Sparse Equidistribution, Birkhoff's Theorem and Unipotent Dynamics

Osama Khalil

Ohio State University

Penn State, October 2017

Osama Khalil (Ohio State)

- Homogeneous Spaces: $X = G/\Gamma$, G a Lie group, Γ a lattice. Ex: $SL(2,\mathbb{R})/SL(2,\mathbb{Z})$.
- **Transformations**: elements g_n of G acting by left multiplication.
- Measures: μ the Haar measure on X.
- **Central question**: when equidistribution of sequences of the form *g_nx* for some *x* ∈ *X* holds i.e.

$$\frac{1}{N} \sum_{n=1}^{N} \delta_{g_{nx}} \xrightarrow{\text{weak} - *} \mu$$

 $G = SL(2, \mathbb{R}), \ \Gamma < G$ a lattice, $p : \mathbb{N} \to \mathbb{N}$ an increasing sequence,

$$u(t) = \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix}$$

Conjecture (Shah '94)

If p(n) is a polynomial, then for **every** $x \in G/\Gamma$ which is not u(t)-periodic,

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} \delta_{u(p(n))x} = \mu_{G/\Gamma}$$

Osama Khalil (Ohio State)

- 4 週 ト - 4 ヨ ト - 4 ヨ ト -

Equidistribution of exponential sequences

 $G = SL(2, \mathbb{R})$, $\Gamma \subset G$ a lattice, H = SO(2). Let $\lambda, \varepsilon > 0$ and let

$$g_n = \begin{pmatrix} 1 & e^{\lambda n^{\varepsilon}} \\ 0 & 1 \end{pmatrix}, k_{\theta} = \begin{pmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{pmatrix}$$

Theorem (K.'17)

For every $x \in G/\Gamma$ and for almost every $\theta \in [0, 2\pi]$, there exists a sequence $A(\theta) \subseteq \mathbb{N}$ of full upper density such that

$$\lim_{\substack{N \to \infty \\ N \in \mathcal{A}(\theta)}} \frac{1}{N} \sum_{n=1}^{N} \delta_{g_n k_{\theta} \times} = \mu_{G/\Gamma}$$

Moreover, if G/Γ is compact then $A(\theta) = \mathbb{N}$.

- **Dani-Smilie '84, Ratner '91**: The only u(t) invariant measures are $\mu_{G/\Gamma}$ and measures supported on periodic orbits.
- Bourgain 1986: The conjecture holds for $\mu_{G/\Gamma}$ -almost every x.
- Venkatesh 2010: p(n) = n^{1+ε}, compact quotients of SL(2, ℝ). Improvements: Flaminio, Forni, Tanis, Vishe, Zheng.
- Sarnak-Ubis 2011: p(n) = nth prime, SL(2, ℝ)/SL(2, ℤ), absolutely continuous weak limits with mass at least 1/10.

Question

Does the conjecture hold ν -almost everywhere where ν is singular w.r.t. $\mu_{G/\Gamma}$ but satisfies

$$\frac{1}{N}\sum_{n=1}^{N}(u(p(n)))_{*}\nu \rightarrow \mu_{G/\Gamma}$$

Question (More generally)

If ν is a probability measure on G/Γ satisfying $\frac{1}{N}\sum_{n=1}^{N} (g_n)_*\nu \to \mu_{G/\Gamma}$ for a sequence g_n of elements G. When does equidistribution of $\{g_n x : n \in \mathbb{N}\}$ hold for ν -almost every x?

Question

Does the conjecture hold ν -almost everywhere where ν is singular w.r.t. $\mu_{G/\Gamma}$ but satisfies

$$\frac{1}{N}\sum_{n=1}^{N}(u(p(n)))_{*}\nu \rightarrow \mu_{G/\Gamma}$$

Question (More generally)

If ν is a probability measure on G/Γ satisfying $\frac{1}{N}\sum_{n=1}^{N}(g_n)_*\nu \rightarrow \mu_{G/\Gamma}$ for a sequence g_n of elements G. When does equidistribution of $\{g_n x : n \in \mathbb{N}\}$ hold for ν -almost every x?

Author(s)	ν	Pushforward by
Eskin-McMullen '93	Closed orbits of a sym- metric subgroup <i>H</i> of <i>G</i>	$g_n ightarrow \infty$ in G/H
Shah '09, '10	Curves on horospherical subgroups of <i>G</i>	diagonal elements
Eskin-Mirzakhani- Mohammadi '13	SO(2) orbits on a stra- tum of abelian differen- tials	geodesic flow

• Many others: Eskin-Mozes-Shah, Kleinbock-Weiss, ...

æ

(日) (周) (三) (三)

- (X, \mathfrak{B}, μ) a standard Borel space.
- $T_n: X \to X$ a sequence of continuous transformations.
- $\nu \in \mathcal{P}(X)$ satisfying

$$\frac{1}{N}\sum_{n=1}^{N}(T_n)_*\nu\to\mu$$

What can we prove with abstract ergodic theoretic tools?

- ∢ ∃ ▶

- (X, \mathfrak{B}, μ) a standard Borel space.
- $T_n: X \to X$ a sequence of continuous transformations.
- $\nu \in \mathcal{P}(X)$ satisfying

$$\frac{1}{N}\sum_{n=1}^{N}(T_{n})_{*}\nu \to \mu$$

What can we prove with abstract ergodic theoretic tools?

ヨト イヨト

 (X,\mathfrak{B},μ) standard Borel space, $\mathcal{T}:X o X$ μ -ergodic, $u\in\mathcal{P}(X)$,

$$\frac{1}{N}\sum_{n=1}^{N}(T^{n})_{*}\nu \rightarrow \mu$$

Theorem (K.'17)

For ν -almost every $x \in X$, there exists a sequence $A(x) \subseteq \mathbb{N}$, of full upper density, such that

$$\lim_{\substack{N \to \infty \\ N \in A(x)}} \frac{1}{N} \sum_{n=1}^{N} \delta_{T^n x} = \mu$$

• Does the limit exist?

 (X,\mathfrak{B},μ) standard Borel space, $\mathcal{T}:X o X$ μ -ergodic, $u\in\mathcal{P}(X)$,

$$\frac{1}{N}\sum_{n=1}^{N}(T^{n})_{*}\nu \rightarrow \mu$$

Theorem (K.'17)

For ν -almost every $x \in X$, there exists a sequence $A(x) \subseteq \mathbb{N}$, of full upper density, such that

$$\lim_{\substack{N \to \infty \\ N \in A(x)}} \frac{1}{N} \sum_{n=1}^{N} \delta_{T^n x} = \mu$$

Does the limit exist?

Example: Expanding Curves

 $G = SL(d + 1, \mathbb{R}), \ \Gamma = SL(d + 1, \mathbb{Z}), \ \varphi : [0, 1] \to \mathbb{R}^d$ an analytic curve. $\nu = \varphi_*(Leb).$ For $v \in \mathbb{R}^d$ and $t \in \mathbb{R}$, define

$$u(v) = \begin{pmatrix} 1 & v^t \\ 0 & I_d \end{pmatrix}, \ a(t) = \begin{pmatrix} e^{dt} & 0 \\ 0 & e^{-t}I_d \end{pmatrix}$$

By Shah'09, the pointwise theorem applies in this case and gives:

Corollary (K.'17)

If the image of φ is not contained in finitely many proper affine subspaces of \mathbb{R}^d , then for almost every $s \in [0,1]$, there exists $A(s) \subseteq \mathbb{N}$ of full upper density such that

$$\lim_{\substack{N \to \infty \\ N \in \mathcal{A}(s)}} \frac{1}{N} \sum_{n=1}^{N} \delta_{a(n)u(\varphi(s))x} = \mu_{G/\Gamma}$$

3

(日) (周) (三) (三)

Same setup but need two more conditions:

- There exists $S: X \to X$ such that for ν -almost every x, all limit points of the sequence $\frac{1}{N} \sum_{n=1}^{N} \delta_{T_n x}$ is S invariant.
- ⓐ μ is *S* ergodic and there exists a σ -compact μ -null set *Z* ⊂ *X* on which all other *S*-ergodic measures live.

Theorem (K.'17)

For ν -almost every x, there exists a sequence $A(x) \subseteq \mathbb{N}$, of full upper density, such that

$$\lim_{N \in A(x)} \frac{1}{N} \sum_{n=1}^{N} \delta_{\mathcal{T}_{nx}} = \mu$$

H a symmetric subgroup, $\nu = \mu_H$ is H-invariant probability measure on a closed H-orbit.

Definition (Ratner Sequences)

We say a sequence g_n of elements of G is a **Ratner Sequence** for H if there exists a one parameter unipotent subgroup U such that for μ_H almost every $x \in G/\Gamma$, any limit point of the measures $\frac{1}{N} \sum_{n=1}^{N} \delta_{g_n x}$ is invariant by U. Generalizing a technique due to J. Chaika and A. Eskin, we prove

Theorem (K.'17)

If the sequence g_n grows exponentially with bounded H component, then g_n contains a Ratner sequence as a subsequence.

• In most examples, the sequence $g_n = g^{p(n)}$ for some $g \in G$ and $p : \mathbb{N} \to \mathbb{N}$ increasing. No need to pass to a subsequence.

Generalizing a technique due to J. Chaika and A. Eskin, we prove

Theorem (K.'17)

If the sequence g_n grows exponentially with bounded H component, then g_n contains a Ratner sequence as a subsequence.

• In most examples, the sequence $g_n = g^{p(n)}$ for some $g \in G$ and $p : \mathbb{N} \to \mathbb{N}$ increasing. No need to pass to a subsequence.

• Step 1: the elements

$$g_n = \begin{pmatrix} 1 & e^{\lambda n^{\varepsilon}} \\ 0 & 1 \end{pmatrix}$$

form a Ratner sequence for H = SO(2).

• Step 2: Apply the ergodic theorem to conclude that for *every* $x \in G/\Gamma$ and for almost every $\theta \in [0, 2\pi]$, there exists a sequence $A(\theta) \subseteq \mathbb{N}$ of full upper density such that

$$\lim_{\substack{N \to \infty \\ N \in A(\theta)}} \frac{1}{N} \sum_{n=1}^{N} \delta_{g_n k_{\theta} \times} = \mu_{G/\Gamma}$$

Thanks!

Osama Khalil (Ohio State)

2

メロト メポト メヨト メヨト