Exceptional Trajectories for the Teichmüller Geodesic Flow and Hausdorff Dimension

Osama Khalil

Ohio State University

JMM San Diego Joint with: H. Al-Saqban, P. Apisa, A. Erchenko, S. Mirzadeh, C. Uyanik

January 2018

- Space: X = H₁(α) a stratum of area 1 abelian differentials on a surface S.
- Transformations: $G = SL(2, \mathbb{R})$ acts on X,

$$g_t = \begin{pmatrix} e^t & 0\\ 0 & e^{-t} \end{pmatrix}, \quad k_{\theta} = \begin{pmatrix} \cos(\theta) & \sin(\theta)\\ -\sin(\theta) & \cos(\theta) \end{pmatrix}$$

• **Central question**: Given $\omega \in X$, study the set of directions θ for which the trajectory $g_t r_{\theta} \omega$ exhibits a deviation from the correct limit in Birkhoff's (and Oseledets') theorems.

What is an abelian differential?

- S closed surface of genus $g \in \mathbb{N}$.
- An abelian differential: a collection of polygons in \mathbb{C} , identify parallel sides by **translations**

- dz = d(z + c): pulling dz back gives an abelian differential with zeros at vertices
- Orders of zeros add up to 2g-2
- A partition α of 2g 2 into positive integers defines a stratum *TH*(α) of abelian differentials

The Mod(S) and $SL(2,\mathbb{R})$ actions

Mod(S) = Diff⁺(S)/Diff₀(S): abelian differentials are identified by cutting and pasting. H(α) = TH(α)/Mod(S).

• g_t action generates all geodesics in the Teichmüller metric.

• Affine local coordinates on the stratum $\mathcal{TH}(\alpha)$:

$$\omega \mapsto \left(\int_{\beta_1} \omega, \dots, \int_{\beta_{2g}} \omega, \int_{\alpha_1} \omega, \dots, \int_{\alpha_{n-1}} \omega \right) \in \mathbb{C}^{2g+n-1}$$

- Affine submanifolds of $\mathcal{H}(\alpha)$: lifts to $\mathcal{TH}(\alpha)$ are cut out by linear equations in these local coordinates.
- Affine measures are supported on and absolutely cts w.r.t. Lebesgue on some affine submanifold.

- Eskin-Mirzakhani: the only *SL*(2, ℝ)-invariant ergodic measures are affine.
- Eskin-Mirzakhani-Mohammadi: The closure *M* of the SL(2, ℝ) orbit of every ω ∈ H₁(α) is an affine submanifold supporting an affine invariant measure ν_M and

$$\lim_{T\to\infty}\frac{1}{T}\int_0^T\frac{1}{2\pi}\int_0^{2\pi}f(g_tr_\theta\omega)\ d\theta dt=\int f\ d\nu_{\mathcal{M}}$$

for all $f \in C_c(\mathcal{H}_1(\alpha))$.

• any affine measure $\nu_{\mathcal{M}}$ is g_t -ergodic $\xrightarrow{\text{Birkhoff}}$ for $\nu_{\mathcal{M}}$ almost every ω :

$$\frac{1}{T}\int_0^T f(g_t\omega) \ dt \xrightarrow{T\to\infty} \int f \ d\nu_{\mathcal{M}}$$

• Chaika-Eskin: Fix every $\omega \in \mathcal{H}_1(\alpha)$ and for almost every θ ,

$$\frac{1}{T}\int_0^T f(g_t r_\theta \omega) \ dt \xrightarrow{T \to \infty} \int f \ d\nu_{\mathcal{M}}$$

where $\mathcal{M}=\overline{\mathit{SL}(2,\mathbb{R})\omega}$, $u_{\mathcal{M}}$ affine measure on $\mathcal{M}.$

• any affine measure $\nu_{\mathcal{M}}$ is g_t -ergodic $\xrightarrow{\text{Birkhoff}}$ for $\nu_{\mathcal{M}}$ almost every ω :

$$\frac{1}{T}\int_0^T f(g_t\omega) \ dt \xrightarrow{T\to\infty} \int f \ d\nu_{\mathcal{M}}$$

• Chaika-Eskin: Fix every $\omega \in \mathcal{H}_1(\alpha)$ and for almost every θ ,

$$\frac{1}{T}\int_0^T f(g_t r_\theta \omega) dt \xrightarrow{T \to \infty} \int f d\nu_{\mathcal{M}}$$

where $\mathcal{M} = \overline{SL(2,\mathbb{R})\omega}$, $\nu_{\mathcal{M}}$ affine measure on \mathcal{M} .

• Fix any $\omega \in \mathcal{H}_1(\alpha)$, $\mathcal{M} = \overline{SL(2, \mathbb{R})\omega}$, $\nu_{\mathcal{M}}$ affine measure on \mathcal{M} .

Theorem (AAEKMU '17)

For every bounded Lipschitz function f and every $\varepsilon > 0$, the Hausdorff dimension of the set

$$\left\{\theta \in [0, 2\pi] : \limsup_{T \to \infty} \frac{1}{T} \int_0^T f(g_t r_\theta \omega) \ dt \ge \int f \ d\nu_{\mathcal{M}} + \varepsilon \right\}$$

is strictly less than 1.

•
$$B(f, T, \varepsilon) = \left\{ \theta \in [0, 2\pi] : \frac{1}{T} \int_0^T f(g_t r_\theta \omega) \ dt \ge \int f \ d\nu_{\mathcal{M}} + \varepsilon \right\}$$

Main Estimate: For every ε > 0, there is a δ > 0 :

$$|B(f,T,\varepsilon)| \ll e^{-\delta T}$$

• Deviation of a Lipschitz function is a **locally constant** property:

$$\theta \in B(f, T, \varepsilon) \Rightarrow \left[\theta - e^{-2T}, \theta + e^{-2T} \right] \subseteq B(f, T, C\varepsilon)$$

• Finishing the proof: measure estimate + locally constant $\Rightarrow B(f, T, \varepsilon)$ can be covered by $\ll e^{(2-\delta)T}$ intervals of radius e^{-2T}

•
$$B(f, T, \varepsilon) = \left\{ \theta \in [0, 2\pi] : \frac{1}{T} \int_0^T f(g_t r_\theta \omega) \ dt \ge \int f \ d\nu_{\mathcal{M}} + \varepsilon \right\}$$

Main Estimate: For every ε > 0, there is a δ > 0 :

$$|B(f,T,\varepsilon)| \ll e^{-\delta T}$$

• Deviation of a Lipschitz function is a **locally constant** property:

$$heta \in B(f, T, arepsilon) \Rightarrow \left[heta - e^{-2T}, heta + e^{-2T}
ight] \subseteq B(f, T, Carepsilon)$$

• Finishing the proof: measure estimate + locally constant $\Rightarrow B(f, T, \varepsilon)$ can be covered by $\ll e^{(2-\delta)T}$ intervals of radius e^{-2T}

Towards the main estimate

• For
$$M \in \mathbb{N}$$
, $N > 0$:

$$\frac{1}{MN}\int_{0}^{MN}f(g_{t}r_{\theta}\omega) dt = \frac{1}{M}\sum_{i=0}^{M-1}\underbrace{\frac{1}{N}\int_{iN}^{(i+1)N}f(g_{t}r_{\theta}\omega) dt}_{f_{i}(\theta)}$$

• $\theta \in B(f, MN, \varepsilon) \Rightarrow f_i(\theta) \ge \nu_{\mathcal{M}}(f) + C\varepsilon$ for a positive proportion of $\{0, \dots, M-1\}$:

$$B(f, MN, \varepsilon) \subseteq \bigcup_{|I| \gg M} \bigcap_{i \in I} \underbrace{\{\theta : f_i(\theta) \ge \nu_{\mathcal{M}}(f) + C\varepsilon\}}_{Bad_i}$$

• To get exponential decay: (1) bound measure of $Bad_i + (2)$ show that the sets Bad_i are "independent" (Key Step)

• For
$$M \in \mathbb{N}$$
, $N > 0$:

$$\frac{1}{MN}\int_{0}^{MN}f(g_{t}r_{\theta}\omega) dt = \frac{1}{M}\sum_{i=0}^{M-1}\underbrace{\frac{1}{N}\int_{iN}^{(i+1)N}f(g_{t}r_{\theta}\omega) dt}_{f_{i}(\theta)}$$

• $\theta \in B(f, MN, \varepsilon) \Rightarrow f_i(\theta) \ge \nu_{\mathcal{M}}(f) + C\varepsilon$ for a positive proportion of $\{0, \ldots, M-1\}$:

$$B(f, MN, \varepsilon) \subseteq \bigcup_{|I| \gg M} \bigcap_{i \in I} \underbrace{\{\theta : f_i(\theta) \ge \nu_{\mathcal{M}}(f) + C\varepsilon\}}_{Bad_i}$$

• To get exponential decay: (1) bound measure of $Bad_i + (2)$ show that the sets Bad_i are "independent" (Key Step)

A uniform pointwise theorem

• Chaika-Eskin: For every $x \in \mathcal{H}_1(\alpha)$ and almost every θ ,

$$\frac{1}{T}\int_0^T f(g_t r_\theta x) \ dt \xrightarrow{T \to \infty} \int f \ d\nu_{\mathcal{N}}$$

where $\mathcal{N} = \overline{SL(2,\mathbb{R})x}$, $\nu_{\mathcal{N}}$ affine measure on \mathcal{N} .

• Key Step 1: Chaika-Eskin's result holds uniformly over compact sets:

Theorem (AAEKMU '17)

There exist finitely many affine invariant submanifolds \mathcal{N}_i such that

$$\left|\left\{\theta: \left|\frac{1}{N}\int_0^N f(g_t r_{\theta} x) dt - \int f d\nu_{\mathcal{M}}\right| > \varepsilon\right\}\right| \xrightarrow{N \to \infty} 0$$

uniformly as x varies over any fixed compact subset in the complement of $\cup_i \mathcal{N}_i$

A uniform pointwise theorem

• Chaika-Eskin: For every $x \in \mathcal{H}_1(\alpha)$ and almost every θ ,

$$\frac{1}{T}\int_0^T f(g_t r_\theta x) \ dt \xrightarrow{T \to \infty} \int f \ d\nu_{\mathcal{N}}$$

where $\mathcal{N} = \overline{SL(2,\mathbb{R})x}$, $\nu_{\mathcal{N}}$ affine measure on \mathcal{N} .

• Key Step 1: Chaika-Eskin's result holds uniformly over compact sets:

Theorem (AAEKMU '17)

There exist finitely many affine invariant submanifolds \mathcal{N}_i such that

$$\left|\left\{\theta:\left|\frac{1}{N}\int_{0}^{N}f(g_{t}r_{\theta}x)\ dt-\int f\ d\nu_{\mathcal{M}}\right|>\varepsilon\right\}\right|\xrightarrow{N\to\infty}0$$

uniformly as x varies over any fixed compact subset in the complement of $\cup_i \mathcal{N}_i$

A uniform pointwise theorem \Rightarrow measure bound for Bad_i

Recall

$$\frac{1}{MN} \int_{0}^{MN} f(g_{t}r_{\theta}\omega) dt = \frac{1}{M} \sum_{i=0}^{M-1} \underbrace{\frac{1}{N} \int_{iN}^{(i+1)N} f(g_{t}r_{\theta}\omega) dt}_{f_{i}(\theta)}}_{Bad_{i} = \{\theta : f_{i}(\theta) \ge \nu_{\mathcal{M}}(f) + C\varepsilon\}}$$

• J an interval of size e^{-2iN} :

$$|J|^{-1} \int_J f_i(\theta) \ d\theta \asymp \int_0^1 \frac{1}{N} \int_0^N f(g_t r_\theta(\underbrace{g_{iN} r_{\theta_0} \omega}_{x})) \ dt \ d\theta$$

• If $g_{iN}r_{\theta_0}\omega$ lands in a good compact set for $N \Rightarrow$ get a bound on measure of Bad_i by uniform pointwise theorem.

Osama Khalil (Ohio State)

Exceptional Trajectories

A uniform pointwise theorem \Rightarrow measure bound for Bad_i

Recall

$$\frac{1}{MN} \int_{0}^{MN} f(g_{t}r_{\theta}\omega) dt = \frac{1}{M} \sum_{i=0}^{M-1} \underbrace{\frac{1}{N} \int_{iN}^{(i+1)N} f(g_{t}r_{\theta}\omega) dt}_{f_{i}(\theta)}}_{Bad_{i} = \{\theta : f_{i}(\theta) \ge \nu_{\mathcal{M}}(f) + C\varepsilon\}}$$

• J an interval of size
$$e^{-2iN}$$
:

$$|J|^{-1} \int_J f_i(\theta) \ d\theta \asymp \int_0^1 \frac{1}{N} \int_0^N f(g_t r_\theta(\underbrace{g_{iN} r_{\theta_0} \omega}_{x})) \ dt \ d\theta$$

• If $g_{iN}r_{\theta_0}\omega$ lands in a good compact set for $N \Rightarrow$ get a bound on measure of Bad_i by uniform pointwise theorem.

Applying the uniform pointwise theorem

Figure: K is a good compact set

What if we don't land in the good compact set?

- **Key Step 2:** control the dimension of the directions in which geodesics frequently miss a good compact set
- For $K \subset \mathcal{H}_1(\alpha)$, $\rho, N > 0$:

$$Z_{\omega}(K, N, \rho) = \left\{ \theta : \limsup_{M \to \infty} \frac{1}{M} \sum_{i=1}^{M} \chi_{K}(g_{iN}r_{\theta} omega) \leq 1 - \rho \right\}$$

Theorem (AAEKMU '17)

Given a finite collection C of affine invariant submanifolds and $\rho > 0$, there exists a compact set K in the complement of $\cup C$ such that the Hausdorff dimension of the set $Z_o mega(K, N, \rho)$ is strictly less than 1.

What if we don't land in the good compact set?

- **Key Step 2:** control the dimension of the directions in which geodesics frequently miss a good compact set
- For $K \subset \mathcal{H}_1(\alpha)$, $\rho, N > 0$:

$$Z_{\omega}(K, N, \rho) = \left\{ \theta : \limsup_{M \to \infty} \frac{1}{M} \sum_{i=1}^{M} \chi_{K}(g_{iN}r_{\theta} omega) \leq 1 - \rho \right\}$$

Theorem (AAEKMU '17)

Given a finite collection C of affine invariant submanifolds and $\rho > 0$, there exists a compact set K in the complement of $\cup C$ such that the Hausdorff dimension of the set $Z_o mega(K, N, \rho)$ is strictly less than 1.

• The main result can help control the dimension of the set of directions which frequently miss an **open** set where desirable properties hold.

Theorem (AAEKMU '17)

Let A be the Kontsevich-Zorich cocycle over \mathcal{M} . Denote by λ_i the Lyapunov exponents of A (with multiplicities) with respect to $\nu_{\mathcal{M}}$. For any $\theta \in [0, 2\pi]$, suppose $\psi_1(t, \theta) \leq \cdots \leq \psi_{2g}(t, \theta)$ are the eigenvalues of the matrix $A^*(g_t, r_{\theta}\omega)A(g_t, r_{\theta}\omega)$. Then, the Hausdorff dimension of the set

$$\left\{ heta \in [0,2\pi]: \limsup_{t o \infty} rac{\log \|\psi_i(t, heta)\|}{t} \geq 2\lambda_i + arepsilon
ight\}$$

is strictly less than 1.

Thanks!