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Abstract. Let (X,B, µ) be a Borel probability space. Let Tn : X → X be a sequence
of continuous transformations on X. Let ν be a probability measure on X such that
1
N

∑N
n=1(Tn)∗ν → µ in the weak-∗ topology. Under general conditions, we show that for ν

almost every x ∈ X, the measures 1
N

∑N
n=1 δTnx get equidistributed towards µ if N is re-

stricted to a set of full upper density. We present applications of these results to translates
of closed orbits of Lie groups on homogeneous spaces. As a corollary, we prove equidistribu-
tion of exponentially sparse orbits of the horocycle flow on quotients of SL(2,R), starting
from every point in almost every direction.

1. Introduction

Many problems in number theory and geometry can be recast in terms of the equidistri-
bution of translates of appropriate measures on quotients of certain Lie groups. The general
set up of these results is a Borel probability space (X,B, µ), a probability measure ν on X
(usually singular with respect to µ) and a sequence of transformations Tn : X → X such
that

1

N

N∑
n=1

(Tn)∗ν
N→∞−−−→ µ (1.1)

where (Tn)∗ν is the pushforward of ν under Tn and the convergence is in the weak-∗ topology.
A natural question is to what extent can one extend such results to describe the behavior of
measures of the form

1

N

N∑
n=1

δTnx (1.2)

for ν-almost every x, where δy denotes the dirac delta measure at a point y.
Recently, an analogous question for flows was addressed by Chaika and Eskin [CE] in the

context of flat surfaces. In that setting, X is some affine submanifold of the moduli space of
flat structures on a surface, µ is a natural affine SL(2,R) invariant measure, ν is the measure
supported on an orbit of SO(2) and the transformations are of the form a(t) = diag(et, e−t).
They show that for ν almost every x, the empirical measures analogous to those in (1.2) get
equidistributed towards µ.

In the context of homogeneous spaces, Shi [Shi] explored this question for translates of
measures supported on (pieces of) orbits of certain horospherical subgroups of Lie groups by
one parameter diagonalizable subgroups. Here X is a homogeneous space for a Lie group G,
ν is a measure on an orbit of a certain horospherical subgroup, and Tn = T n, where T is an
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Ad-diagonalizable element of G. Equidistribution of empirical measures towards the natural
G-invariant Haar measure is proven ν almost everywhere.

In [KSW], an effective version of this result is obtained via different methods. The conver-
gence of empirical measures analogous to (1.2) is proven for general dynamical systems under
the hypothesis of some form of exponential mixing of the transformation T with respect to
the non-invariant measure ν.

In all three cases, equidistribution was obtained by exploiting specific properties of the
system at hand, while not directly utilizing the fact that (1.1) holds.

1.1. Statement of Results. In this article, we approach this question in the general context
of continuous measure preserving transformations, assuming (1.1) only. We obtain equidis-
tribution results of measures in (1.2) under general conditions yet only along subsequences
of full upper density. Recall that the upper density of a subset A ⊆ N, denoted by d(A) is
defined to be

d(A) = lim sup
N→∞

#(A ∩ [1, N ])

N

In what follows, X will be a locally compact, second countable topological space and B
is its Borel σ-algebra. A pair (X,B) will be called a standard Borel space. The following is
our first main result for the case of translations by powers of a single transformation.

Theorem 1.1. Suppose (X,B, µ) is a standard Borel probability space. Let T be a continuous
ergodic measure preserving transformation of X. Assume ν is a probability measure on X
satisfying

1

N

N−1∑
n=0

T n∗ ν
weak−∗−−−−→
N→∞

µ

Then, for ν-almost every x ∈ X, there exists a sequence A(x) ⊆ N, of upper density 1, such
that for all ψ ∈ Cc(X),

lim
N→∞
N∈A(x)

1

N

N−1∑
n=0

ψ(T nx) =

∫
ψ dµ

Our next result concerns the more general situation of translating by sequences of trans-
formations. In this generality, we assume more structure on the possible limit points of the
empirical measures.

Theorem 1.2. Suppose (X,B, µ) be a standard Borel probability space. Let (Tn)n be a
sequence of continuous transformations of X. Let S : X → X be a continuous ergodic µ
preserving transformation. Let ν be a probability measure on X. Assume the following holds:

(1) 1
N

∑N
n=1(Tn)∗ν

N→∞−−−→ µ in the weak-∗ topology.

(2) For ν-almost every x ∈ X, any limit point of the sequence of measures 1
N

∑N
n=1 δTnx

is S-invariant.
(3) There exists a Borel measurable, σ-compact set Z ∈ B such that µ(Z) = 0 and for

all ergodic S invariant measures λ 6= µ, λ(Z) = 1.
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Then, for ν-almost every x ∈ X, there exists a sequence A(x) ⊆ N, of upper density equal
to 1, such that for all ψ ∈ Cc(X),

lim
N→∞
N∈A(x)

1

N

N∑
n=1

ψ(Tnx) =

∫
ψ dµ

We remark that the maximal inequality used in the proof of Theorem 1.2 does not require
the hypotheses of the Theorem.

We now discuss some applications of these results. Theorem 1.1 is broadly applicable to
general dynamical systems and thus we present some applications of Theorem 1.2 within
homogeneous dynamics where we demonstrate that its hypotheses are verified.

1.2. Sparse Equidistribution and Translates of Orbits of Lie Groups. Our motiva-
tion for studying this question comes from the problem of sparse equidistribution of unipotent
flows on homogeneous spaces. This was conjectured by Shah in [Sha]. Recent progress was
achieved in [Ven] for the horocycle flow on compact quotients of SL2(R) along sequences
of the form n1+γ for small values of γ. See also [TV, Zhe, FFT] for more results in this
direction and the work of Sarnak and Ubis on the equidistribution along the primes [SU] on
SL2(R)/SL2(Z). However, the question in full generality remains open.

With the help of Theorem 1.2, we obtain an equidistribution result for exponentially sparse
orbits of unipotent flows, of which the horocycle flow is an example.

In order to apply Theorem 1.2 in this setup, we introduce the notion of Ratner Sequences.
We say a sequence gn of elements of G is a Ratner Sequence with respect to a probability
measure ν on G/Γ if there exists a non-trivial Ad-unipotent element u ∈ G such that for ν

almost every x ∈ G/Γ, any limit point of the sequence of empirical measures 1
N

∑N
n=1 δgnx is

invariant by u. Our main theorem in this set up is the following.

Theorem 1.3. Suppose G is a connected semisimple Lie group and Γ is an irreducible
lattice in G. Assume gn is a Ratner Sequence with respect to a probability measure ν on G/Γ
satisfying

1

N

N∑
n=1

(gn)∗ν
N→∞−−−→ µG/Γ (1.3)

where µG/Γ denotes the unique G-invariant Haar probability measure on G/Γ. Then, for ν
almost every x ∈ G/Γ, there exists a sequence A(x) ⊆ N of upper density 1 such that

lim
N→∞
N∈A(x)

1

N

N∑
n=1

δgnx = µG/Γ

Apart from Theorem 1.2, a key ingredient in the proof of Theorem 1.3 is Ratner’s measure
classification theorem [Rat].

The assumption on the equidistribution of the translates of a probability measure ν by a
sequence of elements gn is satisfied in numerous examples in homogeneous dynamics. For
example, when ν is the Haar measure supported on a closed orbit of a symmetric subgroup
of G, it was shown in [EM] that (1.3) is satisfied as soon as gn tends to infinity in G/H.
Recall that H is said to be a symmetric subgroup if it is the fixed point set of an involution
of G.

Using Ratner’s theorem, this result was extended in [EMS] to include translates of maximal
reductive subgroups that is, subgroups which are only invariant by an involution of G. Thus,
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the applicability of Theorem 1.3 boils down to the existence of Ratner sequences which is
the subject of the next section.

1.2.1. Existence of Ratner Sequences. We prove a general criterion on the existence of
sparse Ratner Sequences inside 1-parameter unipotent subgroups. The proof relies on the
representation theory of embedded copies of SL2(R) inside G in addition to a generalization
of a technique developed by Chaika and Eskin [CE] in the setting of strata of Abelian
differentials.

For a subgroup H 6 G, let ZG(H) denote the centralizer of H inside G. For 2 sequences
of positive real numbers an and bn, we use an � bn to mean their ratio is uniformly bounded
from above and below by positive constants for all n. The following is the main statement.

Theorem 1.4. Suppose G is a semisimple Lie group and Γ is a discrete subgroup of G. Let
H 6 G be a closed connected subgroup and let µH denote the H-invariant probability measure
supported on a closed orbit of H on G/Γ. Assume U = {ut : t ∈ R} is a 1-parameter Ad-
unipotent subgroup of G such that U 6⊂ ZG(H). Then, for every sequence tn > 0 satisfying
tn � eλn for some constant λ > 0, utn is a Ratner sequence for µH .

Unipotent invariance is deduced using a law of large numbers argument which is similar in
spirit to Breiman’s law of large numbers. However, the relevant random variables are weakly
dependent and exponential growth is used to guarantee a sufficiently fast rate of decay of
correlations. This leaves open the question of whether Theorem 1.4 holds for polynomially
growing sequences.

In the appendix, using different methods, we prove a more crude criterion for the existence
of Ratner sequences when H is a symmetric subgroup of G, but we drop the restriction on
the unipotence of the elements gn.

We show that any sequence gn satisfying an exponential growth condition similar to the
one in Theorem 1.4 contains a Ratner sequence as a subsequence. See Theorem A.1 for the
precise statement. Note that we only require H to be closed and connected in Theorem 1.4.

In the particular instance when G = SL2(R) and the sequence gn comes from the action
of the horocycle flow, Theorem 1.3 takes the following form:

Corollary 1.5. Let G = SL(2,R), Γ ⊂ G a lattice and let H = SO(2). Let λ > 0 and for
n ∈ N, let tn = eλn. Let

gn =

(
1 tn
0 1

)
, kθ =

(
cos(θ) sin(θ)
− sin(θ) cos(θ)

)
Then, for every x ∈ G/Γ and for almost every θ ∈ [0, 2π], there exists a sequence A(θ) ⊆ N

of upper density 1 such that

lim
N→∞
N∈A(θ)

1

N

N∑
n=1

δgnkθx = µG/Γ

Moreover, if G/Γ is compact then A(θ) = N.

Proof. Since H is its own centralizer in G, by Theorem 1.4, gn is a Ratner sequence for H.
By the work of Eskin and McMullen [EM], one has that gnµH → µG/Γ. Thus, the corollary
follows from Theorem 1.3. When G/Γ is compact, the Haar measure is uniquely ergodic
under the action of unipotent elements on G/Γ. Since gn is a Ratner sequence, the claim
follows. �
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The main point of the Corollary is that it holds for every x. This is not guaranteed by
any general theorem on sparse equidistribution almost everywhere. We remark that even
density of the sparse orbits considered in Theorem 1.3 is not known in this generality.

The paper is organized as follows. In § 2, we prove an analogue of the maximal ergodic
theorem in our set up. We use this to prove Theorems 1.1 and 1.2 in § 3 and § 4 respectively.
In § 5, we discuss the existence of Ratner sequences and prove Theorem 1.4. In § 6, we
provide a proof of Theorem 1.3.

Acknowledgements. I would like to thank my advisor, Nimish Shah, for numerous valuable
discussions.

2. An Analogue of the Maximal Inequality

The following proposition is an extension of the classical maximal ergodic theorem to
the set up involving sequences of transformations and a non-invariant measure. The key
observation is to convert the classical statement of the maximal inequality into one concerning
finite shifted orbit averages with quantitative control on the size of the shift in comparison
with the length of the orbit segment.

Proposition 2.1. Let (X,B) be a standard Borel probability space. Let Tn be a sequence of
continuous transformations on X. Let ν, µ be probability measures on X such that

1

N

N−1∑
n=0

(Tn)∗ν
weak−∗−−−−→
N→∞

µ

Let ψ ∈ Cc(X) and let α > 0 and β ∈ (0, 1). For every j,N ≥ 1, define the set

Eψ
α,N,j =

{
x ∈ X : sup

1≤M≤N

∣∣∣∣∣ 1

M

j+M−1∑
k=j

ψ(Tkx)

∣∣∣∣∣ > α

}

Then, for all sufficiently large N ∈ N, depending on ψ and satisfying β ≤ 1− 1/N , there
exists some 0 ≤ jN < βN , such that

αβν(Eψ
α,N,jN

) ≤ 12||ψ||L1(µ)

We will deduce this proposition from the classical maximal inequality for l1(Z) which is a
consequence of Vitali’s covering lemma.

Lemma 2.2 (Lemma 2.29, [EW]). Let φ ∈ l1(Z). Define the following maximal function,
for a ∈ Z:

φ∗(a) = sup
N≥1

∣∣∣∣∣ 1

N

N−1∑
i=0

φ(i+ a)

∣∣∣∣∣
Let α > 0 and define

Eα = {a ∈ Z | φ∗(a) > α}

Then,

α |Eα| ≤ 3||φ||l1(Z)
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Proof of Proposition 2.1. Let ψ ∈ Cc(X) and let α > 0, β ∈ (0, 1). Let N ≥ 1 be such that

β ≤ 1−1/N and let Eψ
α,N,j be as in the statement. Let x ∈ X and let J > N be a parameter

to be determined later. Define the following function

φ(j) =

{
ψ(Tjx) 0 ≤ j ≤ J

0 otherwise

Then, clearly φ ∈ l1(Z). For a ∈ Z, define the following two functions

φ∗(a) = sup
1≤M

∣∣∣∣∣ 1

M

M−1∑
k=0

φ(k + a)

∣∣∣∣∣ , φ∗N(a) = sup
1≤n≤N

∣∣∣∣∣ 1n
n−1∑
k=0

φ(k + a)

∣∣∣∣∣
Define the corresponding exceptional sets

Eφ
α = {a ∈ Z | φ∗(a) > α} , Eφ

α,N = {a ∈ [0, J −N − 1] | φ∗N(a) > α}
By Lemma 2.2 applied to φ, we have

α
∣∣∣Eφ

α,N

∣∣∣ ≤ α
∣∣Eφ

α

∣∣ ≤ 3||φ||l1(Z) (2.1)

Note that for a ∈ [0, J −N − 1], we have

φ∗N(a) = sup
1≤n≤N

∣∣∣∣∣ 1n
n−1∑
k=0

ψ(Tk+ax)

∣∣∣∣∣ (2.2)

Let χα,N,j denote the indicator function of Eψ
α,N,j. Thus, for j ∈ [0, J −N − 1],

χα,N,j(x) = 1 if and only if j ∈ Eφ
α,N (2.3)

Thus, combining (2.1), (2.2) and (2.3) along with the definition of φ, we get

α
J−N−1∑
j=0

χα,N,j(x) = α
∣∣∣Eφ

α,N

∣∣∣ ≤ 3
J∑
j=0

|φ(j)| = 3
J∑
j=0

|ψ(Tjx)|

Integrating both sides of the above with respect to ν yields

α

J−N−1∑
j=0

ν(Eψ
α,N,j) ≤ 3

J∑
j=0

∫
|ψ(Tjx)| dν(x) (2.4)

Taking J = (1+β)N in (2.4), dividing both sides by J−N and noting that (1+β)N+1 ≤
2N , we get the following.

α

βN

βN−1∑
j=0

ν(Eψ
α,N,j) ≤ 3

(1 + β)N + 1

βN

1

(1 + β)N + 1

(1+β)N∑
j=0

∫
|ψ(Tjx)| dν(x)

≤ 6

β

1

(1 + β)N + 1

(1+β)N∑
j=0

∫
|ψ(Tjx)| dν(x) (2.5)

Now, by assumption,

1

(1 + β)N + 1

(1+β)N∑
j=0

∫
|ψ(Tjx)| dν(x)→

∫
|ψ| dµ = ||ψ||L1(µ)



POINTWISE ERGODIC THEOREMS AND TRANSLATED MEASURES 7

Thus, for all N sufficiently large, depending on ψ, we have

1

(1 + β)N + 1

(1+β)N∑
j=0

∫
|ψ(Tjx)| dν(x) ≤ 2||ψ||L1(µ)

Combining this with (2.5), we get for all N sufficiently large,

1

βN

βN−1∑
j=0

ν(Eψ
α,N,j) ≤

12||ψ||L1(µ)

αβ

Thus, there must exist some j = j(N) ∈ [0, βN − 1] for which the conclusion of the
Proposition holds.

�

3. An Analogue of Birkhoff’s Ergodic Theorem

This section is dedicated to the proof of Theorem 1.1. With the maximal inequality for the
non-invariant measure ν in place (Proposition 2.1), our proof will follow Bourgain’s approach
in deducing pointwise convergence from the mean ergodic theorem (cf. [Bou], Section 2-C).

Recall that for a sequence of sets An, the limsup of these sets is the set of elements which
belong to An for infinitely many n. More precisely,

lim sup
n→∞

An =
⋂
n≥1

⋃
k≥n

Ak

The following simple observation will be used repeatedly in what follows.

Lemma 3.1. Let X be a standard Borel space and let µ be a probability measure on X. Let
An ⊆ X be a sequence of measurable sets such that µ(An) ≥ α for some α ∈ [0, 1]. Then,

µ

(
lim sup
n→∞

An

)
≥ α

Proof. This follows from the definition of lim supn→∞An as a decreasing intersection and the
continuity of the measure µ. �

The following Lemma is the main step in the proof of Theorem 1.1.

Lemma 3.2. Let (X,B, µ) be a standard Borel probability space. Let T be an ergodic measure
preserving transformation on X. Let ν be a probability measure on X such that

1

N

N−1∑
n=0

T n∗ ν
weak−∗−−−−→
N→∞

µ

Let f1, . . . , fn ∈ Cc(X). Then, for ν-almost every x ∈ X, there exists a sequence A ⊆ N, of
upper density 1, depending on x and the functions f1, . . . , fn, such that for all k = 1, . . . , n,

lim
N∈A
N→∞

1

N

N−1∑
n=0

fk(T
nx) =

∫
fkµ

Let us deduce Theorem 1.1 from this Lemma first.
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3.1. Proof of Theorem 1.1. Let F = {fk ∈ Cc(X) : k ∈ N} be an enumeration of a count-
able set of continuous functions which are dense in Cc(X) in the uniform norm. Then, it
suffices to show that for ν almost every x ∈ X, there exists a sequence A(x) ⊆ N, of full
upper density such that for all f ∈ F ,

lim
N→∞
N∈A(x)

1

N

N∑
k=1

f(T kx) =

∫
f dµ (3.1)

For each n ∈ N, let Fn = {f1, . . . , fn} ⊂ F . By Lemma 3.2, for each n, there exists a set
Xn with ν(Xn) = 1, such that for all x ∈ Xn, there exists a sequence A(x,Fn) ⊆ N, along
which the limit in (3.1) holds for all f ∈ Fn.

Let Y = ∩nXn. Then, ν(Y ) = 1. Let y ∈ Y . We will build a sequence A(y) by induction
from the sequences A(y,Fn). For each n ∈ N, let Nn ∈ N be such that for all N ≥ Nn with
N ∈ A(y,Fn), and all f ∈ Fn, ∣∣∣∣∣ 1

N

N∑
k=1

f(T ky)−
∫
f dµ

∣∣∣∣∣ ≤ 1

n
(3.2)

Let M1 = N1. If Mj has been defined, let Mj+1 be such that the following holds

|A(y,Fj) ∩ [1,Mj+1]|
Mj+1

≥ 1− 1

j

Mj

Mj+1

≤ 1

j

Mj+1 ≥ Nj+1

Note that the above implies that

|A(y,Fj) ∩ [Mj,Mj+1]|
Mj+1

≥ 1− 2

j

Now, define the sequence A(y) as follows:

A(y) =
∞⋃
j=1

A(y,Fj) ∩ [Mj,Mj+1]

Thus, by construction, the upper density of A(y) is equal to 1. Now, let f ∈ F . Then,
f ∈ Fn for all n ≥ n0, for some n0 ∈ N. Thus, for all N ≥ Mn0 such that N ∈ A(y), there
exists j ≥ n0, such that N ∈ A(y,Fj) ∩ [Mj,Mj+1]. Thus, since Mj ≥ Nj, by (3.2), the
conclusion follows.

3.2. Proof of Lemma 3.2. For any function ψ and for every N ≥ 1, let µ(ψ) =
∫
ψ dµ

and let

AN(ψ) =
1

N

N−1∑
n=0

ψ ◦ T n

Let ε ∈ (0, 1/2). By Von Neumann’s mean ergodic theorem, for all k,

AN(fk)
L1(µ)−−−→ µ(fk)
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Hence, we can find some M � 1, for all k ≤ n,∫
|AM(fk)− µ(fk)| dµ <

ε3

n

Let β = ε
C

, where

C = max
1≤k≤n

2||fk||L∞ + 1

Let gk = AM(fk)− µ(fk). Note that ||gk||∞ ≤ C. For all k and for every N ∈ N, define

Ek
ε,N =

{
x ∈ X : sup

1≤m≤N

∣∣∣∣∣ 1

m

m−1∑
l=0

gk(T
lx)

∣∣∣∣∣ > ε

}
Note that since β ≤ ε < 1/2, for all N ≥ 2, one has that β ≤ 1 − 1/N . Thus, by

the analogue of the maximal inequality, Proposition 2.1, applied to gk, the sequence of
transformations Tl = T l and Egk

ε,N,j = T−jEk
ε,N , for all N ≥ 2 sufficiently large, depending on

ε, there exists jN,k ∈ [0, βN ] such that

ν(T−jN,kEk
ε,N) ≤

12||gk||L1(µ)

εβ
≤ 12Cε

n
(3.3)

Let Gε
N,k = X \ T−jN,kEk

ε,N and let Gε
N =

⋂n
k=1G

ε
N,k. Thus, by (3.3) and Lemma 3.1,

ν

(
lim sup
N→∞

Gε
N

)
≥ 1− 12Cε (3.4)

Now, let y ∈ Gε
N and let Q ∈ [

√
εN,N ] ∩ N. Then, for all k = 1, . . . , n, by definition of

Ek
ε,N and our choice of β,

∣∣AdQ+βNe(gk)(y)
∣∣ ≤

∣∣∣∣∣∣ Q

Q+ βN

1

Q

jN,k+Q−1∑
l=jN,k

gk(T
ly)

∣∣∣∣∣∣+
βN ||gk||L∞
Q+ βN

≤
∣∣AQ(gk)(T

jN,ky)
∣∣+

Cβ√
ε

≤ ε+
√
ε ≤ 2

√
ε (3.5)

where for any R ∈ R, dRe denotes the least integer greater than R.
Hence, in particular, for any y ∈ lim supN G

ε
N , there exists a sequence Ni → ∞ for

which (3.5) holds for all Q ∈ [
√
εNi, Ni] ∩ N and for all k = 1, . . . , n. Define the following

sequence for y ∈ lim supN G
ε
N

A(y, ε) =
⋃

Ni:y∈GεNi

[(
√
ε+ β)Ni, (1 + β)Ni] ∩ N (3.6)

Now, a simple computation shows that for all N , and any function ψ,

AN(AM(ψ)) =
1

NM

N−1∑
n=0

M−1∑
m=0

ψ ◦ T n+m

= AN(ψ) +OM

(
||ψ||L∞
N

)
(3.7)
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Combining 3.5 and 3.7 implies that for every y ∈ lim supN G
ε
N , all k ≤ n and for all

Q ∈ A(y, ε) such that Q�M ,

|AQ(fk)(y)− µ(fk)| ≤ 3
√
ε (3.8)

Note that the choice of ε in the above considerations was arbitrary. Hence, we may consider
sets Bεi = X \ lim supN G

εi
N , where εi = 1/i2. Then, by (3.4) and the Borel-Cantelli lemma

applied to Bεi ,

ν

(
X \ lim sup

i→∞
Bεi

)
= 1 (3.9)

Let y ∈ X \ lim supiB
εi . We claim that there exists a sequence A(y) ⊆ N of full upper

density, such that for all k ≤ n,

lim sup
N→∞
N∈A(y)

|AN(fk)(y)− µ(fk)| = 0 (3.10)

By (3.9), this will conclude the proof.
Since y ∈ lim supN G

εi
N for all i sufficiently large, we have sequences A(y, εi) as before for

all εi sufficiently small. Without loss of generality, we may assume this holds for all εi. Note

that by (3.6), the upper density of A(y, εi) is at least
1−√εi
1+εi/C

.

We build the sequence A(y) from A(y, εi) by induction as follows. Let Ni ∈ A(y, εi) be
such that (3.8) holds for all k ≤ n and all Q ≥ Ni. Let M1 = N1. If Mj is defined, let
Mj+1 ∈ N be such that

|A(y, εj) ∩ [1,Mj+1]|
Mj+1

≥
1−√εj
1 + εj/C

− 1

j

Mj

Mj+1

≤ 1

j

Mj+1 ≥ Nj+1

This in particular, implies that

|A(y, εj) ∩ [Mj,Mj+1]|
Mj+1

≥
1−√εj
1 + εj/C

− 2

j

Now, define the sequence A(y) as follows:

A(y) =
∞⋃
j=1

(A(y, εj) ∩ [Mj,Mj+1])

Thus, since εj → 0, the upper density of A(y) is equal to 1. Moreover, by (3.8) and by
choice of Mj, we have that (3.10) holds as desired.

4. An Analogue of Birkhoff’s Theorem for Sequences of Transformations

In this section, we prove Theorem 1.2. We will use similar ideas to those used in the proof
of Theorem 1.1 by applying the weak-type maximal inequality to a carefully chosen set of
continuous functions capturing the structure of the ergodic invariant measures under the
transformation S.
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First, we make some standard reductions. Note that since X is locally compact and second
countable, by passing to the one point compactification and extending all the transformations
on X trivially to the point at infinity, we may assume that X is in fact compact.

The set Z in the assumption will then be enlarged to include the point at infinity since
the Dirac measure at that point will be an ergodic invariant measure for S. Also, since X is
now assumed compact, the space of probability measures on it is weak-∗ compact and thus
we can always find limit points of infinite sequences.

Proof of Theorem 1.2. Let ε ∈ (0, 1/16) be fixed and let εn = ε2/4n for n ∈ N. Write
Z = ∪nKn, where Kn is compact and Kn ⊆ Kn+1 for each n. By regularity of the measure
µ, since µ(Z) = 0, there exists an open set Un containing Z, such that µ(Un \Kn) < εn, for
each n.

Moreover, by Urysohn’s lemma, we can find a continuous function 0 ≤ fn ≤ 1 such that
fn|Kn ≡ 1 and fn ≡ 0 on X \ Un. Thus,

||fn||L1(µ) =

∫
fn(x) dµ(x) < εn

Let n be fixed. For each j ∈ N, k ≤ n and α ∈ R, define the following set

Ek
α,N,j =

{
x ∈ X : sup

1≤M≤N

1

M

j+M∑
m=j+1

fk(Tmx) > α

}
Applying the analogue of the maximal inequality, Proposition 2.1, with fk, αk = βk =

ε
1/4
k < 1/2, we get that for all N ≥ 2 sufficiently large, depending on fk, there exists
jN,k ∈ [0, βkN ] such that

ν
(
Ek
αk,N,jN,k

)
≤

12||fk||L1(µ)

αkβk
� ε

1/2
k (4.1)

for each k ≤ n.
Let GN,k = X \ Ek

αk,N,jN,k
. Let y ∈ GN,k and let Q ∈ [ε

1/8
k N,N ] ∩ N. Then, by definition

of Ek
αk,N,jN

,

1

Q+ βkN

Q+βkN∑
l=1

fk(Tly) ≤ Q

Q+ βkN

1

Q

jN,k+Q∑
l=jN,k+1

fk(Tly) +
βkN ||fk||L∞
Q+ βkN

≤ αk +
βk

ε
1/8
k

≤ 2ε
1/8
k (4.2)

Now, for each N � 1, depending on n, define the following set

VN,n =
n⋂
k=1

GN,k (4.3)

and let Wn = lim supN VN,n. The sets Wn have the following properties:

• By (4.1), since ν(GN,k) ≥ 1 − ε/2k, k = 1, . . . , n, we have ν(VN,n) ≥ 1 − ε for all
N � 1. In particular,

ν (Wn) = ν

(
lim sup
N→∞

VN,n

)
≥ 1− ε (4.4)
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• For each y ∈ Wn, by (4.2) and (4.3), and noting that ε > εk, there exists a sequence
A(y, n) ⊆ N defined by

A(y, n) =
⋃

Ni:y∈VNi,n

[(ε1/4 + ε1/8)Ni, Ni] ∩ N (4.5)

such that for all k = 1, . . . , n and for all Q ∈ A(y, n),

1

Q

Q∑
l=1

fk(Tly) ≤ 2ε
1/8
k (4.6)

Let W = lim supnWn. Then, by (4.4),

ν(W ) ≥ 1− ε (4.7)

Let y ∈ W . Then, there exists a sequence ni → ∞, such that y ∈ Wni for all i. We will
construct a sequence A(y) from the sequences A(y, ni) defined in (4.5) as follows. Let

η = ε1/4 + ε1/8

First, we define a sequence Ni by induction. Let N0 = 1. If Nj has been defined, let Nj+1

be such that the following holds

|A(y, nj+1) ∩ [1, Nj+1]|
Nj+1

≥ 1− 2η

Nj

Nj+1

≤ η

This is possible since the sequences A(y, n) have upper density at least 1−η. These conditions
imply that

|A(y, nj+1) ∩ [Nj, Nj+1]|
Nj+1

≥ 1− 3η (4.8)

Now, define the sequence A(y) as follows:

A(y) =
∞⋃
j=0

A(y, nj+1) ∩ [Nj, Nj+1] (4.9)

Thus, by (4.8), we get

lim sup
N→∞

|A(y) ∩ [1, N ]|
N

≥ 1− 3η (4.10)

We claim that

lim
N→∞
N∈A(y)

1

N

N∑
n=1

δTny = µ (4.11)

Let λy∞ be any weak-∗ limit of the sequence 1
N

∑N
n=1 δTny, N ∈ A(y). First, we claim that

λy∞(Z) = 0. Suppose otherwise. Then, since Z =
⋃
iKi and Ki ⊆ Ki+1 for all i, there exists

some i0 such that for all i > i0:

λy∞(Ki) ≥ λy∞(Ki0) > 0
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Fix some i > i0. By definition of the functions fi, λ
y
∞(fi) ≥ λy∞(Ki). Then, for all nj ≥ i

and for all N ∈ A(y, nj+1) ∩ [Nj, Nj+1] ⊂ A(y), by (4.6), we get

λy∞(fi) ≤ 2ε
1/8
i

In particular, we get that λy∞(Ki0) ≤ 2ε
1/8
i . But, this applies to i > i0. Thus, since εi → 0,

we get that λy∞(Ki0) = 0, a contradiction.
Next, by our hypothesis, (after possibly intersecting W with a set of full measure), λy∞

is S-invariant. However, all the ergodic S-invariant measures different from µ live on Z to
which λy∞ assigns 0 mass. Thus, by the ergodic decomposition, we get that λy∞ = µ. Hence,

the sequence 1
N

∑N
n=1 δTny, N ∈ A(y) has µ as its only weak-∗ limit point as desired.

Thus far, we proved that for all y ∈ W , a set of ν measure at least 1 − ε, there exists a
sequence A(y) of upper density at least 1− 3η such that (4.11) holds. Since ε was arbitrary,
the conclusion of the theorem holds ν almost everywhere as desired.

�

5. Existence of Ratner Sequences

In this section, we prove a general criterion for the existence of Ratner sequences, Theo-
rem 1.4. We fix some notation which will be used throughout the section. G is a semisimple
Lie group, Γ is a discrete subgroup of G, and H is a closed connected subgroup. We assume
that there exists some x ∈ G/Γ such that the orbit Hx is closed in G/Γ and supports an
H-invariant probability measure, which we denote by µH . By replacing Γ by a conjugate
subgroup, we may assume that x is the identity coset.

Let ZG(H) denote the centralizer of H in G. We use g and h to denote the Lie algebras
of G and H respectively. For g ∈ G, Ad(g) denotes the linear transformation on g induced
by the adjoint action of g. We also fix some norm ‖·‖ on g.

Recall that a sequence of elements gn ∈ G is said to be a Ratner sequence for µH if there
exists a one-parameter unipotent subgroup W < G such that for µH-almost every x ∈ G/Γ,

any limit point of the empirical measures 1
N

∑N
n=1 δgnx is invariant by W .

5.1. SL2(R) Representations and Unipotent Invariance. The first key step in the proof
of Theorem 1.4 is Proposition 5.1 below. It relies on the representation theory of embedded
copies of SL2(R) inside semisimple Lie groups and its proof is inspired by Ratner’s H-principle
appearing in the proof of her measure classification theorem.

The statement roughly says that it is possible to change the starting point of a unipotent
orbit of a group U in a direction parallel to H so that the 2 unipotent orbits differ roughly
by a unipotent element in the centralizer of U . The following is the precise statement.

Proposition 5.1. Let U = {ut : t ∈ R} be an Ad-unipotent 1-parameter subgroup of G such
that U 6⊂ ZG(H). Then, for every sequence tn →∞, there exists a sequence vn ∈ h = Lie(H)
satisfying the following: for all n sufficiently large

‖vn‖ �
1

‖utn|h‖
, exp(Ad(utn)(vn))

n→∞−−−→ u

where u ∈ ZG(U) is a non-trivial Ad-unipotent element of G.

Proof. Let X ∈ g be such that ut = exp(tX) for all t ∈ R. Since ut is Ad-unipotent, X is an
ad-nilpotent element of g. That, ad(X) is a nilpotent linear transformation of g.
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Since g is a semisimple Lie algebra, by the Jacobson-Morozov theorem, X may be extended
to an sl2-triple. That is there exists Y, h ∈ g such that the following relations hold:

[h,X] = 2X, [h, Y ] = −2Y, [X, Y ] = h

Hence, the Lie subalgebra f generated by X, Y and h is isomorphic to the Lie algebra sl2(R).
Since f is semisimple, g decomposes into irreducible representations under the adjoint action
of f as follows:

g = V1 ⊕ · · · ⊕ Vs
For 1 ≤ i ≤ s, let πi : g → Vi denote the associated projections and note that Ad(ut)
commutes with πi for all i. Let v ∈ h.

Let 1 ≤ i ≤ s be such that πi(v) is not fixed by Ad(ut). Let ni ∈ N be such that

dim(Vi) = ni + 1

By the standard description of irreducible sl2(R) representations, Vi decomposes into 1 di-
mensional eigenspaces for the action h as follows:

Vi = W
(i)
0 ⊕W

(i)
1 ⊕ · · · ⊕W (i)

ni

so that for each 0 ≤ l ≤ ni and every w ∈ W (i)
l , we have

h · w = (ni − 2l)w

Let ql : Vi → W
(i)
l denote the associated projections. Let

{
w

(i)
l : 0 ≤ l ≤ ni

}
denote a basis

of Vi consisting of eigenvectors of h and write

πi(v) =

ni∑
l=0

c
(i)
l w

(i)
l

Note that for each l, we have that

Ad(ut) · w(i)
l =

l∑
k=0

(
l

k

)
tl−kw

(i)
k

In particular, we get the following

q0(πi(Ad(ut)(v))) = q0(Ad(ut)(πi(v))) =

ni∑
k=0

c
(i)
k t

kw
(i)
0 (5.1)

Note also that the degree of the polynomial appearing in the coefficient of ql(πi(Ad(ut)(v)))
for any l > 0 is strictly less than the degree of the polynomial in (5.1). Let

di(v) = max
{

0 ≤ k ≤ ni : c
(i)
k 6= 0

}
And, define the following natural number

dh = max {di(v) : 1 ≤ i ≤ s, v ∈ h}

By assumption, we have that U 6⊂ ZG(H). Thus, dh 6= 0. In particular, we can find v ∈ h
and 1 ≤ i ≤ s such that

di(v) = dh
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Now, let tn ∈ R \ {0} be a sequence tending to infinity and define vn to be

vn =
1

t
dh
n

v

Thus, for each i with di(v) = dh, by (5.1), we get that

q0(πi(Ad(utn)(vn))) = (c
(i)
dh

+O(1/tn))w
(i)
0

And, for each l > 0, we have that

ql(πi(Ad(utn)(vn)))
n→∞−−−→ 0

In particular, we get that

Ad(utn)(vn)
n→∞−−−→

∑
1≤i≤s
di(v)=dh

c
(i)
dh
w

(i)
0 6= 0 (5.2)

Next, since vn → 0, exp(vn) converges to the identity element in G. Hence, all the eigen-
values of the linear transformation Ad(exp(vn)) tend to 1. Thus, since conjugation doesn’t
change eigenvalues, we get that Ad(utn)(exp(vn)) converges to an Ad-unipotent element of

G which is non-trivial by (5.2). Since Ad(ut) fixes w
(i)
0 for all i, by (5.2), the limiting element

belongs to the centralizer of U .
Finally, note that equation (5.1) and the definition of dh imply that

‖Ad(ut)|h‖ = O(tdh) (5.3)

as t tends to ∞. This implies the bound on ‖vn‖ and completes the proof. �

The following example demonstrates the above Proposition in the concrete set up of G =
SL2(R).

Example 5.2. Let G = SL(2,R) and H = K = SO(2). Let tn → +∞ be a sequence. Let
gn be the following sequence:

gn =

(
1 tn
0 1

)
Let kθ ∈ K. Then,

gnkθg
−1
n =

(
cos(θ)− tn sin(θ) (t2n + 1) sin(θ)
− sin(θ) cos(θ) + tn sin(θ)

)
Let α ∈ (0, 1) be a fixed real number. For all large n, let θn be such that t2n sin(θn) = α.

Then, as n→∞, θn → 0 and tn sin(θn)→ 0. Hence, we get

gnkθng
−1
n → u(α) =

(
1 α
0 1

)
6= id

5.2. Decay of Correlations. Let Γ, H and G be as above and define

gn = utn

Let ϕ ∈ C∞c (G/Γ). For each n, define the following function on HΓ/Γ:

fn(hΓ) = ϕ(gn exp(vn)hΓ)− ϕ(gnhΓ) (5.4)

where vn ∈ Lie(H) is as in the conclusion of Proposition 5.1 applied to the sequence tn. The
reason for defining such functions is the following
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Proposition 5.3. To prove Theorem 1.4, it suffices to show that for µH almost every x ∈
HΓ/Γ, the following holds:

1

N

N∑
n=1

fn(x)→ 0

Proof. Let hn = exp(vn). By Proposition 5.1, we have gnhng
−1
n → u, where u is a non-trivial

Ad-unipotent element. Since, ϕ is uniformly Lipschitz, we have

ϕ(ugnx)− ϕ(gnhnx) = ϕ(ugnx)− ϕ(gnhng
−1
n gnx) = O

(
d(u, gnhng

−1
n )
)

where d(., .) is the right invariant metric on G. Hence, |ϕ(ugnx)−ϕ(gnhnx)| → 0 as n→∞.
Hence, by assumption,∣∣∣∣∣ 1

N

N∑
n=1

(ϕ(ugnx)− ϕ(gnx))

∣∣∣∣∣ ≤ 1

N

N∑
n=1

|ϕ(ugnx)− ϕ(gnhnx)|+

∣∣∣∣∣ 1

N

N∑
n=1

fn(x)

∣∣∣∣∣
−→ 0

But, ϕ was an arbitrary function. Thus, any limit point must be invariant by the group
generated by u.

�

In order to use Proposition 5.3, we need to control the correlations between the functions
fn. This is established in the following lemma which is an analogue of [CE, Lemma 3.3] in
our setting. We shall need the following definition.

Definition 5.4. For any x ∈ HΓ/Γ ∼= H/(H ∩ Γ), the injectivity radius at x, denoted by
injx is defined to be the infimum over all r > 0 such that the map h 7→ hx is injective on
the ball of radius r around identity in H.

Lemma 5.5. For all n ≥ m ≥ 1 such that ‖Ad(gm)|h‖ / ‖Ad(gn)|h‖ is sufficiently small, the
following holds ∫

fn(hΓ)fm(hΓ) dµH(hΓ) = O

((
‖Ad(gm)|h‖
‖Ad(gn)|h‖

)1/2
)

(5.5)

Proof. Let vn be as in the definition of the functions fn and let hn = exp(vn). Let dn =
‖Ad(gn)|h‖ and dm = ‖Ad(gn)|h‖. Define

r =

(
1

dmdn

)1/2

(5.6)

Let BH(e, r) denote the ball of radius r around the identity in H. By abuse of notation,
we’ll use µH to denote the Haar measure on H and on HΓ/Γ.

Let ψ : HΓ/Γ → R be any integrable function. Then, by Fubini’s theorem and left
H-invariance of µH ,∫

HΓ/Γ

ψ(x) dµH(x) =

∫
HΓ/Γ

1

µH(BH(e, r))

∫
BH(e,r)

ψ(hx) dµH(h) dµH(x)

Define the following set

Thickr = {x ∈ HΓ/Γ : injx ≥ r}
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where injx denotes the injectivity radius at x in H/(H ∩ Γ). Let Thinr = HΓ/Γ− Thickr.
Using the structure of Siegel sets, one can show (Lemma 11.2, [BO]) that µH(Thinr)� rp,
for some p > 0 as r → 0. Hence, it suffices to prove for all x ∈ Thickr,

1

µH(BH(e, r))

∫
BH(e,r)

fn(hx)fm(hx) dµH(h) = O

((
‖Ad(gm)|h‖
‖Ad(gn)|h‖

)1/2
)

(5.7)

Let w ∈ Thickr be fixed. Let Br denote the ball of radius r around the w in HΓ/Γ in the
metric induced by the metric on G. Then, for every x ∈ Br, there exists some l ∈ BH(e, r)
such that x = lw. Since ϕ ∈ C∞c (G/Γ), ϕ is uniformly Lipschitz. Thus, we get

ϕ(gmhmx)− ϕ(gmhmw) = ϕ(gmhmlw)− ϕ(gmhmw) = O
(
d(gmhmlh

−1
m g−1

m , e)
)

Since the sequences dn, dm are tending to infinity, for all n,m sufficiently large, r will be
small enough so that the exponential map is a diffeomorphism from a neighborhood of 0 in
h = Lie(H) onto BH(e, r).

Thus, we can write l = exp(v) for some v ∈ h. So, we have

‖Ad(gmhm)(v)‖ ≤ ‖Ad(gm)|h‖ · ‖Ad(hm)‖ · ‖v‖

But, since hm → id as m → ∞ and since the norm is continuous, for all m sufficiently
large, we have ‖Ad(hm)‖ � 1.

Moreover, since the differential of the exponential map at 0 is the identity, its Jacobian is
1 at 0 and hence, when r is sufficiently small, we have ‖v‖ � d(l, e) ≤ r. Combining these
estimates, we get for all x ∈ Br,

‖Ad(gmhm)(v)‖ = O (‖Ad(gm)|h‖ r) = O

((
‖Ad(gm)|h‖
‖Ad(gn)|h‖

)1/2
)

But, as before, the exponential map is nearly an isometry near identity. Hence, when
‖Ad(gn)|h‖ is sufficiently larger than ‖Ad(gm)|h‖, Ad(gmhm)(v) will be sufficiently close to 0
so that d(exp(Ad(gmhm)(v)), e) � ‖Ad(gmhm)(v)‖ up to absolute constants. Thus, we get
for all x ∈ Br,

ϕ(gmhmx)− ϕ(gmhmw) = O

((
‖Ad(gm)|h‖
‖Ad(gn)|h‖

)1/2
)

Similarly, we get the same estimate for ϕ(gmx)−ϕ(gmw) for all x ∈ Br. Thus, by definition
of fm, we get

fm(x)− fm(w) = O (‖Ad(gm)|h‖ r)
Thus, we get that

1

µH(Br)

∫
Br

fn(x)fm(x) dµH(x) =
fm(w)

µH(Br)

∫
Br

fn(x) dµH(x) +O (‖Ad(gm)|h‖ r) (5.8)

Next, note that by definition of fn and left-invariance of µH ,

1

µH(Br)

∫
Br

fn(x) dµH(x) =
1

µH(Br)

∫
hnBr

ϕ(gnx) dµH(x)− 1

µH(Br)

∫
Br

ϕ(gnx) dµH(x)

= O

(
µH(hnBr4Br)

µH(Br)

)
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Since w ∈ Thickr, Br isometric to BH(e, r). Hence, for all r sufficiently small, we may
apply Proposition 5.6 below to get

1

µH(Br)

∫
Br

fn(x) dµH(x) = O

(
d(hn, e)

r

)
(5.9)

Note that Proposition 5.6 requires that hn ∈ BH(e, r). To get around this assumption,
observe that for n sufficiently large, hn = exp(vn) will be sufficiently close to identity and
hence, we have

d(hn, e)� ‖vn‖
But, by Proposition 5.1, we have ‖vn‖ � 1/ ‖Ad(gn)|h‖ for all n sufficiently large. But,

since ‖Ad(gn)|h‖ ≥ ‖Ad(gm)|h‖ by assumption, we have ‖Ad(gn)|h‖ ≥ 1/r. Thus, in partic-
ular, hn will be contained in a ball of radius comparable to r for all large n, which doesn’t
affect our estimate.

Moreover, this observation, along with (5.9), imply that

1

µH(Br)

∫
Br

fn(x) dµH(x) = O

(
1

r ‖Ad(gn)|h‖

)
(5.10)

Combining this estimate with (5.7) and (5.8) gives∫
Thickr

fn(hΓ)fm(hΓ) dµH(hΓ) = O

((
‖Ad(gm)|h‖
‖Ad(gn)|h‖

)1/2
)

(5.11)

and the conclusion of the lemma follows. �

5.2.1. A measure estimate. The following estimate was used in the proof of Lemma 5.5.

Proposition 5.6. Let H be a Lie group and let Br denote a ball of radius r > 0 around the
identity in H. Then, for all r > 0 sufficiently small and all h ∈ Br,

µH(hBr4Br)

µH(Br)
= O

(
d(h, e)

r

)
where µH denotes a left-invariant Haar measure on H and d(., .) denotes a right invariant
metric.

Proof. Let h = Lie(H). Fix a norm on h inducing the metric d. Let r > 0 be small enough
such that the exponential map is a diffeomorphism from a ball around 0 in h onto Br. Since
the differential of the exponential is the identity at 0, such ball will have a radius comparable
to r, denote it by Bh

r′

Let g ∈ Br. Let X, Y ∈ h be such that h = exp(X) and g = exp(Y ). Then, if r is
sufficiently small, by the Campell-Baker-Hausdorff formula, there exists some Z ∈ h so that
hg = exp(Z) and

Z − Y = X + o(‖X‖)
In particular, there is some C ≥ 1 such that hBr ⊆ exp(Bh

r′ + CX). And, hence, we get
that

hBr4Br ⊆ exp((Bh
r′ + CX)4Bh

r′)

Let Leb denote the Lebesgue measure on h. It is then a standard fact from convex euclidean
geometry that

Leb((Bh
r′ + CX)4Bh

r′)� ‖X‖ r
dimH−1 (5.12)
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where the implicit constants are absolute and depend only on the dimension (see for ex-
ample [Gro]). Here we are using that a ball in the norm on h is equivalent to a standard
euclidean ball of comparable radius.

Again, since the differential of the exponential is the identity at 0, the Haar measure on H
near identity is comparable up to absolute constants with the pushforward of the Lebesgue
measure under the exponential map.

In particular, one has µH(Br) � rdimH . Combining this with (5.12) gives the desired
conclusion. �

5.3. Law of Large Numbers. This section is dedicated to the proof of Proposition 5.7
below. By Proposition 5.3, this concludes the proof of Theorem 1.4.

Proposition 5.7. Under the same hypotheses of Theorem 1.4, if ϕ ∈ C∞c (G/Γ), then for
µH almost every x ∈ HΓ/Γ,

1

N

N∑
n=1

fn(x)→ 0

where fn is defined by (5.4).

Proof. For x ∈ HΓ/Γ and N ∈ N, let SN(f)(x) =
∑N

n=1 fn(x). As noted in equation (5.3),
there exists a natural number d ≥ 1, depending only on H and U , such that

‖Ad(gn)|h‖ = ‖Ad(utn)|h‖ = O(
(
tdn
)

as n tends to infinity. Hence, by assumption, there exists λ > 0 such that for all n ≥ 1, we
have

‖Ad(gm)|h‖
‖Ad(gn)|h‖

� edλ(m−n) (5.13)

Then, we have∫
|SN(f)(x)|2 dµH(x) =

∑
1≤n,m≤N

∫
fn(x)fm(x) dµH(x)

= O
(
N3/2

)
+

∑
|n−m|≥N1/2

∫
fn(x)fm(x) dµH(x)

Here we estimated the number of pairs (m,n) with |m−n| < N1/2 using the area between
the 2 lines m± n = N1/2 in the square [0, N ]2.

But, by (5.13), when N � 1, for n ≥ m such that |n − m| ≥ N1/2, we have that
‖Ad(gm)|h‖ / ‖Ad(gn)|h‖ will be sufficiently small so that Lemma 5.5 applies. This implies
that for all N � 1:

1

N2

∫
|SN(f)(x)|2 dµH(x) = O

(
N−1/2

)
+O

(
e
−dλN1/2

2

)
= O

(
N−1/2

)
Let ε > 0. Then, by the Chebyshev-Markov inequality,

µH

({
x :

∣∣∣∣SN(f)(x)

N

∣∣∣∣ > ε

})
� N−1/2

ε2
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For all k ∈ N, let Nk = k4. Thus, the above observation shows that the sequence N
−1/2
k is

summable. Hence, by the Borel-Cantelli lemma, we have

µH

(
x :

∣∣∣∣SNk(f)(x)

Nk

∣∣∣∣ > ε for infinitely many k

)
= 0

Since ε was arbitrary, by taking a countable sequence εi decreasing to 0, we conclude that
for µH almost every x,

lim
k→∞

SNk(f)(x)

Nk

= 0

We are left with bootstrapping this conclusion to all sequences, for which we use a standard
interpolation argument. Let Mi → ∞ be a sequence. Observe that for each Mi ∈ N, there
exists some ki ∈ N such that Nki ≤Mi ≤ Nki+1.

Moreover, we have Nki+1 −Nki = O(k3
i ). Thus, we get that∣∣∣∣SMi

(f)(x)

Mi

∣∣∣∣ ≤ Nki

Mi

∣∣∣∣SNki (f)(x)

Nki

∣∣∣∣+O(k−1
i )

i→∞−−−→ 0

as desired. �

6. Proof of Theorem 1.3

This section is dedicated to the proof of Theorem 1.3. Let the notation be the same as in
§ 5.

Proof of Theorem 1.3. Let gn be a Ratner sequence for H. Let W denote the one-parameter
unipotent subgroup generated by an Ad-unipotent element u as in the definition of Ratner
sequences above.

We will apply Theorem 1.2 with X = G/Γ, µ = µG/Γ, ν = µH and Tn = gn. Let us verify
the hypotheses. By assumption, we have that

1

N

N∑
n=1

(gn)∗ν → µ

In particular, this implies condition (1) of Theorem 1.2. Moreover, by definition of Ratner
sequences, condition (2) is satisfied, with the transformation S being multiplication by the
unipotent element u.

Let L denote the collection of proper analytic subgroups L of G such that L∩Γ is a lattice.
Then, L is a countable set [Rat].

For L ∈ L, define the following set

N(L,W ) =
{
g ∈ G : g−1Wg ⊆ L

}
Let π : G → G/Γ denote the natural projection. The set Z appearing in the hypotheses

of Theorem 1.2 will be defined to be

Z =
⋃
L∈L

π (N(L,W ))

Then, since Z is a countable union of analytic subvarieties of G/Γ [Rat], Z admits a
filtration by compact sets. Moreover, since L is countable, and µG/Γ(π(N(L,W ))) = 0 for
all L ∈ L, we have

µG/Γ(Z) = 0
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Finally, by Ratner’s measure rigidity theorem [Rat], any ergodic W invariant probability
measure λ 6= µG/Γ is supported on N(L,W ) (in fact supported on a single closed orbit of a
conjugate of L) for some L ∈ L. Thus, all the hypotheses of Theorem 1.2 are verified and
hence the conclusion of Theorem 1.3 follows.

�

Appendix A. Symmetric Groups and Ratner Sequences

Throughout this section, G is a connected semisimple Lie group with finite center and H
is symmetric subgroup of G. We let Γ be an irreducible lattice in G and assume the orbit
HΓ is closed in G/Γ and supports an H-invariant probability measure.

We prove a general criterion for a sequence of elements of a Lie group G to contain a
Ratner sequence as a subsequence with respect to H. The precise statement is Theorem A.1
below. The proof of this theorem follows the same lines as the proof of Theorem 1.4. The
only difference being Proposition A.3 below which acts as a replacement for Proposition 5.1
in the proof of Theorem 1.4. The arguments in sections 5.2 and 5.3 carry over verbatim to
this setting.

A.1. Structure of Affine Symmetric Spaces. Our main tool will be the structure of
affine symmetric spaces which we recall here. We follow the exposition in [EM] closely for
the material in this section. Let σ : G→ G be an involution such that H is the fixed point
set of σ. Then, G/H is an affine symmetric space. By abuse of notation, let σ also denote
the differential of σ at identity. Let g denote the Lie algebra of G. Then, we have

g = h⊕ p

where h is the eigenspace corresponding to the eigenvalue 1 of σ and p corresponds to the
−1 eigenspace, and h is the Lie algebra of H.

It is well known (Proposition 7.1.1, [Sch]) that one can find a Cartan involution θ of G
commuting with σ. Let θ also denote its differential at identity. Then, similarly g splits as

g = k⊕ q

where k (resp. q) is the +1 (resp. −1) eigenspace of θ. Since θ is a Cartan involution, k is
the Lie algebra of a maximal compact subgroup, denote it by K.

Now, let a be a maximal abelian subspace of p∩q. Then, a is the Lie algebra of a maximal
abelian subgroup A and the exponential map a→ A is a diffeomorphism.

Recall that G admits a decomposition of the form G = KAH (See [Sch], Proposition 7.1.3
or [EM], Proposition 4.2). Elements of the fiber of the map (k, a, h) 7→ kah have the form
(kl, a, l−1h) for some element l ∈ K ∩H. In particular, the fiber lies in a compact group.

Consider the adjoint action of a on g. There exists a finite subset Σ ⊂ a∗ of non-zero
elements of the dual of a such that g splits as

g = g0 ⊕
⊕
α∈Σ

gα

such that for all X ∈ a and all Z ∈ gα,

adX(Z) = α(X)Z

And, for Z ∈ g0, adX(Z) = 0. Recall that the subspaces

{X ∈ a : α(X) = 0}
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for α ∈ Σ divide a into a finite collection of cones, called Weyl Chambers.
Let C be one such Weyl chamber. Let Σ+ denote the set of α ∈ Σ such that α(X) > 0 for

all X ∈ C. We call Σ+ the set of positive roots relative to C. Then, g splits as follows:

g = n− ⊕ g0 ⊕ n+

where n− =
⊕

α∈Σ−Σ+ gα and n+ =
⊕

α∈Σ+ gα.

A.2. Unipotent Invariance. We need to fix some notation before stating the main theo-
rem. Fix some norm on Lie(G) inducing the metric on G and denote it by ‖·‖. This norm
induces a matrix norm for the Adjoint maps. Let ‖Ad(g)‖ denote such matrix norm.

The following is the main theorem of this section.

Theorem A.1. In the notation above, if gn ∈ G is a sequence tending to infinity in G/H
and satisfying the following growth condition:

(1) There exists a constant λ > 0 such that for all n ≥ 1,

‖Ad(gn)‖ = O
(
eλn
)

(2) Writing gn = knanhn, we have that ‖Ad(h−1
n )‖ is uniformly bounded for all n.

Then, gn contains a Ratner sequence for H as a subsequence.

Remark A.2. (1) Passage to a subsequence in the conclusion of Theorem A.1 is needed
to insure invariance in the limit by a single one-parameter unipotent subgroup. This
is very important for applying Theorem 1.2 to prove Theorem 1.3.

(2) The second growth condition in Theorem A.1 makes sense, since the element hn in
the decomposition of gn is unique up to left multiplication by elements inside the
compact group H ∩K.

(3) The growth rate of ‖Ad(gn)‖ required by this theorem is not the most general one
which works with our techniques. It is possible to obtain the same conclusions as-
suming there exist constants λ, c > 0 such that ‖Ad(gn)‖ = O

(
eλn

c)
.

A.3. Expansion Properties of the Adjoint Action. We shall need the following lemma
regarding the Adjoint action of G. This lemma exploits the relationship between diago-
nalizable elements and their associated horospherical subgroups. We also make use of the
structure of affine symmetric spaces.

Proposition A.3. Let gn be as in Theorem A.1. Then, there exists a sequence vn → 0 ∈
Lie(H) satisfying the following for all n,

‖vn‖ �
1

‖Ad(gn)‖
and such that after passing to a subsequence of the gn’s, we have

gn exp(vn)g−1
n → u 6= id

where u is an Ad-unipotent element in G.

We will need the following fact for the proof of Proposition A.3.

Lemma A.4. (Lemma 3, [Moz]) If G is semisimple over R with finite center, then the
Adjoint representation Ad : G→ GL(g) is a proper map.

We are now ready for the proof.
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A.3.1. Proof of Proposition A.3. Write gn = knanhn. Then, by passing to a subsequence of
gn, we may assume that there exists a single Weyl chamber C such that an = exp(Xn) and
Xn ∈ C for all n. Let Σ+ be a set of positive roots associated with C.

First, we’ll assume that gn ∈ KA and write gn = knan. Note that the mapAd : G→ GL(g)
is proper by Lemma A.4. In particular, by assumption, since gn →∞, we have

‖Ad(gn)‖ → ∞
We claim that the image of h under the projection onto n+ is non-zero. To see this, note

that given X, Y ∈ p, we have that

σ(adX(Y )) = adσ(X)(σ(Y )) = adX(Y )

Hence, adX(Y ) ∈ h. On the other hand, if X ∈ a ⊆ p and Y ∈ gα for some α 6= 0 ∈ Σ, then
adX(Y ) ∈ gα. In particular, this implies

n+ ∩ p = {0}
Thus, given any X 6= 0 ∈ n+, the element X + σ(X) 6= 0 and is σ invariant and hence
belongs to h.

Next, note that since σ(X) = −X for all X ∈ a, we have σ(n+) = n−. Thus, in particular,
for any v ∈ n+,

‖Ad(gn)(v)‖ → ∞, Ad(gn)(σ(v))→ 0 (A.1)

Let V = {vα ∈ gα : ‖vα‖ = 1, α ∈ Σ+} be fixed. For each n, let vαn ∈ V be such that

αn(Xn) = max
{
α(Xn) : α ∈ Σ+

}
where Xn ∈ C was such that an = exp(Xn). Now, for each n, let

vn =
vαn + σ(vαn)

‖Ad(gn)‖
(A.2)

Then, for all n, vn 6= 0 in h and satisfies

‖vn‖ �
1

‖Ad(gn)‖
Moreover, by the standard identity Ad(exp) = exp(ad) and by A.1,

Ad(gn)(vn) =
eαn(Xn)

‖Ad(gn)‖
Ad(kn)(vαn) + o(1)

By compactness of K, we have ‖Ad(gn)‖ � ‖Ad(an)‖. But, by our choice of αn, eαn(Xn)

is the largest eigenvalue of Ad(an) and Ad(an) is diagonalizable. Thus, eαn(Xn)/ ‖Ad(an)‖ =
O(1) and so we get

‖vαn‖ � ‖Ad(gn)(vn)‖ ≤ ‖Ad(gn)‖ ‖vn‖ � ‖vαn‖
Hence, by passing to a subsequence, we get that

gn exp(vn)g−1
n = exp(Ad(gn)(vn))→ u 6= id

Since vn → 0, we have that exp(vn) → id. Hence, all the eigenvalues of Ad(exp(vn))
converge to 1. Since conjugation doesn’t change eigenvalues, we get that u must be an
Ad-unipotent element, which finishes the proof in the case gn ∈ KA.

For the general case, by KAH decomposition, we write gn = knanhn. Then, we can
find vn ∈ h as above such that Ad(knan)(exp(vn)) → u 6= id. Thus, the elements wn =
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h−1
n vnhn will satisfy Ad(gn)(exp(wn)) = Ad(knan)(exp(vn))→ u. By our assumption on the

boundedness of ‖Ad(h−1
n )‖, we get

‖wn‖ ≤
∥∥Ad(h−1

n )
∥∥ ‖vn‖ � 1

‖Ad(gn)‖
Hence, the sequence wn satisfies the conclusion of the Proposition.
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