On the Mozes-Shah phenomenon for horocycle flows on moduli spaces

Osama Khalil

University of Utah

Maryland Dynamics Workshop

Joint with Jon Chaika and John Smillie

April, 2022

The Mozes-Shah phenomenon

Given a Lie group *G*, a discrete subgroup Γ , and a 1-parameter unipotent flow $u_t \subset G$:

• E.g. image of $\begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix}$ under embedding $SL_2(\mathbb{R}) \hookrightarrow G$.

Theorem (Mozes-Shah '95)

Let μ_n be a sequence of u_t -ergodic probability measures converging to a probability measure μ on G/Γ . Then,

- μ is ergodic for a subgroup $L \subseteq G$ generated by unipotents.
- **2** The supports of μ_n converge to the support of μ .

This phenomenon is very rare

- Contrast this with say the geodesic flow on a compact hyperbolic surface: ergodic measures are dense in space of invariant measures.
- Davis-Lelievre, McMullen: this phenomenon fails even for billiard flows on regular polygons (apart from few exceptions like tori).
- It has deep applications beyond dynamics: e.g. counting integral points on varieties, much harder than counting lattice points.

This phenomenon is very rare

- Contrast this with say the geodesic flow on a compact hyperbolic surface: ergodic measures are dense in space of invariant measures.
- Davis-Lelievre, McMullen: this phenomenon fails even for billiard flows on regular polygons (apart from few exceptions like tori).
- It has deep applications beyond dynamics: e.g. counting integral points on varieties, much harder than counting lattice points.

This phenomenon is very rare

- Contrast this with say the geodesic flow on a compact hyperbolic surface: ergodic measures are dense in space of invariant measures.
- Davis-Lelievre, McMullen: this phenomenon fails even for billiard flows on regular polygons (apart from few exceptions like tori).
- It has deep applications beyond dynamics: e.g. counting integral points on varieties, much harder than counting lattice points.

- *S*-closed genus *g* surface.
- Holomorphic differential: a collection of polygons in \mathbb{C} , identifying parallel sides by **translations** gives *S*.

Figure: Regular octagon

• ΩM_g -space of all holomorphic differentials (on *S*).

The $SL_2(\mathbb{R})$ action

- dz = d(z + c): dz gives a 1-form, may vanish at vertices.
- Orders of zeros add up to 2g 2.
- An integral partition α of 2g 2 defines a stratum $\mathcal{H}(\alpha) \subset \Omega \mathcal{M}_g$.
- SL₂(ℝ) acts on polygons via action on ℝ², preserving the above data: SL₂(ℝ) → ℋ(α).

$$g_t = \begin{pmatrix} e^{t/2} & 0\\ 0 & e^{-t/2} \end{pmatrix}, \qquad u_s = \begin{pmatrix} 1 & s\\ 0 & 1 \end{pmatrix}$$

Eskin-Mirzakhani-Mohammadi: the space of ergodic measures for the full upper triangular subgroup of $SL_2(\mathbb{R})$ is closed and

$$\frac{1}{T}\int_0^T\int_0^1 f(g_t u_s x) \ dsdt \xrightarrow{T\to\infty} \int_{\overline{\mathrm{SL}}_2(\mathbb{R})\cdot x} f, \qquad \forall x\in \mathcal{H}(\alpha).$$

Question

What about the horocycle flow? Can we drop extra averaging in t?

Why limits of horocycle invariant measures?

Eskin-Masur showed that if

• the g_t pushforward of the horocycle arc through a flat surface (X, ω) equidistributes to some $SL_2(\mathbb{R})$ invariant measure

then, the limit

$$\lim_{T \to \infty} \frac{\# \{\text{closed geodesics on } (X, \omega) \text{ of length } \leq T \}}{T^2}$$

exists.

Theorem (Chaika-Khalil-Smillie)

There exists a sequence of periodic horocycle measures on $\mathcal{H}(2)$ whose weak-* limit is a non-trivial convex combination of

- The $SL_2(\mathbb{R})$ -ergodic measure on a closed $SL_2(\mathbb{R})$ -orbit, and
- 2 The Masur-Veech measure on $\mathcal{H}(2)$.

• This limit measure cannot be ergodic for any group of bilipschitz homeomorphisms.

Theorem (Chaika-Khalil-Smillie)

There exists a sequence of periodic horocycle measures on $\mathcal{H}(2)$ whose weak-* limit is a non-trivial convex combination of

- The $SL_2(\mathbb{R})$ -ergodic measure on a closed $SL_2(\mathbb{R})$ -orbit, and
- 2 The Masur-Veech measure on $\mathcal{H}(2)$.

• This limit measure cannot be ergodic for any group of bilipschitz homeomorphisms.

By a very general argument:

Corollary (Chaika-Khalil-Smillie)

There is a dense G_{δ} set of points in $\mathcal{H}(2)$ whose horocycle orbits are **not** generic to any measure, i.e. ergodic averages do not converge.

- Sharp contrast with Ratner's theorem on homogeneous spaces.
- New, more flexible, mechanism for failure of genericity compared with work of Chaika-Smillie-Weiss.

Proof Ideas

The Kontsevich-Zorich cocycle

- The tangent space to $\mathcal{H}(\alpha)$ carries an invariant symplectic form.
- The Kontsevich-Zorich cocycle is essentially the derivative of the $SL_2(\mathbb{R})$ action:

$$\begin{aligned} \mathrm{KZ} : \mathrm{SL}_2(\mathbb{R}) \times \mathcal{H}(\alpha) &\to \mathbf{Sp}(\mathrm{T}\mathcal{H}(\alpha)) \\ \mathrm{KZ}(gh, x) &= \mathrm{KZ}(g, hx) \cdot \mathrm{KZ}(h, x). \end{aligned}$$

The construction: horocycles near the Octagon locus

 (X_0, ω_0) -the regular octagon in $\mathcal{H}(2)$

• Veech: $\mathcal{O} := \operatorname{SL}_2(\mathbb{R}) \cdot (X_0, \omega_0)$ is closed in $\mathcal{H}(2)$ and $\mathcal{O} \cong \operatorname{SL}_2(\mathbb{R})/\Gamma$,

for a lattice $\Gamma < \operatorname{SL}_2(\mathbb{R})$ with 2 cusps.

• The u_s orbit of (X_0, ω_0) itself is periodic.

Construction in a nutshell

- Produce a 1-parameter family of periodic horocycles $\ell \mapsto H_{\ell}$ which are **outside** \mathcal{O} via **tremors** and $H_0 = (u_s X_0) \subset \mathcal{O}$.
- Choose $t_n \to \infty$ and $\ell_n \to 0$ carefully so that $g_{t_n} H_{\ell_n}$ give us the periodic horocycles in the main theorem.

The octagon has 2 horizontal cylinders.

- We'll shear one of them to the **right** by an amount ℓ (and shear the other to the **left** by the same amount).
- We get a path $\ell \mapsto (X_{\ell}, \omega_{\ell})$, with tangent vector field β :

$$(X_{\ell}, \omega_{\ell}) =: \operatorname{Trem}_{X_0}(\beta; \ell).$$

What are tremors?

- Tremoring **commutes** with the horocycle flow:
 - $(X_{\ell}, \omega_{\ell})$ has a periodic u_t orbit H_{ℓ} .
- $\beta \perp TO$ infinitesimally \Longrightarrow for small ℓ , $(X_{\ell}, \omega_{\ell}) \notin O$.

Local normalizer

Tremors are also "normalized" by the geodesic flow, i.e.

Lemma

The pushforward of a tremor path $\ell \mapsto (X_{\ell}, \omega_{\ell})$ starting at (X_0, ω_0) by g_t is also tremor path starting at $g_t \cdot (X_0, \omega_0)$. Moreover,

 $g_t u_s X_{\ell} = \operatorname{Trem}_{g_t u_s X_0} (\mathsf{KZ}(\mathbf{g}_t, \mathbf{u}_s \mathbf{X}_0) \cdot \beta; \ell).$

- Magic happens because $s \mapsto KZ(g_t, u_s X_0)$ is far from constant.
- For comparison, if β were tangent to a horocycle path, then $KZ(g_t, u_s X_0) \cdot \beta = e^t \cdot \beta$.

Local normalizer

Tremors are also "normalized" by the geodesic flow, i.e.

Lemma

The pushforward of a tremor path $\ell \mapsto (X_{\ell}, \omega_{\ell})$ starting at (X_0, ω_0) by g_t is also tremor path starting at $g_t \cdot (X_0, \omega_0)$. Moreover,

$$g_t u_s X_{\ell} = \operatorname{Trem}_{g_t u_s X_0} (\mathsf{KZ}(\mathbf{g}_t, \mathbf{u}_s \mathbf{X}_0) \cdot \beta; \ell).$$

- Magic happens because $s \mapsto KZ(g_t, u_sX_0)$ is far from constant.
- For comparison, if β were tangent to a **horocycle** path, then $KZ(g_t, u_s X_0) \cdot \beta = e^t \cdot \beta$.

The cocycle is bad news for the horocycle flow

The distance of $g_t u_s X_\ell$ to the Octagon locus is essentially^{*}

 $\|\mathrm{KZ}(g_t, u_s X_0) \cdot \beta\|$.

Oseledets + Chaika-Eskin:

$$\frac{\log \|\operatorname{KZ}(g_t, u_s X_0) \cdot \beta\|}{t} \xrightarrow{t \to \infty} \lambda > 0, \quad \text{for a.e. } s.$$

But...these norms exhibit **significant fluctuations** around the mean $e^{\lambda t}$ as *s* varies!

The cocycle is bad news for the horocycle flow

The distance of $g_t u_s X_\ell$ to the Octagon locus is essentially^{*}

 $\|\mathrm{KZ}(g_t, u_s X_0) \cdot \beta\|.$

Oseledets + Chaika-Eskin:

$$\frac{\log \|\operatorname{KZ}(g_t, u_s X_0) \cdot \beta\|}{t} \xrightarrow{t \to \infty} \lambda > 0, \quad \text{for a.e. } s.$$

But...these norms exhibit **significant fluctuations** around the mean $e^{\lambda t}$ as *s* varies!

Fluctuations => Chaotic divergence of y-cribits

Non-concentration of the cocycle

The heart of the proof is:

Theorem (Chaika-Khalil-Smillie)For every $K \ge 1$, for all large enough t, $\sup_{r\ge 0} |\{s \in [0,1] : r \le || \operatorname{KZ}(g_t, u_s X_0) \cdot v|| \le Kr\}| < 0.99,$ for any $0 \ne v \perp T\mathcal{O}$.

Remark

This says there is no analog of the fundamental linearization theory of Dani-Margulis for moduli spaces.

Non-concentration of the cocycle

The heart of the proof is:

Theorem (Chaika-Khalil-Smillie)For every $K \ge 1$, for all large enough t, $\sup_{r\ge 0} |\{s \in [0,1] : r \le \|\mathrm{KZ}(g_t, u_s X_0) \cdot v\| \le Kr\}| < 0.99,$ for any $0 \ne v \perp T\mathcal{O}$.

Remark

This says there is no analog of the fundamental linearization theory of Dani-Margulis for moduli spaces.

Moral of non-concentration:

- Both the sets where the cocycle is large/small have definite mass.
- When the norm is small \implies definite mass of the horocycle $g_t H_\ell$ is in the ϵ neighborhood of the Octagon locus.
- When the norm is large (+more work) \implies definite mass is far from \mathcal{O} .

Central Limit Theorem - In progress

- $\mu = \text{prob.}$ measure on a closed $SL_2(\mathbb{R})$ -orbit in a stratum $\mathcal{H}(\alpha)$.
- $V \subset T\mathcal{H}(\alpha)$ strongly irreducible subbundle.

Theorem (Khalil, in progress)

Assume top Lyapunov exponent λ_1 is simple. Then, there exists $\sigma \ge 0$, for all $0 \ne v \in V$,

$$\frac{\log \|\mathrm{KZ}(g_t, \bullet)v\| - \lambda_1 t}{\sqrt{t}} \xrightarrow[t \to \infty]{in \ law} \mathrm{Gaussian}(0, \sigma^2).$$

• Approach is via spectral theory of transfer operators: flows pose serious difficulties.

Central Limit Theorem - In progress

- $\mu = \text{prob.}$ measure on a closed $SL_2(\mathbb{R})$ -orbit in a stratum $\mathcal{H}(\alpha)$.
- $V \subset T\mathcal{H}(\alpha)$ strongly irreducible subbundle.

Theorem (Khalil, in progress) Assume top Lyapunov exponent λ_1 is simple. Then, there exists $\sigma \ge 0$, for all $0 \ne v \in V$, $\frac{\log ||KZ(g_t, \bullet)v|| - \lambda_1 t}{\sqrt{t}} \xrightarrow[t \to \infty]{in \ law} \text{Gaussian}(0, \sigma^2).$

• Approach is via spectral theory of transfer operators: flows pose serious difficulties.

Positive Variance

Theorem (Khalil 2022+)

Assume further that

there are two periodic g_t-orbits with distinct Lyapunov exponents,
dim(V) = 2.
Then, σ > 0.

Remark

- CLT holds beyond KZ for nice enough cocycles.
- Al-Saqban proved related results in his thesis.

Positive Variance

Theorem (Khalil 2022+)

Assume further that

there are two periodic g_t-orbits with distinct Lyapunov exponents,
dim(V) = 2.

Then, $\sigma > 0$.

Remark

- CLT holds beyond KZ for nice enough cocycles.
- Al-Saqban proved related results in his thesis.

Proof of non-concentration - rough idea

• Observation: if s_1, s_2 have norms in [r, Kr], then

$$\frac{1}{K} \leq \frac{\|\mathrm{KZ}(g_t, u_{s_2}X_0) \cdot v\|}{\|\mathrm{KZ}(g_t, u_{s_1}X_0) \cdot v\|} \leq K.$$

Strategy: build disjoint, definite measure sets A, B ⊂ [0, 1] and a measure preserving Φ : A → B:

$$\frac{\left\|\operatorname{KZ}(g_t, u_{\Phi(s)}X_0) \cdot v\right\|}{\left\|\operatorname{KZ}(g_t, u_sX_0) \cdot v\right\|} > K.$$

• Upshot: $\Phi\left(\text{ Concentrated set } \cap A \right)$ misses the concentrated set.

Non-concentration: 1) Lyapunov spectrum

Proposition (Chaika-Khalil-Smillie)

For every $\varepsilon > 0$, there are two nearby points $\omega_a, \omega_b \in \mathcal{O}$ with periodic g_t orbits and (possibly non-primitive) periods $\tau_a \approx \tau_b$, but

 $\|\mathrm{KZ}(g_{\tau_a},\omega_a)\| < \varepsilon \|\mathrm{KZ}(g_{\tau_b},\omega_b)\|.$

- These periodic orbits have distinct Lyapunov exponents on $T\mathcal{O}^{\perp}$.
- Impossible in homogeneous dynamics.

Non-concentration: 3) Strong Irreducibility

Strong irreducibility \implies norm of products \approx product of norms: For $s \in A$

 $\|\mathrm{KZ}(g_T, u_s X_0)\| \approx \|$ after shadowing $\| \|\mathrm{KZ}(g_{\tau_a}, \omega_a)\| \|$ before shadowing $\|$.

Similarly for $s \in B$.

So, if $s \in A$,

 $\frac{\|\mathrm{KZ}(g_T, u_s X_0)\|}{\|\mathrm{KZ}(g_T, u_{\Phi(s)} X_0)\|} \ll 1.$

Non-concentration: 3) Strong Irreducibility

Strong irreducibility \implies norm of products \approx product of norms: For $s \in A$

 $\|\mathrm{KZ}(g_T, u_s X_0)\| \approx \|$ after shadowing $\| \|\mathrm{KZ}(g_{\tau_a}, \omega_a)\| \|$ before shadowing $\|$.

Similarly for $s \in B$.

So, if
$$s \in A$$
,
$$\frac{\|\operatorname{KZ}(g_T, u_s X_0)\|}{\|\operatorname{KZ}(g_T, u_{\Phi(s)} X_0)\|} \ll 1$$

Questions

Question

Is this the worst that can happen for limits of horocycle ergodic measures (on $\mathcal{H}(2)$)?

Question

Are there exotic horocycle flow orbit closures in $\mathcal{H}(2)$?

Thanks!