation individually. Applying Lemma C.2
to the first term we have∥∥∥ ∑

a∈AN

a⇝x

Dxwaχ(fa(x))H(fa(x))
∥∥∥ ≤ C2

∑
a∈AN

a⇝x

wa(x)χ(fa(x))H(fa(x)) ≤ C2N J
b (H)(x).
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Here C2 is as in the statement of Lemma C.2. For the second term, it follows by our assumptions
on χ that

∥
∑

a∈AN

a⇝x

wa(x)Dxχ(fa)H(fa(x))∥ ≤ |b|
∑

a∈AN

a⇝x

wa(x)H(fa(x))

≤ 2|b|N J
b (H)(x).

In the above we used that H = χH
χ ≤ χH

η ≤ 2χH (recall χ takes values in [η, 1] and η ≥ 1/2). For
the third term we have∥∥∥ ∑

a∈AN

a⇝x

wa(x)χ(fa(x))DxH(fa)
∥∥∥ =

∥∥∥ ∑
a∈AN

a⇝x

wa(x)χ(fa(x))Dfa(x)HDxfa

∥∥∥
≤
∑

a∈AN

a⇝x

wa(x)χ(fa(x))A|b|H(fa(x))γ
N

≤ A|b|γNN J
b (H)(x).

Combining the bounds collected above we have

∥DNbH∥ ≤
(
C2 + 2|b|+A|b|γN

)
N J
b (H).

Therefore (C.3) implies that for N sufficiently large

∥DN J
b H∥ ≤ A|b|N J

b (H).

Thus the cone is preserved and our proof is complete. □

We now set out to prove the second part of Lemma C.5.

Proof of Lemma C.5(2). Applying the Cauchy Schwartz inequality and the fact χ ≤ 1, for all x ∈
XA we have

|N J
b H(x)|2 = |

∑
a∈AN

a⇝x

wa(x)χ(fa(x))H(fa(x))|2

≤
∑

a∈AN

a⇝x

wa(x)χ(fa(x))
2
∑

a∈AN

a⇝x

wa(x)H(fa(x))
2

≤
∑

a∈AN

a⇝x

wa(x)χ(fa(x))
∑

a∈AN

a⇝x

wa(x)H(fa(x))
2.

Using (C.1) and the fact χ ≤ 1, we see that the above implies the following bound for all x ∈ XA:

|N J
b H(x)|2 ≤ (L0H

2)(x).

If x ∈ B(x′l,
ϵ2
3|b|) ∩ XA then χ(fal

(x)) = η, by the definition of the Dolgopyat operators, thus for
these x the above implies that

|N J
b H(x)|2 =

 ∑
a∈AN

a⇝x

wa(x)− wal
(x)(1− η)


 ∑

a∈AN

a⇝x

wa(x)H(fa(x))
2


≤ κ(LN0 H2)(x)

where κ ∈ (0, 1) is given by

κ = 1− (1− η) min
a∈AN ,x∈XA

{wa(x)}.
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Here we have again used our assumption (C.1).
Combining the above bounds, we have∫

|N J
b H|2 dµ ≤ κ

∫
∪l∈S(b)B(x′l,

ϵ2
3|b| )

LN0 H2 dµ+

∫
(∪l∈S(b)B(x′l,

ϵ2
3|b| ))

c

LN0 H2 dµ

=

∫
LN0 H2 dµ− (1− κ)

∫
∪l∈S(b)B(x′l,

ϵ2
3|b| )

LN0 H2 dµ

=

∫
H2 dµ− (1− κ)

∫
∪l∈S(b)B(x′l,

ϵ2
3|b| )

LN0 H2 dµ

In the final line we used (2.1). Therefore to complete our proof it suffices to show that there exists
δ > 0 such that ∫

∪l∈S(b)B(x′l,
ϵ2
3|b| )

LN0 H2 dµ ≥ δ

∫
H2 dµ.

We start by remarking that since we choose {yl}l∈S(b) ⊂ XA to be a maximal set for which

B
(
yl,

ϵ1D
|b|

)
∩B

(
yl′ ,

ϵ1D
|b|

)
= ∅ for distinct l, l′ ∈ S(b), we must have

XA ⊂
⋃

l∈S(b)

B

(
yl,

2ϵ1D

|b|

)
. (C.13)

Moreover, using the doubling property of Gibbs measures, there must exists C > 0 such that

µ

(
B

(
yl,

2ϵ1D

|b|

))
≤ Cµ

(
B

(
x′l,

ϵ2
3|b|

))
.

Combining this bound with (2.1), (C.2), (C.13) and the fact LN0 H2 ∈ CA|b| for N sufficiently large,
we have ∫

H2dµ =

∫
LN0 H2 dµ ≤

∑
l∈S(b)

∫
B
(
yl,

2ϵ1D
|b|

) LN0 H2 dµ

≤ e4ϵ1DA
∑
l∈S(b)

µ

(
B

(
yl,

2ϵ1D

|b|

))
min

x∈B
(
yl,

2ϵ1D
|b|

)LN0 H2(x)

≤ e4ϵ1DAC
∑
l∈S(b)

µ

(
B

(
x′l,

ϵ2
3|b|

))
min

x∈B
(
yl,

2ϵ1D
|b|

)LN0 H2(x)

≤ e4ϵ1DAC

∫
∪l∈S(b)B(x′l,

ϵ2
3|b| )

LN0 H2 dµ

In the last line we used that B
(
x′l,

ϵ2
3|b|

)
⊂ B

(
yl,

2ϵ1D
|b|

)
. Taking δ = (e4ϵ1DAC)−1 this completes

our proof. □

We will now show that the second part of the third statement in Lemma C.5 is satisfied and in
doing so complete our proof of this lemma.

Proof of Lemma C.5(3). We have

∥DxLNibu∥ = ∥
∑

a∈AN

a⇝x

Dxwa|λa(x)|ibu(fa(x)) + wa(x)Dx|λa|ibu(fa(x)) + wa(x)|λa(x)|ibDxu(fa)∥.
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We will consider each of the three terms above individually. In what follows C2 and C3 are as in
the statement of Lemma C.2. Applying Lemma C.2 to the first term we have

∥
∑

a∈AN

a⇝x

Dxwa|λa(x)|ibu(fa(x))∥ ≤ C2

∑
a∈AN

a⇝x

wa(x)H(fa(x)).

Here we have used that |u| ≤ H. Recalling that H ≤ 2χH, the above implies

∥
∑
a∈AN

Dxwa|λa(x)|ibu(fa(x))∥ ≤ 2C2N J
b H.

For the second term, using Lemma C.2 and H ≤ 2χH we have

∥
∑

a∈AN

a⇝x

wa(x)Dx|λa|ibu(fa(x))∥ ≤ C3|b|
∑

a∈AN

a⇝x

wa(x)|u(fa(x))| ≤ 2C3|b|N J
b H.

For the third term we have

∥
∑

a∈AN

a⇝x

wa(x)|λa(x)|ibDxu(fa)∥ = ∥
∑

a∈AN

a⇝x

wa(x)|λa(x)|ibDfa(x)uDxfa∥

≤
∑

a∈AN

a⇝x

wa(x)∥Dfa(x)u∥γ
n

≤
∑

a∈AN

a⇝x

wa(x)A|b|H(fa(x))γ
n

≤ 2A|b|γnN J
b H(x).

In the final line we used H ≤ 2χH. Summarizing the above, we have

∥DxLNibu∥ ≤ (2C2 + 2C3|b|+ 2A|b|γn)N J
b H.

Which by (C.4) implies
∥DxLNibu∥ ≤ A|b|N J

b H(x).

This completes our proof. □

Appendix D. Equivalence of the UNI conditions

In this section we will prove that our UNI condition is equivalent to the UNI condition stated
by Li and Pan [56]. To help with our exposition we recall its statement below. Our proof of this
proposition is based upon an argument of Avila, Gouëzel and Yoccoz [9].

Proposition D.1. Let Φ = {fa : a ∈ A} be a conformal IFS (i.e. Dxfa = λa(x)Oa(x), x ∈ Rd,
for some λa(x) ∈ (−1, 1) and Oa(x) ∈ SO(d)) satisfying the strong separation condition and ΣA be
a subshift of finite type. Assume that there exists ϵ0 > 0 such that the following holds for infinitely
many n ∈ N: There exists x ∈ XA such that for any unit vector e ∈ Rd there exists a1,a2 ∈ WA∩An

such that:
• We have

|∂e (log |λa1(x)| − log |λa2(x)|)| ≥ ϵ0.

• a1 ⇝ x and a2 ⇝ x.
Then there exists r > 0 and ϵ0 > 0 such that for any large n ∈ N, any x ∈ XA and unit vector
e ∈ Rd, there exist a1,a2 ∈ WA ∩ An such that:

• For all y ∈ B(x, r) we have

|∂e (log |λa1(y)| − log |λa2(y)|)| ≥ ϵ0.
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• For all y ∈ B(x, r) we have a1 ⇝ y and a2 ⇝ y.

Proof. Recall that U =
⋃
a∈A Ua is a choice of open set satisfying XΦ ⊂ U , where the Ua are disjoint

open sets with fa(U) ⊂ Ua for all a ∈ A. We begin our proof by observing the following equality:

log |λa(x)| =
n∑
i=1

log |λai(fai+1...an(x))|

for any x ∈ U and a ∈ WA ∩ An satisfying a ⇝ x. Consequently, for any unit vector e ∈ Rd, if we
apply the chain rule we have

∂e log |λa(x)| =

(
n∑
i=1

Dfai+1...an (x)
|λai |Dxfai+1...an

|λai(fai+1...an(x))|

)
· e. (D.1)

Now using the fact that our IFS is uniformly contracting and therefore ∥Dxfai+1...an∥ ≪ γn−i for
some γ ∈ (0, 1), we can assert that for any x ∈ U and a ∈ WA ∩ An satisfying a ⇝ x we have the
following for any 1 ≤ m ≤ n:∣∣∣∣∣∂e log |λa(x)| −

(
n∑

i=m

Dfai+1...an (x)
|λai |Dxfai+1...an

|λai(fai+1...an(x))|

)
· e

∣∣∣∣∣≪ γn−m.

This is equivalent to ∣∣∂e log |λa(x)| − ∂e log |λam+1...an(x)
∣∣≪ γn−m (D.2)

for 1 ≤ m ≤ n. Equation (D.2) has two important consequences. The first is that for n sufficiently
large depending on ϵ0, if

|∂e (log |λa1(x)| − log |λa2(x)|)| ≥ ϵ0 (D.3)
for some x ∈ U and a1,a2 ∈ WA ∩ An satisfying a1 ⇝ x and a2 ⇝ x, then

|∂e (log |λb1a1(x)| − log |λb2a2(x)|)| ≥
ϵ0
2

for any b1,b2 ∈ WA satisfying b1 ⇝ a1 and b2 ⇝ a2. Consequently, at the cost of swapping ϵ0
with a potentially smaller constant, we can assume that the hypothesis of our lemma holds for all
n sufficiently large. The second consequence of (D.2) is that there exists r1 > 0 depending only on
our IFS and ϵ0, such that if (D.3) holds for some x ∈ XA, a1,a2 ∈ WA ∩An satisfying a1 ⇝ x and
a2 ⇝ x and unit vector e ∈ Rd, then for all y ∈ B(x, r1) we have

|∂e (log |λa1(y)| − log |λa2(y)|)| ≥
ϵ0
2
, (D.4)

a1 ⇝ y and a2 ⇝ y.
Now let n ∈ N be a large number and x ∈ XA be such that for all unit vectors e ∈ Rd there exists

a1,a2 ∈ WA ∩ An such that (D.3) is satisfied, a1 ⇝ x, and a2 ⇝ x. Using that ΣA is topologically
mixing and r1 depends only on our IFS and ϵ0, we can assert that there exists m ∈ N depending
only on our IFS, ΣA and ϵ0 such that for any x′ ∈ XA there exists c ∈ WA∩Am so that c⇝ x′ and

fc(x
′) ∈ B(x, r1). (D.5)

For such an x′ and c we have the following for any unit vector e ∈ Rd and a1,a2 ∈ WA ∩ An

satisfying a1 ⇝ c and a2 ⇝ c:∣∣∂e (log |λa1c(x
′)| − log |λa2c(x

′)|
)∣∣

=
∣∣∂e (log |λa1(fc(x

′))| − log |λa2(fc(x
′))|
)∣∣

=

(
n∑
i=1

Dfai+1,1...an,1 (x)
|λai,1 |Dxfai+1,1...an,1

|λai,1(fai+1,1...an,1(x))|
−

n∑
i=1

Dfai+1,2...an,2 (x)
|λai,2 |Dxfai+1,2...an,2

|λai,2(fai+1,2...an,2(x))|

)
Dxfc · e.
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In the final line we used the chain rule and (D.1). If we let vx′,e = Dx′fc · e then it follows from the
above and (D.1) that∣∣∂e (log |λa1c(x

′)| − log |λa2c′(x
′)|
)∣∣ = ∣∣∣∂vx′,e (log |λa1(fc(x

′))| − log |λa2(fc(x
′))|
)∣∣∣ . (D.6)

The vector vx′,e is not necessarily of unit length and instead satisfies the lower bound ∥vx′,e∥ ≥ κm

for some κ ∈ (0, 1) depending on the IFS.
Using our assumptions on x, we can assert that there exists a1,a2 ∈ WA such that a1 ⇝ x,

a2 ⇝ x and ∣∣∣∣∣∂ vx′,e
∥vx′,e∥

(log |λa1(x)| − log |λa2(x)|)

∣∣∣∣∣ ≥ ϵ0.

Now using the above together with our lower bound for the norm of vx′,e, (D.4), (D.5), and (D.6),
yields that for this choice of a1,a2 we have a1c⇝ x′, a2c⇝ x′ and∣∣∂e (log |λa1c(x

′)| − log |λa2c′(x
′)|
)∣∣ ≥ ϵ0κ

m

2
.

Summarizing the above, we have shown that for any n ∈ N sufficiently large, for any x ∈ XA and
unit vector e ∈ Rd there exists a1,a2 ∈ WA ∩ An with a1 ⇝ x, and a2 ⇝ x such that

|∂e (log |λa1(x)| − log |λa2(x)|)| ≥
ϵ0κ

m

2
.

Appealing again to (D.2) as in the derivation of (D.4), it can be shown that there exists r > 0
depending only on our IFS and ϵ0, such that for any n ∈ N sufficiently large, for any x ∈ XA and
unit vector e ∈ Rd, there exits a1,a2 ∈ WA ∩ An such that for all y ∈ B(x, r) and a1 ⇝ y, and
a2 ⇝ y, we have

|∂e (log |λa1(y)| − log |λa2(y)|)| ≥
ϵ0κ

m

4
.

Recalling that m and κ only depend on our IFS, ΣA and ϵ0, we see that we can take ϵ0κm

4 as our
choice of ϵ0. Taking r as chosen above completes our proof. □
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